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ABSTRACT

While stochastic latent variable models (LVMs) now achieve state-of-the-art per-
formance on natural image generation, they are still inferior to deterministic mod-
els on speech. On natural images, these models have been parameterised with very
deep hierarchies of latent variables, but research shows that these model constructs
are not directly applicable to sequence data. In this paper, we benchmark popular
temporal LVMs against state-of-the-art deterministic models on speech. We report
the likelihood, which is a much used metric in the image domain but rarely, and
often incomparably, reported for speech models. This is prerequisite work needed
for the research community to improve LVMs on speech. We adapt Clockwork
VAE, a state-of-the-art temporal LVM for video generation, to the speech domain,
similar to how WaveNet adapted PixelCNN from images to speech. Despite being
autoregressive only in latent space, we find that the Clockwork VAE outperforms
previous LVMs and reduces the gap to deterministic models by using a hierarchy
of latent variables.

1 INTRODUCTION

With the introduction of the variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende
et al., 2014) came two rapid extensions for modeling speech data (Chung et al., 2015; Fraccaro
et al., 2016). Since then, temporal LVMs have undergone little development and their autoregressive
counterparts, such as the WaveNet (Oord et al., 2016a), remain state-of-the-art. In the image domain,
generative LVMs have recently shown superior performance to the PixelCNN (Oord et al., 2016c;b;
Salimans et al., 2017), the model that built the foundation for WaveNet. The improvements in
performance have primarily been driven by altered inference models, including top-down (Sønderby
et al., 2016) and bidirectional inference (Maaløe et al., 2019), deeper latent hierarchies and skip
connections (Sønderby et al., 2016; Maaløe et al., 2019; Vahdat & Kautz, 2020; Child, 2021).

To innovate and compare LVMs we need good baselining, similar to the many reported benchmarks
within the image domain. However, research in the speech domain has often omitted reporting a
likelihood (Oord et al., 2016a; Hsu et al., 2017; Oord et al., 2018b) or has reported likelihoods
that are incomparable due to subtle differences in the model parameterizations (Chung et al., 2015;
Fraccaro et al., 2016; Hsu et al., 2017; Aksan & Hilliges, 2019). Without a proper comparison
standard, it is difficult for the field of explicit likelihood models on speech to evolve further.

This research pushes forward the state of the LVM on speech by (i) properly benchmarking pre-
vious models, (ii) introducing a high-performing hierarchical temporal LVM architecture, and (iii)
analyzing the representations of the latent variables. We find that:

(I) Previous state-of-the-art LVMs achieve close to identical likelihood performance, still sig-
nificantly inferior to the WaveNet. Interestingly, we also find that the WaveNet performs
almost identically to a standard LSTM parameterization (Hochreiter & Schmidhuber, 1997)
but surprisingly worse than the lossless compression algorithm FLAC.

(II) Similar to conclusions within image modeling (Maaløe et al., 2019; Vahdat & Kautz, 2020;
Child, 2021), the LVM expressiveness increases with a deeper hierarchy of stochastic la-
tent variables. In direct comparisons, the introduced model outperforms its deterministic
counterparts. However, due to computational cost, it remains infeasible to run the model
on the same setting as a state-of-the-art WaveNet model.

1



Under review as a conference paper at ICLR 2022

xt

p(xt|x<t)

LSTM

dtdt−1

xt−1

xt

p(xt|z≤t,x<t)p(zt|x<t, z<t)

VRNN

ztzt−1

dtdt−1

xt−1

xt

p(xt|z≤t,x<t)p(zt|x<t, z<t)

SRNN

ztzt−1

dtdt−1

xt−1

xt

p(xt|z≤t)p(zt|z<t)

CW-VAE

ztzt−1

dtdt−1

Figure 1: Generative models for a single time step of a deterministic autoregressive LSTM, the
VRNN and SRNN, and the CW-VAE with one layer of latent variables. Red arrows indicate purely
deterministic paths from the output xt to previous input x<t without passing a stochastic node.
Since the CW-VAE is not autoregressively dependent on the observed variable and inference in-
jects information into only the stochastic variables, information cannot flow through such a fully
deterministic path. This is possible in the VRNN and SRNN. We provide graphical illustrations of
inference models for VRNN and SRNN in the appendix and for CW-VAE in figure 2.

(III) The introduced model finds strongly clustered speech-related features in its hierarchy of
latent variables building a strong case for utilizing such models for other tasks such as
semi-supervised learning.

This shows that LVMs without powerful autoregressive decoders for the observed variable have
potential as generative speech models when using expressive hierarchies of latent variables.

2 LATENT VARIABLE MODELS FOR SPEECH

2.1 RELATED WORK

LVMs formulated in context of the VAE framework continue to be of interest due to their ability to
learn an approximation to the posterior distribution over the dataset. The posterior is usually on a
significantly reduced dimensionality compared to the input data and lies very close to a known prior
distribution. Such approximated posterior provides use cases for other tasks beyond generation such
as semi-supervised learning (Kingma et al., 2014) and out-of-distribution detection (Havtorn et al.,
2021). Furthermore, from image modeling research, we know that powerful LVMs can achieve
state-of-the-art performance without costly autoregressive dependencies on the observed variable.

In recent years, there have been several complementary ways of improving the expressiveness of the
VAE such as building more expressive priors through methods such as Normalizing Flows (Rezende
& Mohamed, 2015) and building a deeper hierarchy of stochastic latent variables such as the Ladder
VAE (Sønderby et al., 2016). In this research, we choose to focus on the latter due to the recent
breakthroughs resulting in state-of-the-art VAEs without costly autoregressive dependencies on the
observed variable (Maaløe et al., 2019; Vahdat & Kautz, 2020; Child, 2021).

To date, there are two widely cited, and to our knowledge state-of-the-art, explicit likelihood gener-
ative LVMs for speech:

• The Variational Recurrent Neural Network (VRNN) (Chung et al., 2015).
• The Stochastic Recurrent Neural Network (SRNN) (Fraccaro et al., 2016).

2



Under review as a conference paper at ICLR 2022

Other recent LVM contributions also achieve impressive results. Among the most noteworthy are
the FH-VAE (Hsu et al., 2017), that leverages another stochastic latent variable to capture global
latent features in the speech, and the VQ-VAE (Oord et al., 2018b), that introduces a hybrid between
an LVM with a quantized latent space and an autoregressive model to generate improved empirical
samples. However, the FH-VAE, with its disjoint latent variables, and the VQ-VAE, with its quan-
tized latent space autoregressive prior fitted after training the encoder/decoder, introduce significant
changes to the original VAE framework to function. The Stochastic WaveNet (Lai et al., 2018) and
STCN (Aksan & Hilliges, 2019) are fully convolutional models that resemble the VRNN. They are
however only autoregressive in observed space and utilize a hierarchy of latent variables.

Building on learnings from the LVM improvements in the image domain, we formulate a novel
temporal LVM by introducing a hierarchy of stochastic latent variables through the adaptation of a
model recently proposed for video prediction:

• The Clockwork Variational Autoencoder (CW-VAE) (Saxena et al., 2021).

2.2 TEMPORAL VARIATIONAL AUTOENCODING

The VRNN, SRNN and CW-VAE are all autoencoders and take as input a variable-length sequence
x = (x1,x2, . . . ,xTx) with xt ∈ XDx . In general, x may refer to the original observed variable or
a deterministic and temporally downsampled representation of the observed variable.

First, x is encoded to a temporal stochastic latent representation z = (z1, z2, . . . ,zTz ) with zt ∈
ZDz and length Tz ≤ Tx. This representation is then used to reconstruct the original input x.
The latent variable is assumed to follow some prior distribution p(zt|·). The prior distribution may
depend on latent and observed variables at previous time steps, z<t and x<t, but not xt. Here we
have introduced the shorthand notation z<t = (z0, z1, . . . ,zt−1).

The models are trained to maximize a likelihood objective. The exact likelihood is given by

log pθ(x) = log

∫
pθ(x, z) dz , (1)

but is intractable to optimize due to the integration over the latent space. Instead, the true posterior is
variationally approximated by qφ(z|x) which yields the well-known evidence lower bound (ELBO)
on the exact likelihood given by

log pθ(x) ≥ Ez∼qφ(z|x) [log pθ(x, z)− log qφ(z|x)] = L(θ,φ;x) , (2)

with respect to {θ,φ}. We omit the θ and φ subscripts for the remainder of the paper. A graphical
illustration of the models can be seen in figure 1.

2.3 VARIATIONAL RECURRENT NEURAL NETWORK (VRNN)

The VRNN (Chung et al., 2015) is essentially a VAE per timestep t. Each VAE is conditioned on
the hidden state of an RNN dt−1 ∈ RDd , with state transition dt = f([xt−1, zt−1],dt−1) where
[·, ·] denotes concatenation. The joint distribution over observed and latent variables factorizes over
time and the latent variables are autoregressive in both the observed and latent space:

p(x, z) =
∏
t

p(xt|z≤t,x<t)p(zt|x<t, z<t) . (3)

The approximate posterior distribution similarly factorizes over time:

q(z|x) =
∏
t

q(zt|x≤t, z<t) . (4)

The ELBO then becomes

log p(x) ≥ Ez∼q(z|x)

[∑
t

log p(xt|z≤t,x<t)− KL (q(zt|x≤t, z<t) || p(zt|x<t, z<t))

]
. (5)
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Figure 2: Inference (left) and generative (right) models for the Clockwork VAE with a hierarchy of
two latent variables with s1 = 1 and s2 = 2. The models are unrolled over four consecutive time
steps but note that the graph continues towards t = 0 and t = Tx. Blue arrows indicate parameter
sharing between the inference and generative models. We omit the deterministic variable for clarity.

The VRNN uses isotropic Gaussian distributions for the prior and posterior. It uses multilayer
perceptrons (MLPs), denoted by ϕ, to parameterize all distributions.

q(zt|x≤t, z<t) = N
(
µz,t, diag(σ2

z,t)
)
, where

[
µz,t,σ

2
z,t

]
= ϕenc

vrnn(xt,dt) , (6)

p(zt|x<t, z<t) = N
(
µ0,t, diag(σ2

0,t)
)
, where

[
µ0,t,σ

2
0,t

]
= ϕprior

vrnn (dt) , (7)

p(xt|z≤t,x<t) = D (ρx,t) , whereρx,t = ϕdec
vrnn(zt,dt) . (8)

The recurrent transition function f is parameterized by a Gated Recurrent Unit (GRU) (Cho et al.,
2014). At timestep zero, d0 is chosen as the zero vector. D(ρx,t) denotes any output distribution
parameterized by a set of parameters ρx,t.

We note that since the decoder is dependent on dt, the transition function f allows the VRNN to
learn to ignore parts of or the entire latent variable and establish a purely deterministic transition
from xt−1 to dt similar to a regular GRU (see figure 1) which well-know weakness of VAEs with
powerful decoders (Bowman et al., 2016; Sønderby et al., 2016).

2.4 STOCHASTIC RECURRENT NEURAL NETWORK (SRNN)

The SRNN (Fraccaro et al., 2016) is similar to the VRNN but differs by separating the stochastic
latent variables from the deterministic representations entirely (see figure 1). In generation, this
is done by having a GRU run forwards in time over the observed variable to form a deterministic
representation dt from x<t. The latent variable is then sampled from the prior p(zt|x<t, z<t) which
is conditioned directly on the previous latent variable.

The SRNN also uses a more intricate inference network which essentially learns to solve a smooth-
ing problem rather than a filtering problem by also running backwards in time. Specifically,
in the smoothing configuration, the inference model q(zt|x≤t, z<t) includes an additional de-
terministic variable computed from dt and xt by a GRU running backwards in time i.e. at =
f rev([xt,dt],at+1). In the filtering configuration, this is replaced with an MLP, at = f rev([xt,dt]).
The encoding distribution q(zt|x≤t, z<t) is then conditioned on at, ϕenc

srnn(xt,at). In our experi-
ments we run the SRNN in the smoothing configuration.

2.5 CLOCKWORK VARIATIONAL AUTOENCODER (CW-VAE)

The CW-VAE (Saxena et al., 2021) is a hierarchical latent variable model recently introduced for
video generation. Contrary to the VRNN and SRNN, it is designed to make use of a hierarchy
of latent variables and uses top-down inference (Sønderby et al., 2016) which enables learning a
covariance between the latent variables in the hierarchy. As illustrated in figure 1, it is autoregressive
in the latent space but not in the observed space. Since inference only injects information into the
stochastic variables, there is no deterministic path connecting the previously observed variables to
the next. This forces the information to flow through the stochastic latent variables (figure 1). Hence,
the VRNN and SRNN can collapse to a deterministic model while the CW-VAE cannot.
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We denote the latent variable at timestep t and layer l ∈ [1, L] by zlt. In CW-VAE each latent
layer is updated only every sl timesteps, where sl is a layer-dependent integer, or stride, defined
in a way such that sl is largest for larger values of l. This imposes the inductive bias that latent
variables exist at different temporal resolutions with zl changing over longer time scales than zl−1.
In speech, phonetic variation (10− 400ms), morphological and semantic features at the word level
and speaker-related variation at the global scale make this a reasonable assumption.

The timesteps at which a layer updates its latent state are given by Tl ≡ {t ∈ [1, T ] | t mod sl = 1}.
In practice and equivalently, we represent this by having references to the unique states copied over
time, zlt ≡ zlmaxτ {τ∈Tl|τ≤t}. The joint distribution factorizes over time and over the latent hierarchy.

p(x, z) =

(∏
t

p
(
xt|z1t

))( L∏
l=1

∏
t∈Tl

p
(
zlt|zlt−1, zl+1

t

))
. (9)

The inference model similarly factorizes over time and over the layers of the latent hierarchy with
the posterior conditioned on a span of the observed variable xt:t+sl dependent on the layer stride sl.

q(z|x) =
L∏
l=1

q
(
zl|x

)
=

L∏
l=1

∏
t∈Tl

q
(
zlt|zlt−1, zl+1

t ,xt:t+sl
)
. (10)

Similar to the VRNN and SRNN, an encoder, ϕenc,l
cwvae, is used to parameterize the approximate poste-

rior q(z|x) which is taken to be an isotropic Gaussian, as is the prior. This encoder may be the same
for all stochastic layers l, be layer-specific or use a ladder-network as in the LadderVAE (Sønderby
et al., 2016). A graphical representation of the inference and generative models for a two-layered
CW-VAE can be seen in figure 2.

2.6 MODELING SPEECH WITH CLOCKWORK VAES

In the original paper, sl , kl−1 for some constant k making it exponentially dependent on the
layer index l with s1 = 1. This is feasible in the video domain with typical frame rates of 30
or 60Hz. In the speech domain however, the observed variable can have sample rates of tens of
thousands of frames per second. This results in sequence lengths that are not generally feasible to
model with recurrent architectures. For this reason, we chose s1 � 1 to achieve an initial temporal
downsampling and let sl , cl−1s1 for l > 1 and some constant c.

We design the encoder as a ladder-network similar to Sønderby et al. (2016), as this provides some
benefits compared to alternatives such as a standalone encoder per latent variable. Specifically, a
ladder-network leverages parameter sharing across the latent hierarchy and importantly processes
the full observed sequence only once and shares the resulting representations for all latent variables.
This yields a more computationally efficient encoder and a higher activity in latent variables to-
wards the top of the hierarchy. Finally, we parameterize the encoder/decoder networks using 1D
convolutions that operate on the raw waveform.

2.7 OUTPUT DISTRIBUTION

The choice of output distribution D(ρx,t) is generally data dependent. At the most fundamental
level, we select either continuous and discrete distributions depending on the nature of x, the likeli-
hoods of which are not comparable.

In the original VRNN and SRNN, D(ρx,t) was taken to be the continuous isotropic Gaussian
or a mixture of it. This choice generally results in an ill-posed problem with a likelihood that
is unbounded from above (Mattei & Frellsen, 2018). As a result, reported likelihoods can be
very sensitive to hyperparameter settings and hard to compare. Additionally, in audio modeling,
x ∈ {0, 1, . . . , 2b − 1} denotes a discrete-valued waveform sampled with some bit-depth b. Con-
tinuous distributions, and especially mixtures of continuous distributions, are well-known to be able
to yield arbitrarily high likelihoods when used to model discrete data (Bishop, 2006). In the VRNN
and SRNN, xwas scaled to take values between -1 and 1, as is usual, yielding a gap between the dis-
crete values of 1

2b−1 . This alleviates the issue with discrete values since x becomes approximately
continuous as b becomes large. However, the bit-depth of audio is rarely above 24 meaning that the

5



Under review as a conference paper at ICLR 2022

gap between unique discrete values remains much larger than e.g. the gap between 32 bit floating
point numbers. This ill-posed likelihood has also been used in other works (Hsu et al., 2017; Lai
et al., 2018; Aksan & Hilliges, 2019; Zhu et al., 2020).

To correctly model discrete x with a continuous distribution we must dequantize x to be continuous
by e.g. adding uniform noise or using a variational approach (Ho et al., 2019). The continuous like-
lihood obtained via dequantization has been shown to be a lower bound on the likelihood that could
have been obtained with a discrete distribution (Theis et al., 2016). Dequantization was common in
the image domain (Dinh et al., 2015; Sønderby et al., 2016) until the introduction of the discretized
mixture of logistics (DMoL) (Salimans et al., 2017).

The DMoL was introduced for use in autoregressive models (Salimans et al., 2017) but has become
the de facto standard output distribution for generative modeling of natural images. Notably, this is
also the case for latent variable models that are not autoregressive in the observed variable (Maaløe
et al., 2019; Vahdat & Kautz, 2020; Child, 2021). Recently, it was applied to generative speech
modeling of raw waveforms (Oord et al., 2018a). As opposed to e.g. a categorical distribution, the
DMoL induces ordinality on the observed space such that values that are numerically close are also
considered close in the probabilistic sense. This is a sensible inductive bias for images as well as
audio where individual samples represent the amplitude of light and pressure, respectively.

3 SPEECH MODELING EXPERIMENTS

s Model Configuration L [bpf]
1 Uniform Uninformed 16.00
1 DMoL Optimal 15.60
- FLAC - 8.582
1 WaveNet Dc = 96 10.88
1 LSTM Dd = 256 11.11
1 VRNN Dz = 256 ≤11.09
1 SRNN Dz = 256 ≤11.19

64 WaveNet Dc = 96 13.30
64 LSTM Dd = 256 13.34
64 VRNN Dz = 256 ≤12.54
64 SRNN Dz = 256 ≤12.42
64 CW-VAE Dz = 96, L = 1 ≤12.44
64 CW-VAE Dz = 96, L = 2 ≤12.17
64 CW-VAE Dz = 96, L = 3 ≤12.15
256 WaveNet Dc = 96 14.11
256 LSTM Dd = 256 14.20
256 VRNN Dz = 256 ≤13.27
256 SRNN Dz = 256 ≤13.14
256 CW-VAE Dz = 96, L = 1 ≤13.11
256 CW-VAE Dz = 96, L = 2 ≤12.97
256 CW-VAE Dz = 96, L = 3 ≤12.87

Table 1: Model likelihoods L on TIMIT represented
as a 16bit µ-law encoded PCM for different stochastic
latent variable models compared to deterministic au-
toregressive baselines. For the CW-VAE, s refers to s1
and the multi-layered models have c = 8. Likelihoods
are given in units of bits per frame (bpf).

Data We train models on TIMIT (Garo-
folo, 1993), LibriSpeech (Panayotov et al.,
2015) and LibriLight (Kahn et al., 2020).
We provide more details on the datasets in
the appendix. We represent the audio as
µ-law encoded PCM standardized to (dis-
crete) values in [−1, 1] with discretization
gap of 1

2b−1 . We use the original bit depth
of 16 bits and sample rate of 16 000Hz.
We use this representation both as the in-
put and the reconstruction target.

Likelihood We report likelihoods in
units of bits per frame (bpf) as this yields a
more intuitive, interpretable and compara-
ble version of likelihood than total likeli-
hood in nats. It also has direct connections
with information theory and compression
(Shannon, 1948; Townsend et al., 2019).
In units of bits per frame, lower is better.
The obtained likelihoods can be seen in ta-
bles 1 and 2. For LVMs, we report the one-
sample ELBO. We describe how to con-
vert likelihood to bpf in the appendix.

Models Architecture and training details
are sketched below, while the full details
are in the appendix along with additional
results for some alternative model config-
urations. We select model configurations
that can be trained on GPUs with a maxi-
mum of 12GB of RAM and train all mod-
els until convergence. We use a DMoL with 10 components for the output distribution of all models
and model all datasets at their full bit depth of 16 bits. We supply some additional results with a
Gaussian output distribution in the appendix.
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s Model Configuration Likelihood L [bpf]
dev-clean dev-other test-clean test-other
10h/100h 10h/100h 10h/100h 10h/100h

1 Uniform Uninformed 16.00 16.00 16.00 16.00
1 DMoL Optimal 15.66 15.70 15.62 15.71
- FLAC - 9.390 9.292 9.700 9.272
1 Wavenet Dc = 48 11.10/10.92 11.02/10.80 11.26/11.08 11.22/11.00
1 Wavenet Dc = 96 10.96/10.89 10.85/10.76 11.12/11.01 11.05/10.85
64 LSTM Dd = 256 13.65/13.49 13.62/13.48 13.64/13.47 13.65/13.49
64 CW-VAE L = 1 ≤ 12.32/12.24 12.32/12.23 12.43/12.33 12.43/12.33
64 CW-VAE L = 2 ≤ 12.30/12.22 12.30/12.21 12.40/12.31 12.39/12.32

Table 2: Model likelihoods L on LibriSpeech test sets represented as 16 bit µ-law encoded PCM.
For the CW-VAE, s refers to s1 and the two-layered models have s2 = 8s1. The models are trained
on either the 10 h LibriLight subset or the 100 h LibriSpeech train-clean-100 subset for comparison.
Likelihoods are given in units of bits per frame (bpf).

We supply three elementary baselines that form approximate upper and lower bounds on the likeli-
hood. Specifically, we evaluate an uninformed discrete uniform distribution and a two-component
DMoL distribution fitted to the training set to benchmark worst case performance. We also report
the compression achieved by the lossless compression algorithm, FLAC (Coalson & Castro Lopo,
2019), which constitutes an approximate lower bound for all considered models.

We configure the WaveNet baseline as in the original paper using ten layers per block and five blocks,
L = 10, B = 5. We select the number of channels in the convolutions throughout the model, Dc, to
allow running it on a 12GB GPU. We evaluate WaveNet on single frames s = 1 as well as stacks of
s = 64 and 256 frames.

We also provide an LSTM baseline (Hochreiter & Schmidhuber, 1997) which runs on stacked wave-
forms with stack size s. Hence, every dt is computed from xt:t+s. It uses encoders and decoders
similar to the VRNN and SRNN models and differs only in the design of the recurrent cell where
the LSTM is fully deterministic. We report on LSTM models with hidden state size Dd = 256 here.
Other sizes yielded as good or inferior results and can be found in the appendix.

The configuration of the VRNN and SRNN models is with waveform stacks of size s = 1, s = 64
and 256. The stack size of s = 1 is computationally demanding and hence we train this on short
randomly sampled segments for each training example and only train them on TIMIT. For both
models we set the latent variable equal in size to the hidden units and run them with Dz = 256.

The CW-VAE is configured similarly to the VRNN and SRNN models with a convolutional en-
coder/decoder using strides of s1 = 64 or 256 and using c = 8. This yields s2 = 512 or 2048 and
s3 = 4096 or 16384, respectively. We run the Clockwork VAE with L = 1, 2 and 3 layers of latent
variables. The number of convolutional channels is set equal to Dz .

3.1 RESULTS

For temporal resolutions of s = 1, the deterministic autoregressive models yield the best likelihoods
with WaveNet achieving 10.88 bpf on TIMIT as seen in table 1. Somewhat surprisingly, the LSTM
baseline almost matches WaveNet with a likelihood of 11.11 bpf at s = 1. Unsurprisingly, due to
being autoregressive also in training, the LSTM trains considerably slower than the parallel dilated
convolutional architecture of WaveNet. Notably, the VRNN and SRNN models achieve likelihoods
close to that of WaveNet and the LSTM at around 11.09 bpf .

For s = 64, the LSTM trains more efficiently but this comes at the cost of higher bpf. Notably, the
LSTM at s = 64 yields a considerably worse likelihood than do VRNN, SRNN and CW-VAE at
the same stride being separated by close to 1 bit. The CW-VAE outperforms both LSTM, VRNN
and SRNN when configured with a hierarchy of latent variables reaching 12.15 bits with L = 3.
With a single layer of latent variables, the missing autoregression in the observed space results in
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Figure 3: (left) Clustering of phonemes in a two-dimensional Linear Discriminant Analysis (LDA)
subspace of a CW-VAE latent space of z1. (right) A leave-one-out classification accuracy for a k-
nearest-neighbor classifier for different k fitted to a 5D linear subspace of a CW-VAE latent space.

a likelihood of 12.44 bpf which is inferior to both SRNN and VRNN but notably still better than
the LSTM. These observations also carry to s = 256, where a multilayered CW-VAE outperforms
LSTM, VRNN and SRNN. For strides s > 1, previous work has attributed the inferior performance
of autoregressive sequence models without latent variables, such as WaveNet and the LSTM, to the
ability of LVMs to model intra-step correlations (Lai et al., 2019).

For the CW-VAE, VRNN and SRNN, decreasing the stack size s improves the likelihood, as for
deterministic models. This seems to indicate that LVMs may be able to outperform autoregressive
models as the stack size approaches s = 1. However, due to computational cost of scaling up the
CW-VAE for s = 1, it was infeasible to perform this experiment at present.

For LibriSpeech (table 2), we see similar results with the CW-VAE improving upon the LSTM with
s = 64 and the CW-VAE performing better with an additional layer of latent variables. WaveNet
performs similar on LibriSpeech compared to TIMIT This shows that state-of-the-art likelihoods
can be achieved for speech generation with autoregression purely in the latent space as long as the
latent space is expressive enough. This is similar to the findings on state-of-the-art LVMs for image
modeling (Maaløe et al., 2019; Vahdat & Kautz, 2020; Child, 2021).

Finally, a connection can be made between the likelihoods achieved by the considered models and
the compression rates of lossless audio compression algorithms. Whereas lossy compression algo-
rithms such as MP3 exploit the dynamic range of human hearing to achieve 70-95% reduction in
bit rate (Brandenburg et al., 1998), state-of-the-art lossless compression algorithms such as FLAC
achieve 50-70% (Coalson & Castro Lopo, 2019) independently of audio content. The LibriSpeech
dataset achieves an overall compression to 56.2% of the original bit rate. Although both the de-
terministic autoregressive models and the LVMs are lossy, the objective they are trained towards
minimize the amount of incurred loss which arguably makes them comparable to lossless compres-
sion algorithms. The best likelihoods achieved by the models considered above roughly correspond
to a 30% reduction in bit rate which seems to indicate that there are still solid gains in likelihood to
be made in speech modeling.

3.2 EVALUATION OF LATENT REPRESENTATIONS

A potential benefit of LVMs over purely autoregressive models is that they learn a distilled repre-
sentation of the data in the form of latent variables. These should capture the high-level information
in the data, and may serve as building blocks for downstream tasks. Here we evaluate the quality of
this learned latent space.

Phonemes Phonemes are a fundamental unit of speech that relate to how certain parts of a word
are pronounced. The TIMIT dataset is annotated with temporally aligned phoneme classes which
allows us to analyze how they are organized in the CW-VAE latent space. Phonemes have durations
in the milliseconds which for the TIMIT dataset ranges between 10 and 400ms (see figure 11 in
appendix for a full overview). Phoneme recognition is a form of automatic speech recognition and
is closely related to the speech-to-text task (Hsu et al., 2017).
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Figure 4: Leave-one-out k-nearest-neighbor accuracy with different k for (left) the speaker’s gender
and (right) the height of male speakers (female speakers yield a similar result).

We perform the evaluation with a two-layered CW-VAE with s1 = 64 and s2 = 512. These strides
correspond to temporal resolutions of 4ms and 32ms both of which are on the order of phonemes.
We therefore expect both latent variables to capture information related to phonemes. We infer
the latent representations of all utterances of a single speaker from the TIMIT test set. We take
100 Monte Carlo samples to estimate the mean representation per time step. We then compute the
average latent representation over the duration of each phoneme. This approximately marginalizes
out other sources of variation within the duration of the phoneme. We obtain a low-dimensional
linear subspace of the latent space using a linear discriminant analysis (LDA). By considering a
single speaker, we exclude inter-speaker variation in phoneme pronunciation.

In figure 3 (left) we visualize the linear subspace of z1 and the resulting phoneme clusters along
with the average accuracy of a leave-one-out k-nearest-neighbor (KNN) classifier on the single
left-out latent representation reduced with a 5-dimensional LDA. We compare to the time-averaged
frequency-bin representation of a Mel-spectrogram, also LDA reduced, with hop length set to 64,
equal to s1 for the CW-VAE, window size 256 and 80 Mel bins. This is a very common preprocessing
step in speech applications. We note that most phonemes are separable in the subspace and that
related phonemes such as “s” and “sh” are close1. We show that both latent spaces yield significantly
better KNN accuracies than the Mel features indicating their usefulness for downstream tasks.

Exploration of latent variable hierarchy In figure 4 we similarly compute a leave-one-out KNN
classification on the time-averaged latent representations and Mel-features for the gender and height
of the speaker. We divide the height into three classes: below 175 cm, above 185 cm and in-between.
Compared to phonemes, these are global attributes that can affect the qualities of speech. Here we
again see improved performance from using the learned latent space over Mel-features. Notably,
z2 is outperformed by the Mel-features for gender identification which may indicate that this latent
variable learns to ignore this attribute compared to z1.

4 CONCLUSION/DISCUSSION

In this paper we have presented benchmarks for speech generation using stochastic latent variable
models in comparison to deterministic autoregressive models. We have adapted the state-of-the-art
video generation model, Clockwork VAE, to the speech domain, similar to how WaveNet adapted
the PixelCNN. The Clockwork VAE with a hierarchy of stochastic latent variables outperformed
other latent variable models that are autoregressive on both the observed and latent variables. This is
in itself impressive since the Clockwork VAE is autoregressive only in the latent space. Finally, the
Clockwork VAE outperformed a high-performing deterministic autoregressive model showing com-
parable results to WaveNet. However, we are still to see a latent variable model outperform WaveNet
in a direct comparison. The Clockwork VAE current remains too computationally expensive for this
to happen. This research serves as a first step in that direction.

1A full description of the phonemes and phone codes used for the TIMIT dataset can be found at https:
//catalog.ldc.upenn.edu/docs/LDC93S1/PHONCODE.TXT
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REPRODUCIBILITY STATEMENT

The source code used for the work presented in this paper will be made available before the confer-
ence. This code provides all details, practical and otherwise, needed to reproduce the results in this
paper including data preprocessing, model training, model likelihood and latent space evaluation.
The source code also includes scripts for downloading and preparing the LibriSpeech, LibriLight and
TIMIT datasets. The LibriSpeech and LibriLight datasets are open source and can be downloaded
with the preparation scripts. They are also available at https://www.openslr.org/12 and
https://github.com/facebookresearch/libri-light, respectively. The TIMIT
dataset is commercial and must be purchased and downloaded from https://catalog.ldc.
upenn.edu/LDC93S1 before running the preparation script.

The stochastic latent variable models considered in this work do not provide an exact likelihood
estimate nor an exact latent space representation. For the likelihood, they provide a stochastic lower
bound and some variation in the reproduced likelihoods as well as latent representations must be
expected between otherwise completely identical forward passes. This variance is fairly small in
practice when averaging over large datasets such as those considered in this work. We seed our
experiments to reduce the randomness to a minimum, but parts of the algorithms underlying the
CUDA framework are stochastic for efficiency. To retain computational feasibility, we do not run
experiments with a deterministic CUDA backend.

ETHICS STATEMENT

The work presented here fundamentally deals with automated perception of speech and generation
of speech. These applications of machine learning potentially raise a number of ethical concerns.
For instance, the these models might see possibly adverse use in automated surveillance and gener-
ation of deep fakes. To counter some of these effects, this work has focused on openness by using
publicly available datasets for model development and benchmarking. Additionally, the work will
open source the source code used to create these results. Ensuring the net positive effect of the
development of these technologies is and must continue to be an ongoing effort.

We do not associate any significant ethical concerns with the datasets used in this work. However,
one might note that the TIMIT dataset has somewhat skewed distributions in terms of gender and
race diversity. Specifically, the male to female ratio is about two to one while the vast majority of
speakers are Caucasian. Such statistics might have an effect of some ethical concern on downstream
applications derived from such a dataset as also highlighted in recent research (Koenecke et al.,
2020). In LibriSpeech, there is an approximately equal number of female and male speakers while
the diversity in race is unknown to the authors.
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A DATASETS

TIMIT TIMIT (Garofolo, 1993) is a speech dataset which contains 16 kHz recordings of 630
speakers of eight major dialects of American English, each reading ten phonetically rich sentences.
It amounts to 6300 total recordings splits approximately in 3.94 hours of audio for training and 1.43
hours of audio for testing. No speakers or sentences in the test set are in the training set. TIMIT
includes temporally aligned annotations of phonemes and words as well as speaker metadata such
as gender, height, age, race, education level and dialect region (Garofolo, 1993).

LibriSpeech and LibriLight The LibriSpeech dataset (Panayotov et al., 2015) consists of read-
ings of public domain audio books amounting to approximately 1000 h of audio. The data is derived
from the LibriVox project. LibriLight (Kahn et al., 2020) is a subset of LibriSpeech created as an
automatic speech transcription (ASR) benchmark with limited or no supervision. We specifically
train on the 100 h train-clean-100 subset of LibriSpeech and the 10 h subset of LibriLight.

Both datasets store the audio as 16 bit pulse code modulation (PCM).

B MODEL ARCHITECTURES

VRNN We implement the VRNN as described in the original work (Chung et al., 2015) but replace
the Gaussian output distribution with the DMoL.

SRNN We implement the VRNN as described in the original work (Fraccaro et al., 2016) but
replace the Gaussian output distribution with the DMoL.

CW-VAE We implement the CW-VAE based on the original work (Saxena et al., 2021) but with
some modifications also briefly described in section 2.6. We replace the encoder/decoder model
architectures of the original work with architectures designed for waveform modelling. Specifically,
the encoder and decoder are based on the Conv-TasNet (Luo & Mesgarani, 2019) and uses similar
residual block structure. However, contrary to the Conv-TasNet, we require downsampling factors
larger than two. In order to achieve this we

LSTM The LSTM baseline uses an MLP encoder to embed the waveform subsegment xt:t+s−1
to a feature vector before feeding it to the LSTM cell. The encoder is similar to the parameterization
of φenc

vrnn for the VRNN described above. The LSTM cell produces the hidden state dt from xt:t+s−1
and passes it to a decoder. Like the encoder, the decoder is parameterized like φdec

vrnn of the VRNN. It
outputs the waveform predictions xt+s:t+2s−1 from the hidden state dt.

WaveNet We implement WaveNet as described in the original work (Oord et al., 2016a) but use
a discretized mixture of logistics as the output distribution as also done in other work (Oord et al.,
2018a). Our WaveNet is not conditioned on any signal other than the raw waveform. The model
applies the causal convolution directly to the raw waveform frames (i.e. one input channel). An
alternative option that we did not examine is to replace the initial convolution with an embedding
lookup with a learnable vector for each waveform frame value.

During training, a single WaveNet output is independent from inputs outside of the receptive field.
For this reason, we can generally train WaveNet on random subsequences of training examples that
are shorter than the full examples. This reduces memory requirements but does not bias the gradient.
The subsequences are chosen to be of length 16000 for models with s = 1 which is larger than the
receptive field of 5117 and corresponds to one second of audio in TIMIT and LibriSpeech. For
models with s = 64 and s = 256 we train on the full example lengths since the receptive field is
effectively s times larger.

C TRAINING DETAILS

We implement all models and training scripts in PyTorch 1.9 (Paszke et al., 2017). For both datasets
we use the Adam optimizer (Kingma & Ba, 2015) with default parameters as given in PyTorch. We
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use learning rate 3e− 4 and no learning rate schedule. We use PyTorch automatic mixed preceision
(AMP) for WaveNet to yield significant reductions in memory consumption. We did not observe any
significant difference in final model performance compared to full (32 bit) precision when trained
with a small number of channels.

We split TIMIT as done in other work (Chung et al., 2015; Fraccaro et al., 2016; Aksan & Hilliges,
2019). We train and test on the full examples, padding batches with zeros when examples are not of
equal length. We sample batches such that they consist of examples that are approximately the same
length to minimize the amount of computation wasted on padding.

We train on the 10h and 100h hour subsets of Librispeech (Panayotov et al., 2015). The 10h subset
is as defined in the LibriLight dataset (Kahn et al., 2020) (a subset of Librispeech). The 100h subset
corresponds to the Librispeech train-clean-100 split. In all cases we evaluate on all the test splits
dev-clean, dev-other, test-clean, test-other.

Since the average sequence length in Librispeech is about 4 times longer than that of TIMIT, we do
not train on the full sequences. Instead, in each epoch we randomly sample a segment of length Ls
frames from each training example. For WaveNet we set Ls = 16000 which, as required, is larger
than the receptive field and train with batch size 2. For CW-VAE we set Ls = 128000 as the model
is autoregressive in latent space and as such can benefit from longer sequence lengths and train with
batch size 4. This length approximately corresponds to the length of the longest examples in TIMIT.

In testing, we evaluate on the full sequences. For LibriSpeech we need to split the test examples
into segments, again due to memory constraints. Hence, we do several forward passes per test
example, carrying along the internal state for models that are autoregressive in training (LSTM,
VRNN, SRNN, CW-VAE) and define segments to overlap according to model architecture.

D CONVERTING THE LIKELIHOOD TO UNITS OF BITS PER FRAME

Here we briefly describe how to compute a likelihood in units of bits per frame (bpf). In the main
text, we use log to mean loge, but here we will be explicit. In general, conversion from nats to
bits (i.e., from loge to log2) is achieved by log2(x) = loge(x)/ log2(e). Remember that log2 p(x)
factorizes as

∑
t log2 p(xt). In contrast to computing bits per dimension in the image domain, it is

important to remember that each example xi must be weighted differently according the sequence
length of each specific example. Thus, we compute the likelihood in bits per frame over the entire
dataset as: ∑

i

∑
t log2 p(x

i
t)∑

i Ti
(11)

where i denotes the example index, Ti is the length of that example and t is the time index.

E ADDITIONAL LATENT SPACE CLUSTERING

We provide some additional latent space clustering of speaker gender in figure 5 and of speaker
height in figure 6.

F ADDITIONAL LIKELIHOOD RESULTS

TIMIT, µ-law, DMoL We provide additional results on TIMIT with audio represented as µ-law
encoded PCM in table 3.

TIMIT, linear, Gaussian We also provide some results on TIMIT with the audio instead repre-
sented as linear PCM (linearly encoded) and using Gaussian output distributions as has been done
previously in the literature (Chung et al., 2015; Fraccaro et al., 2016; Lai et al., 2018; Aksan &
Hilliges, 2019). We provide the results in table 4 and include likelihoods reported in the literature
for reference. For our models, we use the same architectures as before but replace the discretized
mixture of logistics with either a Gaussian distribution or a mixture of Gaussian distributions.
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We constrain the variance of the Gaussians used with our models to be at least σ2
min = 0.012 in

order to avoid the variance going to zero, the likelihood going to infinity and optimization becoming
unstable.

From table 4 we note that the performance of the CW-VAE with Gaussian output distribution when
modeling linear PCM (i.e. not µ-law encoded) does not compare as favorably to the other baselines
as it did with the discretized mixture of logistics distribution. We hypothesize that this has to do with
using a Gaussian output distribution in latent variable models which, as has been reported elsewhere
(Mattei & Frellsen, 2018), leads to a likelihood function that is unbounded above and can grow
arbitrarily high. We discuss this phenomenon in further detail in section G.

We specifically hypothesize that models that are autoregressive in the observed variable (VRNN,
SRNN, Stochastic WaveNet, STCN) are well-equipped to utilize local smoothness to put very high
density on the correct next value and that this in turn leads to a high degree of exploitation of the
unboundedness of the likelihood. Not being autoregressive in the observed variable, the CW-VAE
cannot exploit this local smoothness in the same way. Instead, the reconstruction is conditioned on
a stochastic latent variable, p(xt|z1t ), which introduces uncertainty and likely larger reconstruction
variances.

G ADDITIONAL DISCUSSION ON GAUSSIAN LIKELIHOODS IN LVMS

As noted in section F, we constrain the variance of the output distribution of our models to be
σ2

min = 0.012 for the additional results on TIMIT with Gaussian outputs. This limits the maximum
value attainable by the prediction/reconstruction density of a single waveform frame xt.

Specifically, we can see that since

log p(xt|·) = logN
(
xt;µt,max

{
σ2

min, σ
2
t

})
, (12)

the best prediction/reconstruction density is achieved when σ2 ≤ σ2
min and µ = xt. Here · indicates

any variables we might condition on such as the previous input frame xt−1 or some latent variables.
We can evaluate this best case scenario for σ2

min = 0.012,

logN
(
xt;xt, σ

2
min

)
= −1

2
log 2π − 1

2
log σ2

min −
1

2σ2
min

(xt − xt)

= −1

2
log 2π − 1

2
log 0.012

= 3.686 . (13)

Hence, with perfect prediction/reconstruction and the minimal variance (0.012), a waveform
frame contributes to the likelihood with 3.686 nats. With an average test set example length of
49 367.3 frames frames this leads to a best-case likelihood of 181967. We provide a list of maxi-
mally attainable Gaussian likelihoods on TIMIT for different minimal variances in table 5. One can
note that the maximal likelihood at σ2

min = 0.12 is lower than the likelihoods achieved by some mod-
els in table 4. This indicates that the models learn to use very small variances in order to increase
the likelihood.

H ADDITIONAL DISCUSSION ON THE CHOICE OF OUTPUT DISTRIBUTION

The DMoL uses a discretization of the continuous logistic distribution to define a mixture model
over a discrete random variable. This allows it to parameterize multimodal distributions which can
express ambiguity about the value of xt. The model can learn to maximize likelihood by assigning
a bit of probability mass to multiple potential values of xt.

While this is well-suited for autoregressive modeling, for which the distribution was developed, the
potential multimodality poses a challenge for non-autoregressive latent variable models which inde-
pendently sample multiple neighboring observations at the output. In fact, if multiple neighboring
outputs defined by the subsequence xt1:t2 have multimodal p(xt|·), we risk sampling a subsequence
where each neighboring value expresses different potential realities, independently.
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s Model Configuration L [bpf]
1 Wavenet DC = 16 11.27
1 Wavenet DC = 24 11.14
1 Wavenet DC = 32 11.03
1 Wavenet DC = 96 10.88
1 Wavenet DC = 128 10.98
1 Wavenet DC = 160 10.91
1 LSTM Dd = 128, L = 1 11.40
1 LSTM Dd = 256, L = 1 11.11
1 VRNN Dz = 256 ≤11.09
1 SRNN Dz = 256 ≤11.19

4 LSTM Dd = 256, L = 1 11.65

16 LSTM Dd = 256, L = 1 12.54
16 LSTM Dd = 256, L = 2 12.54
16 LSTM Dd = 256, L = 3 12.44

64 WaveNet Dc = 96 13.30
64 LSTM Dd = 96, L = 1 13.49
64 LSTM Dd = 96, L = 2 13.46
64 LSTM Dd = 96, L = 3 13.40
64 LSTM Dd = 256, L = 1 13.27
64 LSTM Dd = 256, L = 2 13.29
64 LSTM Dd = 256, L = 3 13.31
64 LSTM Dd = 512, L = 1 13.37
64 LSTM Dd = 512, L = 2 13.37
64 LSTM Dd = 512, L = 3 13.41
64 VRNN Dz = 96 ≤12.93
64 VRNN Dz = 256 ≤12.54
64 SRNN Dz = 96 ≤12.87
64 SRNN Dz = 256 ≤12.42
64 CW-VAE Dz = 96, L = 1 ≤12.44
64 CW-VAE Dz = 96, L = 2 ≤12.17
64 CW-VAE Dz = 96, L = 3 ≤12.15
64 CW-VAE Dz = 256, L = 2 ≤12.10

256 WaveNet Dc = 96 14.11
256 LSTM Dd = 256, L = 1 14.20
256 LSTM Dd = 256, L = 2 14.17
256 LSTM Dd = 256, L = 3 14.26
256 VRNN Dz = 96 ≤13.51
256 VRNN Dz = 256 ≤13.27
256 SRNN Dz = 96 ≤13.28
256 SRNN Dz = 256 ≤13.14
256 CW-VAE Dz = 96, L = 1 ≤13.11
256 CW-VAE Dz = 96, L = 2 ≤12.97
256 CW-VAE Dz = 96, L = 3 ≤12.87

Table 3: Model likelihoods on TIMIT represented as a 16bit µ-law encoded PCM, obtained by
different latent variable models and compared to autoregressive baselines all using a discretized
mixture of logistics with 10 components as output distribution. Likelihoods are given in units of bits
per frame (bpf) and obtained by normalizing the total likelihood of each sequence with the individual
sequence length and then averaging over the dataset.

Interestingly, most work on latent variable models with non-autoregressive output distributions seem
to ignore this fact and simply employ the mixture distribution with 10 mixture components (Maaløe
et al., 2019; Vahdat & Kautz, 2020; Child, 2021). However, given the empirically good results
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s Model Configuration L [nats]
1 WaveNet Normal 74962

200 WaveNet (Aksan & Hilliges, 2019) GMM 30188
200 WaveNet (Aksan & Hilliges, 2019) Normal -7443
200 Stochastic WaveNet∗ (Lai et al., 2018) Normal ≥72463
200 VRNN (Chung et al., 2015) Normal ≈28982
200 SRNN (Fraccaro et al., 2016) Normal ≥60550
200 STCN (Aksan & Hilliges, 2019) GMM ≥69195
200 STCN (Aksan & Hilliges, 2019) Normal ≥64913
200 STCN-dense (Aksan & Hilliges, 2019) GMM ≥71386
200 STCN-dense (Aksan & Hilliges, 2019) Normal ≥70294
200 STCN-dense-large (Aksan & Hilliges, 2019) GMM ≥77438
200 CW-VAE∗ L = 1, Dz = 96, Normal ≥41629

Table 4: Model likelihoods on TIMIT represented as globally normalized 16bit linear PCM. Like-
lihoods are given in units of nats and obtained by summing over the likelihood all examples in the
dataset and dividing by the sum of all their sequence lengths. In the table, Normal refers to using a
Gaussian likelihood and GMM refers to using a Gaussian Mixture Model likelihood with 20 com-
ponents. Models with asterisks ∗ are our implementations while remaining results are as reported in
the referenced work.

σ2
min max L
12 -45367

0.52 -11146
0.12 68307
0.052 102525
0.012 181979

0.0052 216198
0.0012 295651

Table 5: The highest possible Gaussian log-likelihoods (max L) attainable on TIMIT as computed
by equation 12 with different values of the minimum variance σ2

min.

of latent variable models for image generation, this seems to have posed only a minor problem in
practice. We speculate that this is due to the high degree of similarity between neighbouring pixels
in images. I.e. if the neighboring pixels are nuances of red, then, in all likelihood, so is the central
pixel.

In the audio domain, however, neighbouring waveform frames can take wildly different values,
especially at low sample rates. Furthermore, waveforms exhibit a natural symmetry between positive
and negative amplitudes. Hence, it seems plausible that multimodality may pose a larger problem in
non-autoregressive speech generation by causing locally incoherent samples than it seems to do in
image modelling.

Finally, one can note that for continuous variables, the change of variables formula can in many
cases convert the likelihood of a random variable following one distribution into the likelihood of
another variable following a different distribution. However, the change of variables formula does
not apply to conversions where one or both random variables are discrete.

I ADDITIONAL GRAPHICAL MODELS

In figure 7 we show the unrolled graphical model of a three-layered CW-VAE with k1 = 1 and c = 2
yielding k2 = 2 and k3 = 4. We show both the generative and inference models and highlight in
blue the parameter sharing between the two models due to top-down inference.
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In figure 8 we show the graphical model of the recurrent cell of the CW-VAE for a single time step.
As noted in (Saxena et al., 2021), this cell is very similar to the one of the Recurrent State Space
Model (RSSM) (Hafner et al., 2019).

In figure 9 we illustrate the unrolled graphical models of the inference and generative models of
the VRNN (Chung et al., 2015). We include the deterministic variable dt in order to illustrate the
difference to other latent variable models.

Likewise, in figure 10 we illustrate the unrolled graphical models the SRNN (Fraccaro et al., 2016).

J DISTRIBUTION OF PHONEME DURATION IN TIMIT

In figure 11 we plot a boxplots of the duration of each phoneme in the TIMIT dataset. We do this
globally as well as for a single speaker to show that phoneme duration can vary between individual
speakers.

K CW-VAE SAMPLES FROM THE PRIOR

For the two-layered CW-VAE trained on TIMIT, we provide samples from the prior at the following
URL: https://doi.org/10.5281/zenodo.5704513
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Figure 5: Clustering of speaker gender in an one-dimensional linear subspace defined by a linear
discriminant analysis of the CW-VAE latent space and of a time-averaged mel spectrogram. The
total overlap is slightly smaller in the subspace of the CW-VAE latent space and the separation
between the distribution peaks is larger.
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Figure 6: Clustering of speaker height in an two-dimensional linear subspace defined by a linear
discriminant analysis of the CW-VAE latent space.
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Figure 7: CW-VAE generative model p(x, z) in (a) and inference model q(z|x) in (b) for a three-
layered model with k1 = 1 and c = 2 giving k2 = 2 and k3 = 4 unrolled over eight steps in the
observed variable. Blue arrows are (mostly) shared between the inference and generative models.
See figure 8 for a detailed graphical model expanding on the latent nodes zlt and parameter sharing.
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Figure 8: CW-VAE cell state slt update. All blue arrows are shared between generation and infer-
ence. The dashed arrow is used only during inference. The solid arrow has unique transformations
during inference and generation.
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Figure 9: VRNN (Chung et al., 2015) generative model p(x, z) in (a) and inference model q(z|x) in
(b) unrolled over three steps in the observed variable. Blue arrows are shared between the inference
and generative models.
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Figure 10: SRNN (Fraccaro et al., 2016) generative model p(x, z) in (a) and inference model q(z|x)
in (b) unrolled over three steps in the observed variable. Blue arrows are shared between the infer-
ence and generative models.
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Figure 11: Boxplots of the duration of the pronunciation of phonemes in TIMIT for a specific
speaker DRW0 in (a) and globally in (b). Not all phonemes are pronounced by speaker DRW0 over
the course of their 10 test set sentences and hence they are missing from the x-axis compared to the
global durations.
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