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ABSTRACT

In deep reinforcement learning, multi-step learning is almost unavoidable to
achieve state-of-the-art performance. However, the increased variance that multi-
step learning brings makes it difficult to increase the update horizon beyond rel-
atively small numbers. In this paper, we report the counterintuitive finding that
decreasing the batch size parameter improves the performance of many standard
deep RL agents that use multi-step learning. It is well-known that gradient vari-
ance decreases with increasing batch sizes, so obtaining improved performance
by increasing variance on two fronts is a rather surprising finding. We conduct a
broad set of experiments to better understand what we call the variance double-
down phenomenon.

1 INTRODUCTION

Deep reinforcement learning (DRL), which combines traditional reinforcement learning (RL) tech-
niques with neural networks, has had a number of recent successes, including achieving superhuman
performance on challenging games (Mnih et al., 2015; Schrittwieser et al., 2020; Perolat et al., 2022),
overcoming difficult robotics challenges (Andrychowicz et al., 2020; Smith et al., 2022), and being
successfully applied to large-scale real-world tasks (Bellemare et al., 2020; Degrave et al., 2022).
Yet successful application of DRL to new problems remains a challenge, in large part due to the
difficulty in understanding how neural network training is affected by the vast number of hyper-
parameters involved. Despite a number of recent works developing a greater understanding of the
dynamics of training neural networks for reinforcement learning (Ceron & Castro, 2021; Aradjo
et al., 2021; Nikishin et al., 2022; Ostrovski et al., 2021; Schaul et al., 2022), the relationship be-
tween particular hyper-parameter configurations and performance on a given environment remains
hard to predict.

One generally held desire in training neural networks is to reduce the variance of gradient updates,
so as to avoid unstable and unreliable learning. For example, in the reinforcement learning literature
there has been a growing trend to use multi-step (or n-step) learning (Hessel et al., 2018; Schwarzer
etal., 2020; Kapturowski et al., 2018; Agarwal et al., 2022) for improved performance. Despite their
demonstrated advantage, researchers have been limited to small values of n to avoid performance
collapse, in part due to the increased variance arising from larger n.

The supervised learning literature suggests that an effective mechanism for mitigating variance is
through the choice of batch size: Shallue et al. (2019) empirically demonstrate that larger batch
sizes result in reduced variance and increased performance. In this paper, we report the counter-
intuitive finding that reducing the batch size can help avoid performance collapse with larger n-step
updates. This is effectively doubling down on increased variance for improved performance. We
showcase this anomaly in a broad set of training regimens and value-based RL agents, and conduct
an empirical analysis to develop a better understanding of its causes. Additionally, we demonstrate
that reduced batch sizes also results in reduced overall computation time during training. In Ap-
pendix A we provide background on deep reinforcement learning, including a description of n-step
updates and batch sizes.
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Figure 1: Varying batch sizes for DQN, Rainbow, QR-DQN, and IQN.

2 CASE STUDY: THE ARCADE LEARNING ENVIRONMENT

Advances in deep reinforcement learning (DRL) often build on prior algorithms, network archi-
tectures, and hyper-parameter selections. Given the large number of options, new work typically
re-tunes only those components necessary for the new methods being considered. Thus, we have
accumulated a set of, mostly static, parameters upon which new ideas are tested (this may be a
form of the “social dynamics of research” hypothesized by Schaul et al. (2022)). One of the static
parameters for training single-agent value-based agents has been the choice of batch size.

Since the introduction of DQN by Mnih et al. (2015), single-agent training on the Arcade Learning
Environment (ALE, Bellemare et al., 2013) has used a batch size of 32, where this value was care-
fully tuned by the authors for performance. Since then, this value has rarely been changed, save for
distributed agent training (Kapturowski et al., 2018; Espeholt et al., 2018). If one takes the general
advice from the supervised learning literature, we should be aiming to increase the batch size so
as to reduce variance and improve performance (Shallue et al., 2019). We focus on the effect of
changing the batch size, while keeping all else equal.

2.1 EXPERIMENTAL SETUP

For this case study, we use JAX implementations of agents provided by the Dopamine library (Castro
et al., 2018) and applied to game-playing in the ALE (Bellemare et al., 2013).! For computational
reasons, we evaluate our agents on 20 games chosen by Fedus et al. (2020) in their analysis of
replay ratios; these were picked to offer a diversity of difficulty and dynamics. Similarly, we run
each learning trial for 100 million frames (as opposed to the standard 200 million). In exploratory
experiments, we determined that for our purposes there are unsubstantial differences at 100M and
200M frames. The four agents we consider are: DQN (Mnih et al., 2015), Rainbow (Hessel et al.,

"Dopamine uses sticky actions by default (Machado et al., 2018).
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2018)?, QR-DQN (Dabney et al., 2018a), and IQN (Dabney et al., 2018b). These all use the default
hyper-parameter values given in Dopamine. All experiments were run with 3 independent seeds on
NVIDIA Tesla P100 GPUs.

For evaluation, we follow the robust evaluation guidelines of Agarwal et al. (2021). Specifically, we
report the human-normalized median, interquantile mean (IQM), mean, and optimality gap, aggre-
gated over the 20 games. For all plots we report the mean with 95% stratified bootstrap confidence
intervals. Agarwal et al. (2021) suggest IQM as the more robust of these metrics, so we place a
stronger emphasis on it. Throughout the main paper we present the main findings, but include extra
figures in the appendix.

2.2  'WHEN DO SMALLER BATCH SIZES IMPROVE PERFORMANCE?

We first varied the batch size for all agents (Figure 1). There are two surprising observations from
this result. The first is that aggregate agent performance is relatively stable with respect to changing
batch sizes. The second, and perhaps more surprising, result is that agent performance seems to
improve with reduced batch size. Indeed, we can observe that the default batch size is in fact not
optimal for any of the agents and, with the exception of DQN, all agents seem to benefit from a
reduced batch size.

The four agents considered differ in a number of respects. Three important considerations are that,
of the 4, DQN is the only agent without distributional training (Bellemare et al., 2017), prioritized
experience replay, and the only one without n-step returns. To get a better sense for whether either
of these components is responsible for the reduced batch size performance boost, we performed
ablation studies similar to those conducted by Ceron & Castro (2021). Since the version of Rain-
bow provided with the Dopamine library (Castro et al., 2018) is effectively DQN with three added
components, we can investigate the changing dynamics as these components are added or removed
from DQN and Rainbow, respectively. Figure 2 depicts the outcome of this ablation study. We find
a striking pattern: while the four variants that use 1-step learning see their performance increase
with greater batch sizes, as might be expected, the relationship is almost completely reversed for the
variants using 3-step learning. Additionally, the other two components do not seem to present such
a relationship with batch size. See Appendix B for further results on QR-DQN and IQN.

DQN: Adding components Rainbow: Removing components
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Figure 2: Left: Adding components to DQN; Right: Removing components from Rainbow.

The last results demonstrated there is a strong performance relationship between batch size and up-
date horizon. We systematically explored this by evaluating various choices of these two parameters
for three of the agents. As Figure 3 shows, the optimal batch size decreases as n increases. This is
most stark in QR-DQN, where simply reducing the batch size to 8 improves performance by close
to 70% on the subset of games we consider.> With Rainbow a batch size of 8 is able to maintain
performance for n-step values as high as 9; in contrast, performance for the default batch size of 32
collapses beyond an n-step of 3.

“Dopamine uses a “compact” version of the original Rainbow agent, including only n-step updates, priori-
tized replay, and categorical-distributional RL.
3In Dopamine, QR-DQN uses an update horizon of 3 by default.
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Figure 3: Varying batch sizes and n-steps in DQN (left), Rainbow (center), and QR-DQN (right).

3 UNDERSTANDING THE PHENOMENON

Having observed the advantages that can come when combining reduced batch sizes with increased
update horizons, we would like to better understand the phenomenon. Given the dramatic change
in performance observed in QR-DQN with an n-step value of 3 when reducing the batch size to
8 (Figure 3), we focus on this agent and on the game Asterix, where the effect is prominent. We
provide results on additional games in Appendix C., where we observe the same qualitative findings.

3.1 THE EFFECT ON VARIANCE

Reducing batch size and increasing the update horizon are generally thought to increase variance.
We thus start by confirming this through measuring the variance throughout learning.

In Figure 4 we measure, from left to right, the training returns, the variance of the TD-loss, the
variance of the last layer’s weight gradients, and the variance of the last layer’s bias gradients.* The
first observation is that, in aggregate, we see an increased variance with both reduced batch size and
increased update horizon. Analyzing the results in more detail, we can observe the following:

Loss variance: As expected, this type of variance is correlated with the update horizon, but inversely
correlated with batch size. In both cases, the variance seems to have an upward trend throughout
training.

Weight gradient variance: While we see a reduction in variance with increased batch size (as
expected), we seem to observe a reduction in variance with increased update horizon, which is the
opposite of what was expected. In all cases, the variance goes down as training progresses.

Bias gradient variance: Here we have the expected relationship: reduced batch size and increased
update horizon both bring higher variance. In contrast to the other two types of variance, this one
seems to stabilize relatively early in training.

It thus appears that, in aggregate, the performance boost is correlated with increased variance on both
these fronts; we are dubbing this the variance double-down phenomenon. The curious behaviour of
the reduced variance of the weight gradients when increasing n-steps may be an important compo-
nent of this phenomenon: perhaps it is generally advantageous to have a certain degree of variance in
the weight gradients, and thus the reduced batch size helps counteract the effect of increased update
horizon. Nevertheless, it is unlikely to be the only cause, so we investigate a number of additional
possible causes for the phenomenon below.

Do adaptive learning rates work better with lower batch sizes? All our experiments, like most
modern RL agents, use the Adam optimizer (Kingma & Ba, 2015), a variant of stochastic gradient
descent (SGD) that adapts its learning rate based on the first- and second-order moments of the
gradients, as estimated from mini-batches used for training. It is thus possible that smaller batch
sizes have a second-order effect on the learning-rate adaptation that benefits agent performance. To
investigate this we evaluated, for each training step, performing multiple gradient updates on subsets
of the original sampled batch; the parameter MiniBatchSplit defines the number of gradient steps
and dividing factor (where a value of 1 is the default setting). Thus, for a MiniBatchSplit of 4, we
would perform 4 gradient updates with subsets of size 8 instead of a single gradient update with the
full mini-batch of size 32. With an optimizer like SGD this has no effect (as they are mathematically

*We measured the variance of the other layers but they were qualitatively the same as the final layer.
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Figure 4: Measuring the variance during training while varying batch size with n-step value equal
to 1 (top row), and varying n-step with batch size equal to 32 (bottom row) on Asterix.

equivalent), but we may see differing performance due to Adam’s adaptive learning rates. Indeed,
the left panel in Figure 5 suggests that while there are differences, these are not significant enough to
explain the performance boost observed in Figure 3 when reducing the batch size to 8. We provide
further analyses on all games in Appendix C.2.
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Figure 5: Left: Evaluating multiple gradient updates per training step; Center: measuring policy
churn during training; Right: adding noise to the target update.

Is it a side effect of policy churn? Schaul et al. (2022) highlighted the phenomenon of policy
churn, whereby the greedy action of a value network is rapidly and consistently changing through-
out training. This effect was hypothesized to provide a training benefit in the form of implicit
exploration. In the middle panel of Figure 5 we measured the average policy churn throughout
training. We can see that policy churn increases with batch size. This is somewhat expected, as
increased batch sizes effectively increases the replay ratio, which was shown to be correlated with
policy churn. However, given that Schaul et al. (2022) found increased policy churn to be benefi-
cial, it is likely that the reduced policy churn is correlated with, but not the cause of, the improved
performance observed with reduced batch size.

Is variance all one needs? The main thesis of this work is the performance benefit obtained from
the variance double-down phenomenon. Although we have focused on increasing variance in a
“structured”, yet indirect, way by varying update horizon and batch size, one can also increase
variance in more direct ways. We explore this by adding noise to the target values used by the
Bellman update during learning. Specifically, we sample a zero mean isotropic Gaussian matching
the shape of the target values, scale it by a multiplier, and add it to the target values. In the right panel
of Figure 5 we compare the performance when using different scaling values. Rather surprisingly,
scaling the target noise by 5.0 gives a dramatic performance boost on the game Asterix. Although
this striking result does not hold across all games (see Appendix C.3), it does hold for many. This
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suggests that indeed, prediction variance may play an incompletely understood, yet beneficial role
in deep reinforcement learning.

4 EFFECT UNDER DIFFERENT LEARNING REGIMES

In the preceding sections we established that learning from minibatches that are much smaller than
standard results in improved performance across the gamut of Atari 2600 games. Specifically, our
analysis takes place in the 100-million frames regime. At this point, one may wonder whether the
root cause of the double-down phenomenon is due to peculiarities of this regime, for example the
interplay between online exploration and neural network predictions (what Ostrovski et al. (2021)
call the tandem effect). To investigate this further, we now study how the batch size parameter
affects performance in other learning regimes, and how this relates to the degree to which multi-step
learning is used by high-performing algorithms for this regime.

4.1 THE LOW DATA REGIME

We first consider algorithms designed for the low data regime, specifically the Atari 100k benchmark
introduced by Kaiser et al. (2020).°> This is of particular interest to us as all algorithms that achieve
competitive performance on this benchmark do so by increasing the n parameter beyond what is used
for longer training periods. Here we consider three methods, all of which use n = 10: Data-efficient
Rainbow (DER), a version of the Rainbow algorithm with hyper-parameters tuned for faster early
learning (van Hasselt et al., 2019); SPR, which incorporates self-supervised learning to improve
sample efficiency (Schwarzer et al., 2020); and DrQ(e), which in addition uses data augmentation
(Agarwal et al., 2021). Our results in this section evaluate performance on 26 games (the standard
for this setting), aggregated over 6 independent trials.

Figure 6 (top) depicts the performance of all three agents after 100,000 agent steps, measured in
terms of interquartile mean (IQM) of human-normalized scores (Agarwal et al., 2021). We observe
that DER exhibits the same trend as the preceding experiments: reducing the batch size from its
default value of 32 transitions improves performance. This is expected given that DER is a tuned
version of Rainbow. The trend is less clear for SPR and DrQ(e), although in the the former case
similar performance is achieved for a smaller batch size.

These results concern published agents, whose hyper-parameters (including n and, to some extent,
the batch size) have been tuned to maximize performance in the 100k regime. To understand whether
the double-down relationship between n and the batch size parameter also holds in this regime, we
evaluated these agents on a wider range of parameter values (Figure 6, middle). We find that indeed,
DER exhibits this double-down relationship, with the optimal batch size varying as a function of
n; the result is also present, to a lesser extent, with SPR and appears to be absent from DrQ(e).
This suggests that additional algorithmic components present in the latter may obviate the need for
reducing the batch size in this particular regime.

Given that performance in the 100k regime depends on a number of considerations and is difficult to
measure precisely, in a further experiment we trained DER and DrQ for the longer duration of 30M
frames. This provides an interesting in-between the low data regime and the classic 100M regime.
On this longer time frame, we indeed find that both algorithms exhibit the double-down phenomenon
(Figure 6, bottom): for DER, a batch size of 8 performs substantially better, while for DrQ a batch
size of 16 slightly outperforms the default value. Combined with the other results presented here,
this suggests that the double-down phenomenon may only emerge with longer training regimes.

4.2 THE OFFLINE REGIME

We next turn our attention to the offline reinforcement learning regime (Gulcehre et al., 2020; Levine
et al., 2020),° where we are given a dataset of sample transitions from which we would like to obtain
a policy that performs well. Compared to the online regime, learning offline is more challenging as
there is more room for overfitting to the fixed dataset, and there is no possibility for the agent to

3For comparison with the 100M frames regime presented earlier, note that “100k” in this context refers to
100,000 agent steps, or 400,000 frames.
%0r batch reinforcement learning (Ernst et al., 2005).
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Figure 6: Varying batch sizes using the default settings of DER, SPR, and DrQ(e), evaluated at 100k
(top and middle) and 30M frames (bottom).

correct its estimation mistakes by interacting with the environment (as argued by Ostrovski et al.
(2021)).

We study the effect of varying n and the batch size parameter for three algorithms: DQN, CQL
(Kumar et al., 2020), and CQL+DR3 (Kumar et al., 2021). Except for DQN, these algorithms are
specifically tailored to the offline regime, incorporating among other things a penalty to mitigate
value overestimation. We follow the training scheme of Kumar et al. (2021): each agent is trained
on 17 games from the ALE for 200 iterations (where each iteration consists of 62.5K gradient steps),
and after each iteration the agent is evaluated for 125K steps on the environment. The offline dataset
consists of the transitions experienced during the full training of a DQN agent (Agarwal et al., 2020).

Figure 7 illustrates the impact of jointly varying our two parameters of interest on performance. In
the case of CQL+DR3 (the highest-performing method), it is clear that when n is increased from
1 to 3, it is beneficial to also reduce the batch size (from 32 to 4 or 8), in line with our previous
findings. For CQL alone, the relative performance gap between batch sizes is reduced. We find
a similar trend for DQN. One might argue that reducing the batch size without additional training
effectively mitigates overestimation, simply because each transition is trained on fewer times. A
closer look at the learning curves (Fig 29 in the appendix) suggests reduced overfitting is not the
main factor explaining our results, at least regarding CQL and CQL+DR3.

5 RELATED WORK

There has been a growing interest in developing a better understanding of reinforcement learning
dynamics with neural networks, and our work falls in this category. Ceron & Castro (2021) demon-
strated the surprising finding that a simple switch of optimizer and loss can dramatically improve
the performance of DRL agents. Andrychowicz et al. (2021) performed a broad examination of the
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Figure 7: Varying batch sizes for offline experiments. Top: All agents use n = 1 and Bottom: all
agents use n = 3.

impact varying hyper-parameters can one agent performance, for policy-gradient methods; Aratjo
et al. (2021) performed a similar analysis, but for value-based agents. Lyle et al. (2021) identified
a mechanism by which non-stationary prediction targets can prevent learning progress in deep RL
agents. They term this phenomenon as capacity loss. Wang et al. (2022) extensively and systemati-
cally investigated the properties of representations learned by deep reinforcement learning systems.
Fujimoto et al. (2022) studied the relationship between the Bellman error and the accuracy of value
functions through theoretical analysis and empirical study. They found that the Bellman error is a
poor proxy for the accuracy of the value function.

The use of overparameterized deep models in value based RL still exhibits mysteries in stability and
performance. To better understand the utility of deep models in RL, Xiao et al. (2022) presented
an anaylsis of recursive value estimation using overparameterized linear representations. Nikishin
et al. (2022) identified the primacy bias in deep RL, a damaging tendency of artificial agents to
overfit early experiences. They proposed a resetting mechanism allowing the agent to forget a part
of its knowledge. Fedus et al. (2020) conducted a depth study of how replay affects performance in
value-based deep RL agents. Lahire et al. (2021); Stooke & Abbeel (2018) studied the key role of
batch size in deep RL agents over a significant range of classical RL benchmarks.

6 DISCUSSION

The long-term goal of reinforcement learning research is to develop generally capable agents that
can adapt to uncertain environments. Although theoretical results spanning multiple decades have
given us a crisp insight into the mathematical properties of these algorithms, these theories unfortu-
nately do not hold for non-linear function approximators such as neural networks. Given that neural
networks have played a key role in the impact RL has had since 2015, it behooves the community to
develop a better understanding of the the interplay of the various components and how changes can
affect learning dynamics.

Our work has revealed the striking finding that doubling down on variance by increasing n and
reducing batch size seems to, overwhelmingly so, produce improved performance. This flies in the
face of traditional beliefs from the supervised learning community that reduced variance is best.
Indeed, the remarkable performance gains obtained from simply adding noise to the target values
(right panel of Figure 5) suggest that our relationship with learning variance needs to be better
understood. One important aspect of our findings is that it seems to be limited to the use of deep
neural networks; indeed, in Appendix F we find that the phenomenon is not present when using
linear function approximators.
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One may wonder whether the same effect can be observed if one were to increase the stochasticity of
action selection by, for instance, increasing the value of € of the e-greedy strategy used by all these
agents. The results in Appendix H suggest otherwise: decreasing € seems to be more beneficial. It is
interesting to observe that the variance double-down phenomenon remains present despite varying
values of e.

One natural area for further exploration is to explore this phenomenon in actor-critic methods
(Haarnoja et al., 2018; Fujimoto et al., 2018) or those agents which their return estimator is based on
multi-step (Tang et al., 2022), such as Q(\) (Harutyunyan et al., 2016), Retrace (Munos et al., 2016)
or emphatic algorithms (Jiang et al., 2021). We present some preliminary findings in Appendix G
that suggests the variance double-down phenomenon is present in these scenarios. Additionally,
because this paper focuses mainly on an empirical investigation of the doubling down phenomenon,
an exciting future work it is to develop a theoretical understanding about the nature and dynamics
of this phenomenon.

6.1 COMPUTATIONAL CONSEQUENCES

Empirical advances in deep reinforcement learning are generally measured with respect to sample
efficiency; that is, the number of environment interactions required before achieving a certain level
of performance (as we have done throughout this paper). While a valid metric, it fails to capture
computational differences between algorithms.

If two algorithms have the same performance with respect to environment interactions, but one takes
twice as long to perform each training step, one would clearly opt for the faster of the two. This
important distinction, however, is largely overlooked in the standard evaluation methodologies used
by the DRL community.

Many of our results have demonstrated the performance benefits obtained when reducing the batch
size, but an additional important consequence is the reduction in computation wall-time. Figure 8
demonstrates that not only can we obtain better performance with reduced batch size, but we can do
so at a fraction of the runtime.

We invite the reader to revisit the results presented above under this lens. For example, when evalu-
ated with respect to environment interactions, the top row of Figure 6 would suggest that there is no
real advantage to reducing the batch size from 32 to 16 for SPR; however, if evaluated with respect
to computation time, the advantages of using a reduced batch would become apparent.

As argued by Ceron & Castro (2021), the ALE as a benchmark proves quite onerous for communities
with limited access to compute; thus, computational gains like the one presented here can help
reduce this barrier to entry. We encourage others to consider not just sample efficiency, but also
computational efficiency, when evaluating new methods.
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A BACKGROUND

A.1 DQN

Mnih et al. (2015) introduced DQN, which combined Q-learning with deep neural networks. Some
of the most important design contributions are: (1) The @ function is represented using a feed
forward neural network consisting of three convolutional layers followed by two fully connected
layers. Two copies of the Q-network are maintained: an online network (parameterized by ) and
a target network (parameterized by #). The online network is updated via the learning process
described below, while the target network remains fixed and is synced with the online weights at
less frequent (but regular) intervals. (2) A large replay buffer D is maintained to store experienced
transitions (s, a,r,s") (Lin, 1992). (3) The temporal difference update is implemented using the
following loss function to update the online network: L(0) = E(s o s~ (0) [(Y PN =Qp(s,a))?]
using YPON = (r + ymax, e 4 Qg(s’,a’)) and mini-batches of size 32 sampled from the replay
buffer D.

A.2 RAINBOW

In this section we briefly present the enhancements to DQN that were combined by Hessel et al.
(2018) for the Rainbow agent.

Hessel et al. (2018) proposed Rainbow, a combination of several incremental improvements on top
of DQN (Mnih et al., 2015) that increased sample efficiency, stability and final performance of
the DQN algorithm. Rainbow rests upon years of model-free RL research and has been adapted
to work well in data-limited regimes. Rainbow agent is composed of six components: double Q-
learning (van Hasselt et al., 2016), prioritized experience replay (PER) (Schaul et al., 2016), dueling
networks (Wang et al., 2016), multi-step learning (Sutton, 1988), noisy nets (Fortunato et al., 2018),
and distributional reinforcement learning (Bellemare et al., 2017).

The two main components are (PER) and multi-step learning, removing either component caused
a large drop in median performance (Hessel et al., 2018; Ceron & Castro, 2021). PER proposed
to sample a trajectory t = (s,a,r,s") with probability p; proportional to the temporal difference
error instead of sampling uniformly from the replay buffer. In multi-step learning, instead of com-
puting the temporal difference error using a single-step transition, one can use multi-step targets
instead Sutton (1988), where for a trajectory (sg, ao, 7o, S1, a1, - - - ) and update horizon n: RE”) =

ZZ;& Y*7¢ 4 k11, yielding the multi-step temporal difference: RE”) + " maxe e Qf(St4n,a’) —

Qo(st, ar).

A.3 DISTRIBUTIONAL RL AGENTS

The experiments in the previous sections were conducted using the JAX Dopamine DQN and Rain-
bow implementations. However, we did not evaluate if low batch size values behave similar in
Distributional Q-learning variants. In this section, we investigate the interaction of Quantile Re-
gression for Distributional RL QR-DQN (Dabney et al., 2018a) and Implicit Quantile Networks
IQN (Dabney et al., 2018b) with low batch sizes values on 20 Atari games (same setup of previous
experiments).

QR-DOQN (Dabney et al., 2018a) computes the return quantile values for N fixed, uniform prob-
abilities. This has no restrictions or bound for value, as the distribution of the random return is
approximated by a uniform mixture of N Diracs: Zy(x,a) := % Zf\]:l 09, (z,a)» With each 0; as-
signed a quantile value trained with quantile regression. IQN uses implicit quantile networks (IQN)
as the parameterization of the return distribution Dabney et al. (2018b). IQN learns to transform a
base distribution (typically a uniform distribution in [0, 1]) to the quantile values of the return dis-
tribution. This can result in greater representation power in comparison to QR-DQN, as well as the
ability to incorporate distortion risk measures.
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B THE EFFECT OF REDUCED BATCH SI1ZE

In this appendix we provide additional results investigating the effect of reduced batch size, comple-
menting the results presented in section 2.
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Figure 9: Evaluating different batch sizes values with two common update horizon values for DQN,
Rainbow, QR-DQN and IQN.
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Figure 10: Evaluation of different batch size values for Quantile Regression agent with n-step equal
to 1 (left) and 3 (right).
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Figure 11: Evaluation of different batch size values for Quantile Regression agent with n-step equal
to 1 (top) and 3 (bottom).
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Figure 12: Evaluation of different batch size values for Implicit Quantile Regression agent with
n-step equal to 1 (left) and 3 (right).
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Figure 13: Evaluation of different batch size values for IQN with n equal to 1 (top) and 3 (bottom).
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C UNDERSTANDING OF THE VARIANCE DOUBLE-DOWN PHENOMENON

In this section we provide additional results to complement those presented in section 3.

C.1

Figure 14: Measuring the variance during training while varying batch size with n-step value equal
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Figure 15: Measuring the variance during training while varying batch size with n-step value equal
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Figure 16: Measuring the variance during training while varying batch size with n-step value equal
to 1 (top row), and varying n-step with batch size equal to 32 (bottom row) on MsPacman.
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C.2 DO ADAPTIVE LEARNING RATES WORK BETTER WITH LOWER BATCH SIZES?

0.8

0.6

0.4

MiniBatchSplits

—1

0.2

_4

IQM Human Normalized Score

20 40 60 80 100

Number of Frames (in millions)

Figure 18: Evaluating multiple gradient updates per training step on QR-DQN, aggregated over all
20 games.
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Figure 19: Evaluating multiple gradient updates per training step on QR-DQN, training curves for
all games.
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C.3 IS VARIANCE ALL ONE NEEDS?
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Figure 20: Evaluating the effect of adding target noise to QR-DQN, aggregated over all games.
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Figure 21: Evaluating the effect of adding target noise to QR-DQN, learning curves for all games.
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D EFFECT UNDER DIFFERENT LEARNING REGIMES

In this appendix we provide additional results to complement those presented in section 4.
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Figure 22: Varying batch sizes in DER with n-step equal to 1 (left) and 10 (right).
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Figure 23: Aggregate metrics on Atari 100k based on 26 games. Evaluation of different batch sizes
in DER with n-step equal to 1 (top) and 10 (bottom).
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Figure 24: Varying batch sizes in SPR with n-step equal to 1 (left) and 10 (right)

21



Under review as a conference paper at ICLR 2023

Median QM Mean Optimality Gap
32 (default) | || I
16 | | | |
8 [ [ [ 1
4 = | | |

0.02 0.04 0.06 0.08 0.025 0.050 0.075 0.100 0.1 0.2 0.3 0.40.78 0.84 0.90 0.96
Human Normalized Score

Median QM Mean Optimality Gap
32 (default) | | | |
16 | ) — | | [ |
8 1 1 1 |
4 . | [ | [l —)
0.2 0.3 0.4 0.25 0.30 0.35 0.48 0.56 0.64 0.57 0.60 0.63 0.66

Human Normalized Score

Figure 25: Aggregate metrics when varying batch sizes in SPR with n-step equal to 1 (top) and 10
(bottom)
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Figure 26: Aggregate metrics on Atari 30M based on 26 games. Evaluation of different Varying
batch sizes for DER (top) and DrQ(e) (bottom) using n-step equal to 10.
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Figure 27: Varying batch sizes in DrQ(e) with n-step equal to 10.
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Figure 29: Varying batch sizes for CQL+DR3 (left), CQL (center), and DQN (right), with n-step
equal to 1 (top row) and 3 (bottom row).
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E COMPUTATIONAL CONSEQUENCES
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Figure 30: Measuring runtime versus performance when varying batch sizes in DQN, Rainbow,
QR-DQN, and IQN (from left to right), all with n-step equal to 3.
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F EVALUATION WITH LINEAR FUNCTION APPROXIMATORS
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Figure 32: Evaluation of different batch size values for DQN agent using Fourier series (Konidaris
etal., 2011) as a simple linear function approximation. Right: DQN(n = 1) and Left: DQN(n = 3).
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G IS THE PHENOMENON PRESENT IN OTHER ENVIRONMENT TYPES?

Although not as comprehensive as the results in our main paper, we found that the variance double-
down phenomenon does appear to be present in continuous control tasks (Figure 33), as well as in
procedurally generated environments (Figure 35).
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Figure 33: Evaluation of different batch size values for MPO (Abdolmaleki et al., 2018) agent on
DM-control suite environments (Tassa et al., 2018), with n=5.
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Figure 34: Varying batch sizes in MPO (Abdolmaleki et al., 2018) agent on DM-control suite envi-
ronments (Tassa et al., 2018) with n-step equal to 1 (top) and 5 (bottom)
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Figure 35: Evaluation of different batch size values for Rainbow agent on the ProcGen suite (Cobbe
et al., 2019).
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H EXPERIMENTS WITH VARYING € EXPLORATION VALUES
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values (columns) on QR-DQN. The default values are 32, 3, and 0.01, respectively.

29



Under review as a conference paper at ICLR 2023

I EXPERIMENTS WITH VARYING LEARNING RATES
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Figure 37: Evaluation of different batch size values (colored lines), n-steps (rows), and learning
rates (columns) on QR-DQN. The default values are 32, 3, and le-5, respectively.
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J ON-POLICY EVALUATION

Most of our experiments are in the online, off-policy setting, so it is informative to evaluate whether
it is present in an on-policy situation. To do so, we populate the replay buffer with a fixed policy =
coming from a pre-trained agent, and do policy estimation with the same learning rule (based on the
Bellman update). Figure 38 plots the (Q-estimation error for a set of five games. The results suggest
that the phenomenon is somewhat present, but only mildly so.
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Figure 38: Evaluation of on-policy estimation errors for different batch size values (colored lines)
and n-steps (in title) with QR-DQN.
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