
Published in Transactions on Machine Learning Research (06/2025)

GradSkip: Communication-Accelerated
Local Gradient Methods
with Better Computational Complexity

Artavazd Maranjyan∗ arto.maranjyan@gmail.com
King Abdullah University of Science and Technology (KAUST)

Mher Safaryan mher.safaryan@gmail.com
King Abdullah University of Science and Technology (KAUST)

Peter Richtárik peter.richtarik@kaust.edu.sa
King Abdullah University of Science and Technology (KAUST)

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6R3fRqFfhn

Abstract

We study a class of distributed optimization algorithms that aim to alleviate high communi-
cation costs by allowing clients to perform multiple local gradient-type training steps before
communication. In a recent breakthrough, Mishchenko et al. (2022) proved that local training,
when properly executed, leads to provable communication acceleration, and this holds in
the strongly convex regime without relying on any data similarity assumptions. However,
their ProxSkip method requires all clients to take the same number of local training steps in
each communication round. We propose a redesign of the ProxSkip method, allowing clients
with “less important” data to get away with fewer local training steps without impacting
the overall communication complexity of the method. In particular, we prove that our
modified method, GradSkip, converges linearly under the same assumptions and has the same
accelerated communication complexity, while the number of local gradient steps can be
reduced relative to a local condition number. We further generalize our method by extending
the randomness of probabilistic alternations to arbitrary unbiased compression operators and
by considering a generic proximable regularizer. This generalization, which we call GradSkip+,
recovers several related methods in the literature as special cases. Finally, we present an
empirical study on carefully designed toy problems that confirm our theoretical claims.

1 Introduction

Federated Learning (FL) is an emerging distributed machine learning paradigm where diverse data holders
or clients (e.g., smartwatches, mobile devices, laptops, hospitals) collectively aim to train a single machine
learning model without revealing local data to each other or the orchestrating central server (McMahan et al.,
2017; Kairouz et al, 2019; Wang, 2021). Training such models amounts to solving federated optimization
problems of the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)
}
, (1)

where d is the (typically large) number of parameters of the model x ∈ Rd we aim to train, and n is the
(potentially large) total number of devices in the federated environment. We denote by fi(x) the loss or risk
associated with the data Di stored on client i ∈ [n] := {1, 2, . . . , n}. Formally, our goal is to minimize the
overall loss/risk denoted by f(x).

∗Work done during an internship at KAUST, while being a researcher at YerevaNN and a student at Yerevan State University.

1

https://openreview.net/forum?id=6R3fRqFfhn

Published in Transactions on Machine Learning Research (06/2025)

Due to their efficiency, gradient-type methods with its numerous extensions (Duchi et al., 2011; Zeiler, 2012;
Ghadimi & Lan, 2013; Kingma & Ba, 2015; Schmidt et al., 2017; Qian et al., 2019; Gorbunov et al., 2020a) is
by far the most dominant method for solving (1) in practice.

The simplest implementation of gradient descent in a federated setup requires all workers i ∈ [n] in each time
step t ≥ 0 to

(i) compute the local gradient ∇fi(xt) at the current global model xt,

(ii) update the current global model xt using this gradient with step size γ > 0

x̂i,t+1 = xt − γ∇fi(xt), (2)

(iii) average the updated local models x̂i,t+1 to get the new global model

xt+1 = 1
n

n∑
i=1

x̂i,t+1. (3)

Challenges defining FL as a unique distributed training setup, necessitating training algorithm adjustments,
include high communication costs, heterogeneous data distribution, and system heterogeneity across clients.
Next, we discuss these challenges and potential algorithmic solutions.

1.1 Communication Costs

In federated optimization, communication costs often become a primary bottleneck due to slow and unreliable
wireless links between clients and the central server (McMahan et al., 2017). Eliminating the communication
step (3) entirely would cause clients to train solely on local data, leading to a poor model because of the
limited local data.

A simple trick to reduce communication costs is to perform the costly synchronization step (3) infrequently,
allowing multiple local gradient steps (2) in each communication round (Mangasarian, 1995). This trick
appears in the celebrated FedAvg algorithm of McMahan et al. (2016; 2017) and its further variations
(Haddadpour & Mahdavi, 2019; Li et al., 2019a; Khaled et al., 2019a;b; Karimireddy et al., 2020; Horváth
et al., 2022) under the name of local gradient methods. However, until very recently, theoretical guarantees on
the convergence rates of local gradient methods were worse than the rate of classical gradient descent, which
synchronizes after every gradient step.

In a recent line of works (Mishchenko et al., 2022; Malinovsky et al., 2022; Condat & Richtárik, 2022; Sadiev
et al., 2022), initiated by Mishchenko et al. (2022), a novel local gradient method, called ProxSkip, was
proposed which performs a random number of local gradient steps before each communication (alternation
between local training and synchronization is probabilistic) and guarantees strong communication acceleration
properties. First, they reformulate the problem (1) into an equivalent regularized consensus problem of the
form

min
x1,...,xn∈Rd

{
1
n

n∑
i=1

fi(xi) + ψ(x1, . . . , xn)
}
,

ψ(x1, . . . , xn) :=
{

0, if x1 = · · · = xn,

+∞, otherwise,

(4)

where communication between the clients and averaging local models x1, . . . , xn is encoded as taking the
proximal step with respect to ψ, i.e.,

proxψ([x1 · · ·xn]⊤) = [x̄ · · · x̄]⊤, where x̄ := 1
n

n∑
i=1

xi.

With this reformulation, ProxSkip by Mishchenko et al. (2022) performs the proximal (equivalently averaging)
step with small probability p = 1/

√
κ, where κ is the condition number of the problem. Then method’s key result

2

Published in Transactions on Machine Learning Research (06/2025)

for smooth, strongly convex setups is O(κ log 1/ϵ) iteration complexity with O (
√
κ log 1/ϵ) communication

rounds to achieve ϵ > 0 accuracy. Follow-up works extend the method to variance-reduced gradient methods
(Malinovsky et al., 2022), randomized application of proximal operator (Condat & Richtárik, 2022), and
accelerated primal-dual algorithms (Sadiev et al., 2022). Our work was inspired by the development of this
new generation of local gradient methods, also known as Local Training (LT) methods, which we detail
shortly.

An orthogonal approach uses communication compression strategies on the transferred information. Informally,
instead of communicating full precision models infrequently, we might communicate a compressed version of
the local model in each iteration via an application of lossy compression operators. Such strategies include
sparsification (Alistarh et al., 2018; Wang et al., 2018; Mishchenko et al., 2020), quantization (Alistarh et al.,
2017; Sun et al., 2019; Wang et al., 2022), sketching (Hanzely et al., 2018; Safaryan et al., 2021) and low-rank
approximation (Vogels et al., 2019).

Our work contributes to the first approach to handling high communication costs that is less understood in
theory and, at the same time, immensely popular in the practice of FL.

1.2 Statistical Heterogeneity

Due to the decentralized training data, distributions of local datasets can vary from client to client. This
heterogeneity in data distributions poses an additional challenge since allowing multiple local steps would
make the local models deviate from each other, an issue widely known as client drift. On the other hand,
if training datasets are identical across the clients (commonly referred to as a homogeneous setup), the
mentioned drifting issue disappears, and the training can be done without any communication whatsoever.
Interpolating between these extremes, under some data similarity conditions (which are typically expressed
as gradient similarity conditions), multiple local gradient steps should be useful. In fact, initial theoretical
guarantees of local gradient methods utilize such assumptions (Haddadpour & Mahdavi, 2019; Yu et al., 2019;
Li et al., 2019b; 2020).

In the fully heterogeneous setup, client drift reduction techniques were designed and analyzed to mitigate
the adverse effect of local model deviations (Karimireddy et al., 2020; Gorbunov et al., 2021). A very close
analogy is variance reduction techniques called error feedback mechanisms for the compression noise added to
lessen the number of bits required to transfer (Condat et al., 2022).

1.3 System Heterogeneity

Lastly, system heterogeneity refers to the diversity of clients in terms of their computation capabilities or the
amount of resources they are willing to use during the training. In a typical FL setup, all participating clients
must perform the same amount of local gradient steps before each communication. Consequently, a highly
heterogeneous cluster of devices results in significant and unexpected delays due to slow clients or stragglers.

One approach addressing system heterogeneity or dealing with slow clients is client selection strategies (Wang
& Joshi, 2019; Reisizadeh et al., 2020; Luo et al., 2021). Basically, client sampling can be organized so that
slow clients do not delay global synchronization, and clients with similar computational capabilities are
sampled in each communication round.

Unlike the above strategy, we suggest clients take local steps based on their resources. We consider the
full participation setup where clients decide how much local computation to perform before communication.
Informally, slow clients do less local work than fast clients, and during the synchronization of locally trained
models, the slowdown caused by the stragglers will be minimized see section 5.2.

1.4 Local Training (LT) vs Accelerated Gradient Descent (AGD)

Nesterov’s AGD method Nesterov (2004) matches the communication complexity of our GradSkip algorithm.
Its distributed implementation takes one local step per round, suggesting LT methods might lag behind AGD.
In contrast, almost all methods in production are based on local training, as evidenced by FL frameworks
like He et al. (2020); Ro et al. (2021); Beutel et al. (2022).

3

Published in Transactions on Machine Learning Research (06/2025)

The preference for LT over AGD among practitioners stems from LT’s advantages, especially in generalization
and communication complexity. Both areas are closely tied with local training, becoming prominent in
current research. LT’s ability to enhance generalization remains under exploration in FL. Current studies
link this improvement to personalization, meta-learning Hanzely et al. (2020); Hanzely & Richtárik (2021),
and representation learning Collins et al. (2022). Practically, LT effectively tackles nonconvex challenges,
while AGD faces difficulty approximating stationary points of smooth nonconvex functions. Additionally, AGD
is more sensitive to the knowledge of the condition number than LT methods, which are versatile and work
across a wide range of numbers of local steps.

In statistically heterogeneous cases, AGD often underperforms. Our experiments prove this by showing that
when device condition numbers vary, AGD converges slower than GradSkip. Though our work does not primarily
aim to directly compare AGD and LT, such a comparative study, to our knowledge, remains a gap in current
research and could offer valuable insights.

2 Summary of Contributions

Our key contributions are summarized below.

2.1 GradSkip: Efficient Gradient Skipping Algorithm

We propose GradSkip (Algorithm 1), a new local gradient-type method for distributed optimization that reduces
both communication and computation. Our method extends the recently developed ProxSkip (Mishchenko
et al., 2022), which first demonstrated communication acceleration via multiple local steps without data
similarity assumptions. GradSkip not only inherits this accelerated communication complexity but also
introduces a key improvement: it allows clients to terminate their local gradient computations independently,
significantly improving computational efficiency.

The key technical novelty of the proposed algorithm is the construction of auxiliary shifts ĥi,t to handle
gradient skipping for each client i ∈ [n]. GradSkip also maintains shifts hi,t initially introduced in ProxSkip to
handle communication skipping across the clients. We prove that GradSkip converges linearly in strongly convex
and smooth setup, has the same O(√κmax log 1/ϵ) accelerated communication complexity as ProxSkip, and
requires clients to compute (in expectation) at most min

{
κi,

√
κmax

}
local gradients in each communication

round (see Theorem 3.6), where κi is the condition number for client i ∈ [n] and κmax = maxi κi. Thus, for
GradSkip, clients with well-conditioned problems κi <

√
κmax perform much less local work to achieve the

same convergence rate of ProxSkip, which assumes √
κmax local steps on average for all clients.

2.2 GradSkip+: General GradSkip Method

Next, we generalize the construction and the analysis of GradSkip by extending it in two directions: handling
optimization problems with arbitrary proximable regularizer and incorporating general randomization
procedures using unbiased compression operators with custom variance bounds. This leads to our second
method, GradSkip+ (see Algorithm 2), which recovers several methods in the literature as a special case,
including the standard proximal gradient descent (ProxGD), ProxSkip (Mishchenko et al., 2022), RandProx-FB
(Condat & Richtárik, 2022) and GradSkip.

2.3 VR-GradSkip+: Reducing the Variance of Stochastic Gradient Skipping

Finally, we propose and analyze variance-reduced extension (see Algorithm 3 in the Appendix) in the case
when mini-batch stochastic gradients are implemented instead of full-batch gradients for local computations.
Our VR-GradSkip+ method can be viewed as a successful combination of ProxSkip-VR method of Malinovsky
et al. (2022) and GradSkip providing computational efficiency through processing smaller batch of samples
and probabilistically skipping stochastic gradient computations. We deferred the presentation of the part of
our contribution in the appendix due to space limitations.

4

Published in Transactions on Machine Learning Research (06/2025)

3 GradSkip

In this section, we present our first algorithm, GradSkip, and discuss its benefits in detail. Later, we will
generalize it, unifying several other methods as special cases. Recall that our target is to address three
challenges in FL mentioned in the introductory part, which are

(i) reduction in communication cost via infrequent synchronization of local models,

(ii) statistical or data heterogeneity, and

(iii) reduction in computational cost via limiting local gradient calls based on the local subproblem.

We now describe all the steps of the algorithm and how it handles these three challenges.

3.1 Algorithm Structure

For the sake of presentation, we describe the progress of the algorithm using two variables xi,t, x̂i,t for the
local models and two variables hi,t, ĥi,t for the local gradient shifts. Essentially, we want to maintain two
variables for the local models since clients get synchronized infrequently. The shifts hi,t are designed to reduce
the client drift caused by the statistical heterogeneity. Finally, we introduce auxiliary shifts ĥi,t to take care
of the different number of local steps. The GradSkip method is formally presented in Algorithm 1.

Algorithm 1 GradSkip
1: Input: stepsize γ > 0, synchronization probability p, probabilities qi > 0 controlling local steps, initial

local iterates x1,0 = · · · = xn,0 ∈ Rd, initial shifts h1,0, . . . , hn,0 ∈ Rd, total number of iterations T ≥ 1
2: for t = 0, 1, . . . , T − 1 do
3: server: Flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p ⋄ Decide when to skip communication
4: for all devices i ∈ [n] in parallel do
5: Flip a coin ηi,t ∈ {0, 1} with Prob(ηi,t = 1) = qi ⋄ Decide when to skip gradient steps

(see Lemma 3.1)
6: ĥi,t+1 = ηi,thi,t + (1 − ηi,t)∇fi(xi,t) ⋄ Update the local auxiliary shifts ĥi,t
7: x̂i,t+1 = xi,t − γ(∇fi(xi,t) − ĥi,t+1) ⋄ Update the local auxiliary iterate x̂i,t

via shifted gradient step
8: if θt = 1 then
9: xi,t+1 = 1

n

∑n
j=1

(
x̂j,t+1 − γ

p ĥj,t+1

)
⋄ Average shifted iterates, but only very rarely!

10: else
11: xi,t+1 = x̂i,t+1 ⋄ Skip communication!
12: end if
13: hi,t+1 = ĥi,t+1 + p

γ (xi,t+1 − x̂i,t+1) ⋄ Update the local shifts hi,t
14: end for
15: end for

As an initialization step, we choose a probability p > 0 to control communication rounds, probabilities qi > 0
for each client i ∈ [n] to control local gradient steps, and initial control variates (or shifts) hi,0 ∈ Rd to
control client drift. Besides, we fix the stepsize γ > 0 and assume that all clients commence with the same
local model, namely x1,0 = · · · = xn,0 ∈ Rd. Then, each iteration of the method comprises two stages, the
local stage and the communication stage, operating probabilistically. Specifically, the probabilistic nature of
these stages is the following. The local stage requires computation only with some predefined probability;
otherwise, the stage is void. Similarly, the communication stage requires synchronization between all clients
only with probability p; otherwise, the stage is void. In the local stage (lines 5–7), all clients i ∈ [n] in parallel
update their local variables (x̂i,t+1, ĥi,t+1) using values (xi,t, hi,t) from previous iterate either by computing
the local gradient ∇fi(xi,t) or by just copying the previous values. Afterward, in the communication stage
(lines 8–13), all clients in parallel update their local variables (xi,t+1, hi,t+1) from (x̂i,t+1, ĥi,t+1) by either
averaging across the clients or copying previous values.

5

Published in Transactions on Machine Learning Research (06/2025)

3.2 Reduced Local Computation

Clearly, communication costs are reduced as the averaging step occurs only when θt = 1 with probability p of
our choice. However, it is not directly apparent how the computational costs are reduced during the local
stage. Indeed, both options ηi,t = 1 and ηi,t = 0 involve the expression ∇fi(xi,t) as if local gradients need to
be evaluated in every iteration. As we show in the following lemma, this is not the case.
Lemma 3.1 (Fake local steps; Proof in Appendix C.1). Suppose that Algorithm 1 does not communicate
for τ ≥ 1 consecutive iterates, i.e., θt = θt+1 = · · · = θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some
client i ∈ [n] we have ηi,t = 0. Then, regardless of the coin tosses {ηi,t+j}τj=1, client i does fake local steps
without any gradient computation in τ iterates. Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t,

ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t).

Let us reformulate the above lemma. During the local stage of GradSkip, when clients do not communicate
with the server, ith client terminates its local gradient steps once the local coin tosses ηi,t = 0. Thus, smaller
probability qi implies sooner coin toss ηi,t = 0 in expectation, hence, less amount of local computation for
client i. Therefore, we can relax the computational requirements of clients by adjusting these probabilities qi
and controlling the amount of local gradient computations.

Next, let us find out how the expected number of local gradient steps depends on probabilities p and qi. Let Θ
and Hi be random variables representing the number of coin tosses (Bernoulli trials) until the first occurrence
of θt = 1 and ηi,t = 0 respectively. Equivalently, Θ ∼ Geo(p) is a geometric random variable with parameter
p, and Hi ∼ Geo(1 − qi) are geometric random variables with parameter 1 − qi for i ∈ [n]. Notice that, within
one communication round, ith client performs min{Θ, Hi} number of local gradient computations, which is
again a geometric random variable with parameter 1 − (1 − (1 − qi))(1 − p) = 1 − qi(1 − p). Therefore, as
formalized in the next lemma, the expected number of local gradient steps is E [min{Θ, Hi}] = 1/(1−qi(1−p)).
Lemma 3.2 (Expected number of local steps; Proof in Appendix C.2). The expected number of local gradient
computations in each communication round of GradSkip is 1/(1−qi(1−p)) for all clients i ∈ [n].

Notice that, in the special case of qi = 1 for all i ∈ [n], GradSkip recovers Scaffnew method of Mishchenko et al.
(2022). However, as we will show, we can choose probabilities qi smaller, reducing computational complexity
and obtaining the same convergence rate as Scaffnew.
Remark 3.3 (System heterogeneity). From this discussion, we conclude that GradSkip can also address system
or device heterogeneity. In particular, probabilities {qi}ni=1 can be assigned to clients in accordance with their
local computational resources; slow clients with scarce compute power should get small qi, while faster clients
with rich resources should get bigger qi ≤ 1, see section 5.2.

3.3 Convergence Theory

Now that we explained the structure and computational benefits of the algorithm, let us proceed to the
theoretical guarantees. We consider the same strongly convex and smooth setup as considered by Mishchenko
et al. (2022) for the distributed case.
Assumption 3.4. All functions fi(x) are strongly convex with parameter µ > 0 and have Lipschitz continuous
gradients with Lipschitz constants Li > 0, i.e., for all i ∈ [n] and any x, y ∈ Rd we have

µ

2 ∥x− y∥2 ≤ Dfi
(x, y) ≤ Li

2 ∥x− y∥2,

where Dfi
(x, y) := fi(x) − fi(y) − ⟨∇fi(y), x− y⟩ is the Bregman divergence associated with fi.

We present Lyapunov-type analysis to prove the convergence, which is a very common approach for iterative
algorithms. Consider the Lyapunov function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 + γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2, (5)

6

Published in Transactions on Machine Learning Research (06/2025)

where γ > 0 is the stepsize, x⋆ is the (necessary) unique minimizer of f(x) and hi,∗ = ∇fi(x∗) is the optimal
gradient shift. As we show next, Ψt decreases at a linear rate.
Theorem 3.5 (Proof in Appendix C.3). Let Assumption 3.4 hold. If the stepsize satisfies

γ ≤ min
i

{
1
Li

p2

1 − qi (1 − p2)

}
and probabilities are chosen so that 0 < p, qi ≤ 1, then the iterates of GradSkip (Algorithm 1) satisfy

E [Ψt] ≤ (1 − ρ)tΨ0, (6)

for all t ≥ 1 with ρ := min
{
γµ, 1 − qmax(1 − p2)

}
> 0.

Let us comment on this result.

• The first and immediate observation from the above result is that, with a proper stepsize choice,
GradSkip converges linearly for any choice of probabilities p and qi from (0, 1].

• Furthermore, by choosing all probabilities qi = 1 we get the same rate of Scaffnew with ρ = min{γµ, p2}
(see Theorem 3.6 in (Mishchenko et al., 2022)). If we further choose the largest admissible stepsize
γ = 1/Lmax and the optimal synchronization probability p = 1/√

κmax, we get O(κmax log 1/ϵ) iteration
complexity, O(√κmax log 1/ϵ) accelerated communication complexity with 1/p = √

κmax expected
number of local steps in each communication round. Here, we used notation κmax = maxi κi where
κi = Li/µ is the condition number for client i ∈ [n].

• Finally, exploiting smaller probabilities qi, we can optimize computational complexity subject to the
same communication complexity as Scaffnew. To do that, note that the largest possible stepsize that
Theorem 3.5 allows is γ = 1/Lmax as

min
i

{
1
Li

p2

1 − qi (1 − p2)

}
≤ min

i

1
Li

= 1
Lmax

.

Hence, taking into account ρ ≤ γµ, the best iteration complexity from the rate (6) is O(κmax log 1/ϵ),
which can be obtained by choosing the probabilities appropriately as formalized in the following
result.

Theorem 3.6 (Optimal parameter choices; Proof in Appendix C.5). Let Assumption 3.4 hold and choose
probabilities

qi =
1 − 1

κi

1 − 1
κmax

≤ 1 and p = 1
√
κmax

.

Then, with the largest admissible stepsize γ = 1/Lmax, GradSkip enjoys the following properties:

(i) O (κmax log 1/ε) iteration complexity,

(ii) O
(√
κmax log 1/ε

)
communication complexity,

(iii) for each client i ∈ [n], the expected number of local gradient computations per communication round
is

1
1 − qi(1 − p) = κi(1 + √

κmax)
κi + √

κmax
≤ min {κi,

√
κmax} . (7)

This result clearly quantifies the benefits of using smaller probabilities qi. In particular, if the condition number
κi of client i is smaller than √

κmax, then within each communication round, it does only κi number of local
gradient steps. However, for a client having the maximal condition number (namely, clients arg maxi{κi}),
the number of local gradient steps is √

κmax, which is the same for Scaffnew. From this, we conclude that, in
terms of computational complexity, GradSkip is always better and can be O(n) times better than Scaffnew
(Mishchenko et al., 2022).

7

Published in Transactions on Machine Learning Research (06/2025)

4 GradSkip+

We extend GradSkip in two directions, leading to our general GradSkip+ method. The first extension concerns
the optimization problem formulation. As discussed, the distributed problem (1) with consensus constraints
can be reformulated as a regularized problem (4) in a lifted space, where the local variables x1, . . . , xn ∈ Rd
are stacked into a single vector in Rnd. Following Mishchenko et al. (2022), we consider the lifted problem

min
x∈Rd

f(x) + ψ(x), (8)

where f(x) is a smooth, strongly convex loss, and ψ(x) is a closed, proper, convex regularizer (see (4)). We
require that the proximal operator of ψ is a single-valued function that can be computed.

The second extension in GradSkip+ is the generalization of the randomization procedure of probabilistic
alternations in GradSkip by allowing arbitrary unbiased compression operators with certain bounds on the
variance. Let us formally define the class of compressors we will be working with.
Definition 4.1 (Unbiased Compressors). For any positive semidefinite matrix Ω ⪰ 0, denote by Bd(Ω) the
class of (possibly randomized) unbiased compression operators C : Rd → Rd such that for all x ∈ Rd we have

E [C(x)] = x,

E
[∥∥(I + Ω)−1C(x)

∥∥2
]

≤ ∥x∥2
(I+Ω)−1 .

The class Bd(Ω) is a generalization of commonly used class Bd(ω) of unbiased compressors with variance
bound E

[
∥C(x)∥2

]
≤ (1 + ω)∥x∥2 for some scalar ω ≥ 0. Indeed, when the matrix Ω = ωI, then Bd(ωI)

coincides with Bd(ω). Furthermore, the following inclusion holds:

Lemma 4.2 (Proof in Appendix D.1). Bd(Ω) ⊆ Bd
(

(1+λmax(Ω))2

(1+λmin(Ω)) − 1
)

.

The purpose of this new variance bound with matrix parameter Ω is to introduce non-uniformity on the
level of compression across different directions. For example, in the reformulation (4) each client controls
1/n portion of the directions and the level of compression. For example, consider compression operator
C : Rd → Rd defined as

C(x)j =
{
xj/pj , with probability pj ,

0, with probability 1 − pj ,
(9)

for all coordinates j ∈ [d] and for any x ∈ Rd, where pj ∈ (0, 1] are given probabilities. Then, it is easy to
check that C ∈ Bd(Ω) with diagonal matrix Ω = Diag(1/pj − 1) having diagonal entries 1/pj − 1 ≥ 0.

With finer control over the compression operator, we can use the granular smoothness information of the loss
function f via smoothness matrices (Qu & Richtárik, 2016b;a).
Definition 4.3 (Matrix Smoothness). A differentiable function f : Rd → R is called L-smooth with some
symmetric and positive definite matrix L ≻ 0 if

Df (x, y) ≤ 1
2∥x− y∥2

L, ∀x, y ∈ Rd, (10)

where ∥x∥L :=
√
x⊤Lx denotes the L-norm of x.

The standard L-smoothness condition with scalar L > 0 is obtained as a special case of (10) for matrices
of the form L = LI, where I is the identity matrix. The notion of matrix smoothness provides more
information about the function than mere scalar smoothness. In particular, if f is L-smooth, then it is also
λmax(L)-smooth due to the relation L ⪯ λmax(L)I. Smoothness matrices have been used in the literature of
randomized coordinate descent (Richtárik & Takáč, 2016; Hanzely & Richtárik, 2019b;a) and distributed
optimization (Safaryan et al., 2021; Wang et al., 2022).

8

Published in Transactions on Machine Learning Research (06/2025)

Algorithm 2 GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: ĥt+1 = ∇f(xt) − (I + Ω)−1CΩ (∇f(xt) − ht) ⋄ Update the shift ĥt via shifted compression
5: x̂t+1 = xt − γ(∇f(xt) − ĥt+1) ⋄ Update the iterate x̂t via a shifted gradient step
6: ĝt = 1

γ(1+ω) Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal gradient

7: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
8: ht+1 = ĥt+1 + 1

γ(1+ω) (xt+1 − x̂t+1) ⋄ Update the main shift ht
9: end for

4.1 Algorithm Description

Similar to GradSkip, we maintain two variables xt, x̂t for the model, and two variables ht, ĥt for the gradient
shifts in GradSkip+. Initial values x0 ∈ Rd and h0 ∈ Rd can be chosen arbitrarily. In each iteration, GradSkip+
first updates the auxiliary shift ĥt+1 using the previous shift ht and gradient ∇f(xt) (line 4). This shift
ĥt+1 is then used to update the auxiliary iterate xt via shifted gradient step (line 5). Then we estimate
the proximal gradient ĝt (line 6) in order to update the main iterate xt+1 (line 7). Lastly, we complete the
iteration by updating the main shift ht (line 8). See Algorithm 2 for the formal steps.

4.2 Special Cases

GradSkip+ recovers several existing methods as special cases, including ProxGD, ProxSkip, and RandProx-FB
(Condat & Richtárik, 2022).

• ProxGD. When Cω is the identity compressor (i.e., ω = 0), then Algorithm 2 reduces to the ProxGD
algorithm as

xt+1 = proxγψ(x̂t+1 − γĥt+1) = proxγψ(xt − γ∇f(xt))
for any choice of CΩ.

• ProxSkip. Let CΩ be the identity compressor (i.e., Ω = I) and Cω be the Bernoulli compressor Cp with
parameter p ∈ (0, 1] (note that here ω = 1/p − 1). In this case, ĥt+1 ≡ ht and

xt+1 =
{

prox γ
pψ

(
x̂t+1 − γ

pht

)
, with probability p,

x̂t+1, with probability 1 − p.

Thus, we recover the ProxSkip algorithm.

• RandProx-FB. Let CΩ be the identity compressor and CΩ = R ∈ Bd(ω). Then, after the following
change of notation:

ht = −ut, ĝt = dt
1 + ω2

,

the method is equivalent to RandProx-FB (Condat & Richtárik, 2022), which is a generalization of
ProxSkip when additional smoothness information for the regularizer ψ is known1.

• GradSkip. Finally, we can specialize GradSkip+ to recover GradSkip. Consider the lifted space Rnd
where x ∈ Rnd represents the concatenations of models x1, . . . , xn ∈ Rd from all clients. The central
example of an unbiased compression operator for that would be the probabilistic switching mechanism
used in GradSkip, which is sometimes referred to as Bernoulli compressor: for any given p ∈ [0, 1], the
compressor outputs

Cndp (x) =
{
x
p , with probability p,
0, with probability 1 − p,

1We do not consider smooth regularizers as our primary example of regularizer is the non-smooth consensus constraint (4).

9

Published in Transactions on Machine Learning Research (06/2025)

for any input vector x ∈ Rnd. GradSkip employs one Bernoulli compressor Cndp with parameter p ∈ (0, 1]
controlling communication rounds, and one Bernoulli compressor Cdqi

with parameter qi ∈ (0, 1] for
each client to control local gradient steps. Therefore, choosing Cω = Cndp and CΩ = Cdq1

× · · · × Cdqn

in the lifted space Rnd, GradSkip+ reduces to GradSkip.

4.3 Convergence Theory

We now present the convergence theory for GradSkip+, for which we replace the scalar smoothness Assumption
3.4 by matrix smoothness.
Assumption 4.4 (Convexity and smoothness). We assume that the loss function f is µ-strongly convex
with positive µ > 0 and L-smooth with positive definite matrix L ≻ 0.

Similar to (5), we analyze GradSkip+ using the Lyapunov function

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − ∇f(x∗)∥2.

The next theorem shows the linear convergence result.
Theorem 4.5 (Proof in Appendix D.2). Let Assumption 4.4 hold, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the
compression operators, and

Ω̃ := I + ω(ω + 2)Ω(I + Ω)−1.

Then, if the stepsize γ ≤ λ−1
max(LΩ̃), the iterates of GradSkip+ (Algorithm 2) satisfy

E [Ψt] ≤ (1 − min {γµ, δ})t Ψ0, (11)

where
δ = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
∈ [0, 1].

First, if we choose CΩ to be the identity compression (i.e., Ω = 0), then GradSkip+ reduces to RandProx-FB, and
we recover asymptotically the same rate with linear factor (1 − min{γµ, 1/(1+ω)2}) (see Theorem 3 of Condat
& Richtárik (2022)). If we further choose Cω to be the Bernoulli compression with parameter p ∈ (0, 1], then
ω = 1/p − 1 and we get the rate of ProxSkip.

To recover the rate in (6) for GradSkip, consider the lifted space Rnd and the reformulated problem (4) with
objective f(x) = 1

n

∑n
i=1 fi(xi), where xi ∈ Rd and x = (x1, . . . , xn) ∈ Rnd. Since each fi is µ-strongly

convex, the function f is also µ-strongly convex. Regarding the smoothness condition, we have LiI ∈ Rd×d

smoothness matrices (e.g., scalar Li-smoothness) for each fi, which implies that the overall loss function f
has L = Diag(L1I, . . . , LnI) ∈ Rnd×nd as a smoothness matrix.

Furthermore, choosing Bernoulli compression operators Cω = Cndp and CΩ = Cdq1
× · · · × Cdqn

in the lifted space
Rnd, we get

ω = 1
p

− 1 and Ω = Diag
(

1
qi

− 1
)
.

It remains to plug all these expressions into Theorem 4.5 and recover Theorem 3.6. Indeed, λmin(Ω) = 1/qmax−1
and, hence, δ = 1 − qmax

(
1 − p2).

Finally, Theorem 4.5 gives the same stepsize bound

λ−1
max(LΩ̃) = min

i

{
Li

(
1 + (1 − qi)

(
1
p2 − 1

))}−1
= min

i

{
1
Li

p2

1 − qi (1 − p2)

}
.

5 Experiments

To test the performance of GradSkip and illustrate theoretical results, we use the classical logistic regression
problem.

10

Published in Transactions on Machine Learning Research (06/2025)

100 102 103 104 105 106

ki

p
∙max

n=20, ∙max =102

k=1

0 25 50 75 100 125 150 175 200
Communication rounds

10-15

10-13

10-11

10-9

10-7

10-5

10-3

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 105

2£ 105

3£ 105

4£ 105

5£ 105

6£ 105

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 2.576
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

101 102

∙i

2

4

6

8

10

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 103 104 105 106

ki

p
∙max

n=20, ∙max =104

k=1

0 500 1000 1500 2000 2500 3000
Communication rounds

10-14

10-11

10-8

10-5

10-2

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 106

2£ 106

3£ 106

4£ 106

5£ 106

6£ 106

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 10.23
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104

∙i

0

20

40

60

80

100

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 102 104 105 106

ki

p
∙max

n=20, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-8

10-6

10-4

10-2

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 107

2£ 107

3£ 107

4£ 107

5£ 107

6£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 18.17
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

Figure 1: The first column displays the condition numbers for devices. The second column presents convergence
per communication round. The third column contrasts theoretical and practical gradient computation counts.
The final column reveals the average gradient computations for devices with condition number κi. Notably,
in GradSkip, the device with κi = κmax performs gradient computations at a rate comparable to all devices in
ProxSkip.

100 101 106

ki

p
∙max

n=15, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-7

10-5

10-3

10-1

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 107

2£ 107

3£ 107

4£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 14.17
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 106

ki

p
∙max

n=30, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-9

10-7

10-5

10-3

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

2£ 107

4£ 107

6£ 107

8£ 107

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 25.91
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

100 101 106

ki

p
∙max

n=45, ∙max =106

k=1

0 1000 2000 3000 4000 5000 6000 7000 8000
Communication rounds

10-8

10-6

10-4

10-2

f(
x
)
¡
f
¤

ProxSkip
GradSkip
AGD

0 500 1000 1500 2000 2500 3000
Communication rounds

0

2:5£ 107

5£ 107

7:5£ 107

1£ 108

1:2£ 108

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 37.00
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

100 101 102 103 104 105 106

∙i

0

200

400

600

800

1000

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

Figure 2: The columns in this figure represent the same as those in Figure 1.

The loss function for this model has the following form:

f(x) = 1
n

n∑
i=1

1
m

m∑
j=1

log
(
1 + exp

(
−bija⊤

ijx
))

+ λ

2 ∥x∥2,

where n is the number of clients, m is the number of data points per worker, aij ∈ Rd and bij ∈ {−1,+1} are
the data samples, and λ is the regularization parameter.

11

Published in Transactions on Machine Learning Research (06/2025)

Experiments were conducted on artificially generated data and on the “australian" dataset from LibSVM
library (Chang & Lin, 2011) (see Section 5.1). All algorithms were run using their theoretically optimal
hyperparameters (stepsize, probabilities). We compare GradSkip with ProxSkip and AGD, which have SOTA
accelerated communication complexity. Comparisons between VR-GradSkip+ and ProxSkip-VR were omitted, as
their computational complexity difference is similar to that of GradSkip and ProxSkip.

For GradSkip, the expected local gradient computations per communication round are at most∑n
i=1 min

(
κi,

√
κmax

)
(see (7)), while for ProxSkip, it is n√

κmax. Therefore, the gradient computation
ratio of ProxSkip over GradSkip depends on the number of devices with κi ≥ √

κmax. With k ≤ n such devices,
this ratio for ProxSkip over GradSkip converges to n/k ≥ 1 as κmax → ∞.

In our experiments, only one device has an ill-conditioned local problem (k = 1). To showcase this convergence,
we generate data to control the smoothness constants and set the regularization parameter λ = 10−1 = µ.
We run GradSkip and ProxSkip algorithms for 3000 communication rounds. Figure 1 features n = 20 devices,
one with a large Li = Lmax, and others with Li ∼ Uniform(0.1, 1). The second column illustrates similar
convergence for GradSkip and ProxSkip. As we increment Lmax row by row, the ratio converges to n = 20,
while AGD’s performance drops with increasing data heterogeneity. Figure 2 illustrates the growing ratio with
more clients n, assigning one device Li = Lmax = 105 and others Li ∼ Uniform(0.1, 1), showing the increase
in n row by row.

5.1 Experiment on the “australian" Dataset

In line with our experiments on synthetic data (section 5), we conduct a parallel experiment using the
“australian" dataset from the LibSVM library (Chang & Lin, 2011). This involves applying the GradSkip and
ProxSkip algorithms to the logistic regression problem, characterized by the same loss function used previously:

f(x) = 1
n

n∑
i=1

1
m

m∑
j=1

log
(
1 + exp

(
−bija⊤

ijx
))

+ λ

2 |x|2.

We set the regularization parameter λ = 10−4Lmax. We split the dataset equally into n = 20 devices. In this
case we get k = 8 devices with ill-conditioned local problems, so the gradient computation ratio of ProxSkip
over GradSkip should be close to n/k = 2.5. It can be seen in Figure 3.

101 103 104

∙i

p
∙max

n=20, ∙max =104

k=8

0 500 1000 1500 2000 2500 3000
Communication rounds

10-14

10-11

10-8

10-5

10-2

f(
x
)
¡
f
¤

ProxSkip
GradSkip

0 500 1000 1500 2000 2500 3000
Communication rounds

0

1£ 106

2£ 106

3£ 106

4£ 106

5£ 106

6£ 106

To
ta

l g
ra

di
en

t c
om

pu
ta

tio
ns

Ratio = 2.176
ProxSkip (practical)
ProxSkip (theoretical)
GradSkip (practical)
GradSkip (theoretical)

101 102 103 104

∙i

0

20

40

60

80

100

Av
er

ag
e

gr
ad

ie
nt

 c
om

pu
ta

tio
ns

ProxSkip
GradSkip

Figure 3: The plots have the same meaning as in Figure 1.

5.2 System Heterogeneity Case

Let Ti represent the time required for client i to complete one local step. We consider Ti to be a random
variable with the structure Ti = τi + ηi. Here, τi is a scalar representing the minimum time to finish one local
step on machine i, and ηi is a random jitter (time delay) assumed to have an exponential distribution with
scale parameter βi. Practically, the distribution of Ti can be estimated.

Our objective is to determine values for qi that minimize the wall training time (excluding communication
time) in GradSkip. The average expected time for local training before communication on client i is:

E [Ti]
1 − qi(1 − p) ,

12

Published in Transactions on Machine Learning Research (06/2025)

given that, on average, device i performs
1

1 − qi(1 − p)

local steps (see Lemma 3.2). To reduce waiting time, we initiate by setting qi = 1 for the fastest clients. For
other clients, we set qi to make the average local training time before communication match with the fastest
device. This condition can be mathematically expressed as:

E [Ti]
1 − qi(1 − p) = E [Tmin]

p
,

yielding the value of qi as

qi = max

1 − p E[Ti]
E[Tmin]

1 − p
, 0

 .

To assess the effectiveness of our qi selection strategy in GradSkip compared to ProxSkip, we ran experiments
with two types of delay distributions for τi: uniform and exponential. In the first case, τi ∼ Uniform(0, 1),
and in the second, τi ∼ Exponential(1). To introduce variability in communication delays, we also added
noise ηi ∼ Exponential(βi) with βi ∼ Uniform(0, 1).

The results, shown in Figure 4, demonstrate that GradSkip, with adaptively chosen qi, achieves better
performance than ProxSkip with a fixed q under both delay models.

0 10000 20000 30000 40000 50000 60000 70000 80000
Time

10 5

10 4

10 3

10 2

10 1

100

f(x
)

f*

GradSkip - Uniform
ProxSkip - Uniform
GradSkip - Exponential
ProxSkip - Exponential

Figure 4: We used the “w6a" dataset from the LibSVM library (Chang & Lin, 2011), which has d = 300
features. The number of clients is 153.2

2There is no particular reason for this choice, other than that 153 is a “nice” number: 153 = 1! + 2! + 3! + 4! + 5! = 13 + 53 + 33.

13

Published in Transactions on Machine Learning Research (06/2025)

Acknowledgments

The research reported in this publication was supported by funding from King Abdullah University of Science
and Technology (KAUST): i) KAUST Baseline Research Scheme, ii) Center of Excellence for Generative
AI, under award number 5940, iii) SDAIA-KAUST Center of Excellence in Artificial Intelligence and Data
Science.

References
Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient

SGD via gradient quantization and encoding. In Advances in Neural Information Processing Systems, pp.
1709–1720, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cedric Renggli.
The convergence of sparsified gradient methods. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, pp.
5977–5987. Curran Associates, Inc., 2018.

Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo Sani,
Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, and Nicholas D. Lane. Flower: A
friendly federated learning research framework, 2022.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. FedAvg with Fine Tuning: Local
Updates Lead to Representation Learning. arXiv preprint arXiv:2205.13692, 2022.

Laurent Condat and Peter Richtárik. RandProx: Primal-Dual Optimization Algorithms with Randomized
Proximal Updates. In arXiv:2207.12891, 2022.

Laurent Condat, Kai Yi, and Peter Richtárik. EF-BV: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization. arXiv:2205.04180,
2022.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. In Journal of Machine Learning Research, pp. 2121–2159, 2011.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. In SIAM Journal on Optimization, volume 23(4), pp. 2341–2368, 2013.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: variance reduction, sampling,
quantization and coordinate descent. In The 23rd International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020a.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtarik. Linearly converging error com-
pensated sgd. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 20889–20900. Curran Associates, Inc., 2020b. URL https:
//proceedings.neurips.cc/paper/2020/file/ef9280fbc5317f17d480e4d4f61b3751-Paper.pdf.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. Local SGD: unified theory and new efficient methods.
The 24th International Conference on Artificial Intelligence and Statistics (AISTATS), 2021.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter Richtárik.
SGD: General analysis and improved rates. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 5200–5209. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/
qian19b.html.

14

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://proceedings.neurips.cc/paper/2020/file/ef9280fbc5317f17d480e4d4f61b3751-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ef9280fbc5317f17d480e4d4f61b3751-Paper.pdf
https://proceedings.mlr.press/v97/qian19b.html
https://proceedings.mlr.press/v97/qian19b.html

Published in Transactions on Machine Learning Research (06/2025)

Michał Grudzień, Grigory Malinovsky, and Peter Richtárik. Can 5th generation local training methods
support client sampling? Yes! 25th International Conference on Artificial Intelligence and Statistics
(AISTATS), 2023.

F. Haddadpour and M. Mahdavi. On the convergence of local descent methods in federated learning. In
arXiv preprint arXiv:1910.14425, 2019.

F. Hanzely, K. Mishchenko, and P. Richtárik. SEGA: variance reduction via gradient sketching. Advances in
Neural Information Processing Systems 31, pages 2082–2093, 2018.

Filip Hanzely and Peter Richtárik. Accelerated coordinate descent with arbitrary sampling and best rates
for minibatches. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings of Machine Learning
Research, volume 89 of Proceedings of Machine Learning Research, pp. 304–312. PMLR, 16–18 Apr 2019a.
URL http://proceedings.mlr.press/v89/hanzely19a.html.

Filip Hanzely and Peter Richtárik. One method to rule them all: Variance reduction for data, parameters
and many new methods. preprint arXiv:1905.11266, 2019b.

Filip Hanzely and Peter Richtárik. Federated Learning of a Mixture of Global and Local Models. arXiv
preprint arXiv:2002.05516, 2021.

Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and optimal algorithms
for personalized federated learning, 2020.

Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth
Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen, Peilin Zhao, Yan Kang,
Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman Avestimehr. Fedml: A research
library and benchmark for federated machine learning, 2020.

S. Horváth, M. Sanjabi, L. Xiao, P. Richtárik, and M. Rabbat. FedShuffle: Recipes for better use of local
work in federated learning. In arXiv preprint arXiv:2204.13169, 2022.

Peter Kairouz et al. Advances and open problems in federated learning. Foundations and Trends®in Machine
Learning, 14(1–2):1–210., 2019.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Sebastian U. Stich, and
Ananda Theertha Suresh. SCAFFOLD: Stochastic controlled averaging for on-device federated learning.
In International Conference on Machine Learning (ICML), 2020.

A. Khaled, K. Mishchenko, and P. Richtárik. First analysis of local gd on heterogeneous data. In NeurIPS
Workshop on Federated Learning for Data Privacy and Confidentiality, pages 1–11, 2019a.

A. Khaled, K. Mishchenko, and P. Richtárik. Better communication complexity for local sgd. In NeurIPS
Workshop on Federated Learning for Data Privacy and Confidentiality, pages 1–11, 2019b.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations, 2015.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, , and V. Smith. Federated optimization for
heterogeneous networks. In Proceedings of the 1st Adaptive Multitask Learning Workshop, 2019a.

X. Li, W. Yang, S. Wang, and Z. Zhang. Communication-efficient local decentralized SGD methods. arXiv
preprint arXiv:1910.09126, 2019b.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of FedAvg on non-IID data.
International Conference on Learning Representations, 2020.

Bing Luo, Wenli Xiao, Shiqiang Wang, Jianwei Huang, and Leandros Tassiulas. Tackling System and
Statistical Heterogeneity for Federated Learning with Adaptive Client Sampling . In arXiv:2112.11256,
2021.

15

http://proceedings.mlr.press/v89/hanzely19a.html

Published in Transactions on Machine Learning Research (06/2025)

Grigory Malinovsky, Kai Yi, and Peter Richtárik. Variance Reduced ProxSkip: Algorithm, Theory and
Application to Federated Learning. In arXiv:2207.04338, 2022.

O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization. In SIAM Journal on Control
and Optimization, 33(6):1916–1925, 1995.

H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated learning of deep
networks using model averaging. In arXiv preprint arXiv:1602.05629, 2016.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Konstantin Mishchenko, Filip Hanzely, and Peter Richtárik. 99% of worker-master communication in
distributed optimization is not needed. In Jonas Peters and David Sontag (eds.), Proceedings of the 36th
Conference on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning
Research, pp. 979–988. PMLR, 03–06 Aug 2020.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. ProxSkip: Yes! Local
gradient steps provably lead to communication acceleration! Finally! 39th International Conference on
Machine Learning (ICML), 2022.

Yurii Nesterov. Introductory Lectures on Convex Optimization, volume 87 of Applied Optimization. Springer
US, Boston, MA, 2004. ISBN 978-1-4613-4691-3 978-1-4419-8853-9. doi: 10.1007/978-1-4419-8853-9.

Xun Qian, Peter Richtárik, Robert Mansel Gower, Alibek Sailanbayev, Nicolas Loizou, and Egor Shulgin.
SGD with arbitrary sampling: General analysis and improved rates. In International Conference on
Machine Learning, 2019.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling ii: expected separable overap-
proximation. Optimization Methods and Software, 31:858–884, 2016a. doi: 10.1080/10556788.2016.1190361.

Zheng Qu and Peter Richtárik. Coordinate descent with arbitrary sampling i: algorithms and complexity.
Optimization Methods and Software, 31:829–857, 2016b.

Amirhossein Reisizadeh, Isidoros Tziotis, Hamed Hassani, Aryan Mokhtari, and Ramtin Pedarsani. Straggler-
Resilient Federated Learning: Leveraging the Interplay Between Statistical Accuracy and System Hetero-
geneity . In arXiv:2012.14453, 2020.

Peter Richtárik and Martin Takáč. On optimal probabilities in stochastic coordinate descent methods. Optim
Lett, 10:1233–1243, 2016. doi: https://doi.org/10.1007/s11590-015-0916-1.

Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. Fedjax: Federated learning simulation with jax, 2021.

Abdurakhmon Sadiev, Dmitry Kovalev, and Peter Richtárik. Communication Acceleration of Local Gradient
Methods via an Accelerated Primal-Dual Algorithm with Inexact Prox. In arXiv:2207.03957, 2022.

Mher Safaryan, Filip Hanzely, and Peter Richtárik. Smoothness matrices beat smoothness constants: Better
communication compression techniques for distributed optimization. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average
gradient. In Mathematical Programming, volume 162(1-2), pp. 83–112, 2017.

J. Sun, T. Chen, G. Giannakis, and Z. Yang. Communication-efficient distributed learning via lazily aggregated
quantized gradients. Advances in Neural Information Processing Systems, 32:3370–3380, 2019.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient compres-
sion for distributed optimization. In Advances in Neural Information Processing Systems 32 (NeurIPS),
2019.

16

Published in Transactions on Machine Learning Research (06/2025)

B. Wang, M. Safaryan, and P. Richtárik. Theoretically Better and Numerically Faster Distributed Optimization
with Smoothness-Aware Quantization Techniques. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen Wright.
Atomo: Communication-efficient learning via atomic sparsification. In Advances in Neural Information
Processing Systems, 2018.

Jianyu Wang and Gauri Joshi. Adaptive Communication Strategies to Achieve the Best Error-Runtime
Trade-off in Local-Update SGD . In arXiv:1810.08313, 2019.

Jianyu Wang, et al. A field guide to federated optimization. arXiv preprint arXiv:2107.06917, 2021.

H. Yu, R. Jin, and S. Yang. On the linear speedup analysis of communication efficient momentum SGD for
distributed non-convex optimization. International Conference on Machine Learning (ICML), 2019.

Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. In arXiv e-prints, arXiv:1212.5701,
2012.

17

Published in Transactions on Machine Learning Research (06/2025)

A Limitations and Future Work

In this part, we outline some limitations and future research directions related to our work.

• Similar to the previous works Malinovsky et al. (2022); Mishchenko et al. (2022) on local gradient
methods with communication acceleration, our theory does not cover non-strongly convex or non-
convex objective functions. So far, the communication acceleration property of local steps has been
proven only for a strongly convex setup.

• Another key component for designing efficient distributed and federated learning algorithms is partial
device participation. This extension seems rather tricky, and we leave this as a future work. A recent
work by Grudzień et al. (2023) considers client sampling.

• Finally, one can combine the local gradient methods with communication compression techniques to
achieve even better communication complexity. Moreover, our proposed gradient skipping approach
can be decoupled to address computational complexity, too.

B Extension to Stochastic Gradients with Variance Reduction: VR-GradSkip+

Recently developed ProxSkip-VR method (Malinovsky et al., 2022) reduces computational complexity by
allowing computationally cheaper stochastic gradient estimators instead of full batch gradients. This approach
of reducing computational complexity is blind to statistical heterogeneity and is entirely orthogonal to our
approach of reducing computational complexity in GradSkip. It is natural to ask the following question.

Is it possible to combine these two methods (ProxSkip-VR and GradSkip) to achieve even better
computational complexity?

We give an affirmative answer to the question by developing our most general VR-GradSkip+ method.

B.1 Algorithm Description

We get VR-GradSkip+ method from GradSkip+ by replacing the gradient ∇f(xt) by an unbiased estimator

gt = StochasticGradient(xt, f),

see Algorithm 3.

Our next assumption, initially introduced by Gorbunov et al. (2020a), postulates several parametric inequalities
characterizing the behavior and, ultimately, the quality of a gradient estimator. Similar assumptions appeared
later in (Gorbunov et al., 2020b; 2021).
Assumption B.1. Let {xt} be the iterates produced by VR-GradSkip+. We first assume unbiasedness of the
stochastic gradients gt for all iterations t ≥ 0, i.e.,

E [gt | xt] = ∇f(xt).

Next, we assume that for some non-negative constants A,B,C, Ã, B̃, C̃, with B̃ < 1, and non-negative
sequence {σt}t≥0 the following inequalities hold for all t ≥ 0:

E
[
∥gt − ∇f(x⋆)∥2

L−1 | xt
]

≤ 2ADf (xt, x⋆) +Bσt + C,

E [σt+1 | xt] ≤ 2ÃDf (xt, x⋆) + B̃σt + C̃.

Assumption B.1 covers a very large collection of gradient estimators, including an infinite variety of sub-
sampling/minibatch estimators, gradient sparsification and quantization estimators, and their combinations;
see (Gorbunov et al., 2020a) for examples. VR estimators are characterized by C = C̃ = 0; most non-VR
estimators by Ã = B̃ = C̃ = B = 0 and C > 0 (Gower et al., 2019).

18

Published in Transactions on Machine Learning Research (06/2025)

Algorithm 3 VR-GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: gt = StochasticGradient(xt, f) ⋄ Construct an unbiased estimator of ∇f(xt)
5: ĥt+1 = gt − (I + Ω)−1CΩ (gt − ht) ⋄ Update the shift ĥt via shifted compression
6: x̂t+1 = xt − γ(gt − ĥt+1) ⋄ Update the iterate x̂t via shifted stochastic gradient step
7: ĝt = 1

γ(1+ω) Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal gradient

8: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
9: ht+1 = ĥt+1 + 1

γ(1+ω) (xt+1 − x̂t+1) ⋄ Update the main shift ht
10: end for

B.2 Convergence Theory

Consider the Lyapunov function:

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt,

where h∗ = ∇f(x∗).
Theorem B.2 (Proof in Appendix B.4). Let Assumption 4.4 hold, and let gt be a gradient estimator satisfying
Assumption B.1. Let Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the compression operators. If B > 0, choose any

W >
λmax(LΩ̃)B

1 − B̃
and β = 1 − B̃ − λmax(LΩ̃)B

W
> 0.

In case of B = 0, set W = 0 and β = B̃. If the stepsize

γ ≤ 1
Aλmax(LΩ̃) +WÃ

,

then the iterates of VR-GradSkip+ (Algorithm 3) satisfy

E [Ψt] ≤ (1 − min {γµ, δ, β})t Ψ0 + γ2λmax(LΩ̃)C +WC̃

min {γµ, δ, β}
,

where
δ = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
, Ω̃ = I + ω(ω + 2)Ω(I + Ω)−1. (12)

B.3 Special Cases

• GradSkip+. Consider the case when stochastic gradients are full batch gradients, i.e., gt = ∇f(xt) for
all t ≥ 0. Then Algorithm 3 reduces to GradSkip+.

• ProxSkip-VR. To recover ProxSkip-VR from VR-GradSkip+, we need the same conditions we had for
recovering ProxSkip from GradSkip+. That is, let CΩ be the identity compressor (i.e., Ω = I) and Cω
be the Bernoulli compressor Cp with parameter p ∈ (0, 1] (note that here ω = 1/p − 1). In this case,
ĥt+1 ≡ ht and

xt+1 =
{

prox γ
pψ

(
x̂t+1 − γ

pht

)
, with probability p,

x̂t+1, with probability 1 − p.

Thus, we recover the ProxSkip-VR algorithm.

19

Published in Transactions on Machine Learning Research (06/2025)

B.4 Proof of Theorem B.2

Here, we start proving the convergence of Algorithm 3 by first proving some auxiliary lemmas. Let

wt := xt − γgt, and w⋆ := x⋆ − γ∇f(x⋆).

Lemma B.3 (Proof in Appendix B.5.1). If γ > 0 and Cω ∈ Bd(ω), CΩ ∈ Bd(Ω), then

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
≤ ∥wt − w⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

I−(I+Ω)−1

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1 ,

where the expectation is with respect to the randomness from Cω and CΩ.

Next, we upper bound the first two terms.
Lemma B.4 (Proof in Appendix B.5.2). Denote Ω̃ = I + ω(ω + 2)Ω(I + Ω)−1. Then

Et
[
∥wt − w⋆∥2

]
+
(

1 − 1
(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2

I−(I+Ω)−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γ

(
1 − γAλmax(LΩ̃)

)
Df (xt, x⋆) + γ2λmax(LΩ̃)Bσt

+ γ2λmax(LΩ̃)C.

We are ready to prove the theorem.

Proof of Theorem B.2. The proof is a direct combination of the two lemmas.

E [Ψt+1] ≤ (1 − γµ) ∥xt − x⋆∥2 − 2γ
(

1 − γAλmax(LΩ̃)
)
Df (xt, x⋆)

+ γ2λmax(LΩ̃)Bσt + γ2λmax(LΩ̃)C

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1

+ γ2W
(
2ÃDf (xt, x⋆) + B̃σt + C̃

)
= (1 − γµ) ∥xt − x⋆∥2 − 2γ

(
1 − γ(Aλmax(LΩ̃) +WÃ)

)
Df (xt, x⋆)

+ ω(ω + 2)
(1 + λmin(Ω))(1 + ω)2 γ

2(1 + ω)2 ∥ht − h⋆∥2

+
(
λmax(LΩ̃)B

W
+ B̃

)
γ2Wσt + γ2(λmax(LΩ̃)C +WC̃).

Next we choose the stepsize
γ ≤ 1

Aλmax(LΩ̃) +WÃ

so that the term with Df (xt, x⋆) is non-negative and can be suppressed for further steps. Let

δ = 1 − ω(ω + 2)
(1 + λmin(Ω))(ω + 1)2 = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
∈ [0, 1],

β = 1 − B̃ − λmax(LΩ̃)B
W

> 0,

20

Published in Transactions on Machine Learning Research (06/2025)

provided that W > λmax(LΩ̃)B
1−B̃ , and continue the above derivation

E [Ψt+1] ≤ max {1 − γµ, 1 − δ, 1 − β} Ψt + γ2(λmax(LΩ̃)C +WC̃)
= (1 − min {γµ, δ, β}) Ψt + γ2(λmax(LΩ̃)C +WC̃)

≤ (1 − min {γµ, δ, β})t+1 Ψ0 + γ2λmax(LΩ̃)C +WC̃

min {γµ, δ, β}
.

B.5 Proof of Auxiliary Lemmas

B.5.1 Proof of Lemma B.3

Lemma B.3. If γ > 0 and Cω ∈ Bd(ω), CΩ ∈ Bd(Ω), then

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
≤ ∥wt − w⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

I−(I+Ω)−1

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1 ,

where the expectation is with respect to the randomness from Cω and CΩ.

Proof. In order to simplify notation, let P (·) := proxγ(1+ω)ψ(·), and

x := x̂t+1 − γ(1 + ω)ĥt+1, y := x⋆ − γ(1 + ω)h⋆. (13)

STEP 1 (Optimality conditions). Using the first-order optimality conditions for f + ψ and using
h⋆ := ∇f(x⋆), we obtain the following fixed-point identity for x⋆:

x⋆ = proxγ(1+ω)ψ (x⋆ − γ(1 + ω)h⋆)
(13)= P (y). (14)

STEP 2 (Recalling the steps of the method). Recall that the vectors xt+1 and ht+1 are in Algorithm 3
updated as follows:

xt+1 = x̂t+1 − γĝt = x̂t+1 − 1
1 + ω

Cω (x̂t+1 − P (x)) , (15)

and

ht+1 = ĥt+1 + 1
γ(1 + ω) (xt+1 − x̂t+1) = ĥt+1 − 1

γ(1 + ω)2 Cω (x̂t+1 − P (x)) . (16)

STEP 3 (One-step expectation of the Lyapunov function). The expected value of the Lyapunov
function

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt (17)

21

Published in Transactions on Machine Learning Research (06/2025)

at time t+ 1, with respect to the randomness of Cω, is

Et

[
Ψt+1 − γ2W σt+1 | CΩ, gt

]
= Et

[∥∥∥x̂t+1 −
1

1 + ω
Cω (x̂t+1 − P (x)) − x⋆

∥∥∥2
| CΩ, gt

]
+ Et

[
γ2(1 + ω)2

∥∥∥ĥt+1 −
1

γ(1 + ω)2 Cω (x̂t+1 − P (x)) − h⋆

∥∥∥2
| CΩ, gt

]
= Et

[
∥x̂t+1 − x⋆∥2 −

2
1 + ω

⟨Cω (x̂t+1 − P (x)) , x̂t+1 − x⋆⟩

+
1

(1 + ω)2 ∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]
+ Et

[
γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
− 2γ

〈
Cω (x̂t+1 − P (x)) , ĥt+1 − h⋆

〉
+

1
(1 + ω)2 ∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]
≤ ∥x̂t+1 − x⋆∥2 +

2
1 + ω

⟨P (x) − x̂t+1, x̂t+1 − x⋆⟩ +
1

1 + ω
∥P (x) − x̂t+1∥2

+ γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2
+

2
1 + ω

〈
P (x) − x̂t+1, γ(1 + ω)(ĥt+1 − h⋆)

〉
+

1
1 + ω

∥P (x) − x̂t+1∥2

= ∥x̂t+1 − x⋆∥2 +
1

1 + ω

(
∥P (x) − x⋆∥2 − ∥x̂t+1 − x⋆∥2)

+ γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2

+
1

1 + ω

(∥∥P (x) − x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥2

− γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2
)

=
(

1 −
1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
)

+
1

1 + ω

(
∥P (x) − x⋆∥2 +

∥∥P (x) − x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥2
)

=
(

1 −
1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
)

+
1

1 + ω

(
∥P (x) − P (y)∥2 + ∥P (x) − x + y − P (y)∥2) .

STEP 4 (Applying firm non-expansiveness). Applying firm non-expansiveness of prox operator P , this
leads to the inequality

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥x− y∥2

=
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥∥∥x̂t+1 − γ(1 + ω)ĥt+1 − (x⋆ − γ(1 + ω)h⋆)
∥∥∥2

=
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥∥∥x̂t+1 − x⋆ − γ(1 + ω)
(
ĥt+1 − h⋆

)∥∥∥2
.

22

Published in Transactions on Machine Learning Research (06/2025)

STEP 5 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩ + γ2(1 + ω)∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩ + γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 − γ2∥ĥt+1 − h⋆∥2 + γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 +
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2∥ĥt+1 − h⋆∥2.

STEP 6 (Tower property). Applying the expectation with respect to the randomness of CΩ and using the
tower property, we get

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
= Et

[∥∥∥xt − γ(gt − ĥt+1) − x⋆ − γ(ĥt+1 − h⋆)
∥∥∥2

| gt
]

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − (I + Ω)−1CΩ (gt − ht) − h⋆
∥∥2 | gt

]
= ∥xt − γgt − (x⋆ − γh⋆)∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − h⋆ − (I + Ω)−1CΩ (gt − ht)
∥∥2 | gt

]
≤ ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2

(
2 ⟨gt − h⋆, ht − gt⟩(I+Ω)−1 + ∥gt − ht∥2

(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω2)2 ∥gt − h⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω2)2

(
∥ht − h⋆∥2

(I+Ω)−1 − ∥gt − h⋆∥2
(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

I−(I+Ω)−1

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1 .

B.5.2 Proof of Lemma B.4

Lemma B.4. Denote Ω̃ = I + ω(ω + 2)Ω(I + Ω)−1. Then

Et
[
∥wt − w⋆∥2

]
+
(

1 − 1
(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2

I−(I+Ω)−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γ

(
1 − γAλmax(LΩ̃)

)
Df (xt, x⋆) + γ2λmax(LΩ̃)Bσt

+ γ2λmax(LΩ̃)C.

23

Published in Transactions on Machine Learning Research (06/2025)

Proof. Expanding the first term and rearranging terms, we get

Et
[
∥wt − w⋆∥2

]
+
(

1 − 1
(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2

I−(I+Ω)−1

]
= Et

[
∥xt − x⋆ − γ (gt − ∇f(x⋆))∥2

]
+ ω(ω + 2)γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω(I+Ω)−1

]
= ∥xt − x⋆∥2 − 2γ ⟨xt − x⋆,∇f(xt) − ∇f(x⋆)⟩

+ γ2Et
[
∥gt − ∇f(x⋆)∥2

]
+ ω(ω + 2)γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω(I+Ω)−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω̃

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2λmax(LΩ̃)Et

[
∥gt − ∇f(x⋆)∥2

L−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2λmax(LΩ̃) (2ADf (xt, x⋆) +Bσt + C)

= (1 − γµ) ∥xt − x⋆∥2 − 2γ
(

1 − γAλmax(LΩ̃)
)
Df (xt, x⋆) + γ2λmax(LΩ̃)Bσt

+ γ2λmax(LΩ̃)C.

C Proofs for Section 3 (GradSkip)

C.1 Proof of Lemma 3.1

Lemma 3.1 (Fake local steps). Suppose that Algorithm 1 does not communicate for τ ≥ 1 consecutive
iterates, i.e., θt = θt+1 = · · · = θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some client i ∈ [n] we have
ηi,t = 0. Then, regardless of the coin tosses {ηi,t+j}τj=1, client i does fake local steps without any gradient
computation in τ iterates. Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t,

ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t).
(18)

Proof. The proof is rather straightforward and follows by following the corresponding lines of the algorithm.
Note that ηi,t = θt = 0 implies (see lines 6 and 7 in Algorithm 1) that

x̂i,t+1 = xi,t+1 = xi,t, (19)
ĥi,t+1 = hi,t+1 = hi,t = ∇fi(xi,t), (20)

which proves (18) when j = 1. Consider the two possible cases for ηi,t+1 coupled with θt+1 = 0. If ηi,t+1 = 1,
then

x̂i,t+2 = xi,t+1 − γ(∇fi(xi,t+1) − hi,t+1)
(19)= xi,t+1 − γ(∇fi(xi,t) − hi,t+1)
(20)= xi,t+1
(19)= xi,t,

and
ĥi,t+2 = hi,t+1

(20)= hi,t = ∇fi(xi,t).

In case of ηi,t+1 = 0, we have
x̂i,t+2 = xi,t+1

(19)= xi,t

24

Published in Transactions on Machine Learning Research (06/2025)

and
ĥi,t+2 = ∇fi(xi,t+1) (19)= ∇fi(xi,t)

(19)= hi,t.

Hence, in both cases, we get

x̂i,t+2 = xi,t+1 = xi,t, (21)
ĥi,t+2 = hi,t = ∇fi(xi,t). (22)

It remains to combine (21)–(22) with the condition that θt+1 = 0, which implies

xi,t+2 = x̂i,t+2, hi,t+2 = ĥi,t+2.

Thus, we proved (18) when j = 2. The proof can be completed by applying induction on j.

C.2 Proof of Lemma 3.2

Lemma 3.2 (Expected number of local steps). The expected number of local gradient computations in each
communication round of GradSkip is 1/(1−qi(1−p)) for all clients i ∈ [n].

Proof. As mentioned in the text preceding the lemma, the proof follows from the fact that for two geometric
random variables Θ ∼ Geo(p) and H ∼ Geo(q), their minimum min{Θ, H} is also a geometric random
variable with parameter 1 − (1 − p)(1 − q). To see this, consider the corresponding Bernoulli trials with
success probability p and q for each geometric random variable. Notice that the probability that both trials
fail is (1 − p)(1 − q). Hence, min{Θ, H} is the number of joint trials of the two Bernoulli variables until one of
them succeeds with probability 1 − (1 − p)(1 − q). Therefore, min{Θ, H} is also a geometric random variable
with success probability 1 − (1 − p)(1 − q).

C.3 Proof of Theorem 3.5

Theorem 3.5. Let Assumption 3.4 hold. If the stepsize satisfies

γ ≤ min
i

{
1
Li

p2

1 − qi (1 − p2)

}
and probabilities are chosen so that 0 < p, qi ≤ 1, then the iterates of GradSkip (Algorithm 1) satisfy

E [Ψt] ≤ (1 − ρ)tΨ0,

for all t ≥ 1 with ρ := min
{
γµ, 1 − qmax(1 − p2)

}
> 0.

We use the following two auxiliary lemmas to prove the theorem.

Denote Et [·] := E [· | x1,t, · · · , xn,t] the conditional expectation with respect to the randomness of all local
models x1,t, · · · , xn,t at tth iterate.
Lemma C.1 (Proof in Appendix C.4.1). If γ > 0 and 0 ≤ p, qi ≤ 1, then

Et [Ψt+1] =
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]
,

where the expectation is taken over θt and ηi,t in Algorithm 1.

Next, we upper bound the first two terms of the above equality by adjusting the stepsize.

25

Published in Transactions on Machine Learning Research (06/2025)

Lemma C.2 (Proof in Appendix C.4.2). If

0 < γ ≤ min
i

{
1
Li

p2

1 − qi (1 − p2)

}
,

then
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2 ≤ (1 − γµ)∥xi,t − x⋆∥2.

Proof of Theorem 3.5. The proof of the theorem is direct combination of the above lemmas.

Et [Ψt+1] =
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2

+ (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

≤
n∑
i=1

[
(1 − γµ) ∥xi,t − x⋆∥2 + qi

(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

≤ (1 − γµ)
n∑
i=1

∥xi,t − x⋆∥2 + qmax
(
1 − p2) γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2

≤ max
{

1 − γµ, qmax
(
1 − p2)}Ψt

=
(
1 − min

{
γµ, 1 − qmax

(
1 − p2)})Ψt.

C.4 Proof of Auxiliary Lemmas

C.4.1 Proof of Lemma C.1

Lemma C.1. If γ > 0 and 0 ≤ p, qi ≤ 1, then

Et [Ψt+1] =
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]
,

where the expectation is taken over θt and ηi,t in Algorithm 1.

Proof. In order to simplify notation, denote

xi := x̂i,t+1 − γ

p
ĥi,t+1, yi := x⋆ − γ

p
hi,⋆. (23)

x̄ := 1
n

n∑
i=1

xi, ȳ := 1
n

n∑
i=1

yi = x∗. (24)

STEP 1 (Recalling the steps of the method). Recall that

xi,t+1 =
{
x̄, with probability p,

x̂i,t+1, with probability 1 − p,
(25)

26

Published in Transactions on Machine Learning Research (06/2025)

and

hi,t+1 =
{
ĥi,t+1 + p

γ (x̄− x̂i,t+1), with probability p,

ĥi,t+1, with probability 1 − p.
(26)

STEP 2 (One-step expectation w.r.t. the global coin toss θt). The expected value of the Lyapunov
function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 + γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2 (27)

at (t+ 1)th iterate with respect to the coin toss θt is

Et [Ψt+1 | η1,t, . . . , ηn,t]
(25)−(27)= p

n∑
i=1

(
∥x̄− x⋆∥2 + γ2

p2

∥∥∥∥ĥi,t+1 + p

γ
(x̄− x̂i,t+1) − hi,⋆

∥∥∥∥2
)

+ (1 − p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

(24)= p

n∑
i=1

(
∥x̄− ȳ∥2 + ∥x̄− xi + yi − ȳ∥2

)
+ (1 − p)

n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

= p

n∑
i=1

∥xi − yi∥2 + (1 − p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

=
n∑
i=1

[
p

∥∥∥∥x̂i,t+1 − γ

p
ĥi,t+1 −

(
x⋆ − γ

p
hi,⋆

)∥∥∥∥2

+ (1 − p)
(

∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)]

.

STEP 3 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

Et [Ψt+1 | η1,t, . . . , ηn,t]

=
n∑
i=1

[
p∥x̂i,t+1 − x⋆∥2 + p

γ2

p2 ∥ĥi,t+1 − hi,⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩

+ (1 − p)
(

∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)]

=
n∑
i=1

[
∥x̂i,t+1 − x⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩ + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2
− γ2

∥∥∥ĥi,t+1 − hi,⋆

∥∥∥2
+ γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2
+
(
1 − p2) γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]
.

STEP 4 (One-step expectation w.r.t. local coin tosses ηi,t). Applying the expectation with respect
to (independent) coin tosses ηi,t and using the tower property we get

27

Published in Transactions on Machine Learning Research (06/2025)

Et [Ψt+1]

=
n∑
i=1

[
qi

(
∥xi,t − γ(∇fi(xi,t) − hi,t) − x⋆ − γ (hi,t − hi,⋆)∥2

+
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
)

+ (1 − qi)
(

∥xi,t − x⋆ − γ (∇f(xi,t) − hi,⋆)∥2 +
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2
)]

=
n∑
i=1

[
qi

(
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 +

(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
)

+ (1 − qi)
(

∥xi,t − x⋆ − γ (∇f(xi,t) − hi,⋆)∥2 +
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2
)]

=
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

=
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]
.

C.4.2 Proof of Lemma C.2

Lemma C.2. If

0 < γ ≤ min
i

{
1
Li

p2

1 − qi (1 − p2)

}
,

then
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2 ≤ (1 − γµ)∥xi,t − x⋆∥2.

Proof. After some algebraic transformations we get

∥wi,t − wi,⋆∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

= ∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

= ∥xi,t − x⋆∥2 − 2γ ⟨xi,t − x⋆,∇fi(xi,t) − hi,⋆⟩

+ γ2 ∥∇fi(xi,t) − hi,⋆∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

≤ (1 − γµ) ∥xi,t − x⋆∥2 − 2γDfi(xi,t, x⋆)

+ γ2

(
1 +

(1 − qi)
(
1 − p2)

p2

)
∥∇fi(xi,t) − hi,⋆∥2

≤ (1 − γµ) ∥xi,t − x⋆∥2 − 2γDfi
(xi,t, x⋆)

(
1 − γLi

(
p2 + (1 − qi)

(
1 − p2)

p2

))
≤ (1 − γµ) ∥xi,t − x⋆∥2

,

28

Published in Transactions on Machine Learning Research (06/2025)

where we used the bound
∥∇fi(xi,t) − hi,⋆∥2 ≤ 2LiDfi(xi,t, x⋆)

and the last inequality holds since

γ ≤ 1
Li

p2

1 − qi (1 − p2) .

C.5 Proof of Theorem 3.6

Theorem 3.6 (Optimal parameter choices). Let Assumption 3.4 hold and choose probabilities

qi =
1 − 1

κi

1 − 1
κmax

≤ 1 and p = 1
√
κmax

.

Then, with the largest admissible stepsize γ = 1/Lmax, GradSkip enjoys the following properties:

(i) O (κmax log 1/ε) iteration complexity,

(ii) O
(√
κmax log 1/ε

)
communication complexity,

(iii) for each client i ∈ [n], the expected number of local gradient computations per communication round
is

1
1 − qi(1 − p) = κi(1 + √

κmax)
κi + √

κmax
≤ min {κi,

√
κmax} .

Proof. From the choice of qi = 1−1/κi

1−1/κmax
, we immediately imply qmax = 1. Furthermore, choosing the optimal

p = 1√
κmax

, we get

γ = min
i

{
1
Li

p2

1 − qi (1 − p2)

}
= min

i

{
Lip

2

Liµ

}
= 1
Lmax

.

Now, if we plug these values back to the rate (6), we get the best rate of ProxSkip as

1 − min
{
γµ, 1 − qmax

(
1 − p2)}} = 1 − min

{
µ

Lmax
, p2
}

= 1 − µ

Lmax
= 1 − 1

κmax
.

This implies O
(
κmax log 1

ε

)
total iteration complexity of the method. Due to the choice p = 1√

κmax
, the

method enjoys O
(√
κmax log 1

ε

)
accelerated communication complexity.

We have two geometric random variables, Θ ∼ Geom(p) and Hi ∼ Geom(1 − qi), for each client describing
local training. From the algorithm description, we see that the number of local steps for client i is min{Θ, Hi},
which is still a Geometric random variable with parameter 1 − qi(1 − p). Therefore, the expected number of
local steps for client i is the inverse of that parameter, i.e., 1

1−qi(1−p) . If we plug in the values for p and qi,
we have

E [min{Θ, Hi}] = 1
1 − qi(1 − p) = 1

1 −
(

1 − 1√
κmax

)
1−1/κi

1−1/κmax

= 1
1 − 1−1/κi

1+1/√
κmax

= 1 + 1/√
κmax

1/κi + 1/√
κmax

= κi(1 + √
κmax)

κi + √
κmax

≤ min {κi,
√
κmax} ,

where the last inequality can be verified with simple algebraic steps.

29

Published in Transactions on Machine Learning Research (06/2025)

D Proofs for Section 4 (GradSkip+)

D.1 Proof of Lemma 4.2

Lemma 4.2.

Bd(Ω) ⊆ Bd
(

(1 + λmax(Ω))2

(1 + λmin(Ω)) − 1
)
.

Proof. The proof follows from the following simple inequalities:

∥x∥2
(I+Ω)−1 ≤ λmax

(
(I + Ω)−1) ∥x∥2 = 1

1 + λmin(Ω)∥x∥2,

∥(I + Ω)−1C(x)∥2 ≥ λmin
(
(I + Ω)−1)2 ∥C(x)∥2 = 1

(1 + λmax(Ω))2 ∥C(x)∥2.

D.2 Proof of Theorem 4.5

Theorem 4.5. Let Assumption 4.4 hold, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the compression operators, and

Ω̃ := I + ω(ω + 2)Ω(I + Ω)−1.

Then, if the stepsize γ ≤ λ−1
max(LΩ̃), the iterates of GradSkip+ (Algorithm 2) satisfy

E [Ψt] ≤ (1 − min {γµ, δ})t Ψ0,

where
δ = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
∈ [0, 1].

Proof. Since GradSkip+ is a special case of VR-GradSkip+, Theorem 4.5 follows directly as a corollary of
Theorem B.2. What remains is to verify that the gradient estimator satisfies the condition in Assumption B.1
and to identify the associated constants. The lemma below establishes this; the final step is to substitute
these values into Theorem B.2.

Lemma D.1. Let Assumption 4.4 hold. Then for the gradient estimator gt = ∇f(xt), Assumption B.1 holds
with the following parameters:

A = 1, B = 0, C = 0, Ã = 0, B̃ = 0, C̃ = 0, σt ≡ 0.

Proof. The proof is rather trivial and follows from the L-smoothness of f ,

E
[
∥gt − ∇f(x⋆)∥2

L−1

]
= ∥∇f(xt) − ∇f(x⋆)∥2

L−1 ≤ 2Df (xt, x⋆).

30

	Introduction
	Communication Costs
	Statistical Heterogeneity
	System Heterogeneity
	Local Training (LT) vs Accelerated Gradient Descent (AGD)

	Summary of Contributions
	GradSkip: Efficient Gradient Skipping Algorithm
	GradSkip+: General GradSkip Method
	VR-GradSkip+: Reducing the Variance of Stochastic Gradient Skipping

	GradSkip
	Algorithm Structure
	Reduced Local Computation
	Convergence Theory

	GradSkip+
	Algorithm Description
	Special Cases
	Convergence Theory

	Experiments
	Experiment on the ``australian" Dataset
	System Heterogeneity Case

	Limitations and Future Work
	Extension to Stochastic Gradients with Variance Reduction: VR-GradSkip+
	Algorithm Description
	Convergence Theory
	Special Cases
	Proof of Theorem B.2
	Proof of Auxiliary Lemmas
	Proof of Lemma B.3
	Proof of Lemma B.4

	Proofs for Section 3 (GradSkip)
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.5
	Proof of Auxiliary Lemmas
	Proof of Lemma C.1
	Proof of Lemma C.2

	Proof of Theorem 3.6

	Proofs for Section 4 (GradSkip+)
	Proof of Lemma 4.2
	Proof of thm:proxskip++

