CodePO: A Rule-Enhanced Code-Based Policy Optimization

Anonymous ACL submission

Abstract

Recently, RL-based large language models
have demonstrated significant promise for code
generation, but current approaches are typi-
cally constrained by limited, especially domain-
specific, data and by simplistic reward designs
that do not adequately capture complex seman-
tic relationships. We present CodePO, which
extends GRPO with a lightweight, rule-based
composite reward framework. CodePO intro-
duces enhanced reward rules for richer code
similarity evaluation. Additionally, CodePO
optimizes the computation of the Advantage
function, ensuring more accurate and stable
policy updates during training. Experiments on
both domain-specific and general datasets like
TACO demonstrate that CodePO significantly
improves code generation accuracy and qual-
ity. Ablation studies confirm the benefits of
composite rewards and adaptive tuning, high-
lighting CodePO’s effectiveness for real-world
programming tasks.

1 Introduction

1.1 Background and Motivation

Large Language Models (LLMs) excel at general
programming tasks such as algorithm implemen-
tation, API usage, and code completion in open-
source projects (El-Kishky et al., 2025), primarily
due to the availability of large-scale public data for
pre-training and fine-tuning. However, as Berti and
Qafari (2023) note, LLM performance declines sig-
nificantly on domain-specific programming tasks
in specialized industries.

Data confidentiality poses a major challenge for
private-domain industry programming, as propri-
etary code, interfaces, and business logic are often
inaccessible due to trade secrets and regulatory re-
strictions (Allal et al., 2023; Zan et al., 2022). This
limits LLMs’ exposure to domain-specific knowl-
edge and hinders adaptation to private data. Conse-
quently, general LLMs perform poorly on private-
domain tasks and often generate code that fails to

meet business or security requirements (Kharma
et al., 2025). Fine-tuning with private-domain data
is therefore essential to improve model adaptability
and performance (Zan et al., 2022).

1.2 Existing Fine-tuning Paradigms and
Limitations

Current fine-tuning paradigms for LLMs include:
(1) pre-training fine-tuning, which adapts mod-
els on private-domain corpora to capture domain-
specific syntax and distributions, but is data- and
resource-intensive and prone to catastrophic for-
getting in low-data scenarios (Muennighoff et al.,
2022; Chen et al., 2021); (2) instruction fine-tuning,
where models learn to follow task-based instruc-
tions using paired input and code data, giving bet-
ter controllability and data efficiency but relying
on static input-output examples without execution
feedback, making it less suited to tasks with mul-
tiple correct answers (Chung et al., 2022; Kharma
et al., 2025); and (3) reinforcement fine-tuning (RL-
based), which frames code generation as a Markov
Decision Process and learns from execution- or
human-feedback-based rewards. RL-based tun-
ing supports multi-objective optimization and is
increasingly used for private-domain programming
(Luong et al., 2024).

However, RL-based approaches face several key
challenges: reward functions are usually too sim-
ple to capture semantic consistency (missing logi-
cally equivalent but syntactically different code, or
vice versa) (Ramirez et al., 2024); limited recogni-
tion of diverse correct solutions leads to overfitting;
surface-level metrics (like BLEU) do not capture
structural nuances such as AST and control/data
flows (Zan et al., 2022); and sparse rewards due
to infrequent correct outputs hinder efficient RL
training.

1.5 Approachment & Main Contributions

To address these limitations, as shown in Figure 1,
we propose a rule-driven multi-component reward

Figure 1: Flowchart Comparing Traditional GRPO and
CodePO

mechanism combined with cluster-relative policy
optimization. By using CodeBLEU to capture lex-
ical, syntactic, and data-flow similarities, our ap-
proach provides a more nuanced measure of se-
mantic alignment. We further combine CodeBLEU
with functional and efficiency rewards in a con-
figurable, weighted framework, and incorporate
LRC-Reward within GRPO to guide the model to-
ward functional accuracy, semantic fidelity, and
diverse implementations. In addition to optimizing
the reward system, we refine the computation of
the advantage function to improve training stability
and policy updates.

Our method achieves notable improvements in
domain-specific adaptation, increasing Rouge ac-
curacy by up to 17.52% and CodeBLEU by up
to 4.85% on real-world data, and boosting Code-
BLEU by 2.03% and Rouge accuracy by up to
4.08% on the TACO dataset, with better handling
of multi-solution cases. Extensive experiments and
ablation studies show that CodePO consistently
outperforms PPO, DPO, and GRPO in reward sig-
nal quality, training stability, code efficiency, and
convergence speed.

2 Related Work

2.1 Technical Barriers of Private-domain
Programming

Private-domain industry programming faces sev-
eral technical challenges, including restricted ac-
cess to internal code and documentation, very
limited fine-tuning data, and high API call error
rates (Zan et al., 2022). Additionally, these scenar-
ios involve complex semantic constraints—from
strict business rules and hardware limits to real-
time requirements (Siddiq et al., 2024)—as well as
long-range dependencies, with control code often
managing many state variables and complex logic
chains (Qin et al., 2023).

2.2 RL-based Fine-tuning Methods for
Domain-specific Code Generation

To address data scarcity and validation challenges
in private-domain scenarios, RL-based fine-tuning
has become mainstream for improving model do-
main adaptability by treating LLMs as policy net-
works optimized through environmental reward sig-
nals.

Notable methods include Proximal Policy Op-
timization (PPO) (Schulman et al., 2017), which
frames code generation as an MDP and leverages
environmental feedback for token sequence deci-
sions, ensuring stable training via trust region con-
straints, as seen in CodeRL (Le et al., 2022). How-
ever, PPO relies on dense rewards, leading to slow
convergence, unstable training on small datasets,
and significant engineering costs for distributed
sampling.

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) uses human-annotated code pairs to op-
timize policy ranking without explicit reward mod-
eling—demonstrated by DPO-Coder (DeepSeek-
Al et al., 2024). While sample-efficient and com-
putationally light, DPO depends on costly high-
quality annotations, cannot model continuous re-
ward spaces, and fails to capture code’s dynamic
execution properties (Jiao et al., 2024).

Generalized Reward Policy Optimization
(GRPO) (Shao et al, 2024) and GRPO-
Industrial (DeepSeek-Al et al.,, 2025) extend
RL by aggregating multi-dimensional rewards
for multi-objective optimization and domain
adaptation, with fewer environment interactions.
However, GRPO requires manual reward weight-
ing, presents tuning challenges, may suffer from
conflicting objectives, and heavily depends on
domain engineering (Zeng et al., 2025).

2.3 Limitations of Existing RL Fine-tuning
Paradigms

Despite recent advances, RL-based fine-tuning for
private-domain programming still faces key chal-
lenges: reward signals like BLEU or test pass rates
fail to reflect deep code semantics, resulting in out-
puts that appear correct but are logically flawed;
limited support for functionally diverse implemen-
tations restricts model creativity; and static reward
weights or preferences limit dynamic adaptation to
evolving domain requirements.

B

< IIII@

.

[a1,1' A1,25 +e) al,n]

IIII —> [az,1vaz,za---.a1,n] e
Refer_‘ence [am,ll A2, ---'anut]
Policy

CodePO

> mo(ar|st) —> Da(mellmoos) —> Objective

Format

r(1)
r(2)

Reasoning

—>

e

Accuracy .
r(n)

Il
—-

Repetition
_/

Figure 2: Overview of the CodePO framework: input samples are processed by both the main model and a reference
policy to generate outputs, which are then evaluated across multiple reward dimensions, standardized, and used for

policy optimization with a KL divergence constraint.

3 CodePO Methodology

3.1 Overview

CodePO addresses the challenges of structural con-
straints and semantic quality in code generation,
which traditional RLHF methods often fail to meet
due to the complex requirements of programming.
By ensuring strict format adherence, logical coher-
ence, functional correctness, and non-redundant
diversity, CodePO produces code that is both struc-
turally and semantically sound.

To overcome RLHF limitations, CodePO intro-
duces a novel four-dimensional reward model and
a group-competitive policy optimization strategy.
As shown in Figure 2, the framework consists of
three main modules.

1. Multidimensional reward model: Computes
reward signals across orthogonal code quality
dimensions using rule-based and data-driven
metrics;

2. Standardized advantage calculation: Nor-
malizes rewards within candidate response
groups to stabilize the learning signal;

3. KL-constrained policy optimization: Op-
timizes policy parameters under Kullback-
Leibler (KL) divergence constraints for con-
trolled and stable policy updates.

3.2 Multidimensional Reward Model

The CodePO reward model evaluates output code
along four orthogonal dimensions, capturing a

holistic view of generation quality. Each dimen-
sion is computed with a dedicated rule-based or
metric-driven sub-module, and their weighted com-
bination yields the composite reward for policy
optimization.

The composite reward function is defined as:

R<Oz) = OCRformat(Oi> + B Rreason (Oz) 1)
+ ’YRacc(Oi) + 5Rrep(0i>

where:
* 0;: Candidate response text;

* «, f3,7,6: Dimension weighting parameters
(empirically set to 1.0);

* Rformat, Rreason, Race; Rrep: Reward compo-
nents for output format, reasoning chain, ac-
curacy, and repetition, respectively;

 Output: Overall reward score, R(o;) €
[—0.1, 1.1] after weighting.

The quadripartite structure provides complemen-
tary quality signals, addressing blind spots of tradi-
tional language models and aligning optimization
with domain requirements.

3.3 Format Structure Reward:

1.0,
Rformal(oi) =
0.0,

if <reasoning>, <answer>

and content # & 2)
otherwise

Algorithm 1 Format Reward

: function FORMAT_REWARD(output: string) — float
has_reasoning <~ REGEX MATCH
(r"<reasoning>(.+)</reasoning>", output, DOTALL)
has_answer <~ REGEX MATCH
(r"<answer>(.+)</answer>", output)

if has_reasoning # None and

: has_answer # None and

: LENGTH(STRIP(has_reasoning.group(1))) > 10 and

: LENGTH(STRIP(has_answer.group(1))) > O then

10: return 1.0

LRI NERD =

11: else
12: return 0.0
13: end if

14: end function

3.4 Reasoning Step Reward:
min(| M|, 10)

Rreason(oi) = 0.5 10

+0.5-I(|M| > 3)
3)

where:

* | M]: Count of matched reasoning markers

e I: Indicator function ($1whentrue, $0 other-
wise)

Algorithm 2 Reasoning Count

1: function COUNT_REASONING_STEPS(text: string) re-

turns integer
2: patterns < { r"Step\s\d+:", r"\d{1,2}",
r"\(\d\)", r"[a—zA—Z]\)", "_>n,
"Therefore", "Thus" }

step_count <— 0

for all pattern in patterns do

matches < FIND_OCCURRENCES(pattern,

e

text)
step_count <— step_count + COUNT(matches)
end for
return MIN(step_count, 10)
. end function

LR

Table 1: Empirical Validation

Step Count Marginal Reward Gain
1-2 +0.25 per step
3-5 +0.15 per step
6-10 +0.08 per step
> 10 No additional gain

Empirical Validation summarizes the marginal
reward gains associated with different ranges of
reasoning step counts. The table shows that the
reward per reasoning step is highest for the ini-
tial steps and decreases as the number of steps
increases, with no additional gain awarded beyond
ten steps. This design encourages concise and effi-
cient reasoning, while discouraging unnecessarily
lengthy responses.

3.5 Code Accuracy Reward:

0.0 CodeBLEU < 0.2

0.5 0.2 < CodeBLEU < 0.4 (4)
1.0 CodeBLEU > 0.4
Composite CodeBLEU Calculation:

CodeBLEU = 0.4 Bygram+0.3- BAsT+0.3- Baatafiow

&)
* Bpgram: Weighted 4-gram match similarity

Race (Oz) =

* Bagr: Abstract syntax tree similarity

* Batafiow: Program dependency graph similar-
ity
Threshold Justification: Functionality testing
on 12,000 samples shows that when CodeBLEU
< 0.2, 93% of the code fails to compile or exe-
cute, while CodeBLEU > 0.4 corresponds to 89%
functional correctness.

Repetition Penalty
=
Rrep(0:) = -3 nzz(l — Distinct-n) - w, (6)

with dynamic weights: w =
n =234
Uniqueness Calculation:

[0.4, 0.4, 0.2] for

. unique n-grams
Distinct-n = | |

(N

|total n-grams|

Repetition penalty is computed as in Algo-
rithm 3, with the core calculation summarized in

Eq. (8).

penalty += (1 — uniqueness) - wy, ®)

Algorithm 3 Progressive N-gram Repetition
Penalty

1: function REPETITIONPENALTY (text)
2: penalty <— 0.0

3 weights « [w2, w3, wa]

4 for each nin {2,3,4} do

5 Obtain all n-grams from text
6: Compute uniqueness as Eq. (7)
7: Update penalty as Eq. (8)

8 end for

9 return —penalty /3.0

0:

10: end function

This table assigns penalties based on the Distinct-
3 ratio, a metric for trigram diversity in generated
text. Lower ratios indicate more redundancy and
incur higher penalties, while higher ratios reflect
better diversity and receive lower or no penalty.
This scheme encourages the generation of more
diverse and informative content.

3.6 Standardized Advantage Calculation
Normalization Pipeline:

Standardize: E(Oi) - R(oi) — pe ©)
oG
Squashing: R(o;) = tanh (E(Oz)) (10)
~ R
Advantage: A = R(0i) — = S R(e;) an

* uag, og: Group mean and standard deviation

e G: Response group size (hyperparameter
G=8)

 tanh: Squashing function maintaining rank
order

Algorithm 4 Advantage Computation

1: function CALCULATE_ADVANTAGES(rewards: list of
floats) returns list of floats
: W <— mean of rewards
o < standard deviation of rewards + 1le—8

. rewards — .
T < tanh (7“ > vectorized

o
return 7 — i > centered

2

3

4

5: [i < mean of 7
6:

7: end function

Table 2: Advantage Distribution Properties

Percentile | Typical A; Range
Top 10% +0.35 to 4+ 0.75
Middle 50% | —0.15 to + 0.30
Bottom 10% | —0.60 to — 0.35

Advantage Distribution Properties: This summa-
rizes the typical range of the normalized advantage
value A; across different percentiles within a re-
sponse group. The advantage metric, calculated
using group normalization and tanh compression,
reflects how much each response surpasses the
group average, accounting for query difficulty and
preventing reward explosion. Higher 4; values in-
dicate better relative quality, while lower values in-
dicate less competitive responses within the group.

3.7 Policy Optimization

The KL-constrained PPO objective is formulated
as:

L(0) = E, [min (Tt (0)As, clip(re(6),1 —¢,1+ e)At)]
— ADkL (7o, || 7o) (12)

Component decomposition:

1. Probability Ratio:

o (at|st)
ri(0) = ———= (13)
«6) T0gq (@t |St)
2. Clipping Mechanism:
Tmin 1 7 < min
Clip(’f’, T'min, Tmax) =3 if Pmin <7 < Tmax
Tmax 17 > Tmax
(14)
3. KL Divergence Penalty:
P

Dia(P | Q) = 3 Pla)log 555

Algorithm 5 CodePO Training Procedure

Input: Pretrained model 7p, training dataset D
Output: Optimized policy 7
Hyperparameters: Batch size B, group size GG, update inter-
val K
1: Initialize Go1q < 0
2: for iteration = 1 to 7" do

3: Sample batch {q1,...,¢p} from D

4: for each query ¢; do

5: Generate G responses: {o0;} mg(qi), j =

1..G

6: Compute rewards R = [R(01), ..., R(oc)]

7: Calculate advantages A = [A4, ..., Ag]

8: Store (state, action, advantage) triples

9: end for
10: if iteration mod K = 0 then

11: for each response token ¢ in batch do
12: 0 < Adam(VL(0), learning_rate=5e-5)
13: end for
14: eold — 0

15: end if
16: end for

17: return 7y

Stability Enhancements: Stability is improved
through global gradient clipping (norm < 1.0),
5,000 linear warmup steps for the learning rate,
early-stage reward shaping (v = 2.0 for accuracy
reward), and difficulty-balanced mini-batch stratifi-
cation.

3.8 Implementation Notes
Efficiency Optimizations: Reward caching via

memoization of identical outputs, parallel computa-
tion across reward dimensions, Numba-accelerated
regex functions through JIT compilation, and
mixed precision (FP16) calculations for reward
modeling.

Algorithm 6 Practical Implementation Details:

. Constructor base_model: neural network
Call superclass constructor
policy_net < base_model

1
2
3
4: value_net <— Deep copy of base_model
5.
6

: Method
attention_mask)

forward (input_ids,

7: return policy_net(input_ids, attention_mask)

8:

9: Method compute_rewards (responses,
references)

10: rewards <— empty list
11: for each (resp,ref) in do

12: responses and references
13: fmt < format_reward (resp)
14: reason < reasoning_reward (resp)
15: acc < codebleu_reward (resp, ref)
16: rep < repetition_penalty (resp)
17: total_reward - fmt +reason+acc+rep
18: Append total_reward to rewards
19: end for
20: return Convert rewards to tensor
END CLASS

Table 3: Complexity analysis (G: group size, L: re-
sponse length, 6: model params)

Step Time Space
Reward O(GL) 0(1)
Advantage O(G) O(G)
Update 0(9) 0()

Table 3 summarizes the complexity in time and
space of the primary components of our implemen-
tation, namely, the calculation of rewards, the cal-
culation of advantages, and the update of the policy.
The analysis takes into account various computa-
tional optimizations such as reward caching, paral-
lel assessments, and just-in-time (JIT) compilation,
as described in Section IV. Here, G denotes the
batch size, L is the response length, and 6 repre-
sents the number of model parameters.

4 Experimental result evaluation

4.1 Experimental Datasets

Table 5: Overview of Training Data Sources

Dataset Training Testing
Bespoke 10K -

Code Specific Data 3K 1k
TACO - 1k

4.1 Datasets

The training dataset includes (1) manually labeled
private-domain code samples for various tasks and

(2) real user QA pairs with chain-of-thought pro-
cessing and selected distilled open-source exam-
ples. Evaluation uses the TACO dataset (Pedersen
et al., 2020), covering diverse programming tasks
with multiple references and detailed task annota-
tions.

4.2 Baseline Methods and Evaluation Metrics

Baselines include Qwen-Coder-7B-Instruct (Hui
et al., 2024) (base model), Grpo_nr (GRPO without
reward), Grpo_wr (GRPO with standard reward),
and QwenCoder-7B-CodePO (our method).

Evaluation metrics are as follows: ROUGE (Lin,
2004) measures n-gram overlap for text similarity
and coverage; BLEU (Ren et al., 2020) evaluates
n-gram precision; and CodeBLEU (Papineni et al.,
2002) extends BLEU for code by incorporating
syntax and data flow analysis to assess functional
similarity and structural correctness.

4.4 Computational Resources and Parameter
Settings

The experiments were conducted on 8 Nvidia H100
GPUs with an average utilization of around 85%.
Key training and generation settings included a
per-device batch size of 3, gradient accumulation
steps of 4, and three generations per prompt. The
maximum prompt length was set to 512 tokens, and
the maximum completion length to 1700 tokens.

4.5 Domain Specific Data Evaluation Result

Table 4 shows that, in private-domain program-
ming, CodePO consistently outperforms both the
baseline and GRPO variants across all metrics.
Specifically, CodePO improves CodeBLEU by
40.21% over the baseline and by 13.82% and 4.85%
over the two GRPO methods, respectively. For
ROUGE metrics, CodePO achieves a 22.26% gain
over the baseline and improves on the GRPO meth-
ods by 21.61% and 10.83%. In terms of BLEU,
CodePO increases the average score by 69.66%
over the baseline and by 8.27% and 3.57% com-
pared to the GRPO variants, reflecting clear advan-
tages in functional accuracy, structural coverage,
and code fluency.

CodePO achieves notable improvements across
multiple dimensions, such as code fluency, lexical
alignment, content coverage, structural regularity,
and syntax-tree correctness. This evidences its abil-
ity to address the main shortcomings of the baseline
while presenting significant improvements over ex-
isting GRPO-based optimization strategies.

Table 4: Domain specific Data Evaluation Performance (%)

Metric Qwen GRPO- GRPO- CodePO Q&Tﬁgﬁer é‘l‘;‘gg’_vlfr GI‘I;‘I‘,’I;’_V;r
Coder nr wr

CodeBLEU 02114 02604 02827 02964 40.21% 13.82% 4.85%
ROUGEI-F 02810 02907 03188 03434 2221% 18.13% 7.72%
ROUGE2-F 01711 0.1635 0.1787 02100 22.74% 28.44% 17.52%
ROUGEL-F 02786 02870 03165 03394 21.82% 18.26% 7.24%
ROUGE_AVG 02436 02471 02713 02976 22.26% 21.61% 10.83%

BLEU1 0.1512 02474 02578 0.2693 78.11% 8.85% 4.46%

BLEU2 0.1121 0.1678 0.1760 0.1807 61.20% 7.69% 2.67%
BLEU AVG 0.1317 02076 02169 02250 69.66% 8.27% 3.57%

4.6 TACO Dataset Evaluation Result

As shown in Table 6, CodePO delivers strong im-
provements in specialized domains and maintains
robust performance on general tasks. On the TACO
dataset, CodePO consistently outperforms base-
lines without any metric degradation, achieving a
2.02% increase in CodeBLEU, 1.56% in ROUGE]1-
F, 2.02% in ROUGE2-F, 2.37% in ROUGEL-F,
1.95% in BLEU1, and 2.73% in BLEU2.

These uniformly positive results show that
CodePO delivers significant improvements in spe-
cialized, complex domains while also maintain-
ing or enhancing performance in general-purpose
scenarios. This consistent progress underscores
CodePQO’s effectiveness and broad applicability,
confirming its strong cross-domain robustness and
transferability. As a result, CodePO offers clear
advantages across a wide range of code generation
tasks.

5 Ablation Experiment

5.1 Reward Function Analysis

05

0.4

03

0
00 0 300 400 500 600 700
01 [

02

Normalized Reward
\

03 —QwenCoder7B-GRPO
—AQwenCoder7B-CodePO

04

Train Step

Figure 3: Comparative Analysis of Reward Functions:
GRPO vs. CodePO

We used the Qwen-Coder-7B model with both
GRPO and CodePO training. Traditional GRPO,
constrained mainly by the Accuracy metric, pro-
duces weak and limited reward signals, resulting
in minimal guidance for model improvement. In
contrast, CodePO incorporates optimized, code-
specific reward functions, providing stronger, more
targeted signals that improve training stability and
better guide the model toward generating high-
quality outputs.

5.2 KL divergence Analysis

0.005

000t —AQwenCoder7B-GRPO

0003 —~QwenCoder7B-CodePO
0.002

0.001

0

0.001

Normalized KL

-0.002

0.003

-0.004

-0.005

Train Step

Figure 4: Comparative Analysis of KL divergence:
GRPO vs. CodePO

The KL divergence trends show that the KL values
of QwenCoder7B-GRPO increase quickly early in
training and then stabilize at a low level, while
QwenCoder7B-CodePO starts lower but increases
sharply, eventually exceeding GRPO. Higher KL
values mean greater divergence from the reference
distribution, indicating that CodePO encourages
the model to move beyond the original distribu-
tion, explore new strategies, and improve inno-
vation and generalization, leading to better code
generation performance. In contrast, GRPO keeps
the model closer to the original distribution, tak-
ing a more conservative approach that limits im-

Table 6: TACO Dataset Evaluation Results (%)

Metric Qwen GRPO- GRPO- CodePO Q&Tﬁgﬁer é‘l‘;‘gg’_vlfr GI‘I;‘I‘,’I;’_V;r
Coder nr wr

CodeBLEU 02679 02794 02809 0.2866 2.02% 2.58% 2.03%
Rougel-f 02342 04041 03992 0.4104 1.56% 1.56% 2.81%
Rouge2-f 0.0961 02025 0.1984 0.2065 2.02% 1.98% 4.08%
RougeL-f 02137 03712 03707 0.3800 2.37% 2.37% 2.51%
Rouge AVG 0.1813 03259 03228 0.3323 1.98% 1.97% 3.13%
Bleul 0.1893 03326 0331 03391 1.95% 1.95% 2.45%
Bleu2 0.1056 02189 02166 0.2249 2.73% 2.74% 3.83%
BLEU AVG 0.1475 02758 02738 0.2820 2.34% 2.35% 3.14%

provement. Overall, by relaxing KL constraints,
CodePO lets the model focus on maximizing task
rewards and unlocking its potential, often achiev-
ing higher performance in practice, although the
risks of higher KL values should be balanced for
specific tasks.

5.3 Completion Length Analysis

&

Completion Length(token)

—AQwenCoder7B-GRPO
—QwenCoder7B-CodePO

Train Step

Figure 5: Comparative Analysis of Completion Length:
GRPO vs. CodePO

As shown in the figure, QwenCoder7B-CodePO
consistently generates shorter and more stable code
(700-800 tokens) compared to QwenCoder7B-
GRPO, which produces longer and more variable
code (dropping from over 1450 to about 1200
tokens). CodePO’s compact and steady output
reflects better redundancy control, faster conver-
gence, and improved practicality and maintainabil-
ity. These advantages translate to higher training
and inference efficiency, making CodePO the more
effective approach for real-world applications.

6 Conclusion

IIn this work, we address the limitations of rein-
forcement learning based code generation, such as
simplistic reward design and limited adaptability

to diverse domains. We propose CodePO, a frame-
work that adopts cluster relative policy optimiza-
tion and integrates multidimensional rule based
rewards. This approach systematically incorpo-
rates semantic, structural, and functional evaluation
signals to better capture the complexities of code
generation.

CodePO achieves clear improvements across
domain-specific tasks, while maintaining general-
domain performance without degradation. Our
method consistently outperforms existing base-
lines in semantic and structural accuracy, maintains
stronger training stability, produces more concise
and efficient code, and demonstrates robust per-
formance when applied across different domains.
Ablation studies support the effectiveness of multi-
dimensional rewards and adaptive weighting strate-
gies, confirming that CodePO is well suited to ad-
dress the diverse requirements of real-world coding
scenarios.

Limitations

Although CodePO shows strong results, its evalu-
ation is mainly restricted to English datasets and
automated metrics, so generalization to other lan-
guages and real-world settings remains uncertain.
Some important aspects, such as code efficiency
and security, are not fully explored, and the ap-
proach depends on high-quality annotated data
and significant computational resources. Future
research will aim to expand CodePO to more lan-
guages and scenarios, incorporate human-centered
evaluation, and improve efficiency and security for
broader real-world applications.

References

L. B. Allal and 1 others. 2023. Santacoder: Don’t reach
for the stars! arXiv preprint arXiv:2301.03988.

A. Berti and M. S. Qafari. 2023. Leveraging large lan-
guage models (Ilms) for process mining (technical
report). arXiv preprint arXiv:2307.12701.

M. Chen and 1 others. 2021. Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

H. W. Chung and 1 others. 2022. Scaling instruction-
finetuned language models. arXiv preprint
arXiv:2210.11416.

DeepSeek-Al, S. Han, H. Huang, E. Wang, J. Huang,
F. Liu, W. Lei, and 1 others. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

DeepSeek-Al J. Huang, H. Huang, Y. Lin, C. Zheng,
Z.Lv, W. Lei, and 1 others. 2024. Deepseek-coder-
v2: Breaking the barrier of closed-source models in
code intelligence. arXiv preprint arXiv:2406.11931.

A. El-Kishky and 1 others. 2025. Competitive program-
ming with large reasoning models. arXiv preprint
arXiv:2502.06807.

Binyuan Hui and 1 others. 2024. Qwen2.5-coder tech-
nical report.

F. Jiao and 1 others. 2024. Preference optimization
for reasoning with pseudo feedback. arXiv preprint
arXiv:2411.16345.

M. Kharma and 1 others. 2025. Security and quality in
llm-generated code: A multi-language, multi-model
analysis. arXiv preprint arXiv:2502.01853.

H. Le and 1 others. 2022. Coderl: Mastering code gen-
eration through pretrained models and deep reinforce-
ment learning. arXiv preprint arXiv:2207.01780.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 Workshop.

T. Q. Luong and 1 others. 2024.
ing with reinforced fine-tuning.
arXiv:2401.08967.

Reft: Reason-
arXiv preprint

N. Muennighoff and 1 others. 2022. Crosslingual gener-
alization through multitask finetuning. arXiv preprint
arXiv:2211.01786.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proc Meeting of the
Association for Computational Linguistics.

M. Pedersen and 1 others. 2020. Taco: Trash an-
notations in context for litter detection. https:
//github.com/pedropro/TACO. GitHub.
[Online]. Available: https://github.com/
pedropro/TACO.

Y. Qin and 1 others. 2023. Tool learning with founda-
tion models. ACM Computing Surveys, 57:1-40.

R. Rafailov and 1 others. 2023. Direct preference opti-
mization: Your language model is secretly a reward
model. arXiv preprint arXiv:2305.18290.

L. C. Ramirez, X. Limon, Al Sanchez-Garcia, and
J. C. Pérez-Arriaga. 2024. State of the art of the
security of code generated by llms: A systematic
literature review. In 2024 12th International Confer-
ence in Software Engineering Research and Innova-
tion (CONISOFT), pages 331-339, Puerto Escondido,
Mexico.

Shuo Ren and 1 others. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
0. Klimov. 2017. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Z. Shao and 1 others. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

M. L. Siddig, J. C. S. Santos, S. Devareddy, and
A. Muller. 2024. Sallm: Security assessment of gen-
erated code. In Proc. 39th IEEE/ACM Int. Conf.
Automated Software Engineering Workshops (ASEW
'24), pages 54-65.

D. Zan and 1 others. 2022. When language model meets
private library. arXiv preprint arXiv:2210.17236.

P. Zeng and 1 others. 2025. Lr-iad: Mask-free indus-
trial anomaly detection with logical reasoning. arXiv
preprint arXiv:2504.19524.

https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934

	Introduction
	Related Work
	CodePO Methodology
	Overview
	Multidimensional Reward Model

	Experimental result evaluation
	Datasets

	Ablation Experiment
	Conclusion

