
CodePO: A Rule-Enhanced Code-Based Policy Optimization

Anonymous ACL submission

Abstract001

Recently, RL-based large language models002
have demonstrated significant promise for code003
generation, but current approaches are typi-004
cally constrained by limited, especially domain-005
specific, data and by simplistic reward designs006
that do not adequately capture complex seman-007
tic relationships. We present CodePO, which008
extends GRPO with a lightweight, rule-based009
composite reward framework. CodePO intro-010
duces enhanced reward rules for richer code011
similarity evaluation. Additionally, CodePO012
optimizes the computation of the Advantage013
function, ensuring more accurate and stable014
policy updates during training. Experiments on015
both domain-specific and general datasets like016
TACO demonstrate that CodePO significantly017
improves code generation accuracy and qual-018
ity. Ablation studies confirm the benefits of019
composite rewards and adaptive tuning, high-020
lighting CodePO’s effectiveness for real-world021
programming tasks.022

1 Introduction023

1.1 Background and Motivation024

Large Language Models (LLMs) excel at general025

programming tasks such as algorithm implemen-026

tation, API usage, and code completion in open-027

source projects (El-Kishky et al., 2025), primarily028

due to the availability of large-scale public data for029

pre-training and fine-tuning. However, as Berti and030

Qafari (2023) note, LLM performance declines sig-031

nificantly on domain-specific programming tasks032

in specialized industries.033

Data confidentiality poses a major challenge for034

private-domain industry programming, as propri-035

etary code, interfaces, and business logic are often036

inaccessible due to trade secrets and regulatory re-037

strictions (Allal et al., 2023; Zan et al., 2022). This038

limits LLMs’ exposure to domain-specific knowl-039

edge and hinders adaptation to private data. Conse-040

quently, general LLMs perform poorly on private-041

domain tasks and often generate code that fails to042

meet business or security requirements (Kharma 043

et al., 2025). Fine-tuning with private-domain data 044

is therefore essential to improve model adaptability 045

and performance (Zan et al., 2022). 046

1.2 Existing Fine-tuning Paradigms and 047

Limitations 048

Current fine-tuning paradigms for LLMs include: 049

(1) pre-training fine-tuning, which adapts mod- 050

els on private-domain corpora to capture domain- 051

specific syntax and distributions, but is data- and 052

resource-intensive and prone to catastrophic for- 053

getting in low-data scenarios (Muennighoff et al., 054

2022; Chen et al., 2021); (2) instruction fine-tuning, 055

where models learn to follow task-based instruc- 056

tions using paired input and code data, giving bet- 057

ter controllability and data efficiency but relying 058

on static input-output examples without execution 059

feedback, making it less suited to tasks with mul- 060

tiple correct answers (Chung et al., 2022; Kharma 061

et al., 2025); and (3) reinforcement fine-tuning (RL- 062

based), which frames code generation as a Markov 063

Decision Process and learns from execution- or 064

human-feedback-based rewards. RL-based tun- 065

ing supports multi-objective optimization and is 066

increasingly used for private-domain programming 067

(Luong et al., 2024). 068

However, RL-based approaches face several key 069

challenges: reward functions are usually too sim- 070

ple to capture semantic consistency (missing logi- 071

cally equivalent but syntactically different code, or 072

vice versa) (Ramírez et al., 2024); limited recogni- 073

tion of diverse correct solutions leads to overfitting; 074

surface-level metrics (like BLEU) do not capture 075

structural nuances such as AST and control/data 076

flows (Zan et al., 2022); and sparse rewards due 077

to infrequent correct outputs hinder efficient RL 078

training. 079

1.5 Approachment & Main Contributions 080

To address these limitations, as shown in Figure 1, 081

we propose a rule-driven multi-component reward 082

1

Figure 1: Flowchart Comparing Traditional GRPO and
CodePO

mechanism combined with cluster-relative policy083

optimization. By using CodeBLEU to capture lex-084

ical, syntactic, and data-flow similarities, our ap-085

proach provides a more nuanced measure of se-086

mantic alignment. We further combine CodeBLEU087

with functional and efficiency rewards in a con-088

figurable, weighted framework, and incorporate089

LRC-Reward within GRPO to guide the model to-090

ward functional accuracy, semantic fidelity, and091

diverse implementations. In addition to optimizing092

the reward system, we refine the computation of093

the advantage function to improve training stability094

and policy updates.095

Our method achieves notable improvements in096

domain-specific adaptation, increasing Rouge ac-097

curacy by up to 17.52% and CodeBLEU by up098

to 4.85% on real-world data, and boosting Code-099

BLEU by 2.03% and Rouge accuracy by up to100

4.08% on the TACO dataset, with better handling101

of multi-solution cases. Extensive experiments and102

ablation studies show that CodePO consistently103

outperforms PPO, DPO, and GRPO in reward sig-104

nal quality, training stability, code efficiency, and105

convergence speed.106

2 Related Work107

2.1 Technical Barriers of Private-domain108

Programming109

Private-domain industry programming faces sev-110

eral technical challenges, including restricted ac-111

cess to internal code and documentation, very112

limited fine-tuning data, and high API call error113

rates (Zan et al., 2022). Additionally, these scenar-114

ios involve complex semantic constraints—from115

strict business rules and hardware limits to real-116

time requirements (Siddiq et al., 2024)—as well as117

long-range dependencies, with control code often118

managing many state variables and complex logic119

chains (Qin et al., 2023).120

2.2 RL-based Fine-tuning Methods for 121

Domain-specific Code Generation 122

To address data scarcity and validation challenges 123

in private-domain scenarios, RL-based fine-tuning 124

has become mainstream for improving model do- 125

main adaptability by treating LLMs as policy net- 126

works optimized through environmental reward sig- 127

nals. 128

Notable methods include Proximal Policy Op- 129

timization (PPO) (Schulman et al., 2017), which 130

frames code generation as an MDP and leverages 131

environmental feedback for token sequence deci- 132

sions, ensuring stable training via trust region con- 133

straints, as seen in CodeRL (Le et al., 2022). How- 134

ever, PPO relies on dense rewards, leading to slow 135

convergence, unstable training on small datasets, 136

and significant engineering costs for distributed 137

sampling. 138

Direct Preference Optimization (DPO) (Rafailov 139

et al., 2023) uses human-annotated code pairs to op- 140

timize policy ranking without explicit reward mod- 141

eling—demonstrated by DPO-Coder (DeepSeek- 142

AI et al., 2024). While sample-efficient and com- 143

putationally light, DPO depends on costly high- 144

quality annotations, cannot model continuous re- 145

ward spaces, and fails to capture code’s dynamic 146

execution properties (Jiao et al., 2024). 147

Generalized Reward Policy Optimization 148

(GRPO) (Shao et al., 2024) and GRPO- 149

Industrial (DeepSeek-AI et al., 2025) extend 150

RL by aggregating multi-dimensional rewards 151

for multi-objective optimization and domain 152

adaptation, with fewer environment interactions. 153

However, GRPO requires manual reward weight- 154

ing, presents tuning challenges, may suffer from 155

conflicting objectives, and heavily depends on 156

domain engineering (Zeng et al., 2025). 157

2.3 Limitations of Existing RL Fine-tuning 158

Paradigms 159

Despite recent advances, RL-based fine-tuning for 160

private-domain programming still faces key chal- 161

lenges: reward signals like BLEU or test pass rates 162

fail to reflect deep code semantics, resulting in out- 163

puts that appear correct but are logically flawed; 164

limited support for functionally diverse implemen- 165

tations restricts model creativity; and static reward 166

weights or preferences limit dynamic adaptation to 167

evolving domain requirements. 168

2

Figure 2: Overview of the CodePO framework: input samples are processed by both the main model and a reference
policy to generate outputs, which are then evaluated across multiple reward dimensions, standardized, and used for
policy optimization with a KL divergence constraint.

3 CodePO Methodology169

3.1 Overview170

CodePO addresses the challenges of structural con-171

straints and semantic quality in code generation,172

which traditional RLHF methods often fail to meet173

due to the complex requirements of programming.174

By ensuring strict format adherence, logical coher-175

ence, functional correctness, and non-redundant176

diversity, CodePO produces code that is both struc-177

turally and semantically sound.178

To overcome RLHF limitations, CodePO intro-179

duces a novel four-dimensional reward model and180

a group-competitive policy optimization strategy.181

As shown in Figure 2, the framework consists of182

three main modules.183

1. Multidimensional reward model: Computes184

reward signals across orthogonal code quality185

dimensions using rule-based and data-driven186

metrics;187

2. Standardized advantage calculation: Nor-188

malizes rewards within candidate response189

groups to stabilize the learning signal;190

3. KL-constrained policy optimization: Op-191

timizes policy parameters under Kullback-192

Leibler (KL) divergence constraints for con-193

trolled and stable policy updates.194

3.2 Multidimensional Reward Model195

The CodePO reward model evaluates output code196

along four orthogonal dimensions, capturing a197

holistic view of generation quality. Each dimen- 198

sion is computed with a dedicated rule-based or 199

metric-driven sub-module, and their weighted com- 200

bination yields the composite reward for policy 201

optimization. 202

The composite reward function is defined as: 203

R(oi) = αRformat(oi) + βRreason(oi)

+ γRacc(oi) + δRrep(oi)
(1) 204

where: 205

• oi: Candidate response text; 206

• α, β, γ, δ: Dimension weighting parameters 207

(empirically set to 1.0); 208

• Rformat, Rreason, Racc, Rrep: Reward compo- 209

nents for output format, reasoning chain, ac- 210

curacy, and repetition, respectively; 211

• Output: Overall reward score, R(oi) ∈ 212

[−0.1, 1.1] after weighting. 213

The quadripartite structure provides complemen- 214

tary quality signals, addressing blind spots of tradi- 215

tional language models and aligning optimization 216

with domain requirements. 217

3.3 Format Structure Reward: 218

Rformat(oi) =

1.0,
if <reasoning>, <answer>
and content ̸= ∅

0.0, otherwise
(2) 219

3

Algorithm 1 Format Reward
1: function FORMAT_REWARD(output: string)→ float
2: has_reasoning← REGEX MATCH
3: (r"<reasoning>(.+)</reasoning>", output, DOTALL)
4: has_answer← REGEX MATCH
5: (r"<answer>(.+)</answer>", output)
6: if has_reasoning ̸= None and
7: has_answer ̸= None and
8: LENGTH(STRIP(has_reasoning.group(1))) > 10 and
9: LENGTH(STRIP(has_answer.group(1))) > 0 then

10: return 1.0
11: else
12: return 0.0
13: end if
14: end function

3.4 Reasoning Step Reward:220

Rreason(oi) = 0.5·min(|M|, 10)
10

+0.5·I(|M| ≥ 3)

(3)221

where:222

• |M|: Count of matched reasoning markers223

• I: Indicator function ($1whentrue, $0 other-224

wise)225

Algorithm 2 Reasoning Count
1: function COUNT_REASONING_STEPS(text: string) re-

turns integer
2: patterns ← { r"Step\s\d+:", r"\d{1,2}"̇,

r"\(\d\)", r"[a-zA-Z]\)", "→",
"Therefore", "Thus" }

3: step_count← 0
4: for all pattern in patterns do
5: matches ← FIND_OCCURRENCES(pattern,

text)
6: step_count← step_count + COUNT(matches)
7: end for
8: return MIN(step_count, 10)
9: end function

Table 1: Empirical Validation

Step Count Marginal Reward Gain
1–2 +0.25 per step
3–5 +0.15 per step
6–10 +0.08 per step
> 10 No additional gain

Empirical Validation summarizes the marginal226

reward gains associated with different ranges of227

reasoning step counts. The table shows that the228

reward per reasoning step is highest for the ini-229

tial steps and decreases as the number of steps230

increases, with no additional gain awarded beyond231

ten steps. This design encourages concise and effi-232

cient reasoning, while discouraging unnecessarily233

lengthy responses.234

3.5 Code Accuracy Reward: 235

Racc(oi) =


0.0 CodeBLEU ≤ 0.2

0.5 0.2 < CodeBLEU ≤ 0.4

1.0 CodeBLEU > 0.4

(4) 236

Composite CodeBLEU Calculation: 237

CodeBLEU = 0.4·Bngram+0.3·BAST+0.3·Bdataflow
(5) 238

• Bngram: Weighted 4-gram match similarity 239

• BAST: Abstract syntax tree similarity 240

• Bdataflow: Program dependency graph similar- 241

ity 242

Threshold Justification: Functionality testing 243

on 12,000 samples shows that when CodeBLEU 244

≤ 0.2, 93% of the code fails to compile or exe- 245

cute, while CodeBLEU ≥ 0.4 corresponds to 89% 246

functional correctness. 247

Repetition Penalty 248

Rrep(oi) = −1

3

4∑
n=2

(1− Distinct-n) · wn (6) 249

with dynamic weights: w = [0.4, 0.4, 0.2] for 250

n = 2, 3, 4. 251

Uniqueness Calculation: 252

Distinct-n =
|unique n-grams|
|total n-grams|

(7) 253

Repetition penalty is computed as in Algo- 254

rithm 3, with the core calculation summarized in 255

Eq. (8). 256

penalty += (1− uniqueness) · wn (8) 257

Algorithm 3 Progressive N-gram Repetition
Penalty
1: function REPETITIONPENALTY(text)
2: penalty← 0.0
3: weights← [w2, w3, w4]
4: for each n in {2, 3, 4} do
5: Obtain all n-grams from text
6: Compute uniqueness as Eq. (7)
7: Update penalty as Eq. (8)
8: end for
9: return −penalty/3.0

10: end function

This table assigns penalties based on the Distinct- 258

3 ratio, a metric for trigram diversity in generated 259

text. Lower ratios indicate more redundancy and 260

incur higher penalties, while higher ratios reflect 261

better diversity and receive lower or no penalty. 262

This scheme encourages the generation of more 263

diverse and informative content. 264

4

3.6 Standardized Advantage Calculation265

Normalization Pipeline:266

Standardize: R̃(oi) =
R(oi)− µG

σG
(9)267

Squashing: R̂(oi) = tanh
(
R̃(oi)

)
(10)268

Advantage: Ai = R̂(oi)−
1

G

G∑
j=1

R̂(oj) (11)269

270

• µG, σG: Group mean and standard deviation271

• G: Response group size (hyperparameter272

G=8)273

• tanh: Squashing function maintaining rank274

order275

Algorithm 4 Advantage Computation
1: function CALCULATE_ADVANTAGES(rewards: list of

floats) returns list of floats
2: µ← mean of rewards
3: σ ← standard deviation of rewards + 1e−8
4: r̂ ← tanh

(
rewards− µ

σ

)
▷ vectorized

5: µ̂← mean of r̂
6: return r̂ − µ̂ ▷ centered
7: end function

Table 2: Advantage Distribution Properties

Percentile Typical Ai Range
Top 10% +0.35 to + 0.75

Middle 50% −0.15 to + 0.30

Bottom 10% −0.60 to − 0.35

Advantage Distribution Properties: This summa-276

rizes the typical range of the normalized advantage277

value Ai across different percentiles within a re-278

sponse group. The advantage metric, calculated279

using group normalization and tanh compression,280

reflects how much each response surpasses the281

group average, accounting for query difficulty and282

preventing reward explosion. Higher Ai values in-283

dicate better relative quality, while lower values in-284

dicate less competitive responses within the group.285

3.7 Policy Optimization286

The KL-constrained PPO objective is formulated287
as:288

L(θ) = Et

[
min

(
rt(θ)At, clip(rt(θ), 1− ϵ, 1 + ϵ)At

)]
289

− λDKL (πθold ∥ πθ) (12)290

Component decomposition:291

1. Probability Ratio: 292

rt(θ) =
πθ(at|st)
πθold(at|st)

(13) 293

2. Clipping Mechanism: 294

clip(r, rmin, rmax) =


rmin if r < rmin

r if rmin ≤ r ≤ rmax

rmax if r > rmax

(14) 295

3. KL Divergence Penalty: 296

DKL(P ∥ Q) =
∑
x

P (x) log
P (x)

Q(x)
(15) 297

Algorithm 5 CodePO Training Procedure
Input: Pretrained model πθ , training dataset D
Output: Optimized policy π∗

θ

Hyperparameters: Batch size B, group size G, update inter-
val K
1: Initialize θold ← θ
2: for iteration = 1 to T do
3: Sample batch {q1, . . . , qB} from D
4: for each query qi do
5: Generate G responses: {oj} ← πθ(qi), j =

1..G
6: Compute rewards R = [R(o1), ..., R(oG)]
7: Calculate advantages A = [A1, ...,AG]
8: Store (state, action, advantage) triples
9: end for

10: if iteration mod K = 0 then
11: for each response token t in batch do
12: θ ← Adam(∇θL(θ), learning_rate=5e-5)
13: end for
14: θold ← θ
15: end if
16: end for
17: return πθ

Stability Enhancements: Stability is improved 298

through global gradient clipping (norm ≤ 1.0), 299

5,000 linear warmup steps for the learning rate, 300

early-stage reward shaping (γ = 2.0 for accuracy 301

reward), and difficulty-balanced mini-batch stratifi- 302

cation. 303

3.8 Implementation Notes 304
Efficiency Optimizations: Reward caching via 305

memoization of identical outputs, parallel computa- 306

tion across reward dimensions, Numba-accelerated 307

regex functions through JIT compilation, and 308

mixed precision (FP16) calculations for reward 309

modeling. 310

5

Algorithm 6 Practical Implementation Details:
1: Constructor base_model: neural network
2: Call superclass constructor
3: policy_net← base_model
4: value_net← Deep copy of base_model
5:
6: Method forward(input_ids,

attention_mask)
7: return policy_net(input_ids, attention_mask)
8:
9: Method compute_rewards(responses,

references)
10: rewards← empty list
11: for each (resp, ref) in do
12: responses and references
13: fmt← format_reward(resp)
14: reason← reasoning_reward(resp)
15: acc← codebleu_reward(resp, ref)
16: rep← repetition_penalty(resp)
17: total_reward← fmt+reason+acc+rep
18: Append total_reward to rewards
19: end for
20: return Convert rewards to tensor

END CLASS

Table 3: Complexity analysis (G: group size, L: re-
sponse length, θ: model params)

Step Time Space

Reward O(GL) O(1)
Advantage O(G) O(G)
Update O(θ) O(θ)

Table 3 summarizes the complexity in time and311

space of the primary components of our implemen-312

tation, namely, the calculation of rewards, the cal-313

culation of advantages, and the update of the policy.314

The analysis takes into account various computa-315

tional optimizations such as reward caching, paral-316

lel assessments, and just-in-time (JIT) compilation,317

as described in Section IV. Here, G denotes the318

batch size, L is the response length, and θ repre-319

sents the number of model parameters.320

4 Experimental result evaluation321

4.1 Experimental Datasets322

Table 5: Overview of Training Data Sources

Dataset Training Testing

Bespoke 10K -
Code Specific Data 3K 1k
TACO - 1k

4.1 Datasets323

The training dataset includes (1) manually labeled324

private-domain code samples for various tasks and325

(2) real user QA pairs with chain-of-thought pro- 326

cessing and selected distilled open-source exam- 327

ples. Evaluation uses the TACO dataset (Pedersen 328

et al., 2020), covering diverse programming tasks 329

with multiple references and detailed task annota- 330

tions. 331

4.2 Baseline Methods and Evaluation Metrics 332

Baselines include Qwen-Coder-7B-Instruct (Hui 333

et al., 2024) (base model), Grpo_nr (GRPO without 334

reward), Grpo_wr (GRPO with standard reward), 335

and QwenCoder-7B-CodePO (our method). 336

Evaluation metrics are as follows: ROUGE (Lin, 337

2004) measures n-gram overlap for text similarity 338

and coverage; BLEU (Ren et al., 2020) evaluates 339

n-gram precision; and CodeBLEU (Papineni et al., 340

2002) extends BLEU for code by incorporating 341

syntax and data flow analysis to assess functional 342

similarity and structural correctness. 343

4.4 Computational Resources and Parameter 344

Settings 345

The experiments were conducted on 8 Nvidia H100 346

GPUs with an average utilization of around 85%. 347

Key training and generation settings included a 348

per-device batch size of 3, gradient accumulation 349

steps of 4, and three generations per prompt. The 350

maximum prompt length was set to 512 tokens, and 351

the maximum completion length to 1700 tokens. 352

4.5 Domain Specific Data Evaluation Result 353

Table 4 shows that, in private-domain program- 354

ming, CodePO consistently outperforms both the 355

baseline and GRPO variants across all metrics. 356

Specifically, CodePO improves CodeBLEU by 357

40.21% over the baseline and by 13.82% and 4.85% 358

over the two GRPO methods, respectively. For 359

ROUGE metrics, CodePO achieves a 22.26% gain 360

over the baseline and improves on the GRPO meth- 361

ods by 21.61% and 10.83%. In terms of BLEU, 362

CodePO increases the average score by 69.66% 363

over the baseline and by 8.27% and 3.57% com- 364

pared to the GRPO variants, reflecting clear advan- 365

tages in functional accuracy, structural coverage, 366

and code fluency. 367

CodePO achieves notable improvements across 368

multiple dimensions, such as code fluency, lexical 369

alignment, content coverage, structural regularity, 370

and syntax-tree correctness. This evidences its abil- 371

ity to address the main shortcomings of the baseline 372

while presenting significant improvements over ex- 373

isting GRPO-based optimization strategies. 374

6

Table 4: Domain specific Data Evaluation Performance (%)

Metric Qwen
Coder

GRPO-
nr

GRPO-
wr

CodePO Improve
QwenCoder

Improve
GRPO-nr

Improve
GRPO-wr

CodeBLEU 0.2114 0.2604 0.2827 0.2964 40.21% 13.82% 4.85%
ROUGE1-F 0.2810 0.2907 0.3188 0.3434 22.21% 18.13% 7.72%
ROUGE2-F 0.1711 0.1635 0.1787 0.2100 22.74% 28.44% 17.52%
ROUGEL-F 0.2786 0.2870 0.3165 0.3394 21.82% 18.26% 7.24%
ROUGE_AVG 0.2436 0.2471 0.2713 0.2976 22.26% 21.61% 10.83%

BLEU1 0.1512 0.2474 0.2578 0.2693 78.11% 8.85% 4.46%
BLEU2 0.1121 0.1678 0.1760 0.1807 61.20% 7.69% 2.67%

BLEU_AVG 0.1317 0.2076 0.2169 0.2250 69.66% 8.27% 3.57%

4.6 TACO Dataset Evaluation Result375

As shown in Table 6, CodePO delivers strong im-376

provements in specialized domains and maintains377

robust performance on general tasks. On the TACO378

dataset, CodePO consistently outperforms base-379

lines without any metric degradation, achieving a380

2.02% increase in CodeBLEU, 1.56% in ROUGE1-381

F, 2.02% in ROUGE2-F, 2.37% in ROUGEL-F,382

1.95% in BLEU1, and 2.73% in BLEU2.383

These uniformly positive results show that384

CodePO delivers significant improvements in spe-385

cialized, complex domains while also maintain-386

ing or enhancing performance in general-purpose387

scenarios. This consistent progress underscores388

CodePO’s effectiveness and broad applicability,389

confirming its strong cross-domain robustness and390

transferability. As a result, CodePO offers clear391

advantages across a wide range of code generation392

tasks.393

5 Ablation Experiment394

5.1 Reward Function Analysis395

Figure 3: Comparative Analysis of Reward Functions:
GRPO vs. CodePO

We used the Qwen-Coder-7B model with both 396

GRPO and CodePO training. Traditional GRPO, 397

constrained mainly by the Accuracy metric, pro- 398

duces weak and limited reward signals, resulting 399

in minimal guidance for model improvement. In 400

contrast, CodePO incorporates optimized, code- 401

specific reward functions, providing stronger, more 402

targeted signals that improve training stability and 403

better guide the model toward generating high- 404

quality outputs. 405

5.2 KL divergence Analysis 406

Figure 4: Comparative Analysis of KL divergence:
GRPO vs. CodePO

The KL divergence trends show that the KL values 407

of QwenCoder7B-GRPO increase quickly early in 408

training and then stabilize at a low level, while 409

QwenCoder7B-CodePO starts lower but increases 410

sharply, eventually exceeding GRPO. Higher KL 411

values mean greater divergence from the reference 412

distribution, indicating that CodePO encourages 413

the model to move beyond the original distribu- 414

tion, explore new strategies, and improve inno- 415

vation and generalization, leading to better code 416

generation performance. In contrast, GRPO keeps 417

the model closer to the original distribution, tak- 418

ing a more conservative approach that limits im- 419

7

Table 6: TACO Dataset Evaluation Results (%)

Metric Qwen
Coder

GRPO-
nr

GRPO-
wr

CodePO Improve
QwenCoder

Improve
GRPO-nr

Improve
GRPO-wr

CodeBLEU 0.2679 0.2794 0.2809 0.2866 2.02% 2.58% 2.03%
Rouge1-f 0.2342 0.4041 0.3992 0.4104 1.56% 1.56% 2.81%
Rouge2-f 0.0961 0.2025 0.1984 0.2065 2.02% 1.98% 4.08%
RougeL-f 0.2137 0.3712 0.3707 0.3800 2.37% 2.37% 2.51%

Rouge_AVG 0.1813 0.3259 0.3228 0.3323 1.98% 1.97% 3.13%
Bleu1 0.1893 0.3326 0.331 0.3391 1.95% 1.95% 2.45%
Bleu2 0.1056 0.2189 0.2166 0.2249 2.73% 2.74% 3.83%

BLEU_AVG 0.1475 0.2758 0.2738 0.2820 2.34% 2.35% 3.14%

provement. Overall, by relaxing KL constraints,420

CodePO lets the model focus on maximizing task421

rewards and unlocking its potential, often achiev-422

ing higher performance in practice, although the423

risks of higher KL values should be balanced for424

specific tasks.425

5.3 Completion Length Analysis426

Figure 5: Comparative Analysis of Completion Length:
GRPO vs. CodePO

As shown in the figure, QwenCoder7B-CodePO427

consistently generates shorter and more stable code428

(700–800 tokens) compared to QwenCoder7B-429

GRPO, which produces longer and more variable430

code (dropping from over 1450 to about 1200431

tokens). CodePO’s compact and steady output432

reflects better redundancy control, faster conver-433

gence, and improved practicality and maintainabil-434

ity. These advantages translate to higher training435

and inference efficiency, making CodePO the more436

effective approach for real-world applications.437

6 Conclusion438

IIn this work, we address the limitations of rein-439

forcement learning based code generation, such as440

simplistic reward design and limited adaptability441

to diverse domains. We propose CodePO, a frame- 442

work that adopts cluster relative policy optimiza- 443

tion and integrates multidimensional rule based 444

rewards. This approach systematically incorpo- 445

rates semantic, structural, and functional evaluation 446

signals to better capture the complexities of code 447

generation. 448

CodePO achieves clear improvements across 449

domain-specific tasks, while maintaining general- 450

domain performance without degradation. Our 451

method consistently outperforms existing base- 452

lines in semantic and structural accuracy, maintains 453

stronger training stability, produces more concise 454

and efficient code, and demonstrates robust per- 455

formance when applied across different domains. 456

Ablation studies support the effectiveness of multi- 457

dimensional rewards and adaptive weighting strate- 458

gies, confirming that CodePO is well suited to ad- 459

dress the diverse requirements of real-world coding 460

scenarios. 461

Limitations 462

Although CodePO shows strong results, its evalu- 463

ation is mainly restricted to English datasets and 464

automated metrics, so generalization to other lan- 465

guages and real-world settings remains uncertain. 466

Some important aspects, such as code efficiency 467

and security, are not fully explored, and the ap- 468

proach depends on high-quality annotated data 469

and significant computational resources. Future 470

research will aim to expand CodePO to more lan- 471

guages and scenarios, incorporate human-centered 472

evaluation, and improve efficiency and security for 473

broader real-world applications. 474

8

References475

L. B. Allal and 1 others. 2023. Santacoder: Don’t reach476
for the stars! arXiv preprint arXiv:2301.03988.477

A. Berti and M. S. Qafari. 2023. Leveraging large lan-478
guage models (llms) for process mining (technical479
report). arXiv preprint arXiv:2307.12701.480

M. Chen and 1 others. 2021. Evaluating large lan-481
guage models trained on code. arXiv preprint482
arXiv:2107.03374.483

H. W. Chung and 1 others. 2022. Scaling instruction-484
finetuned language models. arXiv preprint485
arXiv:2210.11416.486

DeepSeek-AI, S. Han, H. Huang, E. Wang, J. Huang,487
F. Liu, W. Lei, and 1 others. 2025. Deepseek-r1: In-488
centivizing reasoning capability in llms via reinforce-489
ment learning. arXiv preprint arXiv:2501.12948.490

DeepSeek-AI, J. Huang, H. Huang, Y. Lin, C. Zheng,491
Z. Lv, W. Lei, and 1 others. 2024. Deepseek-coder-492
v2: Breaking the barrier of closed-source models in493
code intelligence. arXiv preprint arXiv:2406.11931.494

A. El-Kishky and 1 others. 2025. Competitive program-495
ming with large reasoning models. arXiv preprint496
arXiv:2502.06807.497

Binyuan Hui and 1 others. 2024. Qwen2.5-coder tech-498
nical report.499

F. Jiao and 1 others. 2024. Preference optimization500
for reasoning with pseudo feedback. arXiv preprint501
arXiv:2411.16345.502

M. Kharma and 1 others. 2025. Security and quality in503
llm-generated code: A multi-language, multi-model504
analysis. arXiv preprint arXiv:2502.01853.505

H. Le and 1 others. 2022. Coderl: Mastering code gen-506
eration through pretrained models and deep reinforce-507
ment learning. arXiv preprint arXiv:2207.01780.508

Chin-Yew Lin. 2004. Rouge: A package for automatic509
evaluation of summaries. In Text Summarization510
Branches Out: Proceedings of the ACL-04 Workshop.511

T. Q. Luong and 1 others. 2024. Reft: Reason-512
ing with reinforced fine-tuning. arXiv preprint513
arXiv:2401.08967.514

N. Muennighoff and 1 others. 2022. Crosslingual gener-515
alization through multitask finetuning. arXiv preprint516
arXiv:2211.01786.517

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-518
Jing Zhu. 2002. Bleu: a method for automatic evalu-519
ation of machine translation. In Proc Meeting of the520
Association for Computational Linguistics.521

M. Pedersen and 1 others. 2020. Taco: Trash an-522
notations in context for litter detection. https:523
//github.com/pedropro/TACO. GitHub.524
[Online]. Available: https://github.com/525
pedropro/TACO.526

Y. Qin and 1 others. 2023. Tool learning with founda- 527
tion models. ACM Computing Surveys, 57:1–40. 528

R. Rafailov and 1 others. 2023. Direct preference opti- 529
mization: Your language model is secretly a reward 530
model. arXiv preprint arXiv:2305.18290. 531

L. C. Ramírez, X. Limón, Á. J. Sánchez-García, and 532
J. C. Pérez-Arriaga. 2024. State of the art of the 533
security of code generated by llms: A systematic 534
literature review. In 2024 12th International Confer- 535
ence in Software Engineering Research and Innova- 536
tion (CONISOFT), pages 331–339, Puerto Escondido, 537
Mexico. 538

Shuo Ren and 1 others. 2020. Codebleu: a method 539
for automatic evaluation of code synthesis. arXiv 540
preprint arXiv:2009.10297. 541

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and 542
O. Klimov. 2017. Proximal policy optimization algo- 543
rithms. arXiv preprint arXiv:1707.06347. 544

Z. Shao and 1 others. 2024. Deepseekmath: Pushing the 545
limits of mathematical reasoning in open language 546
models. arXiv preprint arXiv:2402.03300. 547

M. L. Siddiq, J. C. S. Santos, S. Devareddy, and 548
A. Muller. 2024. Sallm: Security assessment of gen- 549
erated code. In Proc. 39th IEEE/ACM Int. Conf. 550
Automated Software Engineering Workshops (ASEW 551
’24), pages 54–65. 552

D. Zan and 1 others. 2022. When language model meets 553
private library. arXiv preprint arXiv:2210.17236. 554

P. Zeng and 1 others. 2025. Lr-iad: Mask-free indus- 555
trial anomaly detection with logical reasoning. arXiv 556
preprint arXiv:2504.19524. 557

9

https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://github.com/pedropro/TACO
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1109/CONISOFT63288.2024.00050
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934
https://doi.org/10.1145/3691621.3694934

	Introduction
	Related Work
	CodePO Methodology
	Overview
	Multidimensional Reward Model

	Experimental result evaluation
	Datasets

	Ablation Experiment
	Conclusion

