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Abstract

Parameter-efficient fine-tuning (PEFT) of powerful pre-trained models for complex
downstream tasks has proven effective in vision and language processing, yet this
paradigm remains unexplored in scientific machine learning, where the objective
is to model complex physical systems. We conduct the first systematic study of
PEFT for pre-trained Large Operator Models (LOMs) obtained by scaling variants
of Fourier Neural Operator. First, we observe that the widely used Low-Rank
Adaptation (LoRA) yields markedly poorer performance on LOMs than Adapter
tuning. Then, we further theoretically establish that stacked LoRA incurs a depth-
amplified lower bound on approximation error within Fourier layers, whereas
adapters retain universal approximation capacity and, by concentrating parameters
on energy-dominant low-frequency modes, attain exponentially decaying error
with bottleneck width in the Fourier domain. Motivated by the robust empirical
gains of adapters and by our theoretical characterization of PDE solutions as
spectrally sparse, we introduce Frequency-Adaptive Adapter (F-Adapter). F-
Adapter allocates adapter capacity based on spectral complexity, assigning
higher-dimension modules to low-frequency components and lower-dimension
modules to high-frequency components. Our F-Adapters establish state-of-the-art
(SOTA) results on multiple challenging 3D Navier–Stokes benchmarks, markedly
enhancing both generalization and spectral fidelity over LoRA and other PEFT
techniques commonly used in LLMs. To the best of our knowledge, this work is
the first to explore PEFT for scientific machine-learning and establishes F-Adapter
as an effective paradigm for this domain. The code is publicly available at here.

1 Introduction

Learning solution operators for partial differential equations (PDEs) is a fundamental challenge in
scientific machine learning (SciML). Among the most promising approaches are operator-learning
architectures, particularly the Fourier Neural Operator (FNO) and its variants [23, 52, 49, 28, 3,
12, 24]. These models leverage mesh-independent spectral convolutions to efficiently capture fine-
scale dynamics in the frequency domain [11, 38, 55], enabling orders-of-magnitude faster inference
compared to traditional numerical solvers [37, 2]. Recently, the field has seen the rise of Large
Operator Models (LOMs) [61], which scale these architectures and employ large-scale pre-training
on diverse datasets, unlocking remarkable generalization capabilities for complex downstream tasks.

When adapting large pretrained models to downstream tasks, parameter-efficient fine-tuning (PEFT)
has emerged as a powerful strategy, offering minimal computational and storage overhead [27, 56, 29,
21, 13]. Unlike full-model fine-tuning, PEFT techniques fine-tune only a small subset of trainable
parameters. This approach preserves the benefits of pretraining while enabling rapid deployment
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across tasks and domains. This paradigm has proven highly effective in natural language processing
(NLP) [59, 26, 36] and computer vision (CV) [32, 5, 19], where large foundation models dominate
and efficient task adaptation is critical for scalability.

However, despite its effectiveness in NLP and CV, its potential within SciML remains unexplored.
Although a few recent studies employ LoRA-style Physics-Informed Neural Networks (PINNs) [40]
to build surrogates for parameterized PDEs [7, 51], they train modest networks from scratch on
small and single-type equation datasets. A systematic PEFT study for pre-trained LOMs therefore
remains to be established. Physical systems governed by PDEs pose qualitatively different challenges:
their solution manifolds exhibit broadband, cascade-coupled spectra and reside in high dimensional
continuous domains [35, 34, 22]. These distinctions prompt our central question: Can PEFT be
adapted to LOMs in SciML so that it explicitly respects the frequency-adaptive structure and physics-
based priors inherent to PDE solution spaces?

In this work, we present the first systematic study of PEFT for pretrained LOMs. Through a
combination of empirical analysis and theoretical investigation, we identify a fundamental limitation
in the widely used LoRA approach [18]: its rank-constrained linear updates create a depth-amplified
spectral error floor when applied to Fourier-based operator architectures. On the other hand, we show
that replacing these linear updates with lightweight non-linear adapters, implemented as residual
two-layer MLP bottlenecks, can lead to surprisingly effective fine-tuning for LOMs. We further
demonstrate that this approach can maintain universal approximation capabilities while strategically
concentrating model capacity on the energy-dominant spectral subspace, thus enabling parameter-
efficient adaptation without sacrificing spectral fidelity [17].

Building on these insights, we propose Frequency-Adaptive Adapters (F-Adapters), a novel PEFT
architecture for LOMs that allocates adapter capacity according to spectral complexity. Concretely,
the Fourier Layer in LOMs bins its Fourier coefficients into different spaced radial shells, creating
disjoint frequency bands for capacity-aware F-Adapter assignment. Specifically, F-Adapters assign
larger bottleneck dimensions to low-frequency bands which typically contain most of the signal
energy and govern long-range physical interactions, and smaller dimensions to high-frequency bands
that often sparse and susceptible to numerical noise. We summarize our main contributions as follows:

• We empirically and theoretically establish that residual two-layer MLP Adapters significantly
outperform LoRA for fine-tuning in scientific machine learning. Next, we rigorously analyze the
energy distribution of PDE solutions in the Fourier domain. All the resulting theory guides the
design of our architectural innovations.

• We devise a Frequency-Adaptive Adapter (F-Adapter) that allocates parameters in proportion
to the spectral energy profile of PDE operator solutions, which in turn couples model capacity to
task-relevant frequencies.

• We achieve the SOTA performance on multiple challenging 3D Navier–Stokes forecasting
benchmarks, which surpasses LoRA and prior PEFT baselines in L2RE accuracy with only less
than 2% of backbone parameters tuned. Comprehensive ablation studies and direct comparisons
with other Fourier domain adapter designs confirm the superior effectiveness of F-Adapters.

2 Related Works

Parameter-Efficient Fine-Tuning. PEFT adapts frozen backbones through minimal trainable
components. Prompt Tuning learns a compact “soft” prompt that is prepended to the input while
keeping all model weights fixed [20]. Adapter tuning inserts narrow bottleneck MLPs between
Transformer sub-layers so that only these adapters are updated [17]. FiLM Adapter extends
adapter tuning by treating channel-wise FiLM layers as adapters and updating only their (γ, β)
parameters [43]. LoRA injects a pair of trainable low-rank matrices whose product is added to
each frozen weight tensor [18]. AdaLoRA allocates the low-rank budget across layers dynamically
according to data-driven importance scores [58]. HydraLoRA shares one down-projection across
multiple LoRA heads, enlarging expressiveness without extra memory [48]. RandLoRA couples
fixed random bases with trainable diagonal scalings to approximate full-rank updates at constant
parameter cost [1]. SVFT updates each tensor via a sparse mixture of its own singular-vector outer
products, training only the corresponding coefficients [25]. Concurrently, Loeschcke et al. [31] uses
Tucker-factorized low-rank updates, preserving cross-mode structure and outperforming unfolding-
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based LoRA. Together, these methods illustrate how structural priors can drastically reduce trainable
parameters while retaining fine-tuning flexibility.

Pretrained Large Operator Models for PDE Solving. A rapidly growing body of work now treats
LOMs as foundation models. These models are first pretrained on heterogeneous collections of
partial differential equations and are later adapted to new physical regimes. The pioneering study of
Subramanian et al. [45] shows that a FNO trained on eight disparate PDEs scales predictably and
slashes downstream data needs by orders of magnitude. Building on this, MPP adds an autoregressive
transformer over ten systems for strong zero-shot transfer [33], Poseidon cuts cost via multiscale
conditioning [16], UPS employs cross-modal adaptation for data-efficient generalisation [42], and
CoDA-NO introduces codomain-aware attention for few-shot multiphysics tasks [39]. PreLowD
[15] and OmniArch [6] demonstrate the powerful generalisation capabilities of large-scale operator
models achieved by moving spatial field values into the frequency domain. DPOT further scales to 1B
parameters with Fourier-denoising pretraining, achieving SOTA on 10+ datasets [14]. Collectively,
these LOMs demonstrate that heterogeneous PDE pretraining provides a powerful tool for scientific
machine learning.

3 Behavior of Fine-Tuning Methods for Large Operator Models

In this section, we examine the performance of fine-tuning techniques applied to pretrained Large
Operator Models (LOMs). First, we conduct an empirical comparison of some typical fine-tuning
methods, followed by a theoretical interpretation of the results. Next, we delve into a deeper
theoretical analysis to illustrate how the information within the solutions is distributed across Fourier
spaces. This analysis offers valuable insights that can inform the development of more effective PEFT
methods for LOMs.

3.1 Empirical Comparions between Different Fine-Tuning Methods for LOMs

Task and experiment setup. To evaluate fine-tuning methods for LOMs, we focus on the three-
dimensional forecasting problem, a challenging scientific machine learning task characterized by a
highly nonlinear high-dimensional solution manifold and unstable truncation errors. Specifically,
we use DPOT-H as the pretrained model, a 1B parameter backbone that is currently the largest
publicly available LOM [14]. We fine-tune this model on two 3D Navier–Stokes datasets from
PDEBench [46] with standard parameter-efficient methods, including LoRA and bottleneck adapters
(implementation details appear in Appendix A). These datasets are configured with random initial
conditions at M = 1.0 and M = 0.1.

Figure 1: Convergence comparison of LoRA and bottleneck
Adapter. Adapter not only starts with a lower loss but also
reaches a lower steady-state value, indicating faster and more
stable convergence.

We primarily integrate the PEFT
modules into the Fourier-Attention
layers, which form the computational
core of the model, contain the
majority of its parameters, and
dominate the overall computational
cost. During fine-tuning, we use
the AdamW optimizer and train the
model for 500 epochs with different
efficiency levels (e.g., ranks for
LoRA and bottleneck dimensions
for Adapter). The performance is
evaluated on the test set using the L2 relative error (L2RE), a standard metric in operator learning
[23]. All experiments are conducted on a single NVIDIA A800 80 GB GPU. Complete experimental
details are provided in Appendix C.

Experimental results. Building on the experimental setup outlined earlier, we conducted a
comprehensive empirical comparison of the performance of the LoRA and Adapter methods across
varying ranks and bottleneck dimensions. The results are summarized in Figure 1 and Table 1, where
several key insights can be revealed. First, despite the widespread adoption of the LoRA method in
many large language model (LLM) tasks, it demonstrates significantly poorer performance in fine-
tuning LOMs (low-rank models) and does not benefit from increasing the ranks. Second, the Adapter
method proves highly effective in fine-tuning LOMs (original models). The performance continues to
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improve as the bottleneck width increases, although larger width introduces some overfitting. These
findings highlight the distinct suitability of each method depending on the specific model architecture
and fine-tuning objectives. This suggests that the Adapter method may be a more appropriate
choice for fine-tuning LOMs in modeling physical systems.

Scheme % Params Mem (GB) L2RE (M=1.0) L2RE (M=0.1)

LoRA (r=4) 0.17% 12.58 0.6413 0.6218
LoRA (r=8) 0.34% 12.65 0.6345 0.6129
LoRA (r=16) 0.69% 12.78 0.6427 0.6147
LoRA (r=32) 1.37% 15.85 0.6395 0.6211

Adapter (d=4) 0.59% 15.82 0.6169 0.5063
Adapter (d=8) 1.16% 15.85 0.5496 0.4893
Adapter (d=16) 2.30% 15.89 0.5227 0.4539
Adapter (d=32) 4.59% 15.98 0.5134 0.4570

Table 1: Comparison on LoRAs with different rank and Adapters with different bottleneck dimension.
3.2 Theoretical and Empirical Explanations on the Benefit of Adapter Methods

In this part, we further provide explanations about why adapter can lead to substantially better
performance than LoRA in fine-tuning LOMs.

We mainly consider the comparison between the Block-wise LoRA and two–layer MLP Adapter
within the Fourier layers of LOMs. In particular, block-wise LoRA applies the multiple low-rank
adaption for different blocks of the target parameters separately. For adapter model, we model the
adapter in Fourier blocks as a two-layer MLP g : CN→CN , g(x̂) = U σ(V x̂+ b)+ c, with weights
V ∈Cm×N , U ∈CN×m, biases b∈Cm, c∈CN , and non-linearity σ(·).
Then, we first deliver the following proposition that characterizes the approximation error for the
block-wise LoRA method with rank r.
Proposition 3.1 ( Block-wise LoRA lower bound ). Let ∆Wg = blockdiag

(
∆W (1), . . . ,∆W (K)

)
be the block-wise model parameter updates and BA = blockdiag

(
B(1)A(1), . . . , B(K)A(K)

)
be the

block-wise low-rank approximation, where B(k) ∈Cd×r, A(k) ∈Cr×d. Then, for any input x, the
approximation error for block-wise LoRA satisfies∥∥(∆Wg −BA)x

∥∥ ≥ ( K∑
k=1

d∑
i=r+1

σ2
k,i (v

⊤
k,ixk)

2

)1/2
. (1)

In particular, the worst-case operator-norm error obeys
sup

∥x̂∥2=1

∥(∆Wg −BA)x̂∥2 ≥ σKr+1(∆Wg) (2)

Interpretation. Even if each block is well approximated in isolation, the worst-case LoRA error
across the entire stack is still lower-bounded by the (Kr+1)-th singular value of the global matrix,
revealing an intrinsic additive bottleneck as depth K grows.

Adapters, on the other hand, introduce non-linear, width-controlled bottlenecks after the Fourier
transform. Rather than adjusting the pre-trained model’s parameters, it carries out fine-tuning in
a separate representation space. Because the underlying two-layer MLP satisfies the universal-
approximation theorem, it is, in principle, capable of representing any measurable function. In the
Fourier layers of large operator models (LOMs), however, the practical rate at which this universal
approximation is achieved is dictated by the spectral frequency content of the target update. We
first introduce the following notation for adapters: Let x∈Rd1×d2×d3 and define the unitary discrete
Fourier transform and its inverse F : Rd1×d2×d3→CN , F−1 : CN→Rd1×d2×d3 , N = d1d2d3.
For a multi-index k ∈ Z3 we abbreviate ⟨k⟩ :=

√
1 + ∥k∥2. An Adapter’s Fourier coefficients are

defined by gk = 1
(2π)d

∫
Td g(x) e

−ik·x dx, where d = d1d2d3, k ∈ Zd and Td is the d-dimensional
torus.
Proposition 3.2 (Frequency-selective approximation of adapters). Let |gk|≤C⟨k⟩−α with α> d

2 .
For any ε> 0 there exist frequency truncation radius K > 0 and adapter bottleneck width m ∈ N
such that the Fourier-domain adapter ĝ obeys

∥e∥ := ∥F−1(g)−F−1(ĝ)∥2 < ε, ∥e∥ = O
(
K

d
2−α

)
+O

(
K

d
2 e−cm

)
. (3)
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Implications. All proofs are given in Appendix B. Frequency-agnostic linear Block-wise LoRA is
bottle-necked by the depth-dependent lower bound in Proposition 3.1, whereas Adapters in Fourier
blocks concentrate parameters on the energy-dominating low-frequency subspace and exploit the
exponential accuracy of Proposition 3.2. This frequency-selective compression accounts for the
superior balance between predictive accuracy and parameter count observed in all the experiments on
DPOT [14], a kind of FNO-based LOM.

Experimental Verification. We explore whether the performance degradation caused by truncating
full-rank updates in the parameter space can be effectively mitigated by employing a lightweight,
low-rank, and non-linear adapter that operates directly in the representation space. Specifically, we
aim to determine if this adapter can accurately recover the functional shift that occurs due to such
truncation. For more detailed experimental information, please refer to the Appendix C.9.

Figure 2: RMSE versus parameter (bottleneck
dimension m for Adapter and rank r for Truncation)
budget for the two–layer MLP adapter (yellow) and the
low-rank truncation baseline (orange). Left: transonic
dataset (M = 1.0). Right: low-Mach dataset (M =
0.1).

For the first Fourier- Attention block
in DPOT we harvest the real Fourier
activations H ∈ RN×d and their target
outputs Y = H∆W⊤, where ∆W
denotes the exact full-rank weight update.
After a 90/10 % train–validation split we
benchmark two surrogates: (i) a two-
layer MLP adapter fMLP : H 7→ Y
whose hidden width is m, and (ii) a low-
rank truncation baseline obtained by
replacing ∆W with its optimal rank-r SVD
approximation, which corresponds to an
idealized LoRA module. Both models are
evaluated by the root-mean-square error
RMSE =

√
|Y |−1∥f(H)− Y ∥ 22 on the held-out set.

Figure 2 shows the RMSE achieved by a two-layer MLP adapter against the best rank-r
SVD truncation of ∆W (idealized LoRA) under identical parameter budgets and supplementary
experimental results can be found at Appendix C.10. The advantage for Adapters is already noticeable
at extremely small budgets (m, r≤16) and widens as capacity grows. In the transonic case (M = 1.0)
the adapter with only m=64 hidden units halves the error of a rank-128 truncation.

3.3 Spectral Energy Concentration in Low-Frequency Bands

Figure 3: Mean L2 error versus the cut-off band index k for
RandM = 1.0 (upper left), TurbM = 1.0 (upper right),
and Rand M = 0.1 (bottom).

To systematically gauge the relative
importance of different spectral bands
to predictive accuracy, we conduct a
spectral drop-high experiment on a
fully fine-tuned DPOT model evaluated
on the three-dimensional Navier–Stokes
benchmarks with random initial
conditions at M = 0.1 and M = 1.0
and Turbulence initial conditions at
M = 1.0.

A fixed mini-batch taken from the test
set is transformed to Fourier space and
its spectrum is uniformly partitioned
into Nb non-overlapping frequency
bands. For each cut-off index k ∈
{0, . . . , Nb − 1} we zero out every
coefficient that lies in a band whose
index is ≥ k, perform an inverse FFT,
and pass the filtered representation through the network. The mean L2 relative error between the
network output and the ground-truth target is then recorded. Sweeping k from low to high therefore
reveals how progressively discarding higher-frequency content influences the model’s accuracy.
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The resulting error curves for all datasets are presented in Figure 3. As the cut-off index k increases,
meaning progressively higher spectral bands are excised, the average L2 error falls steeply at first and
then flattens, eventually becoming almost insensitive to the removal of additional bands. The error
curves suggest that most predictive power is captured once a relatively small set of low-frequency
bands is retained; beyond this point, excising additional high-frequency bands yields only marginal
further degradation. This behaviour is consistent with the spectral-truncation heuristics commonly
used in FNO-style models [38, 54, 41].

To place the empirical finding on firmer ground, we extend classical harmonic analysis to time-
continuous PDE solutions and, using Proposition 3.3, show that the cumulative energy of high-
frequency modes decays polynomially with the cut-off radius, which implies that low-frequency
modes carry the dominant share of the energy. The proof is provided in Appendix B.

Proposition 3.3 (Quantitative Low–/High–Frequency Energy Split for PDE Solution). Let s > d
2 and

suppose f ∈ C
(
[0, T ];Hs(Td)

)
, supt∈[0,T ] ∥f(t)∥Hs ≤ M. Let f(t, x) =

∑
k∈Zd f̂(t, k) ei k·x,

then for each k ̸= 0,
|f̂(t, k)| ≤M (1 + ∥k∥2)−s/2, (4)

and for every integer K ≥ 1 there exists C = C(d, s) such that∑
∥k∥>K

|f̂(t, k)|2 ≤ CM2 K d−2s,
∑

∥k∥≤K

|f̂(t, k)|2 = ∥f(t)∥2L2 −O
(
K d−2s

)
. (5)

Proposition 3.3 shows that, in Fourier space, PDE solutions concentrate most of their energy in
relatively low-frequency modes while the high-frequency tail decays as O(Kd−2s).

Taken together, these findings indicate that low-frequency bands predominantly convey the global,
energy-rich structure of fluid flows, arguing for higher-capacity adapters in that regime. Conversely,
high-frequency bands are comparatively sparse and noise-prone; representing them with lightweight,
low-rank transformations not only suffices for detail reconstruction but also serves as an effective
spectral regularizer. Leveraging the complementary information carried by different frequency bands
more effectively therefore represents a critical avenue for carrying out PEFT.

4 Methodology

For parameter-efficient fine-tuning, we retrofit each Fourier-domain mixing layer of the LOM with
Frequency-Adaptive Adapters (F-Adapters)—bottleneck MLPs whose width varies per frequency
band according to a governed formula (Eq. (6)). The design is model-agnostic: it can be plugged into
any FFT-based layer without altering the host architecture’s training recipe. The overall F-Adapter
pipeline is illustrated in Figure 4.

Fourier Representation. Given an input tensor x∈RB×C×H×W×L , we first perform a real 3-D
FFT: x̂ = rFFTN(2,3,4)(x) ∈ CB×M1×M2×M3×C , where Mi = ⌊H2 ⌋+1 for real transforms. The
last dimension (C channels) is split into K non-overlapping blocks with equal width d = C/K.

Band Partitioning. We retain only the lowest M=min(M1,M2,M3) spatial modes and partition
them into B contiguous frequency bands 0 = b0 < b1 < · · · < bB = M, Bb = { bb−1, . . . , bb−1},
so that every block–band slice can be processed independently. For most cases we set B = 4 and
choose bb =

⌊
b
BM

⌋
.

Band-Specific Bottleneck Allocation. Let fb = 1
2

(
bb−1+bb

)
be the centre frequency of band b. We

allocate a bottleneck width rb according to

rb =
⌊
rmin + (rmax − rmin)

(
1− fb

M

)p⌋
, (6)

where rmin, rmax and p are hyper-parameters controling the curvature. Lower bands receive wider rb,
while higher bands shrink toward rmin.

F-Adapter Micro-Architecture In the DPOT-H [14] backbone, for each block k∈ [K] and band
b∈ [B] in Fourier Attention Layer we attach three tiny adapters:

Ain
k,b : Rd→Rd, Amid

k,b : Rd ht→Rd ht , Aout
k,b : Rd→Rd, (7)
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Algorithm 1 F-Adapter PEFT Forward Pass in DPOT’s [14] Fourier Attention Layer

x̂← rFFTN(x) ▷ Step 1: FFT
x̂← reshape

(
x̂, (K, d), (M,M,Mt)

)
▷ Step 2: reshape channels/modes

for k ← 1 toK do ▷ Step 3: band loop
for b← 1 toB do

(i:j)← band_indices(b) ▷ 3-a: compute slice indices
z← x̂[:, i:j, i:j, 0:Mt, k] ▷ 3-b: extract complex slice
zR ← ℜ(z) ; zI ← ℑ(z) ▷ 3-c: split real/imag
zR ← Ain

k,b(zR) ; zI ← Ain
k,b(zI) ▷ 3-d: input adapter

(uR,uI)← fourier_mix(zR, zI,W
(1)
k ) ▷ 3-e: first Fourier mixing

uR ← GELU(uR) ; uI ← GELU(uI) ▷ 3-f: activation
uR ← Amid

k,b (uR) ; uI ← Amid
k,b (uI) ▷ 3-g: mid adapter

(vR,vI)← fourier_mix(uR,uI,W
(2)
k ) ▷ 3-h: second Fourier mixing

vR ← Aout
k,b (vR) ; vI ← Aout

k,b (vI) ▷ 3-i: output adapter
x̂[:, i:j, i:j, 0:Mt, k]← vR + ivI ▷ 3-j: scatter back

x′ ← iRFFTN(x̂) ▷ Step 4: IFFT
return x′ + x ▷ Step 5: residual

Figure 4: Pipeline for inserting Frequency-Adaptive Adapters (F-Adapters) between consecutive
pre-trained Fourier sub-modules in a Fourier layer in LOMs.

where ht is the number of retained temporal modes. Each adapter implements the canonical bottleneck
residuum

zdown = Wdown
b z+ bdown

b , zact = σ(zdown),

zup = Wup
b zact + bup

b , z̃ = z+ sb zup, (8)

with σ = GELU and sb is a scalar. The matrices have shapes Wdown
b ∈Rrb×D, Wup

b ∈RD×rb , where
D∈{d, d ht} depending on the adapter stage. The Parameter-Efficient Fine-Tuning forward pass of
the F-Adapter within the DPOT backbone is outlined in Algorithm 1.

Initialization and Training Details. We adopt zero-initialization for every Wup
b and bup

b so that,
at the start of fine-tuning, the adapted path is an exact identity and does not perturb the pre-trained
backbone. Down-projection weights are initialized with Kaiming-uniform initialization. All spectral
kernels W(1), W(2) follow the scale definition 1

d2ht
from the Fourier Attention Later in DPOT.

Computational Cost. Let Ns = BK denote the total number of block–band slices in one Fourier-
Attention layer. The additional parameters introduced by the F-Adapters can be written as

∣∣ΘF-Adapter

∣∣ = B∑
b=1

(
2 d rb + rb

)
×K (2 + ht) = (2d+ 1)K (2 + ht)

B∑
b=1

rb. (9)

Defining the average bottleneck width r̄ = 1
B

∑B
b=1 rb, this simplifies to∣∣ΘF-Adapter

∣∣ = (2d+ 1)BK (2 + ht) r̄ = O
(
dBK ht r̄

)
. (10)

For typical settings, this overhead remains below 2% of the host model’s total parameter count.
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Scheme % Params Rand Turbulence

Mem (GB) L2RE (M=1.0) L2RE (M=0.1) Mem (GB) L2RE

AdaLoRA [58] 0.69% 15.83 0.6726 0.6275 27.08 0.6795
HydraLoRA [48] 0.85% 22.14 0.6333 0.6164 33.85 0.6888
Prompt Tuning [20] 1.03% 19.82 0.6378 0.6127 23.37 0.6651
Vanilla Adapter [17] 1.16% 15.85 0.5496 0.4893 25.41 0.4696
FiLM Adapter [43] 1.30% 15.85 0.5655 0.5054 26.76 0.4987
RandLoRA [1] 1.36% 15.86 0.6370 0.6125 24.69 0.6893
LoRA [18] 1.37% 15.85 0.6395 0.6211 25.03 0.6842
F-Adapter (Ours) 1.91% 15.88 0.5329 0.4639 26.90 0.4523
SVFT [25] 2.31% 15.91 0.6375 0.5984 23.36 0.6655

Full Fine-Tuning 100.00% 25.27 0.5391 0.4002 37.06 0.2382

Table 2: PEFT results on the 1B-parameter DPOT-H backbone for 3D Navier–Stokes forecasting.

Figure 5: Side-by-side velocity field comparisons for Turbulence at epoch 500. From left to right:
Vanilla Adapter, F-Adapter (Ours), and LoRA. Each panel shows ground-truth compared with
prediction.

Plug–and–Play Deployment. Figure 4 depicts the drop-in procedure that enables an F-Adapter to be
grafted onto any FFT-based Fourier layer appearing in FNO-style Large Operator Models (LOMs)
without disturbing the host training recipe. First, the input field x ∈ RB×C×H×W×L is mapped
to the spectral domain x̂ = rFFTN(x). The resulting complex tensor is then passed through the
pre-trained and frozen Fourier-mixing kernels of the backbone, upon which we retain the lowest
M spatial modes and slice them into B contiguous radial frequency bands B1, . . . ,BB according to
0 = b0 < b1 < · · · < bB = M . For every block k∈ [K] and band b∈ [B] we attach a bottleneck
MLP whose width rb is computed by Eq. (6). Each adapter performs the down–activation–up
transformation defined in Eq. (8), writes the adapted coefficients back to their original spectral
locations, and leaves all surrounding FFT logic untouched. Finally, the spectrum is converted back
to physical space via x′ = iRFFTN(x̂adapted) and added residually to the original signal. Because
the procedure relies solely on the presence of an FFT/iFFT pair, it applies verbatim to every LOM
that scales out of the FNO family. If a Fourier layer in an LOM contains multiple pre-trained
sub-modules that require fine-tuning, one can interleave F-Adapters between those sub-modules
following the workflow depicted in Figure 4. Algorithm 1 offers a representative instantiation of such
a multi-module F-Adapter deployment.

5 Experiments

5.1 Main Experiments

Our principal comparison of the proposed F-Adapter against a suite of PEFT approaches widely
used for LLMs follows the experimental protocol described in Section 3.1. In the 3D Navier–Stokes
forecasting task in Table 2, our method lowers L2RE by from 16.7 % to 25.4 % while using nearly
the same GPU memory as standard LoRA and its variants. Relative to the strongest baseline (Vanilla
Adapter), F-Adapter improves accuracy by from 3.0 % to 5.2 % with a comparable parameter budget,
which supports the value of frequency-adaptive capacity allocation. Side–by–side slice plots in
Figure 5 of velocity magnitude show that F–Adapter retains filamentary vortical structures and
reproduces both low– and high–energy regions with small local amplitude deviations. LoRA yields
coarse block–like patches with muted intensities and loses fine–scale features, which is consistent
with its collapsed spectrum.
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Table 3 further reports results for PEFT methods on the 2D shallow-water equations (SWE-2D) and
the 3D magnetohydrodynamics task (MHD-3D), two settings that demand high-frequency fidelity
and broad spectral coverage. For MHD-3D, we follow the data processing protocol of Du et al. [9]
but train on only 24 trajectories, creating a severe data-scarcity scenario. The results in Table 3 show
that even under high-frequency regimes and limited data, F-Adapter maintains substantially higher
accuracy, whereas alternative PEFT schemes struggle to adapt. These findings indicate that, instead
of overlooking high-frequency content, F-Adapter partitions the spectrum so that all frequency bands
are handled more efficiently and more effectively.

Full fine-tuning unsurprisingly achieves the best raw accuracy in most cases, but it requires ~50×
more trainable parameters and ~1.4× the memory during training. Hence, F-Adapter strikes a
favourable accuracy–efficiency trade-off and represents a practical alternative when computational
resources or deployment budgets are constrained.

These findings substantiate our central claim: explicitly matching adapter capacity to the spectral
characteristics of scientific operators is critical for effective and economical adaptation, whereas
LoRA or prompt-based methods designed for language do not readily transfer to the SciML regime.
For more Spectral analysis, please refer to Appendix C.12.

5.2 Ablation Studies

Ablation on the Effect of the Dimension–Frequency Schedule. To isolate the effect of
the dimension–frequency schedule, we introduce an F-Inverse-Adapter for ablation study. In
the F-Inverse-Adapter, we reverse the capacity allocation, giving higher-frequency bands larger
bottleneck dimensions while matching F-Adapter’s overall parameter count and memory consumption.

Concretely, its bottleneck size is
⌊
rb = rmin + (rmax − rmin)

(
fb
M

)p ⌋
, where M is the total

number of modes and p is the hyperparameter exponent.

Scheme on DPOT SWE-2D MHD-3D

L2RE % Param L2RE % Param

AdaLoRA [58] 0.1061 0.70% 1.0022 0.69%
HydraLoRA [48] 0.0956 0.88% 0.9440 0.85%
Prompt Tuning [20] 0.1050 0.11% 0.9950 1.03%
Vanilla Adapter [17] 0.0902 0.48% 0.7226 1.16%
FiLM Adapter [43] 0.0162 0.57% 0.7593 1.30%
RandLoRA [1] 0.1568 1.05% 0.9800 1.36%
LoRA [18] 0.1081 1.40% 0.9845 1.37%
F-Adapter (Ours) 0.0116 1.24% 0.6341 1.91%
SVFT [25] 0.0975 0.84% 1.0004 2.31%

Full Fine-Tuning 0.0023 100% 0.4190 100%

Table 3: PEFT results on the 1B-parameter DPOT-H
backbone for 2D shallow-water equations (SWE-2D) and
the 3D magnetohydrodynamic (MHD-3D) in data scarcity
conditions.

The F-Adapter, which assigns larger
dimensions to low-frequency bands
and smaller ones to high-frequency
bands, outperforms both the vanilla
Adapter and the reversed F-Inverse-
Adapter in Table 5. This confirms that
our dimension–frequency schedule is
both reasonable and effective.

Ablation on Different Types of
Adapters for Fourier Domain.
We explore alternative strategies to
address the challenges of applying
Adapters in the Fourier domain.
Motivated by Xiao et al. [52], which
amortizes Fourier–kernel parameters
with a KAN [30] to accommodate
arbitrary high-frequency modes, we
propose the Fourier Adapter. We substitute the adapter’s down-projection and up-projection layers
with a FourierKAN layer [53], which parameterizes edge functions as truncated Fourier series, and
integrate this module directly into the Fourier domain. Motivated by Zhang et al. [57], who applied
Chebyshev polynomial bases within KANs to enhance PINNs for PDE solution, we substitute
the adapter’s linear layers with Chebyshev-based KAN modules to form the Chebyshev Adapter.
Motivated by Tripura and Chakraborty [50], who incorporate wavelet transforms into operator
learning, and by Zhao et al. [60], who employ the learnable wavelet-based activation function
WaveAct for solving PDEs, we introduce the WaveAct Adapter—an adapter module that uses
WaveAct as its nonlinear activation throughout the down- and up-projection layers. Architectural
details for all the aforementioned Fourier-domain adapter improvements can be found in Appendix
C.13.

Comparing the results in Table 4 with Table 2, we can conclude that most of the aforementioned
adapters specifically designed for the Fourier domain do indeed outperform the Vanilla Adapter and
LoRA. But Chebyshev Adapter slightly lags behind F-Adapter in accuracy and increases latency
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Scheme % Params Mem (GB) FLOPs (G) Time (ms) L2RE (M=1) L2RE (M=0.1)

F-Adapter (Ours) 1.91% 15.88 548.53 90.38 0.5329 0.4639
Chebyshev Adapter 2.18% 16.19 554.80 268.02 0.5409 0.4757
Fourier Adapter 1.93% 20.57 546.85 1449.54 0.6584 0.6053
WaveAct Adapter 1.16% 15.85 547.47 92.69 0.5566 0.4691

Table 4: Computational cost and accuracy of different types of frequency-domain adapters on the
1B-parameter DPOT-H backbone.

by many times, reflecting the overhead of the dense Chebyshev polynomial expansion within the
KAN architecture. The Fourier Adapter ’s costly FourierKAN edge-function evaluations increase
memory use by 29% and slow runtime tenfold, and its accuracy falls sharply, illustrating that naïvely
adding high-order Fourier series exacerbates spectral aliasing. WaveAct Adapter equals F-Adapter in
memory and nearly in speed, yet its accuracy lags, implying that learnable wavelet activations alone
cannot fully capture the high-frequency dynamics of PDE solutions in Fourier domain.

Scheme Rand Rand Turb

F-Inverse-Adapter 0.5664 0.4983 0.4747
Vanilla Adapter [17] 0.5496 0.4893 0.4696
F-Adapter (Ours) 0.5329 0.4639 0.4523

Table 5: Ablation on adapter dimension
schedules. Columns report L2 relative error
(L2RE) on the Rand dataset at M = 1.0 (first
column), the Rand dataset at M = 0.1 (second
column), and the Turb dataset at M = 1.0 (third
column).

This ablation study demonstrates that adaptively
allocating the lightweight adapter’s low-rank
dimension according to spectral content (F-
Adapter) is more effective than replacing
the projection layers with heavier functional
bases. Other ablation studies that assess
how hyperparameter choices affect F-Adapter
performance are reported in Appendix C.14.

5.3 Discussions

In this section, we discuss the application of frequency-based capacity allocation to other non-FNO
based LOMs. Although an FNO backbone provides direct access to frequency features, our main
focus is on assigning each frequency band its own proper bottleneck dimension rather than strictly
performing convolution in the frequency domain. This insight allows our F-Adapter to extend
naturally to non-FFT architectures. On the pure transformer-based Poseidon [16] model, we estimate
frequency energy for each Linear layer from adjacent-token differences, and for each Conv2d layer
we perform a local real 2-D FFT on the convolution output to obtain an energy spectrum that guides
the adapter’s weight generation. The PEFT adapter itself still operates in the native spatial domain.
Capacities are allocated to bands according to their energy following Equation (6), which equips the
model with frequency awareness. Table 6 reports the resulting performance gains on SWE-2D.

Scheme on Poseidon L2RE % Param

Prompt Tuning [20] > 1.0 0.07%
LoRA [18] 0.4010 2.07%
RandLoRA [1] 0.3134 2.07%
Vanilla Adapter [17] 0.6231 2.18%
AdaLoRA [58] 0.3756 2.32%
HydraLoRA [48] 0.3474 2.57%
FiLM Adapter [43] 0.4567 3.19%
SVFT [25] 0.6742 4.22%
F-Adapter (Ours) 0.4311 4.17%
F-LoRA (Ours) 0.2746 4.78%

Full Fine-Tuning 0.1534 100%

Table 6: PEFT results on the Poseidon
backbone for 2D shallow-water
equations (SWE-2D).

We observe that adapters deliver strong results when
the base model is an FNO, yet their effectiveness
declines sharply on a transformer backbone. In contrast,
LoRA and its variants demonstrate robust performance
on transformer backbones, reflecting established best
practices in fine-tuning LLMs. But our F-Adapter still
narrows this gap by significantly improving adapter
performance on transformers. Building on this insight,
we introduce F-LoRA: it preserves the frequency-based
capacity allocation of F-Adapter while replacing the
bottleneck MLP with LoRA-style low-rank linear updates.
For detailed design, please refer to Appendix C.15.
F-LoRA achieves SOTA performance across a broad suite
of PEFT methods in this setting.

6 Conclusion

We provide the first systematic PEFT study for pretrained LOMs, exposing a depth-amplified spectral
error floor in LoRA. We prove that adapters avoid this limit and, guided by Fourier energy analysis,
design F-Adapters that match capacity to modal energy. Updating at most 2% of weights, they
set SOTA records in L2REs on several challenging partial differential equation tasks, validating a
principled and efficient route for fine-tuning LOMs.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately capture the paper’s core
contribution—frequency-aware adapters that attain state-of-the-art parameter-efficient
accuracy on 3D Navier–Stokes tasks—though they slightly over-generalize the method’s
applicability by under-stating its reliance on FFT-based backbones.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Appendix D explicitly reflects on the strong low-frequency–dominance
assumption that underpins the theory, acknowledges that highly non-linear multi-physics
flows (e.g. MHD turbulence, reactive plasmas) may violate this premise, and identifies
the need for future work to characterise such regimes—thereby satisfying the checklist’s
requirement to discuss assumptions, scope and robustness.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All major formal claims are explicitly stated with their required hypotheses
and are accompanied by full proofs in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3.1 discloses the exact PDEBench datasets, DPOT-H backbone,
optimizer, schedule, hardware, and PEFT placement, while Appendix C lists the complete
hyper-parameter table, data splits, layer configurations, and metric—together with a
commitment to release code upon acceptance, this provides all information needed to
replicate every reported result.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The PDEBench datasets are publicly available and the code will be made
publicly available upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: Section 3.1 specifies the data splits, backbone, optimizer (AdamW), learning
rate schedule, batch size, epochs, and hardware, while Appendix C lists the complete hyper-
parameter table and evaluation protocol, giving readers all training and test details needed to
interpret the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Experimental results are tested multiple times to ensure stability and reliability.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]

Justification: Compute resources are thoroughly described and evaluated in both the
experimental setup and the experimental results sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The study operates exclusively on publicly available scientific-simulation data,
involves no human subjects or sensitive personal information, and poses no foreseeable
dual-use or societal-risk concerns, thereby conforming to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Appendix E highlights positive outcomes (e.g., greener, more accessible
high-resolution scientific forecasting) and also cautions about dual-use risks for weapons
design and bias propagation in safety-critical deployments, thus addressing both sides of the
societal-impact spectrum.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Appendix E commits to releasing the code under a research-only licence and
to adding provenance logging, providing concrete safeguards to limit potential dual-use
misuse of the released surrogate models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: The paper cites the original paper that produced the code package or dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code will be made publicly available upon acceptance.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The study uses solely publicly available 3D-Navier–Stokes simulation data
and involves no human participants or crowdsourced tasks, so the question is not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The study uses only publicly available simulation data and includes no
experiments involving human participants, so IRB review is not applicable.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Preliminary

Let h ∈ Rd denote the hidden activation of a transformer sub-layer and let W0 ∈ Rd×d be the frozen
projection learned during pre-training.

Low-Rank Adaptation (LoRA) LoRA [18] injects a rank-r correction into W0 while keeping it
frozen:

hout =
(
W0 +∆W

)
h, ∆W = αBA, (11)

A ∈ Rr×d, B ∈ Rd×r, α = λ
r , (12)

so that only A and B—totalling 2rd parameters—are updated.

Bottleneck Adapter Adapters [17] append a two-layer bottleneck MLP with a residual gate s:

hdown = Wdownh+ bdown, hact = f(hdown),

hup = Wuphact + bup, hout = h+ shup, (13)

where Wdown ∈ Rr×d, Wup ∈ Rd×r, f(·) = GELU, r ≪ d, s ∈ R>0. The adapter adds
2rd+ d+ r trainable parameters and reduces to the identity when s = 0.

Both LoRA and adapters thus enable parameter-efficient fine-tuning by confining learning to small,
task-specific subspaces while preserving the frozen pre-trained backbone.

B Mathematical Proofs

Lemma 1 (LoRA error lower bound). Let ∆W ∈ Rd×d admit the singular-value decomposition
∆W = UΣV ⊤ with singular values σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0 and orthonormal singular vectors
U = [u1, . . . , ud], V = [v1, . . . , vd]. For any factorization B ∈ Rd×r, A ∈ Rr×d and any x ∈ Rd,

∥∥∆W x−BAx
∥∥ ≥

√√√√ d∑
i=r+1

σ2
i (v

⊤
i x)

2. (14)

Furthermore, for the worst-case lower bound of the LoRA error we obtain

sup
∥x∥2=1

∥∥∆W x−BAx
∥∥ ≥ σr+1 . (15)

Proof. Because ∆W = UΣV ⊤, every x ∈ Rd satisfies

∆Wx = UΣV ⊤x =

d∑
i=1

σi (v
⊤
i x)ui. (16)

By the orthogonality of V = [v1, . . . , vd], one has V ⊤V = I , hence

x = I x = (V ⊤V )x = V ⊤(V x) =

d∑
i=1

(v⊤i x) vi . (17)

Since rank(BA) ≤ r, im(BA) ⊆ span{u1, . . . , ur}, so there exist scalars α1, . . . , αr with

BAx =

r∑
i=1

αi ui. (18)

Define the error e(x) = ∆Wx−BAx. Substituting (16) and (18) gives

e(x) =

r∑
i=1

[
σi(v

⊤
i x)− αi

]
ui +

d∑
i=r+1

σi (v
⊤
i x)ui. (19)
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The orthonormality of {ui} implies

∥e(x)∥2 =

r∑
i=1

[
σi(v

⊤
i x)− αi

]2
+

d∑
i=r+1

σ2
i (v

⊤
i x)

2. (20)

Because the first sum can be made arbitrarily small by a suitable choice of αi, the second sum
furnishes an unavoidable contribution:

∥∆Wx−BAx∥ ≥

√√√√ d∑
i=r+1

σ2
i (v

⊤
i x)

2. (21)

It completes the proof of LoRA error’s lower bound.

Next, we present the proof establishing the worst-case lower bound for the LoRA error.

Let S := im(BA) ⊆ Rd be the column space of BA. Since rank(BA) ≤ r, we have:

dim(S) ≤ r and dim(S⊥) ≥ d− r. (22)

Consider the (r + 1)-dimensional subspace spanned by the first r + 1 right singular vectors:
Vr+1 := span{v1, . . . , vr+1}. (23)

By the subspace intersection theorem:
dim(S⊥ ∩ Vr+1) ≥ dim(Vr+1) + dim(S⊥)− d ≥ (r + 1) + (d− r)− d = 1. (24)

Thus, there exists a unit vector x0 ∈ S⊥ ∩ Vr+1.

Decompose x0 in the singular vector basis:

x0 =

r+1∑
i=1

αivi with
r+1∑
i=1

α2
i = 1. (25)

The approximation error satisfies:
∥∆Wx0 −BAx0∥2 = ∥PS⊥(∆Wx0)∥2 + ∥PS(∆Wx0)−BAx0∥2 (26)

≥ ∥PS⊥(∆Wx0)∥2. (27)

Using the SVD of ∆W :

∆Wx0 =

r+1∑
i=1

σiαiui. (28)

Since x0 ∈ S⊥ and BAx0 ∈ S, we have PS⊥(BAx0) = 0, thus:

PS⊥(∆Wx0) =

r+1∑
i=1

σiαiPS⊥ui. (29)

From the optimality of ∆Wr, for any unit y ∈ Rd:
∥∆Wy −∆Wry∥ ≥ σr+1. (30)

Specifically for y = x0 ∈ Vr+1:

∥∆Wx0∥2 =

r+1∑
i=1

σ2
i α

2
i ≥ σ2

r+1. (31)

Combining (27) and (31):
∥∆Wx0 −BAx0∥2 ≥ ∥PS⊥(∆Wx0)∥2 (32)

≥ ∥∆Wx0∥2 − ∥PS(∆Wx0)∥2 (33)

≥ σ2
r+1 −

r∑
i=1

σ2
i α

2
i (34)

≥ σ2
r+1 − σ2

1

r∑
i=1

α2
i (35)

≥ σ2
r+1 − σ2

1(1− α2
r+1). (36)
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The maximum is achieved when αr+1 = 1, giving:

∥∆Wx0 −BAx0∥ ≥ σr+1. (37)

Since there exists at least one x0 for which Eq. 37 holds, the supremum over all x ̸= 0 satisfies:

sup
x ̸=0
∥∆Wx−BAx∥ ≥ σr+1. (38)

Remark 1. The worst-Case lower bound coincides with the optimal spectral-norm error ∥∆W −
∆Wr∥2 = σr+1 given by the classical Eckart–Young–Mirsky theorem[10], and is therefore tight.

Remark 2. Lemma 1 demonstrates that LoRA cannot attain zero approximation error; while its
worst-case error is governed by the (r+1)-st singular value, LoRA yields meaningful improvement
only when this singular value is sufficiently small.

Proposition 3.1 ( Block-wise LoRA lower bound ). Let ∆Wg = blockdiag
(
∆W (1), . . . ,∆W (K)

)
be the block-wise model parameter updates and BA = blockdiag

(
B(1)A(1), . . . , B(K)A(K)

)
be the

block-wise low-rank approximation, where B(k) ∈Cd×r, A(k) ∈Cr×d. Then, for any input x, the
approximation error for block-wise LoRA satisfies

∥∥(∆Wg −BA)x
∥∥ ≥ ( K∑

k=1

d∑
i=r+1

σ2
k,i (v

⊤
k,ixk)

2

)1/2
. (1)

In particular, the worst-case operator-norm error obeys

sup
∥x̂∥2=1

∥(∆Wg −BA)x̂∥2 ≥ σKr+1(∆Wg) (2)

Proof. Since Vk = [vk,1, . . . , vk,d] ∈ Rd×d is orthogonal,

VkV
⊤
k = Id. (39)

For any xk ∈ Rd,

xk = Vk

(
V ⊤
k xk

)
=

d∑
i=1

(v⊤k,ixk) vk,i. (40)

Set
ek := ∆Wkxk −BkAkxk. (41)

With ∆Wk = UkΣkV
⊤
k and im(BkAk) ⊆ span{uk,1, . . . , uk,r}, there exist scalars αk,i (1 ≤ i ≤ r)

such that

∆Wkxk =

d∑
i=1

σk,i(v
⊤
k,ixk)uk,i, (42)

BkAkxk =

r∑
i=1

αk,i uk,i. (43)

Hence

ek =

r∑
i=1

[
σk,i(v

⊤
k,ixk)− αk,i

]
uk,i +

d∑
i=r+1

σk,i(v
⊤
k,ixk)uk,i. (44)

Orthonormality of {uk,i} implies

∥ek∥2 =

r∑
i=1

[
σk,i(v

⊤
k,ixk)− αk,i

]2
+

d∑
i=r+1

σ2
k,i(v

⊤
k,ixk)

2 ≥
d∑

i=r+1

σ2
k,i(v

⊤
k,ixk)

2. (45)
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Since (∆Wg −BA)x = (e1, . . . , eK)⊤ and the blocks are orthogonal,

∥(∆Wg −BA)x∥2 =

K∑
k=1

∥ek∥2 ≥
K∑

k=1

d∑
i=r+1

σ2
k,i(v

⊤
k,ixk)

2, (46)

and taking square roots of (46) yields the stated bound.

Next, we present the proof establishing the worst-case lower bound for the block-wise LoRA error.

Define
∥∆Wg −BA∥op = sup

∥x̂∥2=1

∥(∆Wg −BA)x̂∥2. (47)

For any unit vector x̂ = (x1, . . . , xK)⊤,

(∆Wg −BA)x̂ = (D1x1, . . . , DKxK)⊤, ∥(∆Wg −BA)x̂∥22 =

K∑
k=1

∥Dkxk∥22. (48)

Writing the SVD ∆Wk = UkΣkV
⊤
k with Σk = diag(σk,1, . . . , σk,d), any x ∈ Rd expands as

x =
∑

i(v
⊤
k,ix)vk,i and

Dkx =

r∑
i=1

[
σk,i(v

⊤
k,ix)− αk,i

]
uk,i +

d∑
i=r+1

σk,i(v
⊤
k,ix)uk,i,

for some αk,1, . . . , αk,r. Choosing x = vk,r+1 gives

∥Dk∥op ≥ ∥Dkvk,r+1∥ = σk,r+1. (49)

Taking the maximum over k and using (47) yields (2). Finally, since ∆Wg is block-diagonal its
singular values are the multiset {σk,i}, so (2) holds and the proof is complete.

Lemma 2 (Universal Approximation Theorem for Adapters). Let K ⊂ RD be compact, σ : R→ R a
continuous non-affine function, and f ∈ C(K;RD). For every ε > 0, there exist parameters m ∈ N,
V ∈ Rm×D, U ∈ RD×m, b ∈ Rm, and c ∈ RD such that

h(x) = U σ(V x+ b) + c satisfies sup
x∈K
∥h(x)− f(x)∥∞ < ε. (50)

Proof. Define the hypothesis classes:

H0 =

{∑m
i=1 uiσ(w

⊤
i x+ bi)

∣∣∣∣ui ∈ RD, wi ∈ RD, bi ∈ R
}
, H = H0 + {c}. (51)

Step 1: Density Argument by Contradiction. Assume H ≠ C(K;RD). By Hahn-Banach theorem,
there exists a non-zero continuous linear functional L ∈ (C(K;RD))∗ such that:

L(h) = 0 ∀h ∈ H. (52)

Step 2: Riesz-Markov-Kakutani Representation. For vector-valued continuous functions, there exists
a RD-valued Radon measure µ = (µ1, ..., µD) such that:

L(g) =

D∑
j=1

∫
K

gj(x)dµj(x), ∀g ∈ C(K;RD). (53)

The annihilation condition becomes:
D∑

j=1

∫
K

hj(x)dµj(x) = 0 ∀h ∈ H. (54)
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Step 3: Constant Function Elimination. Testing with constant functions h(x) ≡ c0 ∈ RD:

D∑
j=1

c0,jµj(K) = 0 ∀c0 ∈ RD. (55)

This implies the total mass vanishes for each component:

µj(K) = 0, ∀1 ≤ j ≤ D. (56)

Step 4: Single Neuron Analysis. For any direction w ∈ RD, bias b ∈ R, and basis vector ej , consider:

h(x) = ejσ(w
⊤x+ b) ∈ H0. (57)

Substitution into (54) gives:∫
K

σ(w⊤x+ b)dµj(x) = 0 ∀w ∈ RD, b ∈ R, 1 ≤ j ≤ D. (58)

Step 5: Projection to 1D Measures. For each w ∈ RD, define projected measures νj,w on R by:

νj,w(A) := µj

(
{x ∈ K |w⊤x ∈ A}

)
for Borel sets A ⊆ R. (59)

Equation (58) becomes: ∫
R
σ(t+ b)dνj,w(t) = 0 ∀b ∈ R. (60)

Step 6: Fourier Analytic Argument. Let F denote the Fourier transform. For tempered distributions:

F [σ ∗ νj,w](ω) = F [σ](ω) · F [νj,w](ω) (61)
= σ̂(ω) · ν̂j,w(ω) = 0 ∀ω ∈ R. (62)

Lemma 6.1 (Non-vanishing spectrum). For non-affine σ ∈ C(R) \ P1, σ̂ is not identically zero.
Specifically:

• If σ is sigmoidal: σ̂(ω) has exponential decay but supp(σ̂) = R

• For ReLU: σ̂(ω) = πδ(ω) + 1
iω (in distribution sense)

• GeLU: ĜeLU(ω) is analytic and non-zero on R \ {0}

Thus ν̂j,w ≡ 0 in (62), implying νj,w ≡ 0.

Step 7: Cramér-Wold Device. For any w ∈ RD, the projected measure satisfies:

νj,w(A) = µj

(
x ∈ K |w⊤x ∈ A

)
= 0 ∀A ⊆ R. (63)

By Cramér-Wold theorem [8], this implies:

µj(B) = 0 ∀Borel B ⊆ K, 1 ≤ j ≤ D. (64)

Contradicting L ̸= 0 in (53). ThereforeH = C(K;RD).

Step 8: Approximation Construction. Given f ∈ C(K;RD) and ε > 0, by density there exists h ∈ H
with:

∥h− f∥C(K) = sup
x∈K

max
1≤j≤D

|hj(x)− fj(x)| < ε. (65)

This completes the universal approximation property.

Remark 3 (Measure-Theoretic Details). All measures are Radon measures by the Riesz-Markov-
Kakutani theorem. Fourier transforms are interpreted in the distributional sense. The Cramér-Wold
theorem applies to finite Borel measures
Remark 4 (Activation Function Spectrum). The critical requirement is σ̂ ̸≡ 0, satisfied by:

• Non-polynomial analytic functions: σ(t) = et/(1 + et)
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• Piecewise linear functions with σ′′ ̸= 0 distributionally

• Functions with non-vanishing generalized spectrum
Remark 5. By contrast to Lemma 1, Lemma 2 proves a universal approximation theorem for adapters:
the presence of nonlinear activation endows them with strictly greater expressive power than LoRA.
Lemma 3 (Spectral decay from Sobolev regularity). Let g : Td → C be 2π-periodic with all weak
derivatives up to order α ∈ N in L1(Td), where α > d/2. Denote its Fourier coefficients by

gk =
1

(2π)d

∫
Td

g(x)e−ik·x dx, k ∈ Zd.

Then there exists C > 0 such that

|gk| ≤ C(1 + ∥k∥2)−α/2, ∀k ∈ Zd.

Proof. Let α ∈ N with α > d/2 and fix a multi-index m = (m1, . . . ,md) satisfying |m| =∑d
j=1 mj = α. For any test function ϕ ∈ C∞(Td), integration by parts in the distributional sense

yields ∫
Td

∂mg(x)ϕ(x)dx = (−1)|m|
∫
Td

g(x)∂mϕ(x)dx. (66)

Applying this to ϕ(x) = e−ik·x and noting that ∂me−ik·x = (−ik)me−ik·x, we derive∫
Td

g(x)e−ik·xdx =
1

(−ik)m

∫
Td

∂mg(x)e−ik·xdx. (67)

Consequently, the Fourier coefficients satisfy

gk =
1

(2π)d
1

(−ik)m

∫
Td

∂mg(x)e−ik·xdx. (68)

Taking absolute values and applying Hölder’s inequality, we obtain

|gk| ≤
1

(2π)d|km|

∫
Td

|∂mg(x)|dx =
∥∂mg∥L1

(2π)d|km|
. (69)

To bound |km| =
∏d

j=1 |kj |mj , observe that by the arithmetic-geometric mean inequality,

d∏
j=1

|kj |mj ≥
(
∥k∥√
d

)α

, (70)

where ∥k∥ =
√
k21 + · · ·+ k2d. Substituting this into the estimate for |gk| gives

|gk| ≤
dα/2∥∂mg∥L1

(2π)d
∥k∥−α. (71)

For low-frequency modes with ∥k∥ < 1, the bound |gk| ≤ ∥g∥L1 holds trivially. Combining both
cases by defining

C = max

(
sup

∥k∥<1

|gk|,
dα/2∥∂mg∥L1

(2π)d

)
, (72)

we achieve the unified decay estimate

|gk| ≤ C(1 + ∥k∥2)−α/2, ∀k ∈ Zd. (73)

Sharpness follows by considering test functions g(x) =
∏d

j=1(1 − cosxj)
β with β > α, where

direct calculation shows |gk| ≍ ∥k∥−2β .

Lemma 4 (Spatial-domain adapter error bound). Let a single–layer adapter in the spatial domain
produce perturbations δi at grid points i ∈ I ⊆ {1, . . . , N}d with |δi| ≤ εm uniformly, and suppose
#I = Kd. Then the global ℓ2–error

e ∈ RNd

, ei =

{
δi, i ∈ I,

0, i /∈ I,
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satisfies

∥e∥ =
(∑

i∈I

|δi|2
)1/2

≤
√
Kd εm = O

(
Kd/2

)
, (74)

so in the absence of any decay in the perturbations one only obtains the spatial-domain rate O(Kd/2).

Proof. By definition,
∥e∥2 =

∑
i∈I

|δi|2 ≤
∑
i∈I

ε2m = Kd ε2m,

and taking square roots yields ∥e∥ ≤ Kd/2 εm = O(Kd/2).

Proposition 3.2 (Frequency-selective approximation of adapters). Let |gk|≤C⟨k⟩−α with α> d
2 .

For any ε> 0 there exist frequency truncation radius K > 0 and adapter bottleneck width m ∈ N
such that the Fourier-domain adapter ĝ obeys

∥e∥ := ∥F−1(g)−F−1(ĝ)∥2 < ε, ∥e∥ = O
(
K

d
2−α

)
+O

(
K

d
2 e−cm

)
. (3)

Proof. Let
e = F−1

(
g(x̂)− ĝ(x̂)

)
. (75)

By the unitarity of F−1 we have

∥e∥2 =

N∑
k=1

∣∣gk(x̂k)− ĝk(x̂k)
∣∣2. (76)

Split the sum in (76) into the high-frequency part ⟨k⟩ > K and the low-frequency part ⟨k⟩ ≤ K. For
the high-frequency truncation we use |ĝk| = 0 and the decay hypothesis |gk(x̂k)| ≤ C⟨k⟩−α:∑

⟨k⟩>K

∣∣gk(x̂k)
∣∣2 ≤ C2

∑
⟨k⟩>K

⟨k⟩−2α ≤ C2

∫ ∞

K

r d−1

(1 + r2)α
dr. (77)

Setting r =
√
s with dr = 1

2
√
s
ds gives

∫ ∞

K

r d−1

(1 + r2)α
dr =

1

2

∫ ∞

K2

s
d−2
2

(1 + s)α
ds ≤ 1

2
Cα

∫ ∞

K2

s
d
2−α−1 ds =

Cα

2(α− d
2 )

K d−2α, (78)

so that ∑
⟨k⟩>K

∣∣gk(x̂k)
∣∣2 = O

(
K d−2α

)
. (79)

Taking square-roots yields the high-frequency contribution( ∑
⟨k⟩>K

∣∣gk − ĝk
∣∣2)1/2

= AK
d
2−α, A =

√
C2 Cα

2(α− d
2 )

. (80)

For the low-frequency part ⟨k⟩ ≤ K, the adapter achieves exponential uniform accuracy:∣∣gk(x̂k)− ĝk(x̂k)
∣∣ ≤ εm e−cm, (81)

hence ∑
⟨k⟩≤K

∣∣gk − ĝk
∣∣2 ≤ Kd ε2m e−2cm, (82)

and after taking square-roots the low-frequency contribution is( ∑
⟨k⟩≤K

∣∣gk − ĝk
∣∣2)1/2

= BK
d
2 e−cm, B = εm. (83)
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Combining these two estimates with (76) gives

∥e∥ ≤ AK
d
2−α + BK

d
2 e−cm. (84)

To ensure ∥e∥ < ε, it suffices to choose K and m such that

AK
d
2−α <

ε

2
=⇒ K >

(
2A
ε

)1/(α−d
2 )

, (85)

BK
d
2 e−cm <

ε

2
=⇒ m >

1

c
ln
(

2BK
d
2

ε

)
. (86)

Since α > d/2, the exponent 1/(α− d
2 ) is positive, and thus one can always pick finite K and then

m to satisfy both inequalities. This yields

∥e∥ = O
(
K

d
2−α

)
+O

(
K

d
2 e−cm

)
, (87)

which for suitably growing m is strictly faster than the spatial-domain rate O(Kd/2) in Lemma 4.

Remark 6 (Error Component Interpretation). The spectral truncation term O(K
d
2−α) reflects the

accelerated decay granted by α > d/2 in the Fourier domain. The parametrization term O(K
d
2 e−cm)

demonstrates that, by increasing the adapter width m, one obtains exponential control over the
low-frequency approximation error.
Proposition 3.3 (Quantitative Low–/High–Frequency Energy Split for PDE Solution). Let s > d

2 and
suppose f ∈ C

(
[0, T ];Hs(Td)

)
, supt∈[0,T ] ∥f(t)∥Hs ≤ M. Let f(t, x) =

∑
k∈Zd f̂(t, k) ei k·x,

then for each k ̸= 0,
|f̂(t, k)| ≤M (1 + ∥k∥2)−s/2, (4)

and for every integer K ≥ 1 there exists C = C(d, s) such that∑
∥k∥>K

|f̂(t, k)|2 ≤ CM2 K d−2s,
∑

∥k∥≤K

|f̂(t, k)|2 = ∥f(t)∥2L2 −O
(
K d−2s

)
. (5)

Proof. By assumption one has

∥f(t)∥2Hs =
∑
k∈Zd

(1 + ∥k∥2)s
∣∣f̂(t, k)∣∣2 ≤M2. (88)

Hence for each nonzero k,∣∣f̂(t, k)∣∣2 ≤M2 (1 + ∥k∥2)−s,
∣∣f̂(t, k)∣∣ ≤M (1 + ∥k∥2)−s/2. (89)

Define the high–frequency tail

AK(t) =
∑

∥k∥>K

∣∣f̂(t, k)∣∣2 ≤M2
∑

∥k∥>K

(1 + ∥k∥2)−s. (90)

Partitioning {k : ∥k∥ > K} into shells m − 1 < ∥k∥ ≤ m and writing N (r) = #{k : ∥k∥ ≤ r},
we get ∑

∥k∥>K

(1 + ∥k∥2)−s ≤
∞∑

m=⌊K⌋+1

[
N (m)−N (m− 1)

]
(1 + (m− 1)2)−s. (91)

Since N (m)−N (m− 1) ≤ Cd m
d−1 and (1 + (m− 1)2)−s ≤ (m− 1)−2s, one obtains∑

∥k∥>K

(1 + ∥k∥2)−s ≤ Cd

∞∑
m=⌊K⌋+1

md−1−2s ≤ Cd

∫ ∞

K

rd−1−2s dr =
Cd

2s− d
K d−2s. (92)

It follows that
AK(t) ≤ Cd

2s− d
M2 K d−2s. (93)

Finally, Parseval’s identity gives∑
∥k∥≤K

∣∣f̂(t, k)∣∣2 = ∥f(t)∥2L2 −AK(t) = ∥f(t)∥2L2 −O
(
K d−2s

)
, (94)

which completes the proof.
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C Experimental Settings and Supplementary Results

C.1 DPOT Backbone

The Auto-Regressive Denoising Operator Transformer (DPOT) is a Fourier–transformer backbone
designed for large-scale pre-training on heterogeneous PDE trajectories [14]. Its architecture (Figure
2 of the original paper) is factorised into four principal modules—Patch/Positioning Embedding,
Temporal Aggregation, Fourier Attention, and Output Projection—which together convert raw
spatiotemporal grids into operator-valued predictions while retaining full frequency information.

Patch/Positioning Embedding Layers. Each input trajectory u<T ∈ RH×W×T×C is first
patchified: a P×P convolution groups neighbouring cells and lifts them to a D-dimensional token
space. Learnable positional encodings Wp(xi, yj , t) are then added channel-wise, producing per-

time-step embeddings Zt
p∈R

H
P ×W

P ×D that remain resolution-agnostic across datasets.

Temporal Aggregation Layers. To condense the temporal context, DPOT employs a weighted
temporal MLP with complex Fourier features. For each spatial location (i, j) and channel c, the
layer forms a weighted sum

z(i,j,c)agg =

T∑
t=1

W
(c)
t zt,(i,j,c)p e− iγct, (95)

where W
(c)
t and γc are learnable and shared across datasets. This operation implicitly encodes

time-frequency signatures that help the model infer PDE type and latent parameters from short
sequences.

Fourier Attention Layers. The core stack consists of L Fourier–attention layers. Each layer
lifts its input to frequency space via an FFT, applies a two-layer multi-head MLP Kl to the complex
coefficients, and reverts to the spatial domain with an inverse FFT before a point-wise MLP Ml:

z(l+1) = z(l) +Ml

(
F−1

[
Kl

(
F [z(l)]

)])
. (96)

This frequency-space mixing acts as an efficient global kernel integral transform and scales linearly
with sequence length in practice:contentReference[oaicite:4]index=4.

Output Projection Layers. Finally, a point-wise projection Q : RD→RCout maps the latent field
back to the physical variable space, optionally preceded by up-sampling or padding to match the
desired resolution. Because Q operates channel-wise, it is independent of grid size and can be re-used
for variable-sized domains:contentReference[oaicite:5]index=5:contentReference[oaicite:6]index=6.

Discussion. The modular design makes DPOT both flexible—handling irregular resolutions, channel
counts, and temporal lengths—and scalable: model width D and depth L can be increased to the 1 B-
parameter regime with near-linear FLOP growth. Moreover, the FFT–IFFT symmetry of the Fourier
attention stack enables lightweight fine-tuning strategies such as our Frequency-Adaptive Adapters
(Section 4), which can be inserted without modifying pre-trained weights or training schedules.

C.2 Poseidon Backbone

The scalable Operator Transformer (scOT) is the backbone of Poseidon [16], designed to approximate
solution operators S(t, a) of time-dependent PDEs by jointly encoding the lead time t and the input
function a in a hierarchical, multiscale vision-transformer architecture with shifted-window (SwinV2)
attention. In contrast to next-step predictors, scOT directly learns the operator that maps initial data
to the entire solution trajectory and supports continuous-in-time evaluation through time-conditioned
layer normalization.

Patch and Embedding Layers. Inputs a ∈ C(D;Rn) are first partitioned into non-overlapping
p×p patches and linearly embedded into a C-dimensional latent field v ∈ C(D;RC). This discretizes
a patching operator that averages within patches and lifts to token space; the embedding is immediately
normalized by a (lead-time) conditioned layer norm (see below). The construction is resolution-
agnostic and serves as the interface between function-space data and transformer tokens.

30



Lead-Time–Conditioned Layer Norm. To enable real-valued time queries, scOT replaces standard
layer norm LN with a lead-time conditioned variant that modulates the affine parameters by t:

LNα(t),β(t)(v)(x) = α(t)⊙ v(x)− µv(x)

σv(x)
+ β(t), α(t) = αt + α, β(t) = βt + β, (97)

with µv, σv the channel-wise mean and standard deviation. This simple conditioning yields
continuous-in-time evaluations for S(t, ·) within a single network.

Shifted-Window (SwinV2) Attention Blocks. At each scale, tokens pass through SwinV2 blocks
that apply windowed multi-head self-attention within fixed spatial windows; windows are shifted
across layers to allow global information exchange with linear complexity in the number of tokens.
Each block follows a residual “attention–MLP” stack with time-conditioned layer norms on both
sublayers.

Hierarchical Encoder–Decoder with Skip Connections. SwinV2 stages are arranged in a U-
Net–style hierarchy with patch merging for down-scaling and patch expansion for up-scaling. Encoder
and decoder stages at matching resolutions are connected by lightweight ConvNeXt blocks that
preserve multi-scale features while keeping the bottleneck convolution-free.

Output Recovery and Mixup. After decoding, a recovery head reassembles the latent tokens back
to the physical domain, optionally with mixup in the output space; this step is independent of the grid
size and thus compatible with variable-resolution domains.

Training Objective and all2all Supervision. Given trajectories {S(tk, ai)}Kk=0, scOT can be
trained with a standard operator loss

L(θ) =
1

M(K + 1)

M∑
i=1

K∑
k=0

∥S∗
θ (tk, ai)− S(tk, ai) ∥Lp(D) (p = 1). (98)

and, crucially, with an all2all variant that exploits the semigroup property S(t∗, a) =
S(t∗−t, S(t, a)) to form supervision from all intra-trajectory time pairs (tk, tk̄) with k ≤ k̄, yielding
O(K2) training pairs per trajectory and markedly improved data efficiency. At inference, scOT
supports direct t-queries or variable-step rollout via successive applications of S∗

θ .

Discussion. The modular design—patch embeddings, time-conditioned normalization, shifted-
window attention, and multi-scale encoder–decoder—makes scOT both flexible (heterogeneous PDE
inputs, resolutions, boundary conditions via masking) and scalable (depth/width and token counts).
In POSEIDON, this backbone underpins large gains in sample efficiency and accuracy across diverse
downstream PDE operators after pretraining on a compact set of fluid-dynamics operators.

C.3 Fine-tuning Protocol

We begin with a DPOT backbone that was pre-trained on diverse two-dimensional PDE trajectories
and adapt it to new datasets of arbitrary dimensionality.

• Dimensional adaptation. Only the Fourier–Attention layers and Patch-Embedding kernels
are replaced with their one-, two-, or three-dimensional counterparts that match the target
grid. Positional embeddings are resized with trilinear interpolation, while all remaining
weights are loaded unchanged.

• Parameter-efficient updates. All newly added PEFT modules are initialized with
(near)-zero up-projection weights, so the network initially behaves like the frozen backbone
and gradually routes learning into the adapters as training proceeds.

Apart from these structural switches, the fine-tuning pipeline—optimizer, scheduler, and so forth—
follows the same recipe used during pre-training, but updates only the lightweight adapter weights
and a few normalisation parameters.

31



C.4 Placement of PEFT Modules

PEFT Modules are inserted at four important positions of the network:

1. Patch/Positioning Embedding Layers—after each convolution that maps raw input patches
into the latent space.

2. Temporal Aggregation Layers—directly after the first patchifying layer.
3. Fourier Attention Layers—before, between, and after the linear transforms operating in

Fourier space.
4. Output Projection Layers—parallel to the final transposed-convolution path that reconstructs

the physical field.

This arrangement grants every major transformation pathway a low-rank, trainable side route, enabling
the model to specialise to new PDE systems with minimal additional parameters.

C.5 Evaluation Metric

The L2 Relative Error (L2RE) is adopted as the sole evaluation metric. Given the test set D =
{(yi, ŷi)}Ni=1, L2RE is defined as

L2RE =
1

N

N∑
i=1

∥ŷi − yi∥2
∥yi∥2

. (99)

This ratio normalizes the prediction error by the energy of the ground-truth signal, yielding a
dimension-free quantity whose smaller value indicates better performance.

C.6 PDEBENCH 3D Compressible Navier–Stokes (CFD-3D) Dataset

The CFD-3D benchmark released with PDEBENCH [47] targets the forward prediction of turbulent,
compressible flows in three spatial dimensions. It now comprises three distinct subsets, each recorded
on a 1283 Cartesian grid and sharing identical solver parameters and output format:

Subset name Initial condition (η, ς,M)

NS-3D-turb divergence–free turbulence (10−8, 10−8, 1.0)
NS-3D-rand random Gaussian field (10−8, 10−8, 1.0)
NS-3D-rand low–Mach random field (10−8, 10−8, 0.1)

Each subset contains 100 simulation trajectories of the full compressible Navier–Stokes (CNS)
equations (100)–(102).

∂tρ+∇· (ρv) = 0, (100)

ρ(∂tv + v·∇v) = −∇p+ η∇2v +
(
ς +

η

3

)
∇(∇·v),

(101)

∂t

(
ε+

1

2
ρ∥v∥2

)
+∇·

[(
p+ ε+

1

2
ρ∥v∥2

)
v − v·σ′

]
= 0. (102)

Every trajectory provides 21 equally-spaced snapshots (t ∈ [0, 1]) stored as six-channel tensors[
ρ, u, v, w, p, ε

]
∈R128×128×128×6.

Initial and boundary conditions. The three subsets differ only by their initial velocity field
and Mach number. NS-3D-turb seeds a divergence-free Kolmogorov-type spectrum, whereas
NS-3D-rand and NS-3D-rand draw velocity, density and pressure perturbations from isotropic
Gaussian random fields (extended from Equation (8) in 47) before adding a uniform background.
Periodic boundaries are enforced in all directions, mimicking homogeneous isotropic turbulence and
simplifying spectral learning methods. The random-field subsets include a fixed-Mach configuration at
M = 1.0 and a nearly inviscid, low-Mach compressible configuration at M = 0.1; full specifications
of these variants are provided in the official dataset card.
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Scientific and ML challenges. Beyond the previously noted high dimensionality and shock-
capturing difficulties, the extended CFD-3D benchmark now stresses surrogate models along two
additional axes: (i) initial-condition diversity (turbulent vs. random fields) and (ii) Mach-number
variation spanning an order of magnitude (M=0.1 to 1.0). Successful models must therefore exhibit
robust generalisation across both flow regimes and acoustic compressibility scales.

Splits. Following the original protocol, we reserve 90 trajectories for training/validation and 10 for
held-out testing within each subset. We utilize stratified sampling to preserve the subset ratios.

Quantity Symbol Value Notes

Spatial resolution Nx ×Ny ×Nz 1283 Cartesian grid
Time steps per run Nt 21 ∆t=0.05
Number of runs Nsamples 100 90/10 train/test split
Viscosity pairs (η, ς) 10−8, 10−2 Two regimes
Mach number M 1.0 Isothermal EOS
Boundary condition – Periodic All faces
Stored channels – 6 ρ, u, v, w, p, ε

Table 7: Core statistics of the CFD-3D dataset.

C.7 PDEBench 2D Shallow Water Equations (SWE 2D) Dataset

The SWE 2D benchmark in PDEBENCH targets forward prediction of free-surface flows in two
spatial dimensions. Each trajectory is simulated on a 128×128 Cartesian grid with nonperiodic
Neumann boundaries and is provided as an HDF5 array following the convention (N,T,X, Y, V ).
The benchmark offers 1000 distinct runs and, for each run, 100 stored time steps that capture nonlinear
wave fronts and shock-like features typical of shallow-water dynamics. Baseline solvers and dataset
packaging follow the official PDEBENCH specification.

Governing equations. The two-dimensional shallow water system is supplied in conservative form
with bed-slope source terms:

∂th+ ∂x(hu) + ∂y(hv) = 0, (103)

∂t(hu) + ∂x

(
hu2 + 1

2gh
2
)
+ ∂y(huv) = − g h ∂xb, (104)

∂t(hv) + ∂y

(
hv2 + 1

2gh
2
)
+ ∂x(huv) = − g h ∂yb. (105)

where h is water depth, (u, v) are horizontal velocities, b(x, y) is the bathymetry, and g is gravitational
acceleration. In this representation the prognostic variables are (h, hu, hv), which makes conservation
properties explicit and well defined even in the presence of discontinuities.

Problem setup and data generation. The dataset instantiates a radial dam-break scenario on a
square domain Ω = [−2.5, 2.5]2 with an initial water mound centered at the origin,

h(0, x, y) =

{
2.0,

√
x2 + y2 < r,

1.0, otherwise,
u(0, x, y) = v(0, x, y) = 0,

where the radius r is sampled uniformly per run from [0.3, 0.7] to diversify initial conditions.
Simulations use a finite-volume solver from PyClaw to generate reference trajectories that are
then downsampled to the released resolution and schedule.

Scientific and ML challenges. SWE 2D stresses emulators through sharp fronts, wetting and
drying interfaces, and reflection at nonperiodic boundaries. Accurate surrogates must conserve mass
and handle momentum coupling while remaining stable over multi-step rollouts. The benchmark
exposes these difficulties in a controlled setting with standardized storage and splits.
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Quantity Symbol Value Notes

Spatial resolution Nx ×Ny 1282 Cartesian grid
Time steps per run Nt 100 Stored steps per trajectory
Number of runs Nsamples 1000 90/10 train/test split
Domain Ω [−2.5, 2.5]2 Square box
Boundary condition – Neumann Nonperiodic
Initial condition – radial mound r ∼ U(0.3, 0.7); u = v = 0
Stored channels – h, , hu, , hv Conservative variables
Solver – PyClaw Finite-volume reference

Table 8: Core statistics of the SWE 2D dataset in PDEBENCH.

Splits. Following the official protocol, we reserve 90% of runs for training and validation and 10%
for held-out testing. The same split policy is used for baseline models reported in the dataset paper.

DPOT uses this SWE 2D benchmark when reporting pre-training and transfer results, which motivates
our choice to adopt the same data conventions and splits.

C.8 Bifrost Chromosphere–Corona MHD-3D Dataset

We use the publicly released Bifrost enhanced-network simulation distributed by the Hinode Science
Data Centre Europe (ID: en024048_hion). It provides time-indexed 3D magnetic-field cubes
(Bx, By, Bz) on a Cartesian grid of 504 × 504 × 496 that spans a physical volume of 24Mm ×
24Mm×−2.4Mm to (numerical range) 14.4Mm. The standard release contains 157 snapshots at a
cadence of 10 s, from t = 3850 s to t = 5410 s. These specifications are consistent with the original
description of the run and subsequent studies that use the same source.

Governing equations. Bifrost advances the full resistive MHD system on a staggered mesh with
high-order finite differences and explicit time stepping. The code solves, in conservative form, mass
continuity, momentum balance with Lorentz force, magnetic induction, and total-energy evolution:

∂ρ

∂t
+∇ · (ρu) = 0, (106)

∂(ρu)

∂t
+∇ · (ρu⊗ u− τ ) = −∇p+ J×B+ ρg, (107)

∂B

∂t
= ∇× (u×B)−∇× (η J), (108)

∂e

∂t
+∇ · (eu) = −p ∇ · u+Q. (109)

with µ0J = ∇×B. Boundary treatment uses ghost zones with problem-dependent conditions;
radiation, conduction, and non-equilibrium ionization are included through Q and the equation of
state.

Initial and boundary conditions. The simulation represents an enhanced network with two
opposite magnetic polarities separated by about 8Mm at the photosphere. Convective driving shears
and braids the field, producing realistic chromosphere–corona coupling. Lateral and top boundaries
are nonperiodic in the production run used by en024048_hion, implemented through ghost zones in
Bifrost.

Scientific and ML challenges. MHD-3D stresses operator learners through strong anisotropy along
field lines, steep gradients near the photosphere, and nonperiodic boundaries that complicate spectral
assumptions. Accurate surrogates must reconstruct 3D structure from minimal boundary information
and remain stable across height with respect to physically derived metrics such as |B| and |J|.

Splits and extreme-scarcity protocol. To probe learning under severe data scarcity, we treat each
time index as a trajectory and select 24 snapshots for training. The remaining snapshots are held out
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Table 9: Core statistics of the MHD-3D dataset used in our study.

Quantity Symbol Value Notes

Spatial resolution Nx ×Ny ×Nz 504× 504× 496 Cartesian grid
Physical domain Ω 24×24×16.8 Mm3 z ∈ [−2.4Mm, 14.4Mm]
Snapshots per run Nt 157 10 s cadence; t ∈ [3850 s, 5410 s]
Stored channels — Bx, By, Bz Magnetic field
Boundary condition — Nonperiodic Ghost-zone implementation
Downsampled target — 504× 504× 99 Height subsampling
Train set (ours) Ntrain 24 Extreme scarcity
Source archive — en024048_hion Hinode SDC Europe

Figure 6: Spectral diagnostics after full-rank fine-tuning at M = 1.0. Top row: aggregated
singular-value spectrum (left) and cumulative-energy curve (right). Bottom: block-wise effective
ranks of ∆W .

for testing. Unless otherwise noted, inputs are the bottom boundary magnetogram (504× 504) and
targets are the downsampled (504× 504× 99) interior volume for the same time index, following
the GL-FNO data interface.

Provenance and access. The en024048_hion cubes are curated at Hinode SDC Europe; the
underlying simulation is documented by Carlsson et al. [4]. Recent ML work on coronal-field
reconstruction from this source provides a consistent pre-processing recipe and confirms the 3D
geometry and cadence figures listed above.

C.9 Spectral Diagnostics of ∆W after Full-Rank Fine-Tuning

To assess the intrinsic rank of the updates obtained via unconstrained fine-tuning, we perform full-rank
adaptation of the 1 B-parameter DPOT-H backbone on the 3D-NS random-initial-condition datasets
at Mach numbers M = 1.0 and M = 0.1. After convergence, we extract the complex-valued Fourier
Attention Layer weights (real and imaginary concatenated) {Wft

k,p} for each block k ∈ [0, 26] and
projection p ∈ {w1, w2}, compute the deltas

∆Wk,p = Wft
k,p −Wpre

k,p , (110)

flatten each ∆Wk,p to a matrix, and perform singular-value decomposition. We define the effective
rank as the number of singular values σi satisfying σi ≥ 0.01σ1.
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Figure 7: Spectral diagnostics after full-rank fine-tuning at M = 0.1. Top row: aggregated
singular-value spectrum (left) and cumulative-energy curve (right). Bottom: block-wise effective
ranks of ∆W .

Diagnostics at M = 1.0. Upper left panel in Figure 6 reveals a shallow spectral decay, while
upper right panel shows that only ∼ 80% of the Frobenius norm is captured by the first 100 modes.
Bottom Panel further indicates that nearly every block requires ≥ 240 modes (of 256), confirming the
high-rank nature of the update and the large approximation gap faced by rank-constrained adaptation
such as LoRA (see Proposition 3.1).

Diagnostics at M = 0.1. Although the low-Mach setting leads to a slightly steeper spectral
decay (upper left panel in Figure 7) and a faster accumulation of energy (upper right panel), the
transformation remains far from low-rank: capturing 90% of the energy still requires ∼ 140 modes
for w1 and ∼ 103 modes for w2. Bottom Panel shows that the down-projection pathway retains
an average effective rank of ≈ 246, while the up-projection weights still average ≈ 226 modes,
underscoring that the intrinsic update is still high-rank. Consequently, even at M = 0.1 rank-
constrained linear adapters suffer from an irreducible spectral bias.

Table 10 summarizes the effective-rank statistics of ∆W at M = 1.0 and M = 0.1, confirming that
both Mach regimes yield inherently high-rank updates. Likewise, Table 11 reports the number of
singular components required to capture 90% of the total energy: at M = 1.0, ≈ 126.6 (resp. 97.8)
modes are needed for w1 (resp. w2), compared to ≈ 138.6 and ≈ 103.3 at M = 0.1. Although
compressible flows at M = 0.1 exhibit slightly steeper spectral decay, the updates remain far from
low-rank. These diagnostics substantiate that full-rank fine-tuning induces intrinsically high-rank
transformations, thereby imposing an irreducible spectral bias on rank-constrained linear adapters.

M = 1.0 M = 0.1
Parameter Mean Std. Min Max Mean Std. Min Max

w1 250.7 11.4 200 256 245.9 20.3 187 256
w2 225.0 23.6 168 256 225.7 23.0 164 256

Table 10: Effective-rank statistics of ∆W whose dimension is 256 at M = 1.0 and M = 0.1 (across
all Fourier-Attention blocks).

C.10 RMSE Comparison for MLP Adapter vs. Low-Rank Truncation

The numerical results reported in the main text were obtained on a diagnostic set built from the
first Fourier-Attention block of DPOT. Specifically, we collectN = 200 000 real Fourier activations
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M = 1.0 M = 0.1
Parameter Mean Std. Min Max Mean Std. Min Max

w1 126.6 20.4 67 155 138.6 27.6 65 170
w2 97.8 20.8 52 138 103.3 26.5 52 154

Table 11: Number of singular components required to reach 90% cumulative energy at M = 1.0 and
M = 0.1.

H∈RN×d and compute their targets Y = H∆W⊤, where ∆W is the exact full-rank weight update
after fine-tuning. The data are split 90/10 % into training and validation subsets before fitting either
surrogate. Table 12 lists the root-mean-square error (RMSE, reported in 10−2 units) for all budgets
considered. Consistent with the curves in Figure 2, the two-layer MLP adapter dominates the low-rank
SVD baseline across the entire budget spectrum and for both Mach numbers.

Mach Method 4 8 16 32 64 128

M = 1.0
Adapter (MLP) 30.48 22.05 17.64 6.02 5.70 5.09
Low-Rank Trunc. 29.10 27.99 26.08 22.06 16.83 8.96

M = 0.1
Adapter (MLP) 24.76 27.67 18.38 8.43 4.04 4.46
Low-Rank Trunc. 22.95 21.92 20.23 17.37 13.53 7.34

Table 12: Held-out RMSE (×10−2) for each parameter budget. Adapter budgets correspond to hidden
widths m; low-rank budgets correspond to SVD ranks r.

Implications. Because the MLP is trained directly on the (H,Y ) mapping it can exploit non-linear
interactions in the representation space that any linear low-rank approximation of ∆W must ignore.
The result corroborates our spectral analysis: even aggressive rank truncation leaves a non-negligible
error floor, whereas a modest non-linear adapter is able to emulate the full-rank update with far
fewer tunable parameters. This finding further reinforces the case for Adapter-style PEFT in operator
learning tasks characterized by pronounced physical complexity.

C.11 FLOPs and Inference Time for Experiments in Section 5

Scheme FLOPs (G) Step Inference Time (ms)

AdaLoRA [58] 543.384 75.631
HydraLoRA [48] 547.039 155.784
Prompt Tuning [20] 540.838 28.649
Vanilla Adapter [17] 547.469 81.823
FiLM Adapter [43] 548.318 93.676
RandLoRA [1] 545.458 73.432
LoRA [18] 551.008 71.651
F-Adapter (Ours) 548.531 90.383
SVFT [25] 630.880 93.026
Chebyshev Adapter 554.797 268.022
Fourier Adapter 546.849 1449.544
WaveAct Adapter 547.469 92.694
Full Fine-Tuning 540.838 27.427

Table 13: Computational cost and single-step latency of parameter-efficient fine-tuning strategies.

Table 13 presents a comparative overview of the computational overhead incurred by each PEFT
scheme in the 3D NS Rand M = 1.0 experiment. Our F-Adapter executes 548 G FLOPs—only
about 0.2% more than the Vanilla Adapter and comfortably within the typical LoRA budget—while
yielding a single-step inference latency of 90 ms, well below the 100 ms threshold commonly regarded
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Scheme RMSLEE ↓ RelErrE ↓ % Param

Vanilla Adapter 0.9186 10.55% 1.16%
LoRA 1.9356 435.09% 1.37%
F–Adapter (Ours) 0.9095 6.12% 1.91%
Full Fine–Tuning 0.3208 0.21% 100%

Table 14: Spectrum–level accuracy and parameter efficiency. F–Adapter achieves the best spectral
fidelity among PEFT methods while retaining a small parameter footprint.

as interactive. Although Prompt Tuning and full fine-tuning achieve slightly lower latencies (28 ms
and 27 ms, respectively), the runtime premium of F-Adapter is modest and offset by its richer
representational capacity. Crucially, our approach is an order of magnitude faster than hydra-style
LoRA or higher-order spectral adapters specifically designed for Fourier domain, underscoring the
efficiency of its frequency-adaptive design. Overall, F-Adapter strikes a favorable balance between
computational cost and adaptation power, making it a practical drop-in replacement for existing
adapter families in latency-sensitive scenarios.

C.12 Spectral Analysis of PEFT Methods on DPOT

Setup. We evaluate how well different PEFT methods recover multi–scale 3D turbulence in 3D
NS experiment by comparing the predicted isotropic kinetic–energy spectrum against DNS on the test
set, and by inspecting 3D visualizations of velocity magnitude. For spectra, we compute E(k) from
the three velocity components using a 3D FFT and shell averaging in wavenumber space; prediction
and DNS are processed by the same pipeline.

Metrics. To quantify agreement across scales we report two spectrum–level metrics.

(i) Root mean square logarithmic error (RMSLE) of the spectrum

RMSLEE =

√√√√ 1

N

N∑
i=1

(
log10 Epred(ki)− log10 EDNS(ki)

)2
, (111)

where the sum runs over wavenumber shells {ki}Ni=1. This measures shell–wise discrepancy on a
logarithmic scale so that low and high k bands contribute comparably.

(ii) Relative error of the total kinetic energy

Etot =

∫ kmax

0

E(k) dk, RelErrE =
|Etot,pred − Etot,DNS|

Etot,DNS
× 100%. (112)

The integral equals the domain–averaged turbulent kinetic energy up to a constant factor, so this
metric captures conservation of total energy content.

Findings. Figure 8 presents E(k) on logarithmic axes together with the DNS curve and a k−5/3

reference slope for the inertial range. F–Adapter tracks the DNS spectrum closely over a broad band
of k and preserves the correct decay at higher wavenumbers. Vanilla Adapter exhibits a noticeable
deficit in mid–to–high k. LoRA underestimates energy by orders of magnitude across most shells
and shows noisy behavior at the largest k, consistent with the very large RelErrE .

C.13 Discussion on Different Types of Adapters for Fourier Domain

Chebyshev Adapter Motivated by prior work [52] which leverages the frequency-domain
expressivity of Chebyshev polynomials within FNO, we propose the Chebyshev KAN Adapter
(Chebyshev Adapter). It utilizes the spectral expressivity of Chebyshev-based Kolmogorov–Arnold
Networks[44] by replacing the standard linear up-projection with a ChebyKAN layer. Given an input
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Figure 8: Energy spectra E(k) on logarithmic axes for three PEFT methods, each compared to DNS
(blue) and a k−5/3 reference slope (gray). From top to bottom: LoRA, F-Adapter (Ours), and Vanilla
Adapter. F-Adapter follows the DNS spectrum more closely across a broad range of wavenumbers,
while Vanilla Adapter shows a deficit at mid-to-high k and LoRA substantially underestimates energy
with noisy behavior at large k.

activation x ∈ Rdin , the Chebyshev Adapter computes
z = tanh

(
Wdownx+ bdown

)
, (113)

yk =

dbottleneck∑
i=1

N∑
n=0

Ck,i,n Tn

(
z̃i
)
, k = 1, . . . , din, (114)

where Wdown ∈ Rdbottleneck×din is the learnable down-projection, z̃i = tanh(zi) normalizes into
[−1, 1], and Tn(x) = cos

(
n arccos(x)

)
is the n-th Chebyshev polynomial of the first kind. The

coefficient tensor C ∈ Rdin×dbottleneck×(N+1) is learned end-to-end. Finally, a residual connection
with learnable scalar α restores the original dimension:

Chebyshev-Adapter(x) = αy + x . (115)

We initialize Wdown by Kaiming uniform and set all Ck,i,n = 0 to start training from the identity
mapping. The scalar α is also learnable, allowing the model to adaptively control the adapter’s
contribution.

The Chebyshev Adapter leverages the enhanced Chebyshev–KAN Layer to boost approximation
power without the dense spline-grid storage required by standard Kolmogorov–Arnold Networks
[30].
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Fourier Adapter Motivated by the amortised Fourier–kernel formulation of Xiao et al. [52] and
the expressive FourierKAN layer of Xu et al. [53], we introduce the FourierKAN Adapter (Fourier
Adapter) as a frequency-domain alternative to the vanilla bottleneck Adapter used in LOMs. Given
an input activation x ∈ Rdin , the module first performs a linear dimension reduction

z = σ
(
Wdownx+ bdown

)
, Wdown ∈ Rdbottleneck×din , (116)

where σ(·) denotes GELU unless stated otherwise. To restore the original width we replace the
standard linear up-projection with a FourierKAN layer that expands each scalar zi into a truncated
Fourier series of order K:

yk =

dbottleneck∑
i=1

K∑
n=1

(
Ak,i,n cos(nzi) +Bk,i,n sin(nzi)

)
, k = 1, . . . , din, (117)

y =
(
y1, . . . , ydin

)⊤
. (118)

Here the learnable coefficients A,B lie in Rdin×dbottleneck×K . Because cos and sin are 2π-periodic
and globally supported, Eqs. (117)–(118) endow the adapter with a strong inductive bias for periodic,
high-frequency phenomena that commonly arise in PDE spectra, while avoiding the dense spline
grids required by classical KANs [30]. The series order K is typically ≤ 256 to curb aliasing and
memory, yielding an O

(
dindbottleneckK

)
cost.

A learnable LayerNorm followed by residual scaling finishes the block:

Fourier-Adapter
(
x
)
= αLN

(
y
)
+ x, (119)

where learnable parameter α is initialized to 0, so training begins from the identity map. We initialize
(A,B) with N

(
0, K−1/2d

−1/2
bottleneck

)
and attenuate high frequencies by (n+ 1)−2 to ensure smooth

scalar functions at start-up, following our implementation practice.

The Fourier Adapter offers parameter efficiency comparable to F-Adapter while directly modelling
spectral bases; however, its global trigonometric kernels incur greater FLOPs and memory (Table 13)
and can amplify aliasing when K is large, echoing the empirical findings in Table 2. Nonetheless,
for tasks dominated by periodic boundary conditions or sharp oscillations, it serves as a principled,
physics-aware drop-in replacement for projection-based adapters.

WaveAct Adapter Building on the learnable wavelet-based activation proposed in Zhao et al.
[60] and the success of wavelet transforms in operator learning [50], we devise the WaveAct-
Activated Adapter (WaveAct Adapter). Unlike functional–basis adapters that alter the projection
layers themselves, WaveAct Adapter keeps the standard bottleneck architecture but replaces the
pointwise non-linearity with a parameter-efficient WaveAct gate that superposes local sine and cosine
responses. Formally, for an input activation x ∈ Rdin we compute

z = Wdownx+ bdown, Wdown ∈ Rdbottleneck×din , (120)

z̃i = a sin(zi) + b cos(zi), i = 1, . . . , dbottleneck, (121)

yk =

dbottleneck∑
i=1

[
Wup

]
k,i

z̃i + bupk , k = 1, . . . , din, (122)

where a, b ∈ R are two learnable, shared scalars that modulate the sine / cosine mixture, and
Wup ∈ Rdin×dbottleneck . WaveAct thus provides a compact spectral gate whose frequency content is
dynamically tuned during training, requiring only 2 extra parameters irrespective of width.

Finally, a residual path equipped with a learnable gain α restores the original dimensionality:

WaveAct−Adapter(x) = αy + x, α ∈ R. (123)

We set (a, b) = (1, 1) to start from an identity-like activation (sin+ cos ≃ 1 near the origin).
Following Houlsby et al. [17], Wup and its bias are initialised at zero so that α = 0 yields an exact
identity map at the beginning of training; Wdown follows Kaiming-uniform initialisation. Eq. (121)
equips each bottleneck coordinate with an adaptive wavelet kernel that can synthesise both low- and
high-frequency components, while preserving the memory- and FLOP-profile of the vanilla adapter

40



p rmin rmax B L2RE % Param FLOPs (G) B1 dim B2 dim B3 dim B4 dim B5 dim B6 dim

2 4 16 4 0.4523 1.91% 548.5307 13 8 5 4 – –
2 4 16 6 0.4509 2.45% 548.7430 14 10 8 6 4 4
2 8 32 4 0.4191 3.40% 555.3716 22 11 8 8 – –
1 16 32 4 0.4203 4.38% 556.8579 29 23 17 11 – –
4 16 64 4 0.3885 6.76% 569.9026 44 23 16 16 – –
1 16 64 4 0.4152 8.00% 572.8753 58 46 34 22 – –

Table 15: Performance and configuration across bandwidth settings.

(Table 4). Empirically, WaveAct Adapter matches F-Adapter in memory usage and runtime yet trails
slightly in L2RE (Table 5), suggesting that wavelet activations alone are insufficient to fully model
the extreme high-frequency dynamics present in the Fourier domain. Nevertheless, its negligible
parameter overhead and strong locality make it an attractive drop-in replacement when compute
budgets are tight or periodicity is weak.

C.14 Ablation Study over Diverse Hyperparameter Settings for F-Adapter

We conducted extensive ablation studies on diverse hyperparameter settings using DPOT and F-
Adapter on the 3D-Turbulance dataset.

Results in Table 15 indicate that hyperparameters primarily influence performance by modulating
adapter capacity allocation across frequency bands. This adjustment effectively governs the model’s
overall capacity. Crucially, hyperparameters do not directly affect performance. Their impact
is mediated through capacity allocation. Consequently, selecting appropriate capacity based on
computational resource constraints enables predictable performance outcomes. The magnitude of
this impact remains relatively limited. This finding aligns with the insight presented in Table 1 which
shows that adapters nearly obey the scaling law. Our Band-Specific Bottleneck Allocation framework
in Equation (6) maintains robust generalization across diverse tasks, while hyperparameters retain
flexibility to accommodate available computational resources.

C.15 Design Details of the Frequency-Based Capacity Allocation Paradigm in the
Transformer-Based Poseidon Backbone

Motivation. Poseidon’s backbone scOT learns solution operators S(t, a) with time-conditioned
layer normalization and a hierarchical shifted-window attention stack. Our goal is to inject frequency
awareness without rewriting the model to operate in Fourier space. We estimate frequency content per
layer, allocate a capacity budget across frequency bands, and realize the budget with two parameter-
efficient routes: F-Adapter and F-LoRA. The design preserves Poseidon’s native spatial pipeline and
continuous-in-time interface.

Preliminaries on frequency signals. Neural operator models such as FNO expose frequency
channels through explicit spectral layers. In our transformer-based Poseidon backbone we keep
all computations in the native spatial domain and recover frequency cues with lightweight probes:
adjacent-token differences provide a proxy for high- versus low-frequency content in Linear layers,
and a local real 2D FFT on Conv2d outputs yields a minibatch-normalized energy spectrum. The
resulting per-band energies Ẽb ∈ [0, 1] act as data-dependent gates for our adapters. Bands are
defined as concentric partitions of the frequency plane, and the capacity assigned to each band follows
the same rule as Equation (6), which allocates larger bottlenecks to low frequencies while reserving
nonzero capacity for higher bands; the same schedule parameterizes ranks in F-LoRA.

Frequency estimation on Poseidon. We keep the base scOT layers intact. (i) For a Linear layer,
we treat the token axis as a short 1D sequence, compute adjacent-token differences, and convert their
magnitude to a scalar frequency score per example, which we softmax into band weights πb. (ii) For
a Conv2d layer inside Poseidon’s downsample or upsample paths, we run a local real 2D FFT on the
convolution output, accumulate power within each annular band, and normalize to πb. The estimates
are used only to gate adapters; the base layer remains purely spatial.
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F-Adapter. F-Adapter attaches a bank of lightweight per-band adapters to each target layer while
freezing the base weights.

ybase = L(x), yb = Ab

(
ybase

)
, y = ybase +

B−1∑
b=0

πb yb.

Here L is the original Linear or Conv2d, and Ab is a bottleneck MLP for Linear layers or a 1×1
conv bottleneck for Conv2d layers with width db. The per-band outputs are combined by the data-
dependent weights πb. Only the adapter parameters are trainable. This keeps inference identical to
the base scOT path plus a small residual branch and does not alter Poseidon’s time conditioning.

F-LoRA. F-LoRA keeps the same frequency banding and gating but replaces each bottleneck
adapter with LoRA-style low-rank updates that live on the frozen weight path. For a Linear weight
W ∈ Rm×n,

LF-LoRA(x) = Wx +

B−1∑
b=0

πb αAbBbx, Ab∈Rm×rb , Bb∈Rrb×n,

with trainable Ab, Bb and a fixed scale α. The rank rb follows the same capacity rule as db, which
concentrates rank on low frequencies while keeping nonzero rank for higher bands. For Conv2d we
use equivalent 1×1 factorizations per band in channel space. F-LoRA inherits the strong optimization
behavior of LoRA on transformer backbones and maintains a small trainable footprint.

Implementation notes. Both mechanisms freeze the original Poseidon weights. F-Adapter attaches
per-band residual branches whose last projection is initialized at zero to avoid training instability at
warm start. F-LoRA initializes Bb from a truncated normal and Ab at zero, which recovers the base
model at step zero as in standard LoRA. The energy estimator and the gating πb are differentiable
but do not introduce global FFTs, so training throughput is close to that of the base model. The
loss follows Poseidon’s operator objective on sampled times with L1 norm, which keeps supervision
aligned with operator learning rather than single-step forecasting.

D Limitations

Our theoretical guarantees rest on a low–frequency-dominance condition—namely, that the Fourier
energy spectrum of the target operator decays sufficiently fast so that most variance is captured
by the first few modes. This premise is supported across a broad class of dissipative PDEs,
including incompressible and compressible Navier–Stokes, reaction–diffusion, shallow–water, and
advection–diffusion systems, all of which exhibit steep inertial-range energy spectra. Nevertheless,
its universality remains to be fully established—strongly non-linear, multi-physics flows (e.g., MHD
turbulence or reactive plasmas) may display flatter spectra that subtly stretch the separability premise
in Proposition 3.2- 3.3. A theoretically rigorous characterization of how non-monotone or multi-modal
spectra influence our approximation error bounds, and whether adaptive frequency-aware capacity
allocation can re-establish similar guarantees in these settings, remains an open and compelling
direction for future work.

E Broader Impacts

The proposed frequency–adaptive adapter framework lowers the computational and memory footprint
required to fine-tune large operator models (LOMs) for complex partial-differential-equation systems,
potentially democratizing high-resolution scientific forecasting in climate science, aerospace design,
and renewable-energy optimization by enabling researchers with modest hardware to customise
state-of-the-art solvers. By concentrating learnable capacity on the most energetic spectral modes,
our method also reduces training energy consumption relative to full fine-tuning, contributing to
greener AI practice. At the same time, accelerated surrogate models for fluid and plasma dynamics
could be misused for strategic weapon design or proprietary industrial processes; we therefore
commit to releasing code under a research-only licence and to incorporating provenance logging to
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discourage dual-use. Finally, because adapter-based surrogates may still propagate modelling bias
when extrapolating beyond their training spectra, we encourage downstream practitioners to couple
our models with established uncertainty-quantification workflows and to validate predictions against
trusted baselines before deployment in safety-critical settings.
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