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Abstract

The law of supply and demand asserts that in a perfectly competitive market, the
price of a good adjusts to a market clearing price. In a market clearing price p⋆ the
number of sellers willing to sell the good at p⋆ equals the number of sellers willing
to buy the good at price p⋆. In this work, we provide a mathematical foundation
on the law of supply and demand through the lens of online learning. Specifically,
we demonstrate that if each seller employs a no-swap regret algorithm to set their
individual selling price—aiming to maximize its individual revenue—the collective
pricing dynamics converge to the market-clearing price p⋆ . Our findings offer a
novel perspective on the law of supply and demand, framing it as the emergent
outcome of an adaptive learning processes among sellers.

1 Introduction

The law of supply and demand is a fundamental economic principle explaining the price of a good in
a perfectly competitive market [25]. A perfectly competitive market consists of a large number of
sellers and buyers where each seller is interested in selling one unit of an indistinguishable good and
each buyer is interested in buying one unit of the good. The market is thus described by a supply S
and a demand curve D where S(p)/D(p) is the number of sellers/buyers willing to sell/buy the good
at price p. The law of supply and demand states that the price of the good will converge to the market
clearing price p⋆ where S(p⋆) = D(p⋆)-the number of sellers equals the number of buyers [22, 28].

The idea behind the law of supply and demand is very intuitive 1. If the price is higher than p⋆ then
more sellers are willing to sell than buyers willing to buy, leading to a market surplus. As a result,
some sellers are not able to sell good and will lower their prices to attract buyers. As prices fall, more
buyers are willing to buy, and fewer sellers are willing to sell. Conversely, if the price is below p⋆ this
will create a market shortage that will in turn cause an upward trend of the prices. These adjustments
continue until all selling prices reach p⋆ where there is neither market surplus or shortage [25, 22, 28].

However, upon closer examination, the explanation above does not rule out the possibility of persistent
price fluctuations—where a market surplus leads to a shortage, which then causes another surplus,
and so on—preventing the selling prices from ever converging to the market-clearing price. The latter
raises the following fundamental question:

Question 1. Why do selling prices eventually stabilize to the market clearing price p⋆ instead of
constantly oscillating around it?

Surprisingly, despite the law of supply and demand being one of the most fundamental principles in
modern economics, this question remains unanswered. In this work, we provide answers to Question 1
through the lens of game theory and online learning.

1Se also https://www.investopedia.com/terms/l/law-of-supply-demand.asp?

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Our Contribution and Techniques As already discussed, sellers choose their prices to maximize
individual revenue—that is, to sell their goods at the highest possible price. We model this price
competition through a suitable pricing game (see Definition 3). In this game, each seller selects
a price for their good, after which buyers arrive sequentially and purchase from the lowest-priced
available seller.

The main result of this work consists in establishing that any Correlated Equilibrium (CE) [3] of the
pricing game effectively coincides with the market clearing price of the market.

Informal Theorem In any correlated equilibrium, the selling price is the market clearing price p⋆.

To establish this result, we introduce a novel primal-dual technique. Specifically, we construct an
appropriate linear program whose optimal value serves as a lower bound on the probability that a
Correlated Equilibrium (CE) selects the market clearing price. We then show that this probability
is at least 1 by demonstrating that the dual program admits a feasible solution with objective value
1. To the best of our knowledge, this is the first time the dual-fitting technique [29] is applied in the
context of establishing convergence properties of learning dynamics. Thus our technique may be of
independent interest.

It is well-known that in case agents use no-swap regret algorithm [7] to select their actions in a
repeated game, then the overall joint time-average behavior converges to a Correlated Equilibrium [17,
19, 1]. We remark that assuming that sellers use no-swap regret learning is a natural assumption since
these types of algorithms come with strong optimality guarantees no matter the actions of the other
sellers. In view of the above the main take-away message of this work is the following:

Take-Away Message If all sellers use no-swap regret algorithms to select their prices, the selling
price of the good will converge to the market clearing price p⋆.

As a result, our results offer a novel perspective on the law of supply and demand, framing it as the
emergent outcome of a learning process among sellers. The latter reinforces the classical understand-
ing of market equilibrium but also bridges it with contemporary decision-making algorithms.

On the negative side, we show that the weaker solution concept of Coarse Correlated Equilibrium
(CCE) does not necessarily align with the market clearing price. In Theorem 3, we construct an
instance of the pricing game that admits a CCE which does not coincide with the corresponding
market clearing price. This implies that convergence to the market clearing price cannot be guaranteed
under general no-regret dynamics, which are known to converge to CCE [20]. That being said, in
Section 4, we empirically evaluate both no-regret and no-swap regret algorithms. Our experiments
show that both types of learning dynamics converge to the market clearing price, suggesting that the
negative result of Theorem 3 may be circumvented by specific classes of no-regret algorithms.

1.1 Related Work

Our work relates with the line of research studying online learning dynamics in various market
settings. However none of the prior work has not studied perfectly competitive markets and the law
of supply and demand.

A significant body of work has investigated Cournot competition under the lens of online learning.
Even-Dar et al.[15] were the first to establish that no-regret dynamics converge to the respective Nash
Equilibrium in the case of linear Cournot competition. Nadav et al.[26] extended these convergence
results in the case of product differentiation and thet also studied Bertrand Duopoly markets. Fiat et
al.[16] study best-response dynamics in a variant of Cournot competition where firms aim to either
optimize either profit or revenue while Lin et al.[24] establish that best-response dynamics in Cournot
competition converge either to a Nash equilibrium or to a periodic orbit of length two. Immorlica et
al.[21] provide bounds on the Price of Anarchy in Cournot competition in case of coalitions among
firms while Shit et al.[27] study the convergence properties of no-regret learning dynamics in case of
limited information feedback.

Our work also relates with the line of research studying decentralized dynamics in Fisher markets.
Bikhchandani et al. [6] showed that proportional response dynamics—an update rule closely related
to online learning—converge to equilibrium in linear Fisher markets. Kolumbus et al. [23] extend
these results in case of asynchronous updates. Cheung et al. [11] study the convergence properties of
proportional response dynamics in Fisher markets with CES utilities while Branzei et al. [8] study

2



proportional dynamics in exchange economies. Finally [13, 14, 10, 9, 30] study the convergence
properties of tâtonnement-type algorithms in various Fisher markets.

Babaioff et al. [4, 5] consider a pricing game very similar to ours and establish Price of Anarchy
bounds on the social welfare as well as identifying structural conditions for pure Nash equilibrium
in case of various types of valuations. Golrezaei [18] study the convergence properties of Online
Mirror Descent (OMD) in case of firm-competition in case of consumer reference prices. Cheung et
al. [12] show that in various types of markets, Online Gradient Ascent admits chaotic behavior. Zhu
et al. [31] study online learning algorithms for betting markets.

2 Preliminaries and Results

Let n denote the number of seller and buyers. We assume k discrete prices [k] = {0, 1, . . . , k}. Each
seller i ∈ [n] can sell 1 unit of good at a price no smaller than its marginal cost si ∈ [k]. Each buyer
j ∈ [n] is interested in buying 1 unit of good at a price at most its valuation bj ∈ [k]. Without loss of
generality we assume that s1 ≤ . . . ≤ sn

2 and b1 ≥ . . . ≥ bn.

The supply curve S : [k] 7→ [n] denotes the number of sellers willing to sell the good at a given price,
S(p) = |{i ∈ [n] : si ≤ p}|. The demand curveD : [k] 7→ [n] denotes the number of buyers willing
to buy the good at a given price, D(p) = |{j ∈ [n] : bj ≥ p}|.
Definition 1. A price p ∈ [k] is a market clearing price if and only if S(p) = D(p).

We remark market clearing prices are not necessarily unique.

Example 1. Consider n = 3 sellers and buyers. The marginal costs of the sellers are (s1, s2, s3) =
(0, 2, 5) and the marginal prices of the buyers (s1, s2, s3) = (6, 4, 1). All prices {2, 3, 4} are market
clearing prices.

Lemma 1 establishes the fact that under minimal assumption, the set of market clearing prices is not
empty and in fact forms a consecutive interval.

Lemma 1. In case the marginal costs and prices si, bj ∈ [k] lies in different places. Then the set of
market clearing prices is not empty and is always an interval (a set of the form {p1, p1 + 1, . . . , p2}).

Proof. Notice that S(k) = n and D(k) ≤ 1 due to the fact no two buyers’ valuation can equal
k. Similarly S(1) ≤ 1 and D(1) = n. Thus, S(k) − D(k) > 0 and S(1) − D(1) > 0. Since
marginal costs and valuations lie in different places, the difference S(p) − D(p) can differ by at
most 1 for consecutive prices. Thus, there exists p⋆ ∈ [k] such that S(p⋆) = D(p⋆). Since S(·)
is a increasing and D(·) is a decreasing function, the set of market clearing prices is an interval
{p1, p1 + 1, . . . , p2}.

Despite the fact that strictly speaking market, clearing prices are not necessarily unique, if k and n
are large enough and the marginal costs and prices are not very concentrated, the different market
clearing prices will practical correspond to the exact same price.

Definition 2. We denote with p⋆ the highest market clearing price.

With some abuse of terminology in the rest of the paper we refer to p⋆ as the market clearing price.
The law of supply and demand sates that the selling price of the good will converge to the market
clearing price.

2.1 Pricing Games

In this section we introduce the pricing game in order to provide theoretical foundations on the law
of supply and demand. Our goal is to establish that the law of supply and demand is the outcome of
the strategic pricing of the sellers in their attempt to maximize their revenue.

2With a slight abuse of notation when si = ℓ ∈ [k], we actually mean si = ℓ − ϵ for an arbitrarily small
ϵ > 0. This convention is very convenient since it ensures that seller i ∈ [n] strictly prefer selling the good at
price si rather not selling at all.
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In Definition 3 we introduce the pricing game that is an one-shot game capturing the competition
between sellers. The strategy of each seller is the selling price that the agents selects. When selecting
a price, an agent needs to balance between high revenue and the risk of not selling its good.

Definition 3. In a pricing game, each seller i selects a price pi ≥ si. The payoff Ui(pi, p−i) of seller
i ∈ [n] is defined as follows:

• Let S denote the set of sellers, S = {1, . . . , n}. All of them are initially available.

• for each buyer j = 1 to n

– buyer j enters the market and finds the cheapest available seller, ilow := argmini∈Spi
3.

– If pilow ≤ bj , then

1. Buyer j buys the good from ilow at price pilow .

2. Seller ilow gets utility Uilow(pi, p−i) := pilow − silow and exits S ← S/{ilow}.

A seller i ∈ [n], that did not sell its good, gets utility Ui(pi, p−i) = 0.

We remark that in the pricing game of Definition 3 only sellers are strategic agents. When a buyer
enters the market, it considers the lowest-priced seller who is still available at that moment. We
emphasize that each seller can supply only 1 unit of the good. That is why once a seller sells its unit,
then it exits the market.

We denote with Pi the strategy space of seller i ∈ [n], Pi = {si, . . . , k}. We also denote with
P := P1 ×P2 × · · · × Pn the set of pricing profiles. For a pricing profile p := (p1, . . . , pn) ∈ P we
also use the notation p = (pi, p−i) to denote the price of seller i ∈ [n] with the prices selected by the
other sellers.

2.2 No-Swap Regret Minimization and Correlated Equilibrium

To model the market’s behavior over time, we consider sellers repeatedly playing the pricing game of
Definition 3 across multiple rounds. We remark that the beginning of each round all sellers admit 1
unit of good regardless of whether they performed a sale in the previous round.

Protocol 1: Pricing Game over time

At each round t = 1, . . . , T

• Each seller i ∈ [n], (secretly) selects a price pti ∈ Si.

• Each seller i ∈ [n], gets utility Ui(p
t
i, p

t
−i) (see Definition 3).

• Each seller i ∈ [n], learns pt−i and uses this information to select its next price pt+1
i .

A seller i ∈ [n], needs to come up with a pricing strategy that at each round t ∈ [T ] selects a price
pti solely based on past prices p1−i, . . . , p

t−1
−i ∈ [k]. The online learning framework provides such

decision-making algorithms that base their decision on prior observations [20].

In a pricing games an online learning algorithm A, at round t ∈ [T ], produces a mixed strategy
xt
i ∈ ∆(Pi) over a set of possible prices Pi. The performance of an online learning algorithm A can

be quantified through the notion of regret [20, 7].

Definition 4. The regret of an online learning algorithm A is defined as

RA(T ) := max
p⋆
i ∈Pi

T∑
t=1

Epi∼xt
i

[
Ui(p

⋆
i , p

t
−i)
]
−

T∑
t=1

Epi∼xt
i

[
Ui(pi, p

t
−i)
]

3In case of tie, buyer j ∈ [n] selects the seller with the highest index.
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The swap regret of an online learning algorithm A is defined as

Rswap
A (T ) := max

δ:Pi 7→Pi

T∑
t=1

Epi∼xt
i

[
Ui(δ(pi), p

t
−i)
]
−

T∑
t=1

Epi∼xt
i

[
Ui(pi, p

t
−i)
]

Algorithm A is called no-regret ifRA(T ) = o(T ) no matter the prices p1−i, . . . , p
T
−i selected by the

other sellers. Respectively ifRswap
A (T ) = o(T ) the algorithms is called no-swap regret.

A no-regret algorithm A guarantees that its time-averaged utility converges to the the time-averaged
utility produced by the best fixed price p⋆i ∈ Pi regardless the prices selected by the other providers.
A no-swap regret algorithm provides the stronger optimality guarantees that the time-average payoff
is at least the time-average payoff of the best fixed switching function δ(·).
It is well known that if all sellers use no-regret algorithms to select their prices, the overall behavior
converges to a Coarse Correlated Equilibrium[2]. Similarly, if sellers use no-swap regret algorithms,
the resulting dynamics converge to a Correlated Equilibrium [19, 17]. Both equilibrium concepts are
formally defined in Definition5.
Definition 5. A probability distribution µ ∈ ∆(S) over pricing profiles P := ×i∈[n]Pi, is a Coarse
Correlated Equilibrium if for each seller i ∈ [n],

Ep∼µ [Ui(pi, p−i)] ≥ max
p′
i∈Pi

Ep∼µ [Ui(p
′
i, s−i)] .

A probability distribution µ ∈ ∆(S) over pricing profilesP := ×i∈[n]Pi, is a Correlated Equilibrium
if for each seller i ∈ [n],

Ep∼µ [Ui(pi, p−i)] ≥ max
δ:Pi 7→Pi

Ep∼µ [Ui(δ(pi), p−i)] .

2.3 Our Results and Paper Organization

To this end, we present the main contribution of our work: establishing that the law of supply and
demand can be viewed as the limiting behavior of no-swap regret algorithms employed by sellers to
maximize their individual payoffs.
Theorem 1. Let a pricing game with market clearing price p⋆ and µ ∈ ∆(P) be a Correlated
Equilibrium. If (p1, . . . , pn) ∼ µ then with probability 1,

1. all sellers i ∈ [n] with si ≤ p⋆, select pi = p⋆ and sell their good.

2. all buyers j ∈ [n] with bj ≥ p⋆, buy the good at price p⋆.

3. all sellers i ∈ [n] with si > p⋆ do not sell anything and all buyers j ∈ [n] with bj < p⋆ do
not buy anything.

Theorem 1 establishes that the selling price of the good is the market clearing price p⋆ ∈ [k]. This is
because executed sales occur at price p⋆. Notice that Theorem 1 establishes that sellers i ∈ [n] with
marginal costs higher than si > p⋆ do not sell their good. Similarly, buyers j ∈ [n] with marginal
prices bj < p⋆ never buy the good since p⋆ is the lowest price offered in the market.

Combining Theorem 1 with the known convergence results of no-swap regret dynamics [17, 19]
we get Corollary 1, showing that the law of supply and demand emerges naturally when sellers use
no-swap regret algorithms. This is the main takeaway of our work.
Corollary 1. If all sellers in a pricing game use a no-swap regret to select their prices, then the price
of the good converges to the market-clearing price p⋆ ∈ [k].

In Theorem 2 we show that Coarse Correlated Equilibria (CCE) is not always compatible with the
market clearing price. In particular we show that there are instances of the pricing game admitting
CCEs at which the probabily of sellers selecting the market clearing price is arbitrarily close to zero.
Theorem 2. There exists a family of pricing games with n = 2 admitting a Coarse Correlated
Equilibrium µ ∈ ∆(P) such that the probability that any of the sellers plays a market clearing price
is at most O(1/k) where [k] is the set of prices.

The proof of Theorem 2 is deferred to Appendix A. In Section 3 we present the highlevel ideas behind
the proof of Theorem 1. Finally in Section 4 we experimentally evaluate the convergence properties
of both no-regret and no-swap regret algorithm in the context of pricing games.
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3 Proof of Theorem 1

In this section, we present the proof of Theorem 1, which is based on a dual-fitting argument [29]. To
the best of our knowledge, this is the first application of such techniques to establish convergence
results, and it may be of independent interest.

We first introduce some necessary definitions. We remind that p⋆ denotes the maximum market
clearing price, see Definition 2.
Definition 6. We call a pricing profile p = (p1, . . . , pn) ∈ P valid if and only if pi = p⋆ for all
sellers i ∈ [n] with si ≤ p⋆. We also denote with V the set of all valid pricing profiles.

Using Definition 6 we can restated Theorem 1 as of the fact that any Correlated Equilibrium µ ∈ ∆(S),
places all of its probability mass on valid pricing profiles. The latter is formally stated in Theorem 3
and consists the main technical contribution of our work.
Theorem 3. Let µ ∈ ∆(S) be a Correlated Equilibrium of a pricing game. Then, µ(p) > 0 if and
only if p ∈ V .

In the rest of the section we present the proof of Theorem 3 through our dual fitting technique.
Definition 7. Let the function r : P 7→ {0, 1} on the pricing profiles: r(p) = 1 for all p ∈ V and
r(p) = 0 for any p /∈ V .

Using the reward function defined above, we introduce the following linear program that we will play
a key role in our proof.
Definition 8. Given a pricing game of Definition 3, consider the following linear program,

min
∑
p∈P

r(p) · µ(p)

s.t.
∑

p−i∈P−i

µ(pi, p−i) (Ui(p
′
i, p−i)− Ui(pi, p−i)) ≤ 0 for all i ∈ [n] and pi, p

′
i ∈ Pi∑

p∈P
µ(s) = 1

µ(p) ≥ 0 ∀p ∈ P
where Ui(pi, p−i) is the utility of seller i ∈ [n]. We also denote with Z⋆

LP its optimal value.

The idea behind the linear program of Definition 8 is that any Correlated Equilibrium µ ∈ ∆(P) will
satisfies its constraints. One can show that µ ∈ ∆(P) satisfies the first constraint by using the fact
that Ep∼µ [Ui(pi, p−i)] ≥ Ep∼µ [Ui(δ(pi), p−i)] for the switching function with δ(si) = s′i. The rest
of the constraints are satisfied due to the fact that µ(·) is a joint probability distribution. The latter is
formally stated and established in Lemma 6.
Lemma 2. Let µ ∈ ∆(P) be a Correlated Equilibrium. Then µ ∈ ∆(P) satisfies the constraints of
the linear program of Definition 8 and thus

∑
p∈P µ(p) · r(p) ≥ Z⋆

LP .

Our cornerstone idea is that the optimal value of the linear program above acts as a lower bound on
the probability of sampling a valid pricing profile. The latter is formally stated in Corollary 2.
Corollary 2. Let µ ∈ ∆(P) be a Correlated Equilibrium. Then Prp∼µ[ p is valid ] ≥ Z⋆

LP .

Proof. By Definition 7, r(p) = 1 if p is valid and 0 otherwise. Thus,
∑

p∈P µ(p)·r(p) =
∑

p∈V µ(p)·
r(p) = Pr[p is valid].

To complete our proof we just need to establish that Z⋆
LP ≥ 1. We will show that the optimal value

of the dual of the linear program of Definition 7 is at least 1. Then the claim follows by weak duality.
Lemma 3. The following LP is the dual of the program in Definition 8. We denote with D⋆ its
optimal value.

max µ

s.t. µ+
∑
i∈[n]

∑
p′
i∈Pi

λi
pip′

i
(Ui(pi, p−i)− Ui(p

′
i, p−i)) ≤ r(p) for all p ∈ P

λi
pip−i

≥ 0 ∀i ∈ [n], pi, p−i ∈ Pi
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Lemma 4. The optimal value of the dual linear program is at least 1, D⋆ ≥ 1.

Lemma 4 is the main technical contribution of this section. In Section 3.1, we present a sketch of its
proof. in Section 3.1. We complete this section with the proof of Theorem 3.

Proof of Theorem 3. By Corollary 2 we know that Prp∼µ[ p is valid ] ≥ Z⋆
LP ≥ D⋆ ≥ 1 where the

fact that Z⋆
LP ≥ D⋆ is due to weak duality.

3.1 The Dual-Fitting Argument

In this section we present the proof of Lemma 4 stating that the optimal value of the dual program is
at least 1, D⋆ ≥ 1.

Our approach is to select an assignment of the dual variables {µ, λi
si,s−i

} that are dual feasible and
at the same time µ = 1. Our assignment is presented in Definition 9 that we denote with λ̂i

sis′i
in

order to differentiate it from the variables.
Definition 9. For any seller i ∈ [n] with si ≤ p⋆,

λ̂i
pip′

i
:=

{
0 if p′i ̸= p⋆

(2nk)2npi−i if p′i = p⋆

For any seller i ∈ [n] with si > p⋆, λ̂i
pip′

i
= 0 .

Before proceeding, let us provide the high-level intuition behind the assignment of Definition 9.
The dual variable λi

pip′
i

represents a deviation of seller i ∈ [n] from price pi to price p′i. By setting

λ̂i
pip′

i
> 0 only when pi = p⋆ and 0 otherwise, we enforce that all agents i ∈ [n] with pi ≤ p⋆ are

incentivized to deviate exclusively to price p⋆, and not to any other price.

Next, we establish that by selecting the assignment λ̂i
sis′i

as of Definition 9, we can select µ̂ = 1 and

the overall assignment (1, λ̂) is dual feasible. To establish the latter, for any pricing profile p ∈ P we
consider

b̂p := r(p)−
∑
i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) .

We will establish that b̂p ≥ 1 for all pricing profiles p ∈ P . Then it directly follows that (1, λ̂) is
feasible for the dual, and thus D⋆ ≥ 1, since the dual is a maximization linear program. The fact that
b̂p ≥ 1 for all p ∈ P is respectively established in Lemma 5 and Lemma 6.
Lemma 5. Let a valid pricing profile p ∈ V . Then bp = 1.

Proof. Since p ∈ P is a valid pricing profile, r(p) = 1. As a result, we only need to establish that∑
i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) = 0. This follows by the fact that λ̂i

pip′
i
= 0 for

all sellers i ∈ [n] with si > p⋆ and for all sellers i ∈ [n] with si ≤ p⋆, pi = p⋆ meaning that∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) = λ̂i

pip⋆ · (Ui(pi, p−i)− Ui(p
⋆, p−i)) = 0.

We complete the section with Lemma 6-establishing the respective claim for non-valid pricing profiles
p /∈ V . The full proof of Lemma 6 is presented to Appendix C.
Lemma 6. Let a non valid pricing profile p /∈ V . Then bp ≥ 1.

Sketch of Proof. Since the pricing profile p /∈ V is not valid, by Definition 7 we get that r(p) = 0.
As a result, we need to establish that∑

i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ 1.
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Since p⋆ ∈ [n] is the highest market clearing price, p⋆ + 1 is not a market clearing price. Thus,
p⋆ = bj for some buyer j ∈ [n] or p⋆ + 1 = si for some seller i ∈ [n].

Let us here consider the case p⋆ = bj . To simplify notation let m := |{i ∈ [n] : si ≤ p⋆}| and i⋆

the highest price, i⋆ := argmax{i∈[n] : si≤p⋆} pi.

Notice that in case pi⋆ ≥ p⋆+1 then seller i⋆ does not set its good and thus Ui⋆(pi⋆ , p−i⋆) = 0. This
is because at m − 1 buyers are willing to buy the good at price pi⋆ ≥ p⋆ + 1 (recall that p⋆ = bj)
and they are at least m − 1 sellers with lower prices. At the same time, seller i⋆ always sells its
good in case pi⋆ = p⋆. This is because there are m buyer willing to buy the good at price p⋆. Thus,
Ui⋆(p

⋆, p−i⋆) = p⋆ − si⋆ ≥ 1. As a result,

λ̂i
pi⋆p⋆ · (Ui⋆(p

⋆, p−i⋆)− U⋆
i (pi⋆ , p−i⋆)) ≥ (2nk)2npi⋆−i⋆ . (1)

Since i⋆ := argmax{i∈[n] : si≤p⋆} pi we know that pi ≥ pi⋆ for all sellers i ∈ [n] with si ≤ p⋆.
To simplify things here let us assume that pi > pi⋆ (the case of ties introduces some additional
complications and is presented in the full proof).

Let us now try to identify the worst-case for the quantity Ui(p
⋆, p−i)− Ui(pi, p−i). First notice that

Ui(pi, p−i) ≤ pi − si since otherwise Ui(pi, p−i) = 0 and that Ui(p
⋆, p−i) = p⋆ − si. Thus,

∑
i̸=i⋆

λ̂i
pip⋆ ·

Ui(p
⋆, p−i)︸ ︷︷ ︸

p⋆−si

−Ui(pi, p−i)︸ ︷︷ ︸
≤pi−si

 ≥
∑
i ̸=i⋆

(2nk)2npi−i · (p⋆ − pi)

≥ −n(2nk)2n(pi⋆−1)−1k ≥ −(2nk)2n(pi⋆−1) (2)

where the last inequality comes from the fact that pi ≤ pi⋆ − 1 and that p⋆ − pi ≤ k. By Equations 1
and 2 we get that∑

i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ (2nk)2npi⋆

(
(2nk)−i⋆ − (2nk)−2n

)
≥ 1.

4 Experimental Evaluations

In this section we experimentally evaluate the well-known Hedge [20] no-regret algorithm and the
no-swap regret algorithm proposed by Blum and Mansour [7]. We consider as the set of prices the
[0, 5] interval with 0.2 discretization-there are the following 30 possible prices {0, 0.2, . . . , 4.8, 5}.
We first consider the family of instances of the pricing game constructed to establish Theorem 2 (see
also Appendix A). This instance is composed by n = 2 sellers and buyers where (s1, s2) = (0, 0)
and (b1, b2) = (5, λ). As a result, the highest market clearing price is p⋆ = λ. Despite the fact that
such instances admit CCEs that do not correspond to any market clearing price, our experimental
evaluation reveal that the Hedge algorithm always converges to the market clearing price p⋆, see
Figure 1,2 and 3.

Figure 1: λ = 0.2 Figure 2: λ = 1 Figure 3: λ = 3

Next we consider a more natural set-up with n = 100 sellers and sellers. We consider the linear
demand curve D(p) = −20p + 100 for p ∈ [0, 5] and three different supply curves, Slinear(p) :=

8



20p,Squad(p) := p2/0.25 and Slinear(p) := p/5,Ssqrt(p) := 100
√

p/5 (see Figure 4). Each supply
curve intersects with the demand curve at a different price, resulting in different market clearing
prices. As Figure 5 depicts, if the sellers use the Hedge algorithm, the average selling price converges
fast to the respective market clearing price.

Figure 4: Supply and Demand Curves Figure 5: Average Selling Price

The performance of the no-swap regret algorithm of Blum et al. [7] is very similar with the per-
formance of Hedge. Since convergence to the market clearing price is ensured by Theorem 1, the
respective figures are deffered to Appendix D. In Appendix D we also present additional experimental
evaluations for other supply/demand curves.

5 Conclusion

In this paper, we establish a rigorous connection between the law of supply and demand and the
dynamics of online learning within adequate pricing games. Our main contribution is establishing
that any correlated equilibrium (CE) of the associated pricing game aligns with the market-clearing
price. The latter implies that when all sellers employ no-swap regret algorithms, the price converges
to the market clearing price. Thus, our results provide an interesting theoretical foundation on the law
of supply and demand by framing it as the emergent behavior of a learning process among the sellers.

While we establish that coarse correlated equilibria (CCE) do not inherently guarantee convergence to
the market-clearing price, our experimental evaluations indicate that once sellers use the well-known
Hedge algorithm, the resulting price dynamics converge to the market clearing price. As a result, it is
likely that a certain classes of no-regret algorithms, such as mean-based algorithms, may be able to
always converge to the market clearing price. Providing formal theoretical convergence guarantees
for specific classes of no-regret algorithms, is a very interesting research direction.

Limitations Establishing that general no-regret dynamics converge to the market-clearing price would
offer a stronger theoretical foundation for the law of supply and demand. However, as Theorem 2
demonstrates, Coarse Correlated Equilibria do not always align with the market-clearing price, so such
convergence properties cannot hold for all no-regret sequences of play. However our experiments
suggest that the Hedge algorithm consistently reaches the market-clearing price. Extending our
convergence results to specific clasees of no-regret dynamics remains an open challenge and a
limitation of this work.

Broader Impact We acknowledge that there are many potential societal consequences of our
theoretical results, however none of which we feel must be specifically highlighted.

Acknowledgments This project was supported by the Villum Young Investigator Award (Grant no.
72091).
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A Proof of Theorem 2

Theorem 2. There exists a family of pricing games with n = 2 admitting a Coarse Correlated
Equilibrium µ ∈ ∆(P) such that the probability that any of the sellers plays a market clearing price
is at most O(1/k) where [k] is the set of prices.

Proof. Consider a pricing game of Definition 3 with n = 2 such that s1 = s2 = 0 and b1 = 1 and
b2 = k. To this end notice that the market clearing prices of the game are either 0 or 1. We will show
that there exists a Coarse Correlated Equilibrium µ ∈ ∆(P) such that

Prµ[s1 ∈ {0, 1}] + Prµ[s2 ∈ {0, 1}] ≤ O
(
1

k

)
.

To simplify notation let k := 2ℓ+ 1. Up next we define the joint probability distribution µ ∈ ∆(P)
as follows:

1. randomly select s ∼ Unif(1, . . . , k).

2. then Pr[(s, (s− 1) mod k)] = ℓ+1
2ℓ+1 and Pr[((s− 1) mod k), s] = ℓ

2ℓ+1 .

Notice that due to the symmetry µ(·), Prµ[s1 < s2] = (ℓ+1)/(2ℓ+1) and Prµ[s2 > s1] = ℓ/(2ℓ+1).
The latter implies that for seller 1 that,

Eµ[U1(s1, s2)] =
ℓ+ 1

2ℓ+ 1

∑2ℓ+1
i=1 i

2ℓ+ 1
=

(ℓ+ 1)2

2ℓ+ 1

Similarly for seller 2 we get that

Eµ[U2(s1, s2)] =
ℓ

2ℓ+ 1

∑2ℓ+1
i=1 i

2ℓ+ 1
=

ℓ(ℓ+ 1)

2ℓ+ 1

Now let assume that seller 1 deviates to a fixed price i. In this case

Eµ[U1(i, s2)] = i ·Prµ[s2 ≥ i] = i ·
(
1− i

2ℓ+ 1

)
= i · 2ℓ+ 1− i

2ℓ+ 1
≤ (ℓ+ 1)2

2ℓ+ 1
= Eµ[U1(s1, s2)]

Now let assume that seller 2 deviates to fixed price i. In this case

Eµ[U2(i, s1)] = i ·Prµ[s1 > i] = i ·
(
1− i− 1

2ℓ+ 1

)
= i · 2ℓ+ 2− i

2ℓ+ 1
≤ ℓ(ℓ+ 2)

2ℓ+ 1
= Eµ[U2(s2, s1)]

As a result, the joint probability distribution µ ∈ P is a Coarse Correlated Equilibrium (CCE) while
probability that the price 0 or 1 (the set of market clearing prices) is playd by either seller 1 or 2 is at
most O(1/k).

B Omitted Proofs of Section 3

Lemma 2. Let µ ∈ ∆(P) be a Correlated Equilibrium. Then µ ∈ ∆(P) satisfies the constraints of
the linear program of Definition 8 and thus

∑
p∈P µ(p) · r(p) ≥ Z⋆

LP .

Proof. Since µ ∈ ∆(P) then
∑

p∈P µ(p) = 1 and µ(p) ≥ 0 for all p ∈ P . Notice that by Definition
5 we know that for any seller i ∈ [n] and any switching function δ : Pi 7→ Pi,∑

pi

∑
p−i

µ(pi, p−i) · (Ui(pi, p−i)− Ui(δ(pi), p−i)) ≥ 0

Let pi, p′i ∈ Pi and consider the switching function δ(pi) = p′i and δ(x) = x otherwise. Then we
directly get that∑

p−i

µ(pi, p−i) · (Ui(pi, p−i)− Ui(p
′
i, p−i)) ≥ 0 for all pi, p′i ∈ P.
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Lemma 4. The optimal value of the dual linear program is at least 1, D⋆ ≥ 1.

Proof. By taking the Lagragian

L :=
∑
p

µ(p)·r(p)−
∑

i,pi,p′
i

λi
pi,p′

i

ϵ+
∑
p−i

µ(pi, p−i) · (Ui(pi, p−i)− Ui(p
′
i, p−i))

+µ

(
1−

∑
p

µ(p)

)
−
∑
p

kp·µ(p)

where λi
pi,p−i

, kp ≥ 0. By rearranging the terms we get that

L :=
∑
p

µ(p)

r(p) +
∑
p′
i

λi
pi,p′

i
(Ui(p

′
i, p−i)− Ui(pi, p−i))− µ− kp

+ µ− ϵ
∑

i,pi,p′
i

λi
pi,p′

i

By setting r(p)−
∑

i∈[n]

∑
p′
i∈Si

λi
pi,p′

i
(Ui(pi, p−i)− Ui(p

′
i, p−i))− µ− kp = 0 we get that

µ+
∑
i∈[n]

∑
p′
i∈Pi

λi
pi,p′

i
(Ui(pi, p−i)− Ui(p

′
i, p−i)) ≤ r(p)

since ks ≥ 0.

C Omitted Proof of Section 3.1

Lemma 5. Let a valid pricing profile p ∈ V . Then bp = 1.

Proof. Since p ∈ V we know that r(p) = 1. Since p is a valid pricing profile we know that pi = p⋆

for each seller i ∈ S(p⋆) with si ≤ p⋆. As a result,∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) = λ̂i

pip⋆ · (Ui(pi, p−i)− Ui(p
⋆, p−i)) (λ̂i

pip′
i
= 0 for p′i ̸= p⋆)

= 0 since pi = p⋆

For all the sellers i with si > p⋆, by Definition 9 we have that
∑

p′
i∈Si

λ̂i
pip′

i
= 0 since λ̂i

pip′
i
= 0 for

all prices pi and p′i.

Lemma 6. Let a non valid pricing profile p /∈ V . Then bp ≥ 1.

Proof. Since the pricing profile p /∈ V is not valid, by Definition 7 we get that r(p) = 0. As a result,
we need to establish that

∑
i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
·(Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ 1. To simplify notation

let S(p⋆) denote the set of sellers with marginal cost less than p⋆, S(p⋆) = {i ∈ [n] : si ≤ p⋆}.
Notice that by Definition 9, λ̂i

sis′i
= 0 for all i /∈ S(p⋆). To simplify notation we denote m := |S(p⋆)|.

Let i⋆ ∈ [n] be the seller i ∈ S(p⋆) with the highest price pi, i⋆ := argmaxi∈S(p⋆) pi. In case there
are multiple sellers with price pi⋆ , we consider i⋆ to be the one with the lowest index.

Up next we show that for any non-valid pricing profile p /∈ V ,∑
i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ 1.

We establish the latter claim for the following mutually exclusive cases:

1. pi⋆ ≤ p⋆

2. pi⋆ ≥ p⋆ + 1.
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Let us start with the case pi⋆ ≤ p⋆. Since p /∈ V we know that there exists an seller i ∈ [n] such that
pi < p⋆ since otherwise p ∈ V . Notice that any seller i ∈ S(p⋆) that set p⋆ as its price, is ensured to
sell its good. This is because all produce i /∈ S(p⋆) must essentially set a price pi > p⋆ while there
are exactly m buyer willing to pay price p⋆ for the good. As a result, for any seller i ∈ [n] we know
that ∑

p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) = λ̂i

pip⋆ · (Ui(p
′
i, p−i)− Ui(p

⋆, p−i))

≥ ((p⋆ − si)− (pi − si)) = p⋆ − pi

Since there exists at least one seller i ∈ [n] with pi < p⋆ and λ̂i
sis′i

= 0 for all i /∈ [n] we are ensured
that ∑

i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ 1.

Let us now proceed with the case where pi⋆ ≥ p⋆ + 1. We first argue that Ui⋆(pi⋆ , p−i⋆) = 0-the
latter is formally established in Claim 1

Claim 1. Let the seller i⋆ = argmaxi∈[n]pi (in case of ties i⋆ ∈ [n] is the one with lowest index).
Then Ui⋆(pi⋆ , p−i⋆) = 0.

Proof. Since p⋆ is the maximum market clearing price then p⋆ + 1 is not a market clearing price and
thus p⋆ = bj for some buyer j ∈ [n] or p⋆ + 1 = si for some provider i ∈ [n]. Since all si and bj lie
in different positions the latter two cases are also mutually exclusive.

Let us start with the case p⋆ = bj for some buyer j ∈ [n]. Since pi⋆ ≥ p⋆ + 1 we are ensured
that there are at most m − 1 buyers willing to buy the good at price pi⋆ ∈ [n]. However since
i⋆ ∈ argmax!pi and at the same time admits the lowest index, will not sell its good (notice that enter
the market in decreasing order with respect to their bj and break ties among sellers lexicographically).
Thus Ui⋆(pi⋆ , p−i⋆) = 0.

Up next we consider the mutually exclusive cases p⋆ + 1 = bj and p⋆ + 1 = si and separately
establish that ∑

i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ 1.

We first start with the case p⋆ + 1 = bj for some buyer j ∈ [n]. Let i⋆ ∈ [n] be the seller i ∈ S(p⋆)
with the highest price pi, i⋆ := argmaxi∈S(p⋆) pi. In case there are multiple sellers with price
pi⋆ ∈ [k] the i⋆ is the one with the lowest index among them.

Let us assume that pi⋆ > p⋆, byClaim 1 we are ensured that Ui⋆(pi⋆ , p−i⋆) = 0. In case seller
i⋆ ∈ [n] had selected price p⋆ ∈ [n], it would have sold its good since at price p⋆ ∈ [n] there are m
buyers and m sellers willing to sell. Thus, Ui⋆(p

⋆, p−i⋆) = p⋆ − si⋆ . As a result we get that

λ̂i
pi⋆p⋆ · (Ui⋆(p

⋆, p−i⋆)− U⋆
i (pi⋆ , p−i⋆)) = (2nk)2npi⋆−i⋆ · (p⋆ − si⋆) ≥ (2nk)2npi⋆−i⋆

Now let a seller i ∈ [n] such that pi =i⋆ . By definition of i⋆ we get that i ≥ i⋆ + 1. Thus,

λ̂i
pip⋆ · (Ui(p

⋆, p−i)− Ui(pi, p−i)) ≥ (2nk)2npi⋆−i⋆−1 · (p⋆ − pi⋆) ≥ −(2nk)2npi⋆−i⋆−1k

Now let a seller i ∈ [n] such that pi ≤ pi⋆ − 1. In this case

λ̂i
pip⋆ · (Ui(p

⋆, p−i)− Ui(pi, p−i)) ≥ (2nk)2n(pi⋆−1)−1 · (p⋆ − pi⋆ + 1) ≥ −(2nk)2npi⋆−2n−1k

As a result, we overall get that

b̂p := r(p)−
∑

i∈S(p⋆)

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i))

= (2nk)2npi⋆−i⋆ − n(2nk)2npi⋆−i⋆−1k − n(2nk)2npi⋆−2n−1k

= (2nk)2npi⋆−i⋆
(
1− 1

2
− nk(2nk)i

⋆−2n−1

)
≥ 1
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We now consider the case where p⋆ + 1 = si for some seller i ∈ [n]. To simplify notation we denote
this seller as Next. Following the exact same steps as in the previous case, we can prove that∑

i ̸=i⋆

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) ≥ −n(2nk)2npi⋆−i⋆−1k − n(2nk)2npi⋆−2n−1k

Let us now consider λnext
pi(p⋆+1) = (2nk)2npi+next/ϵ where ϵ > 0 is the small positive constant

discussed in Section 2. Up next we establish Lemma 6 for the following mutually exclusive cases:

• pi⋆ = p⋆ + 1 and pnext = p⋆ + 1

In this case Ui⋆(p) = 0 since there are m sellers before seller i⋆ ∈ [n] with higher priority
(next has higher index than i⋆). At the same time Ui⋆(p

⋆, p−i⋆) = p⋆ − si⋆ . Finally in
case next selects p⋆ + 1 as its price it gets the good and thus Unext(p

⋆ + 1, p−next) =
p⋆ + 1− snext = ϵ. Combining all the above we get that∑

i∈{i⋆,next}

∑
s′i∈Si

λ̂i
pip′

i
(Ui(pi, p−i)− Ui(p

′
i, p−i)) ≥ (2nk)2np

⋆−i⋆

• pi⋆ = p⋆ + 1 and pnext ≥ p⋆ + 2

In this case Ui⋆(p) = p⋆ + 1− si⋆ since i⋆ ∈ [n] sells its good due to the fact that there are
at least m buyers willing to buy the good at price p⋆+1. Similarly Ui⋆(p

⋆, p−i⋆) = p⋆−si⋆ .
Also notice that next does not sell its good if it sets with price pnext but sell its if it sets
price p⋆ + 1. As a result, Unext(pnext, p−i) = 0 and Unext(p

⋆ + 1, p−i) = ϵ. Combing all
the above we get∑
i∈{i⋆,next}

∑
s′i∈Si

λ̂i
pip′

i
(Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ −(2nk)2np

⋆+2n−i⋆ + (2nk)2npnext−next

≥ −(2nk)2np
⋆+2n−i⋆ + (2nk)2np

⋆+4n−next

• pi⋆ ≥ p⋆ + 2 and pnext ≤ pi⋆

In this case notice that Ui⋆(p) = 0 since there are m sellers with higher priority that seller
i ∈ [n]. At the same time Ui⋆(p

⋆, p−i⋆) = p⋆ − si⋆ since seller next will never report
price p⋆ (snext > p⋆) thus seller i⋆ always sells its good at price p⋆ ∈ [n]. Similarly as
before we get that Unext(p

⋆ + 1, p−next) = ϵ and Unext(pnext, p−next) ≤ pnext − snext =
pnext − (p⋆ + 1− ϵ). Combining all the above we get that∑
i∈{i⋆,next}

∑
s′i∈Si

λ̂i
pip′

i
(Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ (2nk)2npnext−i⋆ − k

ϵ
(2nk)2npnext−next

= (2nk)2npnext−i⋆(1− k

ϵ

(
2nk)−1

)
= (2nk)2npnext−i⋆

(
1− 1

2ϵn

)
=

1

2
(2nk)2npnext−i⋆ for ϵ = 1/n

• pi⋆ ≥ p⋆ + 2 and pnext > pi⋆

In this case Ui⋆(p) ≤ pi⋆ − si⋆ and Ui⋆(p
⋆, p−i⋆) = p⋆ − si⋆ . At the same time notice that

Unext(p
⋆ + 1, p−next) = ϵ since seller next is able to sell its good at price p⋆ + 1. While

seller next can never sell its good at price pnext ∈ [k] since there m other sellers with higher
priority. Thus, Unext(pnext, p−next) = 0. Combining all the above we get
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∑
i∈{i⋆,next}

∑
s′i∈Si

λ̂i
pip′

i
(Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥ −k(2nk)2n(pnext−1)−i⋆ +

1

ϵ
(2nk)2npnext−next · ϵ

= (2nk)2npnext

(
−k(2nk)−2n−i⋆ + (2nk)−next

)
=

1

2
(2nk)2npnext−next

As a result, we overall get that∑
i∈{i⋆,next}

∑
s′i∈Si

λ̂i
pip′

i
(Ui(p

′
i, p−i)− Ui(pi, p−i)) ≥

1

2
(2nk)2npi⋆−i⋆−1

At the same time using the exact same arguments as in the case p⋆ = bj for some buyer j ∈ [n], we
establish that∑
i ̸=i⋆,next

∑
p′
i∈Si

λ̂i
pip′

i
· (Ui(pi, p−i)− Ui(p

′
i, p−i)) ≥ −n(2nk)2npi⋆−i⋆−3k − n(2nk)2npi⋆−2n−1k

Putting everything together we get that∑
i∈[n]

∑
p′
i∈Si

λ̂i
pip′

i
·(Ui(pi, p−i)− Ui(p

′
i, p−i)) ≥

1

2
(2nk)2npi⋆−i⋆−1−n(2nk)2npi⋆−i⋆−3k−n(2nk)2npi⋆−2n−1k ≥ 1
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D Additional Experimental Evaluations

All experiments were conducted in Apple M4 Pro and the Hedge algorithm was run with step-size
γ = 0.1.

We also evaluate the Hedge algorithm in the following set-up. We consider the demand curve
D(p) = −20p+ 100 for p ∈ [1, 5] with a 0.2 discretization. We consider 4 different supply curves
parametrized by m ∈ {0, 100},

Sm(p) =

{
m if p ≤ 4.8
100−m

0.2 · p+ 5m−480
0.2 otherwise

In Figure 6 we consider m ∈ {10, 30, 60, 80}. Each different curve Sm admits a different intersection
point with the demand curve (see Figure 6). In Figure 7 we see that if all sellers use a no-swap regret
algorithm the average selling price converges to the respective market clearing price. The average
selling price at each round t, is the average price of the realized trades.

Figure 6: Supply and Demand Curves Figure 7: Average Selling Price

In all of our experimental evaluation we used step-size γ = 0.1 for the Hedge algorithm.

D.1 No-Swap Regret Dynamics

We perform the exact same experimental evaluation for the no-swap regret algorithm of Blum et
al. [7]. In our implementation we used the Hedge algorithm with step-size γ = 0.1 as our base
no-regret algorithm. In all the above experimental evaluation the resulting no-swap regret dynamics
converge to the market clearing price, something that is to be expected due to Theorem 1.

As in Section 4, we first consider the case n = 2 sellers and buyers where (s1, s2) = (0, 0) and
(b1, b2) = (5, λ). In this instance the highest market clearing price is p⋆ = λ. Figures 8, 9 and 10
verify that the resulting no-swap regret dynamics converge to the respective market clearing price of
each case.

Figure 8: λ = 0.2 Figure 9: λ = 1 Figure 10: λ = 3

17



Next we consider the case n = 100 sellers and sellers with demand curveD(p) = −20p+100 for p ∈
[0, 5] and supply curves, Slinear(p) := p/5,Squad(p) := p2/0.25 and Slinear(p) := p/5,Ssqrt(p) :=
100
√

p/5. Each supply curve intersects with the demand curve at a different price, resulting in
different market clearing prices (see Figure 12). Figure 11 verifies that the resulting no-swap regret
dynamics converge to the respective market clearing price of each case.

Figure 11: Supply and Demand Curves Figure 12: Average Selling Price

Finally we consider the demand curve D(p) = −20p+ 100 for p ∈ [1, 5] with a 0.2 discretization.
We consider 4 different supply curves parametrized by m ∈ {10, 30, 60, 80},

Sm(p) =

{
m if p ≤ 4.8
100−m

0.2 · p+ 5m−480
0.2 otherwise

In Figure 14 we see that if all sellers use the no-swap regret algorithm of Blum et al. [7], the average
price converges to the respective market clearing price.

Figure 13: Supply and Demand Curves Figure 14: Average Selling Price
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We described in detail the results of the paper both in abstract and the intro-
duction.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included a limitation section describing the limitation our work.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We explicitly state all of our assumptions in the beginning of the paper.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes we describe in detail all the necessary information.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have included, the code used for our experimental evaluations along with
detailed instructions on how to run it.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes we have included all the necessary details.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: All of our evaluated online learning dynamics converge to the market clearing
price meaning that there is no variance on the final outcome.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All of experimental evaluation have been conducted in Mac Pro 4. We have
included this information in the experimental section.
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
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Answer: [Yes]
Justification: We have included a respective section.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper deals with fundamental online learning algorithms.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: All the code, data and models were created by the authors.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No experiments with human subjects were performed.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No experiments with human subjects were performed.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LLM usage was used.
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