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ABSTRACT

Domain generalization aims to improve model performance on unseen, out-of-
distribution (OOD) domains, yet existing methods often overlook the crucial aspect
of uncertainty quantification in their predictions. While ensemble learning com-
bined with knowledge distillation offers a promising avenue for enhancing both
model accuracy and uncertainty estimation without incurring significant compu-
tational overhead at inference time, this approach remains largely unexplored in
the context of domain generalization. In this work, we systematically investigate
different ensemble and distillation strategies for domain generalization tasks and
design a tailored data allocation scheme to enhance OOD generalization as well as
reduce computational cost. Our approach trains base models on distinct subsets
of domains and performs distillation on complementary subsets, thereby fostering
model diversity and training efficiency. Furthermore, we develop a novel tech-
nique that decouples uncertainty distillation from the standard distillation process,
enabling the accurate distillation of uncertainty estimation capabilities without
compromising model accuracy. Our proposed method, Domain-aware Ensemble
Distillation (DomED), is extensively evaluated against state-of-the-art domain
generalization and ensemble distillation techniques across multiple benchmarks,
achieving competitive accuracies and substantially improved uncertainty estimates.

1 INTRODUCTION

A fundamental assumption in many machine learning techniques is that training and test data are
drawn from the same distribution. However, this assumption often fails in real-world scenarios,
where models trained in one environment may be deployed in a different environment, leading to a
distributional shift. Domain generalization (DG) (Shankar et al., 2018; Zhou et al., 2020) addresses
this challenge by training a model on multiple source domains such that it can better generalize to
unseen target domains.

Existing DG methods primarily focus on learning domain-invariant representations, employing
techniques like explicit feature alignment (Ghifary et al., 2015; Maniyar et al., 2020), domain
adversarial learning (Du et al., 2021; Li et al., 2018b), and feature disentanglement (Mahajan
et al., 2021; Zhang et al., 2022). While effective, these methods still exhibit limited generalization
performance on out-of-distribution (OOD) data, often not significantly outperforming carefully-tuned
empirical risk minimization (ERM) (Gulrajani & Lopez-Paz, 2020). More critically, they tend to
produce overconfident yet erroneous predictions on OOD data (Ovadia et al., 2019), rendering their
predictions unreliable. This highlights the need to consider both prediction accuracy and uncertainty
estimation in developing robust DG methods.

Ensemble methods, which average the outputs of multiple models, are known to improve generaliza-
tion and provide more accurate uncertainty estimates (Opitz & Maclin, 1999; Dietterich, 2000; Zhou
et al., 2002; Rokach, 2010; Lakshminarayanan et al., 2017), particularly for epistemic uncertainty.
However, the computational and memory overhead of using ensembles at inference time can be
prohibitive. Knowledge distillation offers a solution by compressing an ensemble into a single,
efficient model while preserving its uncertainty estimation capabilities (Tran et al., 2020; Malinin
et al., 2019; Ferianc & Rodrigues, 2022). Recent work has explored self-distilling an ensemble of the
output logits from training data with the same label (Lee et al., 2022), but the potential of combining
explicit ensemble learning with uncertainty-aware distillation remains underexplored in the context
of DG. Specifically, a principled framework for leveraging domain labels to construct diverse experts
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Figure 1: Illustration of DomED. Each teacher model is trained on a specific source domain. The
teachers collectively make predictions on data complementary to their respective training data, such
that their generalization ability along with their inherent uncertainty information can be distilled to a
student model. After distillation, the student model is evaluated on a previously unseen target domain.

remains elusive, and simultaneously preserving prediction and uncertainty estimation capabilities
presents a non-trivial optimization conflict (Ryabinin et al., 2021).

In this work, we aim to develop a tailored ensemble learning and knowledge distillation scheme for
domain generalization. Although it is not fully understood how ensemble learning improves the
test-time performance of deep neural networks, recent work suggests that training multiple models to
exploit the “multi-view” structure in data is crucial for the success of ensemble methods (Allen-Zhu &
Li, 2020). This aligns with the understanding that model diversity is key in ensemble learning (Brown
et al., 2005; Nam et al., 2021a). Unlike regular classification tasks, DG provides domain labels for
each data sample, presenting a natural opportunity for multi-view learning. We propose to train
the base models of an ensemble on different, non-overlapping subsets of domains. This enhances
model diversity while reducing the training cost of individual models. We then evaluate and compare
different data allocation schemes for ensembling and distillation to identify the optimal scheme. To
the best of our knowledge, we are the first to systematically investigate the possible data allocation
schemes for adapting ensemble distillation to the particular setting of domain generalization.

Beyond achieving high accuracy on unseen domains, our goal is to distill the uncertainty estimation
capability of ensembles. A common approach is to train a prior network to output a conjugate prior
(e.g., a Dirichlet distribution for classification tasks) that captures the output distributions of the
base models (Malinin & Gales, 2018; Malinin et al., 2019). However, we find that this approach
significantly degrades model accuracy in DG compared to standard distillation (Hinton et al., 2015).
To address this, we introduce a novel technique that decouples uncertainty distillation from standard
distillation, allowing for accurate model predictions and uncertainty estimates simultaneously. We
refer to our approach as Domain-aware Ensemble Distillation (DomED), as illustrated in Figure 1.

Our main contributions are summarized as follows:

• We explore tailored ensemble and distillation strategies for domain generalization tasks, and
develop a novel data allocation scheme that trains and distills base models on complementary
domains, which enhances model diversity and training efficiency.

• We identify that the commonly used uncertainty distillation method degrades the accuracy of
an ensemble after distillation in the context of DG. We address this by proposing a decoupled
distillation technique that preserves both mean prediction accuracy and model uncertainty.

• We conduct extensive experiments to compare different data allocation schemes and evaluate
our approach, DomED, on multiple domain generalization benchmarks. Our results demon-
strate that DomED achieves competitive accuracies and significantly improved uncertainty
quantification compared to existing methods.
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Figure 2: Comparison of different data allocation schemes for ensemble learning and knowledge
distillation. Note that these are different from the DomED scheme presented in Figure 1. Given M
training domains, (a) self-distillation from a single teacher model; (b) standard ensemble distillation
(all teachers trained and distilled on all domains); (c) includes M single-domain teachers, distilled on
all domains; (d) includes M teachers, each trained on M − 1 domains and distilled on the remaining
domain; and (e) includes M teachers, each trained and distilled on the same M − 1 domains.

2 METHODS

We present our ensemble learning and knowledge distillation methods for domain generalization.
First, we formally define the domain generalization problem and introduce the relevant notation.
We then discuss various ensembling and distillation strategies and develop a tailored scheme for
domain generalization that achieves high model accuracy and reduced training cost. Based on this
scheme, we further propose a novel uncertainty-preserving distillation method, which decouples
uncertainty distillation from the standard distillation process, to simultaneously achieve accurate
model predictions and uncertainty estimates.

2.1 PROBLEM DEFINITION

We consider a domain generalization problem with M source domains (training domains), whose
union is denoted as Dtr =

⋃M
m=1 Dm

tr , and one unseen target domain (test domain), Dte. Each source
domain, Dm

tr , contains Nm independent and identically distributed (i.i.d.) labeled training samples,
i.e., Dm

tr := {(xm
i , ymi )}Nm

i=1. Similarly, the target domain comprises Nte unlabeled i.i.d. samples,
Dte := {xj}Nte

j=1. While all domains share a common feature space X and label space Y , the core
challenge is that the data distribution varies across domains. In image classification, for instance,
domains might represent different visual styles (e.g., photos, sketches) but share the same set of
object categories. The objective is to learn a function f : X −→ Y using only data from the source
domains that can effectively generalize to the unseen target domain.

2.2 ENSEMBLE AND DISTILLATION STRATEGIES

In a regular supervised learning problem that has i.i.d. data for both training and testing, the base
models of an ensemble are usually trained on the same dataset, and model diversity is introduced
only by the independent initialization of their parameters (Allen-Zhu & Li, 2020). Moreover, the
distillation of the ensemble is also done on the same set of training data. In contrast, a domain
generalization task splits data into multiple domains, making it possible to increase model diversity
by training base models on different subsets of domains. Furthermore, for each base model, it
is also possible to use a different set of data than its training data for distillation. As shown in
Figure 1 and Figure 2, we consider six representative training data allocation schemes, and compare
them empirically in Section 3. Among them, Figure 2(a) depicts the self-distillation scheme, and
Figure 2(b) depicts the regular ensembling and distillation scheme. For fair comparison, we assume
an ensemble of M base models (one for each source domain), {Tm}Mm=1. In this section, we discuss
in detail the scheme employed by DomED (as shown in Figure 1) due to its superior empirical
performance and relatively low computational cost. In the following, we also refer to the base models
of an ensemble and the distilled model, respectively, as teacher models and student model.
Domain-specific teacher models. The data allocation scheme of DomED is designed to maximize
teacher diversity by training each of the M teacher models on a single, distinct source domain.
This strategy treats each domain as a unique “view” of the data, encouraging the models to develop
different specializations. Specifically, each teacher model, Tm, is a neural network parameterized
by weights θmT and is trained exclusively on its corresponding domain, Dm

tr . The complete set of
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teacher parameters is denoted as θT = {θmT }Mm=1. For classification tasks, each teacher is trained to
minimize the cross-entropy loss on its respective domain:

Lm
T = E(xm

i ,ym
i )∈Dm

tr
[CE(π(xm

i ; θmT ), ymi )] , (1)

where CE(·, ·) denotes the cross-entropy between two categorical distributions, ymi denotes the
ground-truth label of xm

i , and π(xm
i ; θmT ) represents the predictive distribution output by the teacher.

A key advantage of this domain-specific training scheme is its computational efficiency. While
training M teachers may seem costly, the total computational cost can be significantly less than
training a single model on all source domains. This is because each domain-specific teacher can be
trained with a smaller batch size (e.g. 1/M ) and requires significantly fewer training steps to become
an effective guide for distillation. Crucially, as detailed in Appendix A.1, we empirically find that
the student model’s performance saturates even before the individual teachers have fully converged,
substantially reducing the training overhead that typically makes ensemble methods impractical.

Complementary Distillation. As illustrated in Figure 1, DomED employs a complementary
distillation strategy designed to transfer the generalization ability of the teacher models to the student.
The core principle is to generate distillation targets for samples from a given source domain, Dm

tr ,
using only the teachers that were never trained on it. Specifically, for an input sample xm

i ∈ Dm
tr , we

first gather the output logits zn(xm
i ) from all complementary teachers Tn (where n 6= m). These

logits are then aggregated by averaging to produce a single soft target for distillation:

z̄ (xm
i ) =

1

M − 1

M∑
n=1
n 6=m

zn (xm
i ) . (2)

The student model is then trained to emulate these aggregated predictions by minimizing a
temperature-scaled cross-entropy loss. For each source domain Dm

tr , this soft-target loss is defined as:

Lm
soft = E(xm

i ,·)∈Dm
tr
[CE(π(xm

i ; θS), π̄(x
m
i ; θT , τ

m))] , (3)

where π(xm
i ; θS) is the distribution predicted by the student model, and π̄(xm

i ; θT , τ
m) is the

distribution derived from from the aggregated logits z̄ (xm
i ) by applying the softmax function with a

temperature hyperparameter τm. τm is usually set between 1 and 4, and a larger τ produces a softer
probability distribution. Note that π̄(xm

i ; θT , τ
m) does not receive gradient and θT does not update

during distillation. This complementary distillation is also employed in the data allocation scheme
shown in Figure 2(d).

As a common practice for knowledge distillation (Hinton et al., 2015), the student model is also
trained on the ground-truth labels to achieve higher model accuracy. Similar to the loss in Eq. 1, we
minimize the following cross-entropy loss:

Lm
hard = E(xm

i ,ym
i )∈Dm

tr
[CE(π(xm

i ; θS), y
m
i )] . (4)

Finally, the two losses in Eqs. 3 and 4 are combined as the training loss of student model:

LS =
1

M

M∑
m=1

[λLm
soft + (1− λ)Lm

hard] , (5)

where λ is a hyperparameter that balances the soft and hard targets. See Appendix F.1 for more
details on tuning λ.

2.3 UNCERTAINTY-PRESERVING DISTILLATION

While the distillation scheme discussed in Section 2.2 produces an accurate student model, it discards
the ensemble’s valuable epistemic uncertainty. This limitation is inherent to the standard cross-entropy
objective, which trains the student to match only the mean of the teacher predictions. In doing so,
it collapses the full predictive distribution into a single point estimate, losing the diversity across
teacher outputs that signals model uncertainty. To preserve this crucial information, we distill the
ensemble’s uncertainty by training the student model to output the parameters of a Dirichlet prior.
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Learning a Dirichlet Prior. The Dirichlet distribution is the conjugate prior of the categorical
distribution, making it well-suited for modeling the predictive uncertainty of an ensemble. It provides
a principled way to represent a distribution over distributions, which naturally captures the set of
predictions from the teacher models.

Given C classes, the Dirichlet distribution is defined by its positive concentration parameters α =

[α1, · · · , αC ]. The sum of these parameters, α0 =
∑C

c=1 αc, is known as the precision of the
distribution; a higher precision indicates lower uncertainty (a more peaked distribution). The
probability density function (PDF) is given by:

Dir(π;α) =
Γ(α0)∏C
c=1 Γ(αc)

C∏
c=1

(πc)
αc−1, (6)

where π is a probability vector. To enable a student model to output this distribution, we parameterize
the concentration parameters from its logits, zc(xm

i ), for an input xm
i as αc(x

m
i ) = ezc(x

m
i ). The

student is then trained to find the Dirichlet parameters that best explain the collection of teacher
predictions by minimizing the following negative log-likelihood (NLL) loss (Malinin et al., 2019):

LDir = E(xm
i ,·)∈Dm

tr

[
C∑

c=1

ln Γ (αc (x
m
i ))− ln Γ (α0 (x

m
i ))

− 1

M − 1

M∑
n=1
n 6=m

C∑
c=1

(αc (x
m
i )− 1) lnπc(x

m
i ; θnT )

 ,

(7)

where πc(x
m
i ; θnT ) is the probability assigned to class c by teacher Tn.

Decoupled Uncertainty Distillation. While directly minimizing the Dirichlet NLL loss (LDir) is a
common approach for uncertainty distillation (Malinin & Gales, 2018; Malinin et al., 2019), we find
that it can degrade accuracy in the challenging context of domain generalization. This issue arises
because LDir implicitly attempts to solve two coupled problems simultaneously: matching the mean
of the ensemble’s predictions and matching their spread (i.e., uncertainty). As noted by Ryabinin
et al. (2021), these objectives can conflict, forcing the model to compromise on accuracy to better fit
the uncertainty.

To resolve this, we propose decoupling these objectives by assigning a specialized loss to each task:

a) We use the standard distillation loss, LS , to distill the mean prediction. This cross-entropy-
based loss is highly effective at aligning the student with the teachers’ mean prediction, thereby
preserving model accuracy.

b) We use the Dirichlet NLL loss, LDir, to capture the uncertainty of the ensemble’s predictions.
When teachers agree, the target Dirichlet distribution is sharp, teaching the student to be confident.
When they disagree, the distribution is flat, teaching the student to reflect this uncertainty.

By combining them, we use the dominant LS loss to enforce an accurate mean prediction, while LDir
focuses on its primary strength: shaping the predictive uncertainty around that mean. This leads to
our final, decoupled objective:

L′
S = LS + βLDir, (8)

where β is a hyperparameter balancing the two terms. In practice, we set β to a small value (e.g., 0.01),
effectively using LDir as a regularizer that fine-tunes the model’s uncertainty without disrupting the
primary accuracy signal from LS . As we show in our analyses of the loss components (Appendices E
and H) and the impact of β on convergence (Appendix F.2), this conceptually simple decoupling
successfully preserves accuracy while enabling robust uncertainty transfer.

3 EXPERIMENTS

Our experiments systematically evaluate DomED on several domain generalization benchmarks.
We first systematically compare the performance of six data allocation schemes proposed in this
work. We then benchmark DomED against state-of-the-art methods on DomainBed and assess its
uncertainty quantification performance using standard metrics. In addition, we present an ablation
study of the distillation loss in Appendix E, and verify the architectural robustness of DomED in
Appendix I.
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Table 1: Comparison of different training data allocation schemes for ensemble learning and knowl-
edge distillation. The best and second-best results indicated by bold and underlined, respectively.

DomED Scheme Scheme Scheme Scheme Scheme DomED
Dataset Domain ERM (w/o dist.) (a) (b) (c) (d) (e) (ours)

PACS

Art Painting 84.8±0.2 78.2±2.8 85.9±0.5 86.2±1.3 87.2±0.5 87.5±0.8 85.9±0.6 87.5±0.5

Cartoon 80.0±0.6 69.2±1.0 81.7±0.7 80.4±0.8 81.0±0.6 82.1±0.5 80.1±0.7 81.5±0.3

Photo 96.2±0.0 95.0±0.2 96.9±0.3 96.7±0.2 97.0±0.2 96.5±0.8 96.4±0.2 97.1±0.2

Sketch 79.3±0.3 68.6±4.8 79.7±0.4 79.1±1.1 81.4±0.4 80.6±0.2 77.3±0.8 81.6±0.4

Avg. 85.1±0.2 77.7±0.9 86.1±0.4 85.6±0.4 86.6±0.3 86.7±0.2 84.9±0.3 86.9±0.2

Office
Home

Art 61.3±0.3 64.6±0.4 67.2±0.5 67.3±0.6 67.5±0.2 67.6±0.2 67.4±0.3 67.7±0.1

Clipart 52.1±0.4 52.1±0.2 56.4±0.6 56.4±0.6 56.7±0.3 56.9±0.2 56.7±0.3 57.1±0.2

Product 76.6±0.3 75.6±0.3 77.7±0.2 77.6±0.3 78.1±0.2 78.0±0.2 77.7±0.1 78.2±0.2

RealWorld 78.5±0.2 79.1±0.2 81.3±0.1 81.5±0.2 81.7±0.1 81.6±0.1 81.2±0.1 81.8±0.1

Avg. 67.1±0.2 67.8±0.2 70.6±0.3 70.6±0.4 71.0±0.2 71.0±0.1 70.7±0.2 71.2±0.2

VLCS

Caltech101 97.8±0.1 93.8±3.7 98.2±0.3 98.3±0.3 98.5±0.2 98.2±0.1 97.8±0.4 98.5±0.1

LabelMe 64.2±0.3 58.0±1.5 65.4±0.4 65.5±0.5 64.8±0.3 64.9±0.2 63.6±0.4 65.3±0.2

SUN09 72.6±0.4 77.0±0.9 73.3±0.9 74.8±0.4 78.0±0.2 78.8±0.2 72.9±0.3 78.4±0.3

VOC2007 77.6±0.4 76.7±1.5 77.3±0.4 77.7±0.3 78.9±0.2 77.8±0.1 77.2±0.4 78.4±0.2

Avg. 78.0±0.3 76.4±1.7 78.5±0.5 79.1±0.3 80.1±0.2 79.9±0.1 77.9±0.4 80.1±0.1

3.1 EXPERIMENTAL SETUP

Datasets and evaluation protocol. We use the following datasets in our experiments: 1) PACS (Li
et al., 2017), a widely used multi-source domain generalization dataset comprising 9,991 im-
ages across 7 classes and 4 domains (Art_painting, Cartoon, Photo, and Sketch), 2) Office-
Home (Venkateswara et al., 2017), a dataset of 15,500 images from 65 classes and 4 domains
(Art, Clipart, Product, and Real World), 3) VLCS (Fang et al., 2013), which contains 10,729 images
of 5 classes sourced from Caltech101, LabelMe, SUN09, and VOC 2007, 4) TerraIncognita (Beery
et al., 2018), a slightly larger dataset of 24,788 images from 10 classes and 4 domains, and 5)
DomainNet (Peng et al., 2019), a significantly larger dataset of 586,575 images from 345 classes and
6 domains. Following the evaluation protocol of DomainBed (Gulrajani & Lopez-Paz, 2020), we
perform leave-one-domain-out evaluation and use training-domain validation for hyperparameter
tuning. In Tables 1 and 2, the reported accuracies are the average of 7 runs.

Implementation Details. To ensure a fair comparison, we follow the standard protocol of Do-
mainBed (Gulrajani & Lopez-Paz, 2020) for all experiments. We use a pre-trained ResNet-50 (He
et al., 2016) backbone. For the PACS, TerraIncognita, and DomainNet datasets, we use the Adam
optimizer (Kingma & Ba, 2014) with a learning rate of 5× 10−5. For OfficeHome and VLCS, we
use stochastic gradient descent (SGD) with an initial learning rate of 2× 10−2 and a momentum of
0.9. Other hyperparameters, such as batch size, dropout rate, and weight decay, are adopted from
recent state-of-the-art methods (Cha et al., 2021; 2022).

3.2 DOMAIN GENERALIZATION

Data allocation schemes. In addition to the complementary data allocation scheme illustrated in
Figure 1, we investigate five other schemes as shown in Figure 2. Among them, scheme (a) is simple
self-distillation without ensembling, scheme (b) corresponds to regular ensembling and distillation
that use the full training data for both purposes, and the other three can be considered as variants
of DomED. Compared to DomED, scheme (c) distills from all teachers regardless of their training
domains, scheme (d) allocates each teacher M − 1 training domains instead of 1 but also distills on
complementary domains, whereas scheme (e) distills on the respective training domains of teachers.

We evaluate the six data allocation schemes along with two baselines, ERM and DomED without
distillation, on PACS, OfficeHome, and VLCS. The results are shown in Table 1. Comparing schemes
(b) and (c), the latter achieves better accuracies on all three datasets, which suggests that training
base models on different subsets of domains can indeed lead to better generalization, possibly
due to increased model diversity. By comparing DomED with scheme (c), we also observe that

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Classification accuracy (%) on the DomainBed benchmark. Methods are grouped into
standalone approaches and those using weight averaging. Best and second-best results in each group
are in bold and underlined, respectively. “TerraInc.” stands for TerraIncognita. †Results reported
by Gulrajani & Lopez-Paz (2020). ‡Results reported by Di Zhao et al. (2025).§Test-time ensembling.
¶Weight averaging from 60 runs.

Method PACS OfficeHome VLCS TerraInc. DomainNet Avg.

ERM (Vapnik, 1999) 85.1±0.2 67.1±0.2 78.0±0.3 47.8±0.6 44.0±0.1 64.4
CORAL† (Sun & Saenko, 2016) 86.2±0.3 68.7±0.3 78.8±0.6 47.6±1.0 41.5±0.1 64.5
DANN† (Ganin et al., 2016) 83.6±0.4 65.9±0.6 78.6±0.4 46.7±0.5 38.3±0.1 62.6
MMD† (Li et al., 2018b) 84.7±0.5 66.3±0.1 77.5±0.9 42.2±1.6 23.4±9.5 58.8
IRM† (Arjovsky et al., 2019) 83.5±0.8 64.3±2.2 78.5±0.5 47.6±0.8 33.9±2.8 61.1
Fish (Shi et al., 2021) 85.5±0.3 68.6±0.4 77.8±0.3 45.1±1.3 42.7±0.2 63.9
SagNet† (Nam et al., 2021b) 86.3±0.2 68.1±0.1 77.8±0.5 48.6±1.0 40.3±0.1 64.2
SelfReg (Kim et al., 2021) 85.6±0.4 67.9±0.7 77.8±0.9 47.0±0.3 42.8±0.1 64.2
NKD‡ (Wang et al., 2021) 83.3±0.4 71.1±0.3 77.1±0.3 37.2±0.3 42.4±0.2 62.2
MIRO (Cha et al., 2022) 85.4±0.4 70.5±0.4 79.0±0.0 50.4±1.1 44.3±0.2 65.9
KDDRL (Niu et al., 2023) 86.6±0.8 66.9±1.6 77.3±0.5 48.0±1.1 38.5±0.3 63.4
SAGM (Wang et al., 2023b) 86.6±0.2 70.1±0.2 80.0±0.3 48.8±0.9 45.0±0.2 66.1
DomainDrop (Guo et al., 2023) 87.9±0.3 68.7±0.1 79.8±0.3 51.5±0.4 44.4±0.5 66.5
RISE‡ (Huang et al., 2023) 85.0±0.3 71.5±0.2 77.6±0.2 39.0±0.3 45.2±0.2 63.7
GMDG (Tan et al., 2024) 85.6±0.3 70.7±0.2 79.2±0.3 51.1±0.9 44.6±0.1 66.3
XDomainMix (Liu et al., 2024) 86.4±0.4 - - 48.2±1.3 44.4±0.2 -
Arith (Wang et al., 2025) 86.5±0.3 69.4±0.1 79.4±0.3 48.1±1.2 41.5±0.1 65.0
GGA (Ballas & Diou, 2025) 86.4±0.5 67.0±0.3 78.7±0.8 48.5±1.1 44.4±0.2 65.0
BOLD‡ (Di Zhao et al., 2025) 85.7±0.2 72.6±0.2 78.7±0.2 44.3±0.3 46.9±0.2 65.6
DomED (ours) 86.9±0.2 71.2±0.2 80.1±0.1 50.2±0.5 45.7±0.1 66.8

SWAD (Cha et al., 2021) 88.1±0.1 70.6±0.2 79.1±0.1 50.0±0.3 46.5±0.1 66.9
CORAL (w/ SWAD) (Cha et al., 2021) 88.3±0.1 71.3±0.1 78.9±0.1 51.0±0.1 46.8±0.0 67.3
SAM (w/ SWAD) (Cha et al., 2021) 87.1±0.2 69.9±0.2 78.5±0.1 45.3±0.9 46.5±0.1 65.5
DNA (w/ SWAD) (Chu et al., 2022) 88.4±0.1 71.2±0.1 79.0±0.1 52.2±0.4 47.2±0.1 67.6
EoA§ (Arpit et al., 2022) 88.6 72.5 79.1 52.3 47.4 68.0
DiWA¶ (Rame et al., 2022) 89.0 71.6 79.4 49.0 46.3 67.1
DomED (w/ SWAD) (ours) 88.4±0.2 71.6±0.2 80.2±0.1 51.9±0.3 46.7±0.2 67.8

complementary distillation achieves comparable or slightly better accuracies than distillation on all
domains, thus corroborating the intuition that DomED can distill the generalization ability into student
model. Moreover, despite their similar classification performance, DomED outperforms scheme (c)
in terms of uncertainty quantification (see Table 3). In contrast, distillation only on training domains
(scheme (e)) can result in significantly worse accuracies compared to complementary distillation
(scheme (d)). Furthermore, while both DomED and scheme (d) employ complementary distillation
with comparable accuracies, DomED restricts each teacher to a single domain. This design minimizes
training overhead while maximizing model diversity (see Appendix B.1), a prerequisite for robust
uncertainty quantification. Finally, we note that the teacher models of DomED are relatively weak
as each individual model is trained on only one domain; thus, they perform poorly compared to the
distilled model. Nevertheless, the distilled model proves to be resilient even when individual teachers
are trained on scarce data, mitigating the risk of negative transfer (see Appendix C). Collectively, the
systematic evaluation confirms that our data allocation strategy is a principled and effective design
choice for achieving high teacher diversity and robust distillation.

Results on DomainBed. We evaluate DomED on the DomainBed benchmark against a wide array
of state-of-the-art methods, with results presented in Table 2. To provide a clear comparison, we group
methods into standard approaches and those that utilize weight averaging techniques like SWAD
to further boost performance. As a standalone method, DomED demonstrates strong performance,
achieving significant gains over the ERM baseline: +1.8 pp on PACS, +4.1 pp on OfficeHome,
+2.1 pp on VLCS, +2.4 pp on TerraIncognita, and +1.7 pp on DomainNet. The improvement is
particularly pronounced on OfficeHome, a dataset known for its large inter-domain gap. This setting
is ideal for our approach, as it allows domain-specific teachers to become highly specialized, and
our complementary distillation can then effectively integrate their diverse knowledge to improve
generalization. When paired with SWAD, our method achieves a top-tier average accuracy of 67.8%,
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which is highly competitive with other leading methods that employ significantly more computation,
such as EoA (test-time ensembling) and DiWA (weight averaging from 60 runs). This highlights the
efficiency of our approach, which delivers state-of-the-art performance without significant overhead.
See Appendix A for a detailed analysis of computational cost.

3.3 UNCERTAINTY QUANTIFICATION

Beyond strong generalization performance, a crucial advantage of DomED is its ability to provide
reliable uncertainty estimates. To evaluate this, we employ four standard metrics: mean classification
error (ERR), prediction rejection ratio (PRR) (Malinin et al., 2019), expected calibration error
(ECE) (Guo et al., 2017), and negative log-likelihood (NLL). A high PRR is desirable, as it indicates
the model can effectively detect and reject its own incorrect predictions. A low ECE signifies
well-calibrated confidence. They both are essential for trustworthy OOD generalization.

Table 3: Uncertainty quantification performance
on PACS. DomED is the best single-inference
method.

Model ERR↓ ECE↓ NLL↓ PRR↑
Ensemble 0.130 0.038 0.471 0.798
EoA 0.114 0.058 0.403 0.837

ERM 0.149 0.089 0.625 0.776
Temp. Scaling 0.147 0.048 0.487 0.773
MC Drop (p=0.5) 0.175 0.129 0.873 0.746
MC Drop (p=0.1) 0.157 0.112 0.755 0.769
CORAL 0.138 0.082 0.586 0.598
EnD2 0.326 0.220 1.580 0.084
DomED Teachers 0.281 0.148 1.063 0.536
Scheme (c) 0.134 0.054 0.502 0.751
Scheme (d) 0.133 0.091 0.523 0.743
DomED (Ours) 0.131 0.044 0.473 0.787

Table 4: ROC-AUC of OOD detection. T.Unc
and K.Unc refer to total and knowledge uncer-
tainty, respectively.

Models PACS OfficeHome
T.Unc K.Unc T.Unc K.Unc

ERM 0.71 – 0.67 –
Ensemble 0.73 0.71 0.69 0.70
DomED 0.71 0.72 0.60 0.70
Models VLCS TerraIncognita

T.Unc K.Unc T.Unc K.Unc
ERM 0.51 – 0.75 –
Ensemble 0.53 0.54 0.78 0.79
DomED 0.57 0.69 0.77 0.75

Calibration and Reliability Analysis. We con-
duct a detailed analysis on the PACS dataset, com-
paring DomED to various baselines. For reference,
we also include two full test-time ensembles: a
standard ensemble (3 base models) and an EoA en-
semble (Arpit et al., 2022). The results are shown
in Table 3 (see Appendix J for more detailed re-
sults). Standard methods like ERM and CORAL
achieve reasonable accuracy but are poorly cali-
brated, evidenced by high ECE and NLL values.
The poor calibration stems from a rapid entropy
collapse during training, whereas the distillation
process of DomED retains the dark knowledge
from diverse teacher models, resulting in high-
entropy predictions (see Appendix D). Post-hoc
temperature scaling (Guo et al., 2017) improves
calibration but fails to enhance the model’s abil-
ity to reject incorrect predictions (PRR). Approx-
imate Bayesian methods like MC Dropout (Gal
& Ghahramani, 2016), which require multiple for-
ward passes at inference, prove ineffective in this
DG context, degrading accuracy without improv-
ing calibration. Furthermore, EnD2, while de-
signed for uncertainty distillation, performs poorly
due to the absence of ground-truth labels in the
distillation process. In contrast, DomED strikes an
exceptional balance between accuracy and calibra-
tion. See Appendix G for a comparison with more
calibration strategies. The analysis highlights two
key aspects of its design. First, the raw ‘DomED
Teachers’ ensemble performs poorly on its own,
confirming that our distillation process is essential
to effectively integrate the specialists’ knowledge.
Second, DomED outperforms alternative distillation schemes (c) and (d) across all metrics, demon-
strating the superiority of the complementary distillation strategy. Overall, DomED achieves the best
performance among all single-inference methods. Crucially, while test-time ensembles serve as a
strong performance ceiling, the competitive performance of DomED demonstrates the efficacy of our
distillation strategy in transferring the benefits of an ensemble into a single efficient model. Finally,
we present additional results on the impact of teacher diversity on model performance in Appendix B.

Out-of-Distribution Detection. We further assess the utility of DomED’s uncertainty estimates
for out-of-distribution (OOD) detection. Following Malinin et al. (2019), we treat samples from the
unseen test domain as OOD and samples from the source domains as in-distribution (ID). We use the
area under the receiver operating characteristic curve (ROC-AUC) to measure the model’s ability to
distinguish between these two groups using total uncertainty and knowledge uncertainty. As shown in
Table 4 (see Appendix J for more detailed results), DomED’s OOD detection performance is highly
competitive with that of a full test-time ensemble (3 base models). On average, it closely matches the
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ensemble’s ability to identify novel, unseen domains, which is crucial for safe and reliable real-world
deployment.

4 RELATED WORK

4.1 DOMAIN GENERALIZATION

Domain Generalization (DG) addresses the challenge of dataset shift (Moreno-Torres et al., 2012),
where a model’s performance degrades when training and testing distributions differ. Existing
DG methods are often categorized into three main groups (Wang et al., 2022): data manipulation,
representation learning, and learning strategies. Data manipulation methods augment training data
to enhance diversity and quantity (Volpi et al., 2018; Zhou et al., 2021). Representation learning
aims to find domain-invariant features, often through feature alignment or disentanglement (Du et al.,
2021; Mahajan et al., 2021; Zhang et al., 2022; Dayal et al., 2024). Recent work in this area has
explored finer-grained control, such as by suppressing domain-sensitive channels (Guo et al., 2023) or
establishing more general objectives for invariant features (Tan et al., 2024). Finally, various learning
strategies adapt existing machine learning techniques for DG, including ensemble learning (Arpit
et al., 2022; Lee et al., 2022; Niu et al., 2023), meta-learning (Li et al., 2018a; Guan et al., 2023;
Chen et al., 2023; Wang et al., 2025), and gradient operations (Shi et al., 2021; Ballas & Diou, 2025).

4.2 ENSEMBLE METHODS AND DISTILLATION

Ensemble methods have proven effective in improving OOD generalization. For instance, Arpit et al.
(2022) employs an ensemble of moving average models to achieve better generalization performance,
which, however, relies on costly test-time ensembling that incurs significant inference overhead.
To avoid test-time ensembling, efficient fusion techniques have also been developed, including
knowledge distillation (Hinton et al., 2015), weight averaging (Cha et al., 2021; Chu et al., 2022;
Rame et al., 2022), and model merging (Ding et al., 2025). In the context of domain generalization,
knowledge distillation can be enhanced by gradient regularization (Wang et al., 2021) or combined
with language guidance (Huang et al., 2023). Apart from full-model ensembling, parameter-efficient
expert aggregation has also attracted attention. For instance, AdapterFusion (Pfeiffer et al., 2021)
leverages knowledge from multiple tasks by training and fusing task-specific adapters, and recent
approaches focus on merging Low-Rank Adaptation (LoRA) modules (Hu et al., 2022) with minimal
interference (Yadav et al., 2023). In contrast to these parameter-space techniques that primarily
focus on accuracy, DomED operates in the output space to explicitly transfer both generalization
capabilities and epistemic uncertainty.

Theoretical work has shown that given the “multi-view” structure of data, an ensemble of inde-
pendently trained neural networks can provably improve test accuracy, and such capability can be
provably distilled into a single model (Allen-Zhu & Li, 2020). For domain generalization, Zhou
et al. (2021) introduce domain adaptive ensemble learning, which encompasses a shared CNN feature
extractor and multiple classifier heads, each excelling in one specific domain. In a similar vein, Niu
et al. (2023) also use a shared feature extractor with multiple domain-specific heads, followed by a
two-stage distillation scheme. However, the complex scheme yields only marginal gains on domain
generalization tasks. Furthermore, Di Zhao et al. (2025) apply the idea of domain-specific experts to
distillation from large pretrained models. Yao et al. (2023) propose to dynamically weight domain-
specific models based on domain relations during inference. Other unconventional approaches
include ensembling logits with the same label but from different domains (Lee et al., 2022) and
ensembling meta-source models (Yan & Guo, 2025), though the latter leverages test-time batch
statistics, positioning it closer to test-time adaptation than pure domain generalization. In addition,
ensemble distillation has been utilized for out-of-distribution (OOD) detection (Wang et al., 2023a),
a different focus than generalization to unseen domains. Despite this body of work, a systematic
study of how the data allocation scheme for ensemble learning and distillation can be tailored to the
specific setting of domain generalization has been largely overlooked.

4.3 UNCERTAINTY ESTIMATION

In machine learning applications, distinguishing between data (aleatoric) uncertainty and model (epis-
temic) uncertainty is essential to understand the decisions or predictions made by models (Gal, 2016).
Ensemble methods are particularly effective at separating and quantifying these two types of uncer-
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tainty (Lakshminarayanan et al., 2017). An intuitive approach to uncertainty quantification (Hüller-
meier & Waegeman, 2021; Depeweg et al., 2017) is to first derive the total uncertainty as the entropy
of the expected predictive distribution for a data point (x, y), i.e. Utot = H(Ep(θ|D)[pθ(y|x)],
where θ denotes model parameters, and D represents the training data. Similarly, data uncertainty
can be defined as the expected entropy of the predictive distribution of individual models, i.e.
Uale = Ep(θ|D)[H(pθ(y|x)]; and model uncertainty can be naturally defined as Utot−Uale.

The Dirichlet distribution plays a crucial role in uncertainty quantification for classification models,
particularly when distilling the knowledge of an ensemble into a single, efficient student model. As the
conjugate prior of the categorical distribution, it provides a principled way to model a distribution over
predicted probabilities. This approach is central to methods like Dirichlet prior networks (Tsiligkaridis,
2021; Malinin & Gales, 2018; Malinin et al., 2019) and evidential learning (Joo et al., 2020; Dawood
et al., 2023; Schreck et al., 2024). However, training a model by directly minimizing the Dirichlet
negative log-likelihood (NLL) can be problematic, as the loss function often degrades model accuracy
in the process of improving uncertainty estimates (Ryabinin et al., 2021).

5 CONCLUSION

In this work, we introduced DomED, a redesigned ensemble distillation framework for domain
generalization that jointly addresses model accuracy and uncertainty quantification. By combining a
specialized data allocation strategy to enhance teacher diversity with a novel technique for decoupling
mean and uncertainty distillation, DomED successfully transfers the knowledge of an ensemble into
a single, efficient model. Our extensive experiments demonstrate that DomED achieves competitive
accuracy while providing uncertainty estimates that rival a full, computationally expensive ensemble,
underscoring the importance and feasibility of jointly optimizing for both objectives.

While our approach is more efficient than standard ensembling, its computational cost remains
a limitation compared to single-model training, presenting a clear direction for future work on
improving efficiency. Furthermore, the core principle of decoupled uncertainty distillation is broadly
applicable. Extending this framework to other tasks, such as uncertainty-aware regression or dense
prediction, is an exciting avenue for future research. Overall, this work provides a robust and practical
foundation for building more reliable and uncertainty-aware models for domain generalization.
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A COMPUTATIONAL COST ANALYSIS

A.1 OVERHEAD OF TRAINING TEACHER MODELS

A key practical advantage of DomED is its computational efficiency, despite using an ensemble of
teacher models. This section demonstrates that the full training of teacher models is unnecessary
for effective distillation, which significantly reduces the method’s computational cost. As shown
in Figure 3, the distilled student models’ performance converges and stabilizes early in the training
process (within approximately 1,000 steps), long before the teacher models have fully converged on
their respective source domains. This observation indicates that while the guidance of teacher models
is essential, the student’s performance is not sensitive to the teachers’ final, fully converged state.

This observation significantly reduces the computational cost of our method. For a training set with
M domains, we can limit the training steps for each teacher to a fraction (e.g., 1/M ) of the steps
used for a standard single-model baseline.1 Consequently, the total steps of training M teachers are
comparable to training a single model on all domains, making DomED a computationally practical
approach.
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Figure 3: Impact of teacher training steps on student performance for (left) PACS and (right)
OfficeHome. Solid lines represent teacher accuracy on their source domain, while dashed lines show
the distilled student’s accuracy on the corresponding target domain. Note that student performance
(dashed lines) converges and stabilizes early, long before the teacher models (solid lines) have fully
converged.

A.2 TRAINING AND DISTILLATION COST

Table 5: Computational cost and performance comparison on PACS (Target domain: Sketch).

Method Wall-Time (h) Peak Mem (GB) ↓ Acc. (%) ↑ ECE ↓ NLL ↓
ERM 1.91 8.13 79.3 0.121 0.919
DNA (Chu et al., 2022) 3.23 8.17 79.8 0.087 0.708
DomED 2.86 8.13 81.6 0.028 0.609
↪→ DomED (Teachers) 0.78 3.00 - - -
↪→ DomED (Student) 2.08 8.13 - - -

Table 6: Total training time compar-
ison with SWAD on PACS (Target:
Sketch).

Method Wall-Time(h)↓
SWAD 2.41
DomED + SWAD 3.27

We provide a detailed computational cost analysis on PACS
in Table 5. The total training time for DomED is around 50%
longer than ERM while achieving significantly better accuracy
and calibration. The training of the teacher ensemble is partic-
ularly fast (0.78 h) and does not scale linearly with the number
of domains. This efficiency stems from two factors: 1) Since
each teacher sees only one domain, it is trained with a batch
size 1/M of the standard ERM batch size, reducing the cost of
each forward/backward pass. 2) As discussed in Appendix A.1, effective distillation does not require

1According to the DomainBed protocol, the number of training steps is 5,000 for PACS, OfficeHome, VLCS,
TerraIncognita, and 15,000 for DomainNet.
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fully converged teachers because the student model saturates early, which allows us to significantly
reduce the number of teacher training steps compared to a standard run.

When combined with SWAD (Cha et al., 2021), we apply weight averaging only during the distillation
phase of the student model. As shown in Table 6, this incurs a small overhead compared to standard
SWAD, yet achieves higher accuracy by combining the benefits of ensemble knowledge and flat-
minima optimization (See Table 2).

B ANALYSIS OF TEACHER DIVERSITY

B.1 VISUALIZING TEACHER DIVERSITY

A central design principle of DomED is the use of a domain-specific data allocation scheme to foster
the diversity required for effective ensemble learning. This section validates this strategy by visually
analyzing the performance of teachers trained on distinct, single domains against those trained on
dual-domain combinations. The accuracy heatmaps in Figures 4, 5, 6, and 7 visualize this comparison
across the PACS, OfficeHome, VLCS, and TerraIncognita datasets, respectively.

We observe a consistent pattern across these benchmarks where single-domain teachers (left panels)
exhibit significantly higher specialization compared to their dual-domain counterparts (right panels).
For instance, in the PACS dataset (Figure 4), a teacher trained exclusively on the “Art Painting” domain
excels in its source domain but exhibits higher variance on others. In contrast, dual-domain teachers
show more uniform performance across test domains. This empirical evidence supports our design
choice: training each teacher on a single, distinct domain effectively encourages the development of
specialized representations, which is a prerequisite for maximizing ensemble diversity.
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Figure 4: Accuracy heatmaps comparing single-domain (left) and dual-domain (right) teachers on
the PACS dataset. Each block represents a trained teacher model, and each patch represents a test
domain. The more varied color patterns on the left indicate higher specialization and diversity.
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Figure 5: Accuracy heatmaps for single-domain (left) and dual-domain (right) teachers trained on the
OfficeHome dataset.
The heatmaps further reveal how diversity varies across datasets. On the OfficeHome dataset
(Figure 5), single-domain teachers maintain reasonable accuracy on unseen domains. This indicates
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Figure 6: Accuracy heatmaps for single-domain (left) and dual-domain (right) teachers trained on the
VLCS dataset.
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Figure 7: Accuracy heatmaps for single-domain (left) and dual-domain (right) teachers on the
TerraIncognita dataset. Single-domain teachers exhibit high specialization.

that despite the stylistic differences between domains (e.g., Art, Product), the teachers successfully
learn transferable semantic features that enable effective cross-domain generalization. In contrast,
we observe a different behavior on the TerraIncognita dataset. As shown in Figure 7, single-domain
teachers on TerraIncognita exhibit a distinct pattern of high specialization, achieving high accuracy on
their respective source domains but suffering significant performance drops on unseen domains. We
hypothesize that this behavior stems from the nature of camera trap data, where static backgrounds
(e.g., specific vegetation or terrain) encourage models to learn domain-specific shortcuts that do not
transfer well. Despite this challenging scenario where teacher transferability is limited, DomED
effectively recovers useful signals to outperform the ERM baseline (50.2% vs. 47.8%).

B.2 IMPACT OF TEACHER DIVERSITY ON STUDENT PERFORMANCE

This section quantifies the impact of teacher diversity on student performance through a controlled
experiment on the PACS dataset. We compared our proposed single-domain allocation strategy (high
granularity, high diversity) against a dual-domain allocation baseline (low granularity, low diversity)
where teachers are trained on pairs of domains. As presented in Table 7, the results demonstrate that
the higher diversity provided by single-domain teachers translates into superior student performance.
While accuracy improves by 2.0%, the impact on uncertainty is most notable: the single-domain
strategy reduces ECE by over 50% (from 0.107 to 0.044) compared to the dual-domain baseline.

B.3 IMPACT OF ENSEMBLE SIZE ON STUDENT PERFORMANCE

Since our method ties the number of domain-specific teachers (or ensemble size) to that of training
domains, varying the latter can affect teacher diversity as a result. To quantify the impact of ensemble
size, we conducted an ablation study on the PACS dataset. We systematically train models on all
possible 2-domain subsets (M = 2, each resulting in 2 domain-specific teachers) and compare their
average performance against the standard 3-domain configuration (M = 3) as well as an ERM
baseline trained on the same 2-domain subsets.
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Table 7: Impact of teacher diversity: Comparison between single-domain (DomED) and dual-domain
allocation strategies on PACS.

Target Domain Allocation Diversity Acc. (%)↑ ECE↓ NLL↓ PRR↑

Art Painting Dual-domain Low 85.1 0.109 0.521 0.772
Single-domain (DomED) High 87.5 0.049 0.497 0.781

Cartoon Dual-domain Low 78.3 0.076 0.726 0.654
Single-domain (DomED) High 81.5 0.038 0.628 0.738

Photo Dual-domain Low 96.0 0.094 0.200 0.882
Single-domain (DomED) High 97.1 0.061 0.158 0.936

Sketch Dual-domain Low 80.2 0.150 0.716 0.614
Single-domain (DomED) High 81.6 0.028 0.609 0.694

Average Dual-domain Low 84.9 0.107 0.541 0.730
Single-domain (DomED) High 86.9 0.044 0.473 0.787

Table 8: Impact of ensemble size (M ) on student
performance evaluated on PACS.
Metric DomED (M = 3) DomED (M = 2) ERM (M = 2)

Accuracy ↑ 86.9% ±0.2 84.6% ±0.3 84.3% ±0.2

ECE ↓ 0.044 0.050 0.097
NLL ↓ 0.473 0.504 0.649
PRR ↑ 0.787 0.701 0.649

The results, summarized in Table 8, reveal that
despite the reduction in teachers, DomED (M =
2) still outperforms the ERM baseline trained
on the identical data subset. While accuracy
is comparable, DomED maintains significantly
better calibration (ECE 0.050 vs. 0.097). When
compared to the full ensemble, reducing the size
from 3 to 2 leads to a decrease in the Prediction Rejection Ratio (0.787 → 0.701) and a slight increase
in ECE. This confirms that the diversity provided by a larger set of domain experts is indeed a
primary driver of high-quality uncertainty estimation. Crucially, the comparison indicates that while
performance benefits from scaling up the number of domains, the method remains effective and
robust when domain availability is limited.

C ROBUSTNESS TO WEAK TEACHERS

To evaluate the robustness of DomED against weak teachers trained on limited data, we performed
a stress test on the PACS dataset, specifically using Sketch as the target domain. We simulated
“amateur” teachers by reducing the training data of specific source domains (Art Painting, Photo,
and Cartoon) to 50% and 25%. We compared our standard strategy (equal contribution) against
a down-weighted strategy, where the weak teacher’s contribution to the soft target was manually
suppressed (lowering the weight from 0.8 to 0.2).

As shown in Table 9, DomED proves to be remarkably resilient on the target domain. Even with
only 25% of the training data, the performance drop is relatively small. Furthermore, manual down-
weighting often degrades both accuracy and calibration (resulting in higher ECE). This suggests that
even “amateur” teachers provide valuable diversity that aids generalization. The ensemble averaging
mechanism, combined with the students hard-label loss anchor, naturally mitigates the noise from
weaker teachers without requiring manual intervention.

D DARK KNOWLEDGE RETENTION

The preservation of “dark knowledge”, the rich information contained in the non-target class probabil-
ities, is essential for effective knowledge distillation (Hinton et al., 2015). However, this information
is often lost when models become overly confident during training. We investigated this phenomenon
by tracking the entropy of a model’s predictive distribution (i.e. a categorical distribution) on the
PACS dataset throughout the training process. For the student model of DomED, we track the entropy
of its mean predictive distribution.

In standard knowledge distillation settings, where teachers predict on their training data, confidence
typically peaks early, leading to a rapid collapse in entropy (Figure 8(a) and (b)). However, the
experiment reveals a fundamentally different behavior for DomED (Figure 8(c) and (d)). Since
our complementary distillation strategy requires teachers to generate predictions for domains they
have never seen during training, they are effectively performing OOD inference. Consequently,
they naturally yield “softer” probability distributions with stable, elevated entropy (≈ 0.49 nats on
average) throughout the entire training process.
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Table 9: Robustness of different weighting strategies to data scarcity evaluated on PACS (Target
domain: Sketch).

Data-Scarce Domain Data % Strategy Student Acc (%) ↑ ECE ↓ NLL ↓
None (Baseline) 100% Standard 81.6 ±0.2 0.028 0.609

Art Painting
50% Standard 81.4 ±0.3 0.042 0.597

Down-weighted 80.8 ±0.2 0.049 0.614

25% Standard 80.5 ±0.4 0.050 0.605
Down-weighted 80.6 ±0.3 0.061 0.626

Photo
50% Standard 79.8 ±0.3 0.054 0.618

Down-weighted 80.2 ±0.2 0.064 0.605

25% Standard 78.0 ±0.5 0.041 0.686
Down-weighted 76.5 ±0.4 0.069 0.711

Cartoon
50% Standard 77.8 ±0.3 0.029 0.671

Down-weighted 77.5 ±0.2 0.027 0.703

25% Standard 78.6 ±0.4 0.041 0.645
Down-weighted 76.9 ±0.3 0.035 0.738

To further validate whether the retained dark knowledge is sufficient, we evaluated an intervention
strategy where we doubled the distillation temperature during the late training phase. We found that
this yielded no notable improvement in accuracy or calibration. This leads us to conclude that the
natural “OOD signal” provided by the complementary allocation is already sufficient to preserve dark
knowledge, rendering additional entropy-preserving constraints unnecessary in our framework.
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Figure 8: Entropy of the predictive distribution during model training. The average entropy (a) and
per-domain entropy (b) of ERM rapidly collapse during training. In contrast, the average entropy (c)
and per-domain entropy (d) of the DomED student remains stable at a high level throughout training
(distillation).

E ABLATION ON LOSS COMPONENTS

We conduct an ablation study on the components of our proposed loss function, L′
S = LS + βLDir,

to validate our decoupled distillation approach. This analysis compares the performance when
using only the standard distillation loss (LS), only the Dirichlet NLL loss (LDir), and our complete
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decoupled loss. The results are presented in Table 10 (Right). Relying solely on LDir leads to a
significant degradation in classification accuracy, which is consistent with the issue of penalizing
confident predictions. While LS alone provides a strong performance baseline, our complete loss,
LS + LDir, consistently maintains or even slightly improves accuracy across multiple benchmarks.

Table 10: Ablation study of the distillation loss
components on three benchmarks, reporting clas-
sification accuracy (%).

PACS

Loss Art P. Cartoon Photo Sketch Avg.

Only LDir 64.49 60.78 87.20 59.07 67.88
Only LS 87.46 81.48 97.08 81.55 86.89
LDir + LS 87.52 81.51 97.10 81.64 86.94

VLCS

Loss Caltech LabelMe SUN09 VOC07 Avg.

Only LDir 76.15 57.69 75.36 69.60 69.70
Only LS 98.26 65.08 78.23 78.21 79.94
LDir + LS 98.51 65.31 78.42 78.40 80.14

TerraIncognita

Loss Loc. 100 Loc. 38 Loc. 43 Loc. 46 Avg.

Only LDir 28.61 47.27 20.34 27.56 30.90
Only LS 55.12 46.47 57.81 38.53 49.48
LDir + LS 55.31 47.55 59.76 35.55 49.54

To verify whether this design effectively resolves
the optimization conflict discussed in Section 2.3
(i.e., balancing mean prediction and uncertainty
spread), we further evaluate accuracy and uncer-
tainty metrics on the PACS dataset. As shown
in Table 11, combining the two losses signifi-
cantly improves both ECE and PRR compared
to using LDir alone. These empirical results con-
firm that LS is essential for anchoring the mean
prediction, which in turn allows LDir to focus
primarily on shaping the distribution’s spread
without compromising convergence.

Table 11: Impact of loss components on accuracy
and uncertainty metrics evaluated on PACS.
Loss Acc.↑ ECE↓ NLL↓ PRR↑ K.Unc↑
Only LDir 67.88 0.397 0.917 0.640 0.672
Only LS 86.89 0.080 0.542 0.771 0.719
LDir + LS 86.94 0.044 0.473 0.787 0.723

F SENSITIVITY TO HYPERPARAMETERS

F.1 SOFT LABEL WEIGHT AND TEMPERATURE

We investigate the impact of the soft label weight (λ) and the temperature (τ ) on model accuracy. Fig-
ures 9 and 10 present heatmaps of model performance on the PACS and VLCS datasets, respectively.
The analysis shows that performance varies smoothly with these hyperparameters. For instance,
on the PACS dataset, the Photo domain is least sensitive, while the Cartoon domain exhibits low
sensitivity to changes in τ but high sensitivity to changes in λ. Overall, these results indicate that
DomED’s performance is robust across a reasonable range of hyperparameter settings, validating the
stability of our approach.

F.2 WEIGHT OF THE DIRICHLET NLL LOSS

The hyperparameter β in our decoupled distillation loss, L′
S = LS + βLDir, is crucial for balancing

accuracy and uncertainty transfer. To analyze our method’s robustness to this hyperparameter, we
investigate its impact on both the loss components and the final uncertainty estimates. As shown
in Figure 11, we first examine the trade-off between the two loss components. Increasing β places
more weight on the uncertainty-focused LDir, causing its value to decrease at the expense of the
accuracy-focused LS . The results indicate that a small value, such as β = 0.01, strikes an effective
balance, allowing LDir to converge sufficiently without significantly degrading the performance of
LS .

This balance then translates directly to the final uncertainty estimates, as confirmed in Figure 12.
The same region around β = 0.01 successfully preserves a high degree of both total and knowledge
uncertainty from the ensemble. These results validate our core claim: the principled decoupling,
controlled by a small β, effectively distills an ensemble’s uncertainty without the accuracy trade-off
typically associated with relying solely on the Dirichlet NLL objective.
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Figure 9: Test accuracies on PACS as λ and τ vary.

G COMPARISON WITH ALTERNATIVE CALIBRATION STRATEGIES

We evaluated DomED against Post-hoc Temperature Scaling (TS) (Guo et al., 2017), Label Smoothing
(LS) (Szegedy et al., 2016), and Focal Loss (Lin et al., 2017) on the PACS dataset. The results are
summarized in Table 12.

Table 12: Comparison of DomED with alternative calibration strategies on PACS. We evaluate
Post-hoc Temperature Scaling (TS), Label Smoothing (LS, ε = 0.1), and Focal Loss (γ = 2.0) within
the same complementary allocation regime.

Category Method / Configuration ERR ↓ ECE ↓ NLL ↓ PRR ↑ OOD-AUC ↑

Baseline LS only 0.1311 0.080 0.542 0.771 71.96
+ Post-hoc TS (Guo et al., 2017) 0.1311 0.065 0.510 0.773 71.96

Alternatives Label Smoothing (Szegedy et al., 2016) 0.1582 0.113 0.550 0.669 73.17
Focal Loss (Lin et al., 2017) 0.1704 0.129 0.590 0.582 72.20

Ours DomED (LS + LDir) 0.1306 0.044 0.473 0.787 72.25
+ Post-hoc TS 0.1306 0.105 0.580 0.785 72.26

Post-hoc TS reduces ECE but yields negligible gains in error detection (PRR) or OOD detection.
While Label Smoothing achieves a high OOD-AUC, it incurs a performance trade-off, resulting in a
2.7% increase in classification error and a significantly higher ECE compared to DomED. Focal Loss
similarly results in a higher error rate and worse calibration.

In contrast, DomED achieves the best balance with the lowest error (0.1306) and ECE (0.044) while
maintaining the highest PRR (0.787). Notably, applying post-hoc TS to DomED degrades calibration,
suggesting that our method learns intrinsically calibrated probabilities. We attribute this strong
performance partly to the fact that the Dirichlet distribution is the conjugate prior of the categorical
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Figure 10: Test accuracies on VLCS as λ and τ vary.

distribution. This makes it a theoretically natural choice for capturing the uncertainty inherent in an
ensemble.

H ANALYSIS OF AN ALTERNATIVE DECOUPLING STRATEGY

The standard Dirichlet NLL loss (LDir) can have a large gradient norm compared to the cross-entropy
loss, which can destabilize training and harm classification accuracy. In the main paper, we address
this with a simple and effective decoupled loss, L′

S = LS +βLDir. Here, we analyze a more complex
alternative to provide further justification for our chosen design. The alternative strategy aims to
directly isolate the learning of the mean prediction from the uncertainty. The mean of the Dirichlet
distribution is given by E[πc] = αc/α0 = ezc/

∑
k e

zk , which has the same form as the standard
softmax function. The uncertainty, however, is controlled by the precision α0, which is determined
by the sum of logits, z0 =

∑
c zc. This implies that z0 introduces an extra degree of freedom for

learning uncertainty. Therefore, we propose decoupling the uncertainty distillation by using Eq. 7
to learn z0 and Eq. 5 to learn E [πc]. This ensures that the mean categorical distribution is learned
regularly without compromising model accuracy. To achieve this, we reparameterize the zc’s in Eq. 7
as follows:

zc = stop_gradient(zc − z0) + z0, (9)
where stop_gradient(·) operation blocks gradients from directly flowing to zc while allowing them to
pass through z0.

However, our experiments showed this approach to be highly unstable. As illustrated in Figure 13,
this reparameterization causes the Dirichlet NLL to diverge for all but a very narrow range of β.
When β exceeds a small threshold (approximately 0.012), the model fails to converge, leading to a
collapse in classification accuracy. This investigation highlights the difficulty of directly manipulating
the gradients of the Dirichlet NLL via explicit reparameterization. It motivated our decision to
use the simpler and far more robust decoupled loss function presented in the main paper, which
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Figure 11: Converged values of the loss components LS (blue) and LDir (red) as a function of β.
The plot illustrates the trade-off between optimizing for accuracy (LS) and uncertainty (LDir) on the
PACS dataset.
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Figure 12: Impact of β on the final uncertainty estimates for the PACS dataset. The plots show that a
small β (e.g., 0.01) is sufficient to distill a high degree of both total and knowledge uncertainty from
the teacher ensemble.
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Variations in        and Changes in Classification Accuracy

Figure 13: The alternative decoupling strategy using ‘stop_gradient’ is highly unstable. (Left) Both
loss components, LS and LDir, diverge with increasing β on the PACS dataset. (Right) Classification
accuracy collapses when β exceeds a small threshold, indicating a failure to converge.

effectively balances the two objectives without requiring explicit gradient surgery and demonstrates
stable performance across all benchmarks.

I ROBUSTNESS TO MODEL ARCHITECTURE

Table 13: Performance on PACS across diverse
model architectures (Arch.), including ResNet-18
(R-18) and the Vision Transformer Base model
(ViT-B/16). DomED consistently improves ac-
curacy and uncertainty estimation over the ERM
baselines, demonstrating its robustness.

Arch. Model ERR↓ ECE↓ NLL↓ PRR↑ T.Unc K.Unc

R-18
ERM 0.192 0.128 0.895 0.775 0.723 -
Ensemble 0.172 0.066 0.697 0.772 0.724 0.698
DomED 0.175 0.043 0.579 0.745 0.713 0.729

R-50
ERM 0.149 0.089 0.625 0.776 0.714 -
Ensemble 0.130 0.038 0.471 0.798 0.730 0.711
DomED 0.131 0.044 0.473 0.787 0.705 0.723

ViT-
B/16

ERM 0.211 0.155 0.988 0.688 0.723 -
Ensemble 0.203 0.050 0.722 0.711 0.724 0.721
DomED 0.146 0.079 0.534 0.785 0.623 0.692

We evaluate the architectural robustness of
DomED by repeating our experiments on the
PACS dataset with a smaller CNN, ResNet-
18 (He et al., 2016), and a Vision Transformer
(ViT-B/16) (Dosovitskiy et al., 2021). As shown
in Table 13, the results confirm that DomED is a
broadly applicable framework that consistently
improves upon the ERM baseline. With the
smaller ResNet-18, DomED not only improves
accuracy but also yields superior uncertainty es-
timates (ECE and NLL) compared to the full
test-time ensemble, demonstrating its effective-
ness on more compact models. The results on
the ViT-B/16 are particularly compelling. Vi-
sion Transformers are known to struggle with
generalization on smaller DG datasets, which is
reflected in the high error rates of the ERM and
ensemble baselines. In this challenging scenario,
DomED provides a remarkable improvement, reducing the classification error by approximately 6
percentage points compared to the ensemble. This suggests that our distillation strategy may function
as a powerful regularizer, validating DomED as a robust framework for diverse model families in the
domain generalization setting.

J ADDITIONAL RESULTS ON UNCERTAINTY QUANTIFICATION

This section provides a detailed breakdown of the uncertainty quantification results summarized in
Section 3.3. We present the performance metrics for each leave-one-domain-out split, supplementing
the averaged results shown in the main paper. Table 14 contains the per-domain calibration and
reliability metrics corresponding to Table 3. Table 15 provides the per-domain OOD detection
performance corresponding to Table 4.
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Table 14: Detailed uncertainty quantification results on the PACS dataset. The table is split into two
parts for better readability: Art Painting and Cartoon (top), Photo and Sketch (bottom). The best and
second-best results are indicated by bold and underlined, respectively.

Target: Art Painting Target: Cartoon
Model ERR↓ ECE↓ NLL↓ PRR↑ ERR↓ ECE↓ NLL↓ PRR↑
Ensemble 0.139 0.026 0.489 0.830 0.160 0.057 0.633 0.761
EoA 0.111 0.048 0.375 0.894 0.143 0.099 0.627 0.774

ERM 0.152 0.065 0.496 0.808 0.200 0.125 0.821 0.731
Temp. Scaling 0.164 0.069 0.576 0.759 0.191 0.061 0.599 0.758
MC Drop (p=0.5) 0.163 0.100 0.686 0.772 0.238 0.189 1.414 0.678
MC Drop (p=0.1) 0.175 0.109 0.736 0.766 0.203 0.165 1.241 0.703
CORAL 0.139 0.071 0.514 0.670 0.181 0.117 0.754 0.484
EnD2 0.274 0.131 1.262 0.142 0.481 0.358 2.590 0.007

DomED Teachers 0.269 0.080 0.847 0.657 0.401 0.074 1.456 0.386
Scheme (c) 0.128 0.060 0.490 0.795 0.190 0.042 0.698 0.679
Scheme (d) 0.125 0.125 0.477 0.748 0.179 0.053 0.697 0.710

DomED (Ours) 0.125 0.049 0.497 0.781 0.185 0.038 0.628 0.738

Target: Photo Target: Sketch
Model ERR↓ ECE↓ NLL↓ PRR↑ ERR↓ ECE↓ NLL↓ PRR↑
Ensemble 0.038 0.012 0.125 0.945 0.184 0.057 0.637 0.657
EoA 0.019 0.011 0.049 0.958 0.166 0.076 0.561 0.722

ERM 0.038 0.045 0.265 0.891 0.207 0.121 0.919 0.674
Temp. Scaling 0.037 0.018 0.147 0.902 0.197 0.045 0.626 0.672
MC Drop (p=0.5) 0.049 0.032 0.219 0.904 0.250 0.196 1.173 0.631
MC Drop (p=0.1) 0.059 0.044 0.290 0.881 0.191 0.131 0.754 0.726
CORAL 0.032 0.026 0.158 0.887 0.201 0.103 0.720 0.364
EnD2 0.145 0.124 0.696 0.125 0.405 0.269 1.773 0.060

DomED Teachers 0.194 0.200 0.943 0.482 0.261 0.237 1.006 0.620
Scheme (c) 0.030 0.077 0.237 0.895 0.186 0.038 0.583 0.635
Scheme (d) 0.035 0.096 0.229 0.890 0.194 0.090 0.690 0.625

DomED (Ours) 0.029 0.061 0.158 0.936 0.184 0.028 0.609 0.694

Table 15: Out-of-distribution detection performance across four datasets, evaluated using the ROC-
AUC metric. For each dataset, OOD samples are drawn from the test domain, while in-distribution
(ID) samples are drawn from the train domains.

PACS
Art Painting Cartoon Photo Sketch Avg.

Model T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc
ERM 0.73 – 0.69 – 0.57 – 0.89 – 0.71 –
Ensemble 0.75 0.71 0.73 0.76 0.54 0.46 0.90 0.91 0.73 0.71
DomED 0.69 0.72 0.72 0.77 0.57 0.47 0.84 0.93 0.71 0.72

OfficeHome
Art Clipart Product Real World Avg.

Model T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc
ERM 0.72 – 0.79 – 0.62 – 0.57 – 0.67 –
Ensemble 0.75 0.65 0.81 0.84 0.63 0.68 0.58 0.65 0.69 0.70
DomED 0.69 0.71 0.72 0.79 0.51 0.66 0.50 0.64 0.60 0.70

VLCS
Caltech101 LabelMe SUN09 VOC2007 Avg.

Model T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc
ERM 0.32 – 0.43 – 0.66 – 0.65 – 0.51 –
Ensemble 0.33 0.23 0.45 0.51 0.67 0.72 0.66 0.71 0.53 0.54
DomED 0.48 0.51 0.44 0.58 0.69 0.83 0.67 0.85 0.57 0.69

TerraIncognita
Location 100 Location 38 Location 43 Location 46 Avg.

Model T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc T.Unc K.Unc
ERM 0.74 – 0.70 – 0.76 – 0.79 – 0.75 –
Ensemble 0.79 0.80 0.76 0.87 0.74 0.60 0.85 0.90 0.78 0.79
DomED 0.75 0.66 0.74 0.86 0.74 0.60 0.83 0.87 0.77 0.75
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not involve human subjects, and we do not foresee any direct negative societal impacts stemming
from our methodology or findings.

L REPRODUCIBILITY STATEMENT

Our full implementation, built upon PyTorch and the DomainBed framework, is provided in the
supplementary material. All experiments were conducted on NVIDIA V100 GPUs, following the
standard data splits and evaluation protocols established by DomainBed. Key hyperparameters were
selected using training-domain validation. A comprehensive list of hyperparameters and example
execution commands are available in the supplementary material’s README file.
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experimental design, and the interpretation of results, were performed exclusively by the human
authors.

27


	Introduction
	Methods
	Problem Definition
	Ensemble and Distillation Strategies
	Uncertainty-preserving Distillation

	Experiments
	Experimental Setup
	Domain Generalization
	Uncertainty Quantification

	Related work
	Domain Generalization
	Ensemble Methods and Distillation
	Uncertainty Estimation

	Conclusion
	Computational Cost Analysis
	Overhead of Training Teacher Models
	Training and Distillation Cost

	Analysis of Teacher Diversity
	Visualizing Teacher Diversity
	Impact of Teacher Diversity on Student Performance
	Impact of Ensemble Size on Student Performance

	Robustness to Weak Teachers
	Dark Knowledge Retention
	Ablation on Loss Components
	Sensitivity to Hyperparameters
	Soft Label Weight and Temperature
	Weight of the Dirichlet NLL Loss

	Comparison with Alternative Calibration Strategies
	Analysis of an Alternative Decoupling Strategy
	Robustness to Model Architecture
	Additional Results on Uncertainty Quantification
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models

