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Abstract

Classifier-free guided diffusion models have recently been shown to be highly
effective at high-resolution image generation, and they have been widely used
in large-scale diffusion frameworks including DALL-E 2, GLIDE and Imagen.
However, a downside of classifier-free guided diffusion models is that they are
computationally expensive at inference time since they require evaluating two
diffusion models, a class-conditional model and an unconditional model, hundreds
of times. To deal with this limitation, we propose an approach to distilling classifier-
free guided diffusion models into models that are fast to sample from: Given a
pre-trained classifier-free guided model, we first learn a single model to match
the output of the combined conditional and unconditional models, and then we
progressively distill that model to a diffusion model that requires much fewer
sampling steps. On ImageNet 64x64 and CIFAR-10, our approach is able to
generate images visually comparable to that of the original model using as few as
4 sampling steps, achieving FID/IS scores comparable to that of the original model
while being up to 256 times faster to sample from.

1 Introduction

Denoising diffusion probabilistic models (DDPMs) [16, 1, 18, 19] have achieved state-of-the-art
performance on image generation [7, 11, 10, 9, 14], audio synthesis [6], molecular generation [21],
and likelihood estimation [5]. Classifier-free guidance [2] further improves the sample quality of
diffusion models and has been widely used in large-scale diffusion model frameworks including
GLIDE [8], DALL-E 2 [9], and Imagen [14]. However, one key limitation of classifier-free guidance is
its low sampling efficiency—it requires evaluating two diffusion models hundreds of times to generate
one sample. This limitation has hindered the application of classifier-free guidance models in real-
world settings. Although distillation approaches have been proposed for diffusion models [15, 17],
these approaches are currently not applicable to classifier-free guided diffusion models. To deal
with this issue, we propose a two-step distillation approach to improve the sampling efficiency of
classifier-free guided models. In the first step, we introduce a single student model to match the
combined output of the two diffusion models of the teacher. In the second step, we progressively
distill the model learned from the first step to a fewer-step model use the approach introduced in [15].
Using our approach, a single distilled model is able to handle a wide range of different guidance
strengths, allowing for the trade-off between sample quality and diversity efficiently. To sample from
our model, we consider existing deterministic sampler in the literature [17, 15] and further propose
a stochastic sampling process. Our experiments on ImageNet 64x64 and CIFAR-10 show that the
proposed distilled model can generate samples visually comparable to that of the teacher using only 4
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steps and is able to achieve comparable FID/IS scores as the teacher model using as few as 8 to 16
steps on a wide range of guidance strengths (see Fig. 1). Additional experiments on ImageNet 64x64
also demonstrate the potential of the proposed framework in style-transfer applications [20].
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Figure 1: Class-conditional samples from our two-step (deterministic) approach on ImageNet 64x64.
By varying the guidance weight w, our distilled model is able to trade-off between sample diversity
and quality, while achieving visually pleasant results using as few as one sampling step.

2 Background on diffusion models

Given samples x from a data distribution pga, (%), noise scheduling functions ¢ and oy, we train a
diffusion model Xy, with parameter 6, via minimizing the weighted mean squared error

0" = argglnin EfNU[O,”vapdala(x)vztNQ(zt|x) [W(At)”ﬁe(zt) o X||g]’ M

where \; = log[a?/0?] is a signal-to-noise ratio [5], q(z¢|x) = N (z; aix,021) and w(\) is a
pre-specified weighting function [5].

Once the diffusion model Xy is trained, one can use discrete-time DDIM sampler [17] to sample from
the model. Specifically, the DDIM sampler starts with z; ~ A(0,I) and updates as follows
7y — uXe(2t)

zo = auXp(zi) + 0o, s =1—1/N )
t

with N the total number of sampling steps. The final sample will then be generated using Xg (o).

Classifier-free guidance Classifier-free guidance [2] is an effective approach shown to significantly
improve the sample quality of class-conditioned diffusion models, and has been widely used in
large-scale diffusion models including GLIDE [8], DALL-E 2 [9] and Imagen [14]. Specifically, it
introduces a guidance weight parameter w € R=? to trade-off between sample quality and diversity.
To generate a sample, classifier-free guidance evaluates both a conditional diffusion model X. g and a
jointly trained unconditional diffusion model %X¢ at each update step, using Xy = (1 +w)X. 9 — wXg
as the model prediction in Eq. (2). As each sampling update requires evaluating two diffusion models,
sampling with classifier-free guidance is often expensive [2].

Progressive distillation Our approach is based on progressive distillation [15], an effective method
for improving the sampling speed of diffusion models by repeated distillation. Until now, this
method could not be directly applied to distillation of guided models or to samplers other than the
deterministic DDIM sampler [17]. In this paper we resolve these shortcomings.

3 Distilling a classifier-free guided diffusion model

In the following, we discuss our approach for distilling a classifier-free guided diffusion model [2].
Given a trained guided model [%. g, Xg] (teacher), our approach can be decomposed into two steps.



Step one In the first step, we introduce a continuous-time student model X, (z:, w), with learnable
parameter 71, to match the output of the teacher at any time-step ¢ € [0, 1]. Given a range of guidance
strengths [wWmin, Wmax] We are interested in, we optimize the student model using the following
objective

77T = arg min EwNU[wmi,.,wmux],tNU[O,l],xwpduw(x),ztwq(z,,\x) W(At)”&nl (Zt, w) - 5(51 (zt) ||§ ) 3
m

where %§(z;) = (1 + w)X,,0(2:) — wXg(z;). To incorporate the guidance weight w, we introduce
a w-conditioned model, where w is fed as an input to the student model. To better capture the feature,
we apply Fourier embedding to w, which is then incorporated into the diffusion model backbone in a
way similar to how the time-step was incorporated in [5, 15]. As initialization plays a key role in the
performance, we initialize the student model with the same parameters as the conditional model of
the teacher, except for the newly introduced parameters related to w-conditioning. We provide the
detailed algorithm for Step-one training in Appendix C.

Step two In the second step, we consider a discrete time-step scenario and progressively distill
the learned model from the first step Xy, (z;, w) into an fewer-step student model X, (z;, w) with
learnable parameter 172, by halving the number of sampling steps each time. Letting /N denote the
number of sampling steps, given w ~ U[wmin, Wmax] and t € {1, ..., N}, we train the student model
to match the output of two-step DDIM sampling of the teacher (i.e., from ¢ /N to t — 0.5/N and from
t —0.5/N tot — 1/N) in one step, following the approach of [15]. After distilling the 2N steps
in the teacher model to NV steps in the student model, we can use the N-step student model as the
new teacher model, repeat the same procedure, and distill the teacher model into a N/2-step student
model. At each step, we initialize the student model with the parameters of the teacher. More details
are provided in Appendix C.

N-step deterministic and stochastic sampling Once the model %Xy, is trained, given a specified
W € [Win, Wmax ], We can perform sampling via the DDIM update rule in Eq. (2). We note that given
the distilled model X, , this sampling procedure is deterministic given the initialization z{’.

In fact, we can also perform N-step stochastic sampling: We apply one deterministic sampling step
with two-times the original step-length (i.e., the same as a N/2-step deterministic sampler) and
then perform one stochastic step backward (i.e., perturb with noise) using the original step-length, a
process inspired by [4]. With z* ~ N(0,1), we use the following update rule when ¢ > 1/N

zy — XY (z¢)

z) = apXy,(zy") + ng—m, z, = (o /ap)z) + ogp€, €~ N(0,T) 4)
¢
w ) w z¥ — a XY (z¥) w w
Z) = QpXp, (Zs ) + Uha—ma Z, = (ak/ah)zh + Ok|h€, €~ N(Ovl)a ©)
where h =t —3/N,k=t—2/N,s =t—1/Nando}, = (1 —e* *)oz. Whent = 1/N, we

use deterministic update Eq. (2) to obtain zg' from z’l"/ - We note that compared to the deterministic
sampler, performing stochastic sampling requires evaluating the model at slightly different time-steps,
and would require small modifications to the training algorithm for the edge cases. We provide more
details in Appendix C.

Other distillation approaches A direct application of progressive distillation [15] to guided models
is to follow the structure of the teacher model and directly distill the student model into one jointly-
trained conditional and unconditional model. We explore this option and observe that this approach
does not work well. We provide more details and analysis in Appendix C.8.

4 Experiment

In this section, we evaluate the performance of our distillation approach. We observe that our
approach is able to achieve competitive FID/IS scores while using as few as 4 steps. We provide extra
experimental details in Appendix C and extra samples in Appendix D.

Distillation for classifier-free guided models We focus on ImageNet 64x64 [13] and CIFAR-10
in this experiment. We explore different ranges for the guidance weight and observe that all ranges
work comparably and therefore use [Wnin, Winaz] = [0, 4] for the experiments. We train the step-one



model using SNR loss, and the step-two model using SNR loss with truncation [15]. The baselines
we consider include DDPM ancestral sampling [1] and DDIM [17]. To better understand how the
guidance weight w should be incorporated, we also include models trained using a single fixed w
as a baseline. We use the same pre-trained teacher model for all the methods for fair comparisons.
Following [1, 2], we use a U-Net [12] architecture for the baselines, and the same U-Net backbone
with the introduced w-embedding for our two-step student models (see Section 3). We report the
performance for all approaches on ImageNet 64x64 in Fig. 2 and Table 1. We provide the results
on CIFAR-10 and extended results on ImageNet 64x64 in Table 2 (see Appendix C.6). We provide
samples for both datasets in Appendix D.

w=0 w=0.3 w=1 w=4
Method FID () IS (1) FID () IS (1) FID (1) IS (M FID () IS (M
Ours I-step (D/S) 2277472691 255172355 148571848 37.09/3330 7.547892 75.19767.80  18.72/17.85 157.46/148.97
Ours 4-step (D/S) 4.14/391  46.64/48.92  2.17/224  69.64/73.73 7.95/851 128.98/13536 26.45/27.33 207.45/216.56
Ours 8-step (D/S) 2.79/2.44 50.72/55.03  2.05/231 76.01/83.00 9.33/10.56 136.47/147.39 26.62/27.84 203.47/219.89
Ours 16-step (D/S) 2447210 5253/57.81 220/2.56  79.47/87.50 9.99/11.63 139.11/153.17 26.53/27.69 204.13/218.70
Single-w 1-step 19.61 24.00 11.70 36.95 6.64 74.41 19.857 170.69
Single-w 4-step 4.79 38.77 2.34 62.08 8.23 118.52 27.75 219.64
Single-w 8-step 3.39 42.13 2.32 68.76 9.69 125.20 27.67 218.08
Single-w 16-step 297 43.63 2.56 70.97 10.34 127.70 27.40 216.52
DDIM 16x2-step 7.68 37.60 5.33 60.83 9.53 112.75 21.56 195.17
DDIM 32x2-step 5.03 40.93 7.47 9.33 9.26 126.22 23.03 213.23
DDIM 64x2-step 3.74 43.16 5.52 9.51 9.53 133.17 23.64 217.88
Teacher (DDIM 1024x2-step) 2.92 44.81 2.36 74.83 9.84 139.50 23.94 224.74

Table 1: ImageNet 64x64 distillation results (w = 0 refers to non-guided models). For our method,
D and S stand for deterministic and stochastic sampler respectively. We observe that training the
model conditioned on a guidance interval w € [0, 4] performs comparably with training a model on a
fixed w (see Single-w). Our approach significantly outperforms DDIM when using fewer steps, and
is able to match the teacher performance using as few as 8 to 16 steps.
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Figure 2: ImageNet 64x64 sample quality evaluated by FID and IS scores. Our distilled model
significantly outperform the DDPM and DDIM baselines, and is able to match the performance of
the teacher using as few as 8 to 16 steps. By varying w, a single distilled model is able to capture the
trade-off between sample diversity and quality.

Progressive distillation for encoding In this experiment, we explore distilling the encoding process
for the teacher model and perform experiments on style-transfer in a setting similar to [20]. Specifi-
cally, to perform style-transfer between two domains A and B, we encode the image from domain-A
using a diffusion model trained on domain-A, and then decode with a diffusion model trained on
domain-B. As the encoding process can be understood as reversing the DDIM sampling process, we
perform distillation for both the encoder and decoder with classifier-free guidance, and compare with
a DDIM encoder and decoder in Fig. 10. We also explore how modifying the guidance strength w
can impact the performance in Fig. 11 and Fig. 12. We provide more details in Appendix C.
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Appendix

A Related Work

Our approach is related to existing works on improving the sampling speed of diffusion models.
For instance, denoising diffusion implicit model (DDIM [17]), probability flow sampler [19], fast
SDE integrators [3] have been proposed to improve the sampling speed of diffusion models [16,
1]. Progressive distillation [15] is perhaps the most relevant work. Specifically, it proposes to
progressively distill a pre-trained diffusion model into a fewer-step student model with the same
model architecture. However, none of the above approaches have been applied to distilling classifier-
free guided models. At the same time, these approaches [17, 19, 15] only consider deterministic
sampling schemes to improve the sampling speed. In this work, we propose an approach to distill
classifier-free guided diffusion models and further develop an effective stochastic sampling approach
to sample from the distilled models.

B Conclusion

In this paper, we propose a distillation approach for guided diffusion models [2] and further propose
a stochastic sampler to sample from the distilled model. Empirically, our approach is able to achieve
visually decent samples using as few as one step and obtain a comparable FID/IS score as the teacher
using only 8 to 16 steps, reducing the sampling steps by up to 256 times.

C Extra details on experiments

C.1 Teacher model

The model architecture we use is a U-Net model similar to the ones used in [2]. The model is
parameterized to predict v as discussed in [15]. We use the same training setting as [2].

C.2 Step-one distillation

The model architecture we use is a U-Net model similar to the ones used in [2]. We use the same
number of channels and attention as used in [2] for both ImageNet 64x64 and CIFAR-10. As
mentioned in Section 3, we also make the model take w as input. Specifically, we apply Fourier
embedding to w before combining with the model backbone. The way we incorporate w is the same
as how time-step is incorporated to the model as used in [5, 15]. We parameterize the model to
predict v as discussed in [15]. We train the distilled model using Algorithm 1. We train the model
using SNR loss [5, 15]. For ImageNet 64x64, we use learning rate 3e — 4, with EMA decay 0.9999;
for CIFAR-10, we use learning rate 1e — 3, with EMA decay 0.9999. We initialize the student model
with parameters from the teacher model except for the parameters related to w-embedding.

Algorithm 1 Step-one distillation

Require: Trained classifier-free guidance teacher model [X. g, Xo]
Require: Data set D
Require: Loss weight function w()

while not converged do

x~D > Sample data
t ~U[0,1] > Sample time
w ~ UlWmin, Wiax] > Sample guidance
e~ N(0,1) > Sample noise
Zt = X + o€ > Add noise to data
At = logla? /o] > log-SNR
Xy (z¢) = (1 + w)Xc 0(z) — wXo(z¢) > Compute target
Lu, = w(Ae)|%g (2¢) — %, (2¢, w)][3 > Loss
N < M1 — YV Ly, > Optimization
end while




C.3 Step-two distillation for deterministic sampler

We use the same model architectures as the ones used in Step-one (see Appendix C.2). We train the
distilled model using Algorithm 2. We first use the student model from Step-one as the teacher model.
We start from 1024 DDIM sampling steps and progressively distill the student model from Step-one
to a one step model. We train the student model for 50,000 parameter updates, except for sampling
step equals to one or two where we train the model for 100,000 parameter updates, before the number
of sampling step is halved and the student model becomes the new teacher model. At each sampling
step, we initialize the student model with the parameters from the teacher model. We train the model
using SNR truncation loss [5, 15]. For each step, we linearly anneal the learning rate from le — 4 to
0 during each parameter update. We do not use EMA decay for training. Our training setting follows
the setting in [15] closely.

Algorithm 2 Step-two distillation for deterministic sampler

Require: Trained teacher model X,,(z¢, w)
Require: Data set D
Require: Loss weight function w()
Require: Student sampling steps N
for K iterations do
Ny 1M > Init student from teacher
while not converged do
x~D
t=1i/N, i~ Cat[l,2,...,N]
w ~ UlWnin, Winax) > Sample guidance
e~ N(0,I)
Zy = QX + 04€
# 2 steps of DDIM with teacher
t'=t—05/N, t"=t—1/N
zy) = Xy (2e, w) + T (20 — Xy (24, w))
z) = X2y, w) + (2 — awXy (2}, w))
~ zY, — (o, /0)zt
xv = e
Ay = log[af /of]
Ly = () [ — %y (22, w)|[3
M2 < M2 — ’yv’rlz L"]2

> Teacher X target

end while

< N2 > Student becomes next teacher

N« N/2 > Halve number of sampling steps
end for

C.4 Step-two distillation for stochastic sampling

We train the distilled model using Algorithm 3. We use the same model architecture and training
setting as Step-two distillation described in Appendix C.3 for both ImageNet 64x64 and CIFAR-10:
The main difference here is that our distillation target corresponds to taking a sampling step that is
twice as large as for the deterministic sampler. We provide visualization for samples with varying
guidance strengths w in Fig. 3.

C.5 Baseline samples

We provide extra samples for the DDIM baseline in Fig. 4 and Fig. 5.



8-step

Figure 3: Class-conditional samples from our two-step (stochastic) approach on ImageNet 64x64. By
varying the guidance weight w, our distilled model is able to trade-off between sample diversity and
quality, while achieving visually pleasant results using as few as one sampling step.
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Figure 4: ImageNet 64x64 class-conditional generation using DDIM (baseline) 8 sampling steps. We
observe clear artifacts when w = 0.

Figure 5: ImageNet 64x64 class-conditional generation using DDIM (baseline) 16 sampling steps.

w=1

C.6 Extra distillation results

We provide the FID and IS results for our method and the baselines on ImageNet 64x64 and CIFAR-
10 in Fig. 6, Fig. 8 and Table 2. We also visualize the FID and IS trade-off curves for both datasets in
Fig. 7 and Fig. 9, where we select guidance strength w = {0,0.3, 1, 2,4} for ImageNet 64x64 and
w = {0,0.1,0.2,0.3,0.5,0.7, 1, 2, 4} for CIFAR-10.



Algorithm 3 Step-two distillation for stochastic sampler

Require: Trained teacher model X,,(z¢, w)
Require: Data set D
Require: Loss weight function w()
Require: Student sampling steps N
for K iterations do
M2 <M
while not converged do
x~D
t=1i/N, i~ Cat[l,2,...,N]
w ~ U[wmim wmax]
e~ N(0,I)
Zi = X + 04€
ift > 1/N then
# 2 steps of DDIM with teacher
t'=t—1/N, t"=t—-2/N
z}) = apXy (2, w) + %(Zt — Xy (ze, w))
zji = o Xn(2y), w) + 75 (2 — ow Xy (2], w))

w Ut/
~w zt,,f(atu/at)zt

X = atuf(atu/at)at
else
# 1 step of DDIM with teacher
t'=t—1/N
zy) = X (2e, w) + T (20 — Xy (24, w))
FW — zy,—(0y /ot)2t
T ay—(oy /o)
end if

At = loglo? /o7
Ly, = w(\)||X” — %, (26, w)][3
N2 < M2 — YV, L,
end while
n <12
N« N/2
end for

> Init student from teacher

> Sample guidance

> Teacher X target
> Edge case

> Teacher X target

> Student becomes next teacher
> Halve number of sampling steps
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ImageNet 64x64 CIFAR-10
Guidance w Model FID ({) IS (1) FID (}) IS ()
w=0.0 Ours 1-step (D/S) 22.74/2691  25.51/23.55 8.34/10.65 8.63/8.42
Ours 2-step (D/S) 9.75/10.67 36.69/37.12 4.48/4.81 9.23/9.30
Ours 4-step (D/S) 4.14/391 46.64 /48.92 3.18/3.28 9.50/9.60
Ours 8-step (D/S) 2.791/2.44 50.72/55.03 2.86/3.11 9.68/9.74
Ours 16-step (D/S) 2.44/2.10 52.53/57.81 2.78/3.12 9.67/9.76
Single-w 1-step 19.61 24.00 6.64 8.88
Single-w 4-step 4.79 38.77 3.14 9.47
Single-w 8-step 3.39 42.13 2.86 9.67
Single-w 16-step 297 43.63 275 9.65
DDIM 16-step 7.68 37.60 10.11 8.81
DDIM 32-step 5.03 40.93 6.67 9.17
DDIM 64-step 3.74 43.16 4.64 9.32
Target (DDIM 1024-step) 2.92 44.81 2.73 9.66
w=0.3 Ours 1-step (D/S) 14.85/18.48  37.09/33.30 7.347/9.38 8.90/8.67
Ours 2-step (D/S) 5.052/5.81 54.44 /54.37 423/4.74 9.45/9.45
Ours 4-step (D/S) 2.17/2.24 69.64 /73.73 3.58/3.95 9.73/9.77
Ours 8-step (D/S) 2.05/2.31 76.01/83.00 3.54/3.96 9.87/9.90
Ours 16-step (D/S) 2.20/2.56 79.47/87.50 3.57/4.17 9.89/9.97
Single-w 1-step 11.70 36.95 5.98 9.13
Single-w 4-step 2.34 62.08 3.58 9.75
Single-w 8-step 2.32 68.76 3.57 9.85
Single-w 16-step 2.56 70.97 3.61 9.88
DDIM 16-step 5.33 60.83 10.83 8.96
DDIM 32-step 3.45 68.03 7.47 9.33
DDIM 64-step 2.80 72.55 5.52 9.51
Target (DDIM 1024-step) 2.36 74.83 3.65 9.83
w=1.0 Ours 1-step (D/S) 7.54/8.92 75.19/67.80 8.62/10.27 9.21/8.97
Ours 2-step (D/S) 5.7715.83 109.97/108.38  6.88/7.52 9.64/9.55
Ours 4-step (D/S) 7.95/8.51 12898 /13536  7.39/7.64 9.86/9.87
Ours 8-step (D/S) 9.33/10.56  136.47/147.39  7.81/7.85 9.9/10.05
Ours 16-step (D/S) 9.99/11.63 139.11/153.17 7.97/8.34  10.00/10.05
Single-w 1-step 6.64 74.41 8.18 9.32
Single-w 4-step 8.23 118.52 7.66 9.88
Single-w 8-step 9.69 125.20 8.09 9.89
Single-w 16-step 10.34 127.70 8.30 9.95
DDIM 16-step 9.53 112.75 14.81 8.98
DDIM 32-step 9.26 126.22 11.44 9.36
DDIM 64-step 9.53 133.17 9.79 9.64
Target (DDIM 1024-step) 9.84 139.50 7.80 9.96
w=2.0 Ours 1-step (D/S) 10.71/10.55 118.55/108.37 13.23/1433  9.23/9.02
Ours 2-step (D/S) 14.08 /14.18  160.04/161.43  12.58/12.57  9.51/9.48
Ours 4-step (D/S) 17.61/18.23 178.29/184.45 13.83/13.24  9.70/9.77
Ours 8-step (D/S) 18.80/20.25 181.53/193.49 14.41/13.67 9.77/9.87
Ours 16-step (D/S) 19.25/21.11 183.17/197.71 14.80/14.28 9.79/9.84
Single-w 1-step 11.12 120.74 13.31 9.23
Single-w 4-step 18.14 172.74 14.04 9.70
Single-w 8-step 19.24 176.74 14.67 9.77
Single-w 16-step 19.81 177.69 15.04 9.79
DDIM 16-step 15.92 157.67 20.25 8.97
DDIM 32-step 16.85 175.72 17.27 9.29
DDIM 64-step 17.53 182.11 15.66 9.48
Target (DDIM 1024-step) 17.97 190.56 13.60 9.81
w=4.0 Ours 1-step (D/S) 18.72/17.85 157.46/148.97 2320/23.79 8.88/8.70
Ours 2-step (D/S) 23.74/24.34 196.05/200.11 23.41/22.75  9.16/9.11
Ours 4-step (D/S) 26.45/27.33 207.45/216.56 25.11/23.62  9.23/9.33
Ours 8-step (D/S) 26.62/27.84 203.47/219.89 2594/2398  9.26/9.55
Ours 16-step (D/S) 26.53/27.69 204.13/218.70 26.01/24.40  9.33/9.50
Single-w 1-step 19.857 170.69 23.17 8.93
Single-w 4-step 27.75 219.64 24.45 9.32
Single-w 8-step 27.67 218.08 24.83 9.38
Single-w 16-step 27.40 216.52 25.11 9.37
DDIM 16-step 21.56 195.17 27.99 8.71
DDIM 32-step 23.03 213.23 25.07 9.07
DDIM 64-step 23.64 217.88 23.41 9.17
Target (DDIM 1024-step) 23.94 224.74 21.28 9.54
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Table 2: Distillation results on ImageNet 64x64 and CIFAR-10 (w = 0 refers to non-guided models).
For our method, D and S stand for deterministic and stochastic sampler respectively. We observe
that training the model conditioned on an guidance interval w € [0, 4] performs comparably with
training a model on a fixed w (see Single-w). Our approach significantly outperforms DDIM when
using fewer steps, and is able to match the teacher performance using as few as 8 to 16 steps.
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Figure 6: ImageNet 64x64 sample quality evaluated by FID and IS scores. Our distilled model
significantly outperform the DDPM and DDIM baselines, and is able to match the performance of
the teacher using as few as 8 steps. By varying w, our distilled model is able to capture the trade-off
between sample diversity and quality.
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Figure 7: FID and IS score trade-off on ImageNet 64x64. We plot the results using guidance strength
w = {0,0.3,1,2,4}. For the 1-step plot, the curves of DDIM and DDPM are too far away to be
visualized.

13



20 8

18
16 7
14
n12 n®
1o T
8 \ 5
6
4
4 3=
2
1 2 4 8 16 32 64 128256 512 31 2 4 8 16 32 64 128256 512
Sampling steps Sampling steps
10 - 10
8 8
n o n 6
4 4
2 2
1 2 4 8 16 32 64 128256 512 1 2 4 8 16 32 64 128256512
Sampling steps Sampling steps
w=20 w =023
20 50 50
18 45 45 — Ours (Deterministic)
16 40 20 OIurs (Stochastic)
35 —— Single w
ol Q30 Q35 | Target teacher
w12 25 “ 30 DDIM
20 .
10 25 DDPM S
s A Y 15, soe— — M
= 10 20 e
1 2 4 8 16 32 64 128256512 1 2 4 8 16 32 64 128256512 1 2 4 8 16 32 64 128256512
Sampling steps Sampling steps Sampling steps
10 — 10 - 0
—_— r/’— Pp—
8 8 8
7
n 6 n 6 w6
5
4 4 2
2 2 ; )
1 2 4 8 16 32 64 128256 512 1 2 4 8 16 32 64 128256512 1 2 4 8 16 32 64 128256512
Sampling steps Sampling steps Sampling steps
w=1 w=2 w=4

Figure 8: CIFAR-10 sample quality evaluated by FID and IS scores. Our distilled model significantly
outperform the DDPM and DDIM baselines, and is able to match the performance of the teacher
using as few as 8 steps. By varying w, our distilled model is able to capture the trade-off between
sample diversity and quality.
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Figure 9: FID and IS score trade-off on CIFAR-10. We plot the results using guidance strength
w = {0,0.1,0.2,0.3,0.5,0.7,1,2,4}. For the 1-step and 2-step plots, the curves of DDIM and
DDPM are too far away to be visualized. For the 4-step plot, the curve of DDIM is too far away to

be visualized.

15



C.7 Style transfer

We focus on ImageNet 64x64 for this experiment. As discussed in [20], one can perform style-transfer
between domain A and B by encoding (performing reverse DDIM) an image using a diffusion model
train on domain A and then decoding using DDIM with a diffusion model trained on domain B. We
train the model using Algorithm 4. We use the same w-conditioned model architecture and training
setting as discussed in Appendix C.3.

= 5 .
c & (4
£
Input (orange) Ours (lemon) DDIM (lemon) Ours (dough) DDIM (dough)

Figure 10: Style transfer comparison on ImageNet 64x64. For our approach, we use a distilled
encoder and decoder. For the baseline, we encode and decode using DDIM. We use w = 0 and 16
sampling steps for both the encoder and decoder. We observe that our method achieves more realistic
outputs.

Input

Figure 11: Style transfer on ImageNet 64x64 (orange to bell pepper). We use a distilled 16-step
encoder and decoder. We fix the encoder guidance strength to be 0 and vary the decoder guidance
strength from 0 to 4. As we increase w, we notice a trade-off between sample diversity and sharpness.

Figure 12: Style transfer on ImageNet 64x64 (orange to acorn squash). We use a distilled 16-step
encoder and decoder. We fix the encoder guidance strength to be 0 and vary the decoder guidance
strength from 0 to 4. As we increase the guidance strength w, we notice a trade-off between sample
diversity and sharpness.
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Algorithm 4 Encoder distillation

Require
Require
Require
Require

for K

: Trained teacher model X,,(z¢, w)
: Data set D

: Loss weight function w()

: Student sampling steps NV
iterations do

M2 <M
while not converged do

x~D

t=1i/N, i~ Cat[0,1,...,N —1]

w ~ U[wmina wmax]

e~ N(0,I)

Zi = X + 04€

# 2 steps of reversed DDIM with teacher
t'=t+0.5/N, t"=t+1/N

2y = apXp(2e, W) + 25 (2 — Xy (2e, W)

2l = (2, 0) + (2 — oy (2, w))

oy
Sw __ Z;L;’*(Ut”/gt)zt
xW = Zent T Tt )%

g — (o [oy)o

Ar = loglaj /o]
Ly, = w(Ae)||X" — Xy, (24, w)][3
M2 < M2 — 7vﬂ2 L"Iz

end while
n< 12

N

«— N/2

end for

> Init student from teacher

> Sample guidance

> Teacher x target

> Student becomes next teacher
> Halve number of sampling steps
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C.8 Naive progressive distillation

A natural approach to apply progressive distillation [15] to a guided model is to use a student
model that follows the same structure as the teacher—that is with a jointly trained conditional and
unconditional diffusion component. Denote the pre-trained teacher model [, g, Xg] and the student
model [X. ,,Xy], we provide the training algorithm in Algorithm 5. To sample from the trained
model, we can use DDIM deterministic sampler [17] or the proposed stochastic sampler (see Eq. (4)).
We follow the training setting in Appendix C.3, use a w-conditioned model and train the model to
condition on the guidance strength [0, 4]. We observe that the model distilled with Algorithm 5 is not
able to generate reasonable samples when the number of sampling is small. We provide the generated
samples on CIFAR-10 with DDIM sampler in Fig. 13, and the FID/IS scores in Table 3.

Guidance w  Number of step FID (}) IS (1)

w = 0.0 1 212.20  3.66
16 42.02 7.95
64 35.37 8.47
128 29.74 8.87
256 20.14 9.50
w = 0.3 1 213.07 3.62
16 48.74 7.70
128 34.28 8.57
256 24.54 9.21
w=1.0 1 21488 3.54
16 64.92 7.21
64 48.54 7.62
128 42.56 8.00
256 32.20 8.81
w=2.0 1 21737 348
16 87.19 6.50
64 57.15 7.22
128 50.30 7.53
256 39.76 8.26
w=4.0 1 220.11  3.45
16 11557 6.16
64 71.45 6.78
128 61.75 7.02
256 49.21 7.69

Table 3: Naive progressive distillation results on CIFAR-10. We observe that the naive distillation
approach is not able to achieve strong performance.

EOAENY. ST
2-FTMa 1.

#)
l’"l'lﬂ-aé = ;ﬁml .JH”

(a) 256-step (b) 64-step (c) 16-step (d) 1-step

Figure 13: A naive application of progressive distillation [15] to guided distillation models. The
model is trained with guidance strength w € [0, 4] on CIFAR-10. The samples are generated with
DDIM (deterministic) sampler at w = 0. We observe clear artifacts when the number of sampling
step is small.
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Algorithm 5 Two-student progressive distillation

Require
Require
Require
Require

for K

: Trained classifier-free guidance teacher model [X. g, Xo]
: Data set D

: Loss weight function w()

: Student sampling steps NV

iterations do

<0 > Init student from teacher
while not converged do

x~D

t=1i/N, i~ Cat[l,2,...,N]

w ~ UWnin, Wmax) > Sample guidance
e~ N(0,I)

Z: = 4+ X + 04€

Xy (z) = (1 4+ w)kc 0(z) — wke(zy) > Compute target
# 2 steps of DDIM with teacher

#=t—05/N, t'=t—1/N

zy) = apXy (z) + 25 (2 — auXy (z1))

1 oS Oyrr 1 A
20y = e p () + (2 — avke ()
e 2y —(04 /o) . .
XY = el L > Conditional teacher x target
- Ozt//—((ft///o't)oq
Z;L/)/ = ayXg (Z;}) + Ztll/ (Z?f — apXg (Z?,}))
t
~ z,— (o /ot)z e ~
xw = Zin(ow /o) > Unconditional teacher X target
o —(our [og)o

At = logla /o7
Ly = wA) (X — X (21, w)[|3 + 1K — % (20, w)[[3)
N+ n—vVyly

end while

0+—n > Student becomes next teacher

N < N/2 > Halve number of sampling steps
end for
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D Extra samples

D.1 CIFAR-10 256-step samples
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Figure 14: Ours (deterministic). Distilled 256 sampling steps.
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Figure 15: Ours (stochastic). Distilled 256 sampling steps.
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Figure 16: Ours (deterministic). Distilled 256 sampling steps. Class-conditioned samples.
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Figure 17: Ours (stochastic). Distilled 256 sampling steps. Class-conditioned samples.
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D.2 CIFAR-10 4-step samples
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Figure 18: Ours (deterministic). Distilled 4 sampling steps.
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Figure 19: Ours (stochastic). Distilled 4 sampling steps.
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Figure 20: Ours (deterministic). Distilled 4 sampling steps. Class-conditioned samples.
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Figure 21: Ours (stochastic). Distilled 4 sampling steps. Class-conditioned samples.
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D.3 CIFAR-10 2-step samples
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Figure 22: Ours (deterministic). Distilled 2 sampling steps.
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Figure 23: Ours (stochastic). Distilled 2 sampling steps.
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Figure 24: Ours (deterministic). Distilled 2 sampling steps. Class-conditioned samples.
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Figure 25: Ours (stochastic). Distilled 2 sampling steps. Class-conditioned samples.
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D.4 CIFAR-10 1-step samples
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Figure 26: Ours (deterministic). Distilled 1 sampling step.
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Figure 27: Ours (stochastic). Distilled 1 sampling step.
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Figure 28: Ours (deterministic). Distilled 1 sampling step. Class-conditioned samples.
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Figure 29: Ours (stochastic). Distilled 1 sampling step. Class-conditioned samples.
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D.5 ImageNet 64x64 256-step samples
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Figure 30: Ours (deterministic). Distilled 256 sampling steps.
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Figure 32: Ours (deterministic). Distilled 256 sampling steps. Class-conditioned samples.
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Figure 33: Ours (stochastic). Distilled 256 sampling steps. Class-conditioned samples.
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D.6 ImageNet 64x64 8-step samples
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Figure 34: Ours (deterministic). Distilled 8 sampling step.
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Figure 35: Ours (stochastic). Distilled 8 sampling step.
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Figure 36: Ours (deterministic). Distilled 8 sampling step. Class-conditioned samples.
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Figure 37: Ours (stochastic). Distilled 8 sampling step. Class-conditioned samples.
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D.7 ImageNet 64x64 2-step samples
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Figure 38: Ours (deterministic). Distilled 2 sampling steps.
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Figure 39: Ours (stochastic). Distilled 2 sampling steps.
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Figure 40: Ours (deterministic). Distilled 2 sampling steps. Class-conditioned samples.
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Figure 41: Ours (stochastic). Distilled 2 sampling steps. Class-conditioned samples.
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D.8 ImageNet 64x64 1-step samples
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Figure 42: Ours (deterministic). Distilled 1 sampling step.
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Figure 43: Ours (stochastic). Distilled 1 sampling step.
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Figure 44: Ours (deterministic). Distilled 1 sampling step. Class-conditioned samples.
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Figure 45: Ours (stochastic). Distilled 1 sampling step. Class-conditioned samples.
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