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Abstract

We study a class of distributed optimization algorithms that aim to alleviate high communi-
cation costs by allowing clients to perform multiple local gradient-type training steps prior
to communication. In a recent breakthrough, Mishchenko et al. (2022) proved that local
training, when properly executed, leads to provable communication acceleration, and this
holds in the strongly convex regime without relying on any data similarity assumptions.
However, their ProxSkip method requires all clients to take the same number of local training
steps in each communication round. We propose a redesign of the original ProxSkip method,
allowing clients with “less important” data to get away with fewer local training steps without
impacting the overall communication complexity of the method. In particular, we prove
that our modified method, GradSkip, converges linearly under the same assumptions and has
the same accelerated communication complexity, while the number of local gradient steps
can be reduced relative to a local condition number. We further generalize our method by
extending the randomness of probabilistic alternations to arbitrary unbiased compression
operators and by considering a generic proximable regularizer. This generalization, which we
call GradSkip+, recovers several related methods in the literature as special cases. Finally, we
present an empirical study on carefully designed toy problems that confirm our theoretical
claims.

1 Introduction

Federated Learning (FL) is an emerging distributed machine learning paradigm where diverse data holders
or clients (e.g., smart watches, mobile devices, laptops, hospitals) collectively aim to train a single machine
learning model without revealing local data to each other or the orchestrating central server (McMahan et al.,
2017; Kairouz et al, 2019; Wang, 2021). Training such models amounts to solving federated optimization
problems of the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)
}
, (1)

where d is the (typically large) number of parameters of the model x ∈ Rd we aim to train, and n is the
(potentially large) total number of devices in the federated environment. We denote by fi(x) the loss or risk
associated with the data Di stored on client i ∈ [n] := {1, 2, . . . , n}. Formally, our goal is to minimize the
overall loss/risk denoted by f(x).

Due to their efficiency, gradient-type methods with its numerous extensions (Duchi et al., 2011; Zeiler, 2012;
Ghadimi & Lan, 2013; Kingma & Ba, 2015; Schmidt et al., 2017; Qian et al., 2019; Gorbunov et al., 2020a) is
by far the most dominant method for solving (1) in practice.

The simplest implementation of gradient descent for federated setup requires all workers i ∈ [n] in each time
step t ≥ 0 to

(i) compute local gradient ∇fi(xt) at the current model xt,
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(ii) update the current global model xt using locally computed gradient ∇fi(xt) via (2) with some step
size γ > 0,

(iii) average the updated local models x̂i,t+1 via (3) to get the new global model xt+1.

x̂i,t+1 = xt − γ∇fi(xt), (2)

xt+1 = 1
n

n∑
i=1

x̂i,t+1. (3)

Challenges defining FL as a unique distributed training setup, necessitating training algorithm adjustments,
include high communication costs, heterogeneous data distribution, and system heterogeneity across clients.
Next, we discuss these challenges and potential algorithmic solutions.

1.1 Communication Costs

In federated optimization, communication costs often become a primary bottleneck due to slow and unreliable
wireless links between clients and the central server (McMahan et al., 2017). Eliminating the communication
step (3) entirely would cause clients to train solely on local data, leading to a poor model because of the
limited local data.

A simple trick to reduce communication costs is to perform the costly synchronization step (3) infrequently,
allowing multiple local gradient steps (2) in each communication round (Mangasarian, 1995). This trick
appears in the celebrated FedAvg algorithm of McMahan et al. (2016; 2017) and its further variations
(Haddadpour & Mahdavi, 2019; Li et al., 2019a; Khaled et al., 2019a;b; Karimireddy et al., 2020; Horváth
et al., 2022) under the name of local gradient methods. However, until very recently, theoretical guarantees on
the convergence rates of local gradient methods were worse than the rate of classical gradient descent, which
synchronizes after every gradient step.

In a recent line of works (Mishchenko et al., 2022; Malinovsky et al., 2022; Condat & Richtárik, 2022; Sadiev
et al., 2022), initiated by Mishchenko et al. (2022), a novel local gradient method, called ProxSkip, was
proposed which performs a random number of local gradient steps before each communication (alternation
between local training and synchronization is probabilistic) and guarantees strong communication acceleration
properties. First, they reformulate the problem (1) into an equivalent regularized consensus problem of the
form

min
x1,...,xn∈Rd

{
1
n

n∑
i=1

fi(xi) + ψ(x1, . . . , xn)
}
,

ψ(x1, . . . , xn) :=
{

0, if x1 = · · · = xn,

+∞, otherwise,

(4)

where communication between the clients and averaging local models x1, . . . , xn is encoded as taking the
proximal step with respect to ψ, i.e.,

proxψ([x1 . . . xn]⊤) = [x̄ . . . x̄]⊤, where x̄ := 1
n

n∑
i=1

xi.

With this reformulation, ProxSkip by Mishchenko et al. (2022) performs the proximal (equivalently averaging)
step with small probability p = 1/

√
κ, where κ is the condition number of the problem. Then method’s key result

for smooth, strongly convex setups is O(κ log 1/ϵ) iteration complexity with O (
√
κ log 1/ϵ) communication

rounds to achieve ϵ > 0 accuracy. Follow-up works extend the method to variance-reduced gradient methods
(Malinovsky et al., 2022), randomized application of proximal operator (Condat & Richtárik, 2022), and
accelerated primal-dual algorithms (Sadiev et al., 2022). Our work was inspired by the development of this
new generation of local gradient methods, also known as Local Training (LT) methods, which we detail
shortly.
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An orthogonal approach uses communication compression strategies on the transferred information. Informally,
instead of communicating full precision models infrequently, we might communicate a compressed version of
the local model in each iteration via an application of lossy compression operators. Such strategies include
sparsification (Alistarh et al., 2018; Mishchenko et al., 2020; Wang et al., 2018), quantization (Alistarh et al.,
2017; Sun et al., 2019; Wang et al., 2022), sketching (Hanzely et al., 2018; Safaryan et al., 2021) and low-rank
approximation (Vogels et al., 2019).

Our work contributes to the first approach to handling high communication costs that is less understood in
theory and, at the same time, immensely popular in the practice of FL.

1.2 Statistical Heterogeneity

Due to the decentralized training data, distributions of local datasets can vary from client to client. This
heterogeneity in data distributions poses an additional challenge since allowing multiple local steps would
make the local models deviate from each other, an issue widely known as client drift. On the other hand,
if training datasets are identical across the clients (commonly referred to as a homogeneous setup), the
mentioned drifting issue disappears, and the training can be done without any communication whatsoever.
Interpolating between these extremes, under some data similarity conditions (which are typically expressed
as gradient similarity conditions), multiple local gradient steps should be useful. In fact, initial theoretical
guarantees of local gradient methods utilize such assumptions (Haddadpour & Mahdavi, 2019; Yu et al., 2019;
Li et al., 2019b; 2020).

In the fully heterogeneous setup, client drift reduction techniques were designed and analyzed to mitigate
the adverse effect of local model deviations (Karimireddy et al., 2020; Gorbunov et al., 2021). A very close
analogy is variance reduction techniques called error feedback mechanisms for the compression noise added to
lessen the number of bits required to transfer (Condat et al., 2022).

1.3 System Heterogeneity

Lastly, system heterogeneity refers to the diversity of clients in terms of their computation capabilities or the
amount of resources they are willing to use during the training. In a typical FL setup, all participating clients
must perform the same amount of local gradient steps before each communication. Consequently, a highly
heterogeneous cluster of devices results in significant and unexpected delays due to slow clients or stragglers.

One approach addressing system heterogeneity or dealing with slow clients is client selection strategies (Luo
et al., 2021; Reisizadeh et al., 2020; Wang & Joshi, 2019). Basically, client sampling can be organized so
that slow clients do not delay global synchronization, and clients with similar computational capabilities are
sampled in each communication round.

Unlike the above strategy, we suggest clients take local steps based on their resources. We consider the
full participation setup where clients decide how much local computation to perform before communication.
Informally, slow clients do less local work than fast clients, and during the synchronization of locally trained
models, the slowdown caused by the stragglers will be minimized see section 5.2.

2 Summary of Contributions

Our key contributions are summarized below.

2.1 GradSkip: efficient gradient skipping algorithm

We design a new local gradient-type method for distributed optimization with communication and computation
constraints. The proposed GradSkip (see Algorithm 1) is an extension of the recently developed ProxSkip
method (Mishchenko et al., 2022), which was the first method showing communication acceleration property
of performing multiple local steps without any data similarity assumptions. GradSkip inherits the same
accelerated communication complexity from ProxSkip while further improving computational complexity,
allowing clients to terminate their local gradient computations independently from each other.
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The key technical novelty of the proposed algorithm is the construction of auxiliary shifts ĥi,t to handle
gradient skipping for each client i ∈ [n]. GradSkip also maintains shifts hi,t initially introduced in ProxSkip to
handle communication skipping across the clients. We prove that GradSkip converges linearly in strongly convex
and smooth setup, has the same O(√κmax log 1/ϵ) accelerated communication complexity as ProxSkip, and
requires clients to compute (in expectation) at most min(κi,

√
κmax) local gradients in each communication

round (see Theorem 3.6), where κi is the condition number for client i ∈ [n] and κmax = maxi κi. Thus, for
GradSkip, clients with well-conditioned problems κi <

√
κmax perform much less local work to achieve the

same convergence rate of ProxSkip, which assumes √
κmax local steps on average for all clients.

2.2 GradSkip+: general GradSkip method

Next, we generalize the construction and the analysis of GradSkip by extending it in two directions: handling
optimization problems with arbitrary proximable regularizer and incorporating general randomization
procedures using unbiased compression operators with custom variance bounds. This leads to our second
method, GradSkip+ (see Algorithm 2), which recovers several methods in the literature as a special case,
including the standard proximal gradient descent (ProxGD), ProxSkip (Mishchenko et al., 2022), RandProx-FB
(Condat & Richtárik, 2022) and GradSkip.

2.3 VR-GradSkip+: reducing the variance of stochastic gradient skipping

Finally, we propose and analyze variance-reduced extension (see Algorithm 3 in the Appendix) in the case
when mini-batch stochastic gradients are implemented instead of full-batch gradients for local computations.
Our VR-GradSkip+ method can be viewed as a successful combination of ProxSkip-VR method of Malinovsky
et al. (2022) and GradSkip providing computational efficiency through processing smaller batch of samples
and probabilistically skipping stochastic gradient computations. We deferred the presentation of the part of
our contribution in the appendix due to space limitations.
Remark 2.1 (Local Training (LT) vs Accelerated Gradient Descent (AGD)). Nesterov’s AGD method Nesterov
(2004) matches the communication complexity of our GradSkip algorithm. Its distributed implementation takes
one local step per round, suggesting LT methods might lag behind AGD. In contrast, almost all methods in
production are based on local training, as evidenced by FL frameworks like He et al. (2020); Ro et al. (2021);
Beutel et al. (2022).

The preference for LT over AGD among practitioners stems from LT’s advantages, especially in generalization
and communication complexity. Both areas are closely tied with local training, becoming prominent in
current research. LT’s ability to enhance generalization remains under exploration in FL. Current studies
link this improvement to personalization, meta-learning Hanzely & Richtárik (2021); Hanzely et al. (2020),
and representation learning Collins et al. (2022). Practically, LT effectively tackles nonconvex challenges,
while AGD faces difficulty approximating stationary points of smooth nonconvex functions. Additionally,
AGD is more sensitive to the knowledge of the condition number than LT methods, which are versatile and
work across a wide range of numbers of local steps.

In statistically heterogeneous cases, AGD often underperforms. Our experiments prove this by showing
that when device condition numbers vary, AGD converges slower than GradSkip. Though our work does not
primarily aim to directly compare AGD and LT, such a comparative study, to our knowledge, remains a gap
in current research and could offer valuable insights.

3 GradSkip

In this section, we present our first algorithm, GradSkip, and discuss its benefits in detail. Later, we will
generalize it, unifying several other methods as special cases. Recall that our target is to address three
challenges in FL mentioned in the introductory part, which are

(i) reduction in communication cost via infrequent synchronization of local models,

(ii) statistical or data heterogeneity, and
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(iii) reduction in computational cost via limiting local gradient calls based on the local subproblem.

We now describe all the steps of the algorithm and how it handles these three challenges.

3.1 Algorithm Structure

For the sake of presentation, we describe the progress of the algorithm using two variables xi,t, x̂i,t for the
local models and two variables hi,t, ĥi,t for the local gradient shifts. Essentially, we want to maintain two
variables for the local models since clients get synchronized infrequently. The shifts hi,t are designed to reduce
the client drift caused by the statistical heterogeneity. Finally, we introduce auxiliary shifts ĥi,t to take care
of the different number of local steps. The GradSkip method is formally presented in Algorithm 1.

Algorithm 1 GradSkip
1: Input: stepsize γ > 0, synchronization probability p, probabilities qi > 0 controlling local steps, initial

local iterates x1,0 = · · · = xn,0 ∈ Rd, initial shifts h1,0, . . . , hn,0 ∈ Rd, total number of iterations T ≥ 1
2: for t = 0, 1, . . . , T − 1 do
3: server: Flip a coin θt ∈ {0, 1} with Prob(θt = 1) = p ⋄ Decide when to skip communication
4: for all devices i ∈ [n] in parallel do
5: Flip a coin ηi,t ∈ {0, 1} with Prob(ηi,t = 1) = qi ⋄ Decide when to skip gradient steps

(see Lemma 3.1)
6: ĥi,t+1 = ηi,thi,t + (1 − ηi,t)∇fi(xi,t) ⋄ Update the local auxiliary shifts ĥi,t
7: x̂i,t+1 = xi,t − γ(∇fi(xi,t) − ĥi,t+1) ⋄ Update the local auxiliary iterate x̂i,t

via shifted gradient step
8: if θt = 1 then
9: xi,t+1 = 1

n

∑n
j=1

(
x̂j,t+1 − γ

p ĥj,t+1

)
⋄ Average shifted iterates, but only very rarely!

10: else
11: xi,t+1 = x̂i,t+1 ⋄ Skip communication!
12: end if
13: hi,t+1 = ĥi,t+1 + p

γ (xi,t+1 − x̂i,t+1) ⋄ Update the local shifts hi,t
14: end for
15: end for

As an initialization step, we choose probability p > 0 to control communication rounds, probabilities qi > 0
for each client i ∈ [n] to control local gradient steps and initial control variates (or shifts) hi,0 ∈ Rd to control
the client drift. Besides, we fix the stepsize γ > 0 and assume that all clients commence with the same
local model, namely x1,0 = · · · = xn,0 ∈ Rd. Then, each iteration of the method comprises two stages, the
local stage and the communication stage, operating probabilistically. Specifically, the probabilistic nature of
these stages is the following. The local stage requires computation only with some predefined probability;
otherwise, the stage is void. Similarly, the communication stage requires synchronization between all clients
only with probability p; otherwise, the stage is void. In the local stage (lines 5–7), all clients i ∈ [n] in parallel
update their local variables (x̂i,t+1, ĥi,t+1) using values (xi,t, hi,t) from previous iterate either by computing
the local gradient ∇fi(xi,t) or by just copying the previous values. Afterward, in the communication stage
(lines 8–13), all clients in parallel update their local variables (xi,t+1, hi,t+1) from (x̂i,t+1, ĥi,t+1) by either
averaging across the clients or copying previous values.

3.2 Reduced Local Computation

Clearly, communication costs are reduced as the averaging step occurs only when θt = 1 with probability p of
our choice. However, it is not directly apparent how the computational costs are reduced during the local
stage. Indeed, both options ηi,t = 1 and ηi,t = 0 involve the expression ∇fi(xi,t) as if local gradients need to
be evaluated in every iteration. As we show in the following lemma, this is not the case.
Lemma 3.1 (Fake local steps (Proof in Appendix C.1)). Suppose that Algorithm 1 does not communicate
for τ ≥ 1 consecutive iterates, i.e., θt = θt+1 = · · · = θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some
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client i ∈ [n] we have ηi,t = 0. Then, regardless of the coin tosses {ηi,t+j}τj=1, client i does fake local steps
without any gradient computation in τ iterates. Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t,

ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t).
(5)

Let us reformulate the above lemma. During the local stage of GradSkip, when clients do not communicate
with the server, ith client terminates its local gradient steps once the local coin tosses ηi,t = 0. Thus, smaller
probability qi implies sooner coin toss ηi,t = 0 in expectation, hence, less amount of local computation for
client i. Therefore, we can relax the computational requirements of clients by adjusting these probabilities qi
and controlling the amount of local gradient computations.

Next, let us find out how the expected number of local gradient steps depends on probabilities p and qi. Let Θ
and Hi be random variables representing the number of coin tosses (Bernoulli trials) until the first occurrence
of θt = 1 and ηi,t = 0 respectively. Equivalently, Θ ∼ Geo(p) is a geometric random variable with parameter
p, and Hi ∼ Geo(1 − qi) are geometric random variables with parameter 1 − qi for i ∈ [n]. Notice that, within
one communication round, ith client performs min(Θ, Hi) number of local gradient computations, which is
again a geometric random variable with parameter 1 − (1 − (1 − qi))(1 − p) = 1 − qi(1 − p). Therefore, as
formalized in the next lemma, the expected number of local gradient steps is E [min(Θ, Hi)] = 1/(1−qi(1−p)).
Lemma 3.2 (Expected number of local steps (Proof in Appendix C.2)). The expected number of local
gradient computations in each communication round of GradSkip is 1/(1−qi(1−p)) for all clients i ∈ [n].

Notice that, in the special case of qi = 1 for all i ∈ [n], GradSkip recovers Scaffnew method of Mishchenko et al.
(2022). However, as we will show, we can choose probabilities qi smaller, reducing computational complexity
and obtaining the same convergence rate as Scaffnew.
Remark 3.3 (System Heterogeneity). From this discussion, we conclude that GradSkip can also address system
or device heterogeneity. In particular, probabilities {qi}ni=1 can be assigned to clients in accordance with their
local computational resources; slow clients with scarce compute power should get small qi, while faster clients
with rich resources should get bigger qi ≤ 1, see section 5.2.

3.3 Convergence Theory

Now that we explained the structure and computational benefits of the algorithm, let us proceed to the
theoretical guarantees. We consider the same strongly convex and smooth setup as considered by Mishchenko
et al. (2022) for the distributed case.
Assumption 3.4. All functions fi(x) are strongly convex with parameter µ > 0 and have Lipschitz
continuous gradients with Lipschitz constants Li > 0, i.e., for all i ∈ [n] and any x, y ∈ Rd we have
µ
2 ∥x − y∥2 ≤ Dfi(x, y) ≤ Li

2 ∥x − y∥2, where Dfi(x, y) := fi(x) − fi(y) − ⟨∇fi(y), x − y⟩ is the Bregman
divergence associated with fi.

We present Lyapunov-type analysis to prove the convergence, which is a very common approach for iterative
algorithms. Consider the Lyapunov function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 + γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2, (6)

where γ > 0 is the stepsize, x⋆ is the (necessary) unique minimizer of f(x) and hi,∗ = ∇fi(x∗) is the optimal
gradient shift. As we show next, Ψt decreases at a linear rate.

Theorem 3.5. Let Assumption 3.4 hold. If the stepsize satisfies γ ≤ mini
{

1
Li

p2

1−qi(1−p2)

}
and probabilities

are chosen so that 0 < p, qi ≤ 1, then the iterates of GradSkip (Algorithm 1) satisfy

E [Ψt] ≤ (1 − ρ)tΨ0, (7)

for all t ≥ 1 with ρ := min
{
γµ, 1 − qmax(1 − p2)

}
> 0.
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Let us comment on this result.

• The first and immediate observation from the above result is that, with a proper stepsize choice,
GradSkip converges linearly for any choice of probabilities p and qi from (0, 1].

• Furthermore, by choosing all probabilities qi = 1 we get the same rate of Scaffnew with ρ = min{γµ, p2}
(see Theorem 3.6 in (Mishchenko et al., 2022)). If we further choose the largest admissible stepsize
γ = 1/Lmax and the optimal synchronization probability p = 1/√

κmax, we get O(κmax log 1
ϵ ) iteration

complexity, O(√κmax log 1
ϵ ) accelerated communication complexity with 1/p = √

κmax expected
number of local steps in each communication round. H ere, we used notation κmax = maxi κi where
κi = Li/µ is the condition number for client i ∈ [n].

• Finally, exploiting smaller probabilities qi, we can optimize computational complexity subject to
the same communication complexity as Scaffnew. To do that, note that the largest possible stepsize
that Theorem 3.5 allows is γ = 1/Lmax as mini

{
1
Li

p2

1−qi(1−p2)

}
≤ mini 1

Li
≤ 1

Lmax
. Hence, taking

into account ρ ≤ γµ, the best iteration complexity from the rate (7) is O(κmax log 1
ϵ ), which can be

obtained by choosing the probabilities appropriately as formalized in the following result.
Theorem 3.6 (Optimal parameter choices). Let Assumption 3.4 hold and choose probabilities

qi =
1 − 1

κi

1 − 1
κmax

≤ 1 and p = 1
√
κmax

.

Then, with the largest admissible stepsize γ = 1/Lmax, GradSkip enjoys the following properties:

(i) O (κmax log 1/ε) iteration complexity,

(ii) O
(√
κmax log 1/ε

)
communication complexity,

(iii) for each client i ∈ [n], the expected number of local gradient computations per communication round
is

1
1 − qi(1 − p) = κi(1 + √

κmax)
κi + √

κmax
≤ min(κi,

√
κmax). (8)

This result clearly quantifies the benefits of using smaller probabilities qi. In particular, if the condition number
κi of client i is smaller than √

κmax, then within each communication round, it does only κi number of local
gradient steps. However, for a client having the maximal condition number (namely, clients arg maxi{κi}),
the number of local gradient steps is √

κmax, which is the same for Scaffnew. From this, we conclude that, in
terms of computational complexity, GradSkip is always better and can be O(n) times better than Scaffnew
(Mishchenko et al., 2022).

4 GradSkip+

Here, we aim to extend GradSkip in two ways, leading to our generic GradSkip+ method.

The first direction is the the optimization problem formulation. As discussed earlier, distributed optimization
(1) with consensus constraints becomes a regularized optimization problem (4) in the lifted space. Thus,
following Mishchenko et al. (2022), we consider the (lifted) problem1

min
x∈Rd

f(x) + ψ(x), (9)

where f(x) is strongly convex and smooth loss, while ψ(x) is closed, proper and convex regularizer (see (4)).
We require that the proximal operator of ψ is a single-valued function that can be computed.

The second extension in GradSkip+ is the generalization of the randomization procedure of probabilistic
alternations in GradSkip by allowing arbitrary unbiased compression operators with certain bounds on the
variance. Let us formally define the class of compressors we will be working with.

1To be precise, the lifted problem is in Rnd as we stack all local variables x1, . . . , xn ∈ Rd into one.
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Definition 4.1 (Unbiased Compressors). For any positive semidefinite matrix Ω ⪰ 0, denote by Bd(Ω) the
class of (possibly randomized) unbiased compression operators C : Rd → Rd such that for all x ∈ Rd we have

E [C(x)] = x, E
[
∥(I + Ω)−1C(x)∥2] ≤ ∥x∥2

(I+Ω)−1 .

The class Bd(Ω) is a generalization of commonly used class Bd(ω) of unbiased compressors with variance
bound E

[
∥C(x)∥2

]
≤ (1 + ω)∥x∥2 for some scalar ω ≥ 0. Indeed, when the matrix Ω = ωI, then Bd(ωI)

coincides with Bd(ω). Furthermore, the following inclusion holds:
Lemma 4.2. Bd(Ω) ⊆ Bd((1+λmax(Ω))2

/(1+λmin(Ω)) − 1).

The purpose of this new variance bound with matrix parameter Ω is to introduce non-uniformity on the
level of compression across different directions. For example, in the reformulation (4) each client controls
1/n portion of the directions and the level of compression. For example, consider compression operator
C : Rd → Rd defined as

C(x)j =
{
xj

pj
, with probability pj ,

0, with probability 1 − pj ,
(10)

for all coordinates j ∈ [d] and for any x ∈ Rd, where pj ∈ (0, 1] are given probabilities. Then, it is easy to
check that C ∈ Bd(Ω) with diagonal matrix Ω = Diag(1/pj − 1) having diagonal entries 1/pj − 1 ≥ 0.

With finer control over the compression operator, we can use the granular smoothness information of the loss
function f via smoothness matrices (Qu & Richtárik, 2016b;a).
Definition 4.3 (Matrix Smoothness). A differentiable function f : Rd → R is called L-smooth with some
symmetric and positive definite matrix L ≻ 0 if

Df (x, y) ≤ 1
2∥x− y∥2

L, ∀x, y ∈ Rd. (11)

The standard L-smoothness condition with scalar L > 0 is obtained as a special case of (11) for matrices
of the form L = LI, where I is the identity matrix. The notion of matrix smoothness provides more
information about the function than mere scalar smoothness. In particular, if f is L-smooth, then it is also
λmax(L)-smooth due to the relation L ⪯ λmax(L)I. Smoothness matrices have been used in the literature of
randomized coordinate descent (Richtárik & Takáč, 2016; Hanzely & Richtárik, 2019b;a) and distributed
optimization (Safaryan et al., 2021; Wang et al., 2022).

4.1 Algorithm Description

Algorithm 2 GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: ĥt+1 = ∇f(xt) − (I + Ω)−1CΩ (∇f(xt) − ht) ⋄ Update the shift ĥt via shifted compression
5: x̂t+1 = xt − γ(∇f(xt) − ĥt+1) ⋄ Update the iterate x̂t via shifted gradient step
6: ĝt = 1

γ(1+ω) Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal gradient

7: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
8: ht+1 = ĥt+1 + 1

γ(1+ω) (xt+1 − x̂t+1) ⋄ Update the main shift ht
9: end for

Similar to GradSkip, we maintain two variables xt, x̂t for the model, and two variables ht, ĥt for the gradient
shifts in GradSkip+. Initial values x0 ∈ Rd and h0 ∈ Rd can be chosen arbitrarily. In each iteration, GradSkip+
first updates the auxiliary shift ĥt+1 using the previous shift ht and gradient ∇f(xt) (line 4). This shift
ĥt+1 is then used to update the auxiliary iterate xt via shifted gradient step (line 5). Then we estimate
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the proximal gradient ĝt (line 6) in order to update the main iterate xt+1 (line 7). Lastly, we complete the
iteration by updating the main shift ht (line 8). See Algorithm 2 for the formal steps.

In the Appendix D.3, we show that GradSkip+ recovers ProxGD, ProxSkip and RandProx-FB (Condat & Richtárik,
2022) as a special case.

4.2 Convergence Theory

We now present the convergence theory for GradSkip+, for which we replace the scalar smoothness Assumption
3.4 by matrix smoothness.
Assumption 4.4 (Convexity and smoothness). We assume that the loss function f is µ-strongly convex
with positive µ > 0 and L-smooth with positive definite matrix L ≻ 0.

Similar to (6), we analyze GradSkip+ using the Lyapunov function Ψt := ∥xt−x⋆∥2 +γ2(1+ω)2∥ht−∇f(x∗)∥2.
The next theorem shows the linear convergence result.
Theorem 4.5. Let Assumption 4.4 hold, Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the compression operators, and
Ω̃ := I + ω(ω + 2)Ω(I + Ω)−1. Then, if the stepsize γ ≤ λ−1

max(LΩ̃), the iterates of GradSkip+ (Algorithm 2)
satisfy

E [Ψt] ≤ (1 − min {γµ, δ})t Ψ0, (12)

where
δ = 1 − 1

1+λmin(Ω)

(
1 − 1

(1+ω)2

)
∈ [0, 1].

First, if we choose CΩ to be the identity compression (i.e., Ω = 0), then GradSkip+ reduces to RandProx-FB and
we recover asymptotically the same rate with linear factor (1 − min{γµ, 1/(1+ω)2}) (see Theorem 3 of Condat
& Richtárik (2022)). If we further choose Cω to be the Bernoulli compression with parameter p ∈ (0, 1], then
ω = 1/p − 1 and we get the rate of ProxSkip.

In order to recover the rate (7) of GradSkip, consider the lifted space Rnd with reformulation (4) and objective
function f(x) = 1

n

∑n
i=1 fi(xi), where xi ∈ Rd and x = (x1, . . . , xn) ∈ Rnd. From µ-strong convexity of each

loss function fi, we conclude that f is also µ-strongly convex. Regarding the smoothness condition, we have
LiI ∈ Rd×d smoothness matrices (e.g., scalar Li-smoothness) for each fi, which implies that the overall loss
function f has L = Diag(L1I, . . . , LnI) ∈ Rnd×nd as a smoothness matrix. Furthermore, choosing Bernoulli
compression operators Cω = Cndp and CΩ = Cdq1

× · · · × Cdqn
in the lifted space Rnd, we get ω = 1/p − 1 and

Ω = Diag(1/qi − 1). It remains to plug all these expressions into Theorem 4.5 and recover Theorem 3.6.
Indeed, λmin(Ω) = 1/qmax − 1 and, hence, δ = 1 − qmax

(
1 − p2). Lastly, Theorem 4.5 recovers the same

stepsize bound as

λ−1
max(LΩ̃) = min

i
(Li (1 + (1 − qi) (1/p2 − 1)))−1 = min

i

{
1
Li

p2

1 − qi (1 − p2)

}
.

5 Experiments

To test the performance of GradSkip and illustrate theoretical results, we use the classical logistic regression
problem. The loss function for this model has the following form:

f(x) = 1
n

n∑
i=1

1
m

m∑
j=1

log
(
1 + exp

(
−bija⊤

ijx
))

+ λ

2 ∥x∥2,

where n is the number of clients, m is the number of data points per worker, aij ∈ Rd and bij ∈ −1,+1 are
the data samples, and λ is the regularization parameter.

We conducted experiments on artificially generated data and on the “australian" dataset from LibSVM
library (Chang & Lin, 2011) (see Section 5.1). We run all algorithms using their theoretically optimal

9
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Figure 1: The first column displays the condition numbers for devices. The second column presents convergence
per communication round. The third column contrasts theoretical and practical gradient computation counts.
The final column reveals the average gradient computations for devices with condition number κi. Notably,
in GradSkip, the device with κi = κmax performs gradient computations at a rate comparable to all devices in
ProxSkip.
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Figure 2: The columns in this figure represent the same as those in Figure 1.

hyper-parameters (stepsize, probabilities). We compare GradSkip with ProxSkip and AGD, which have SOTA
accelerated communication complexity. Comparisons between VR-GradSkip+ and ProxSkip-VR were omitted, as
their computational complexity difference is similar to that of GradSkip and ProxSkip.

For GradSkip, the expected local gradient computations per communication round are at most∑n
i=1 min

(
κi,

√
κmax

)
(see (8)), while for ProxSkip, it is n√

κmax. Therefore, the gradient computation

10
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ratio of ProxSkip over GradSkip depends on the number of devices with κi ≥ √
κmax. With k ≤ n such devices,

this ratio for ProxSkip over GradSkip converges to n/k ≥ 1 as κmax → ∞.

In our experiments, only one device has an ill-conditioned local problem (k = 1). To showcase this convergence,
we generate data to control the smoothness constants and set the regularization parameter λ = 10−1 = µ.
We run GradSkip and ProxSkip algorithms for 3000 communication rounds. Figure 1 features n = 20 devices,
one with a large Li = Lmax, and others with Li ∼ Uniform(0.1, 1). The second column illustrates similar
convergence for GradSkip and ProxSkip. As we increment Lmax row by row, the ratio converges to n = 20,
while AGD’s performance drops with increasing data heterogeneity. Figure 2 illustrates the growing ratio
with more clients n, assigning one device Li = Lmax = 105 and others Li ∼ Uniform(0.1, 1), showing the
increase in n row by row.

5.1 Experiment on the “australian" dataset

In line with our experiments on synthetic data (section 5), we conduct a parallel experiment using the
“australian" dataset from the LibSVM library (Chang & Lin, 2011). This involves applying the GradSkip and
ProxSkip algorithms to the logistic regression problem, characterized by the same loss function used previously:

f(x) = 1
n

n∑
i=1

1
m

m∑
j=1

log
(
1 + exp

(
−bija⊤

ijx
))

+ λ

2 |x|2.

We set the regularization parameter λ = 10−4Lmax. We split the dataset equally into n = 20 devices. In this
case we get k = 8 devices with ill-conditioned local problems, so the gradient computation ratio of ProxSkip
over GradSkip should be close to n/k = 2.5. It can be seen in Figure 3.
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Figure 3: The plots have the same meaning as in Figure 1.

5.2 System Heterogeneity case

Let Ti represent the time required for client i to complete one local step. We consider Ti to be a random
variable with the structure Ti = τi + ηi. Here, τi is a scalar representing the minimum time to finish one local
step on machine i, and ηi is a random jitter (time delay) assumed to have an exponential distribution with
scale parameter βi. Practically, the distribution of Ti can be estimated.

Our objective is to determine values for qi that minimize the wall training time (excluding communication
time) in GradSkip. The average expected time for local training before communication on client i is:

E [Ti]
1 − qi(1 − p) ,

given that, on average, device i performs 1
1−qi(1−p) local steps (see Lemma 3.2). To reduce waiting time, we

initiate by setting qi = 1 for the fastest clients. For other clients, we set qi to make the average local training
time before communication match with the fastest device. This condition can be mathematically expressed
as:

E [Ti]
1 − qi(1 − p) = E [Tmin]

p
,

11



Under review as submission to TMLR

yielding the value of qi as

qi = max

1 − p E[Ti]
E[Tmin]

1 − p
, 0

 .

To assess the effectiveness of our qi selection strategy in GradSkip compared to ProxSkip, we conducted
experiments using both uniform and exponential distributions for τi. In the first scenario, we set τi ∼
Uniform(0, 1), while in the second, τi ∼ Exponential(1) distribution. Additionally, the jitter ηi was modeled
with an Exponential(βi) distribution, where βi ∼ Uniform(0, 1). The experimental results, presented in
Figure 4 below, illustrate that GradSkip outperforms with the chosen qi values.

0 10000 20000 30000 40000 50000 60000 70000 80000
Time
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100

f(x
)

f*

GradSkip - Uniform
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Figure 4: Dataset "w6a" with d=300 features. We choose n = 1! + 2! + 3! + 4! + 5! = 153 = 13 + 53 + 33

number of clients.
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A Limitations and Future Work

In this part, we outline some limitations and future research directions related to our work.

• Similar to the previous works Malinovsky et al. (2022); Mishchenko et al. (2022) on local gradient
methods with communication acceleration, our theory does not cover non-strongly convex or non-
convex objective functions. So far, the communication acceleration property of local steps has been
proven only for a strongly convex setup.

• Another key component for designing efficient distributed and federated learning algorithms is partial
device participation. This extension seems rather tricky, and we leave this as a future work. A recent
work by Grudzień et al. (2023) considers client sampling.

• Finally, one can combine the local gradient methods with communication compression techniques to
achieve even better communication complexity. Moreover, our proposed gradient skipping approach
can be decoupled to address computational complexity, too.

B Extension to Stochastic Gradients with Variance Reduction: VR-GradSkip+

Recently developed ProxSkip-VR method (Malinovsky et al., 2022) reduces computational complexity by
allowing computationally cheaper stochastic gradient estimators instead of full batch gradients. This approach
of reducing computational complexity is blind to statistical heterogeneity and is entirely orthogonal to our
approach of reducing computational complexity in GradSkip. It is natural to ask the following question.

Is it possible to combine these two methods (ProxSkip-VR and GradSkip) to achieve even better
computational complexity?

We give an affirmative answer to the question by developing our most general VR-GradSkip+ method.

B.1 Algorithm Description

We get VR-GradSkip+ method from GradSkip+ by replacing the gradient ∇f(xt) by an unbiased estimator gt
= StochasticGradient(xt, f), see Algorithm 3.

Our next assumption, initially introduced by Gorbunov et al. (2020a), postulates several parametric inequalities
characterizing the behavior and, ultimately, the quality of a gradient estimator. Similar assumptions appeared
later in (Gorbunov et al., 2021; 2020b).
Assumption B.1. Let {xt} be the iterates produced by VR-GradSkip+. We first assume unbiasedness of the
stochastic gradients gt for all iterations t ≥ 0, i.e.,

E [gt | xt] = ∇f(xt). (13)

Next, we assume that for some non-negative constants A,B,C, Ã, B̃, C̃, with B̃ < 1, and non-negative
sequence {σt}t≥0 the following inequalities hold for all t ≥ 0:

E
[
∥gt − ∇f(x⋆)∥2

L−1 | xt
]

≤ 2ADf (xt, x⋆) +Bσt + C, (14)
E [σt+1 | xt] ≤ 2ÃDf (xt, x⋆) + B̃σt + C̃. (15)

Assumption B.1 covers a very large collection of gradient estimators, including an infinite variety of sub-
sampling/minibatch estimators, gradient sparsification and quantization estimators, and their combinations;
see (Gorbunov et al., 2020a) for examples. VR estimators are characterized by C = C̃ = 0; most non-VR
estimators by Ã = B̃ = C̃ = B = 0 and C > 0 (Gower et al., 2019).
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Algorithm 3 VR-GradSkip+
1: Parameters: stepsize γ > 0, compressors Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω).
2: Input: initial iterate x0 ∈ Rd, initial control variate h0 ∈ Rd, number of iterations T ≥ 1.
3: for t = 0, 1, . . . , T − 1 do
4: gt = StochasticGradient(xt, f) ⋄ Construct an unbiased estimator of ∇f(xt)
5: ĥt+1 = gt − (I + Ω)−1CΩ (gt − ht) ⋄ Update the shift ĥt via shifted compression
6: x̂t+1 = xt − γ(gt − ĥt+1) ⋄ Update the iterate x̂t via shifted stochastic gradient step
7: ĝt = 1

γ(1+ω) Cω
(
x̂t+1 − proxγ(1+ω)ψ

(
x̂t+1 − γ(1 + ω)ĥt+1

))
⋄ Estimate the proximal gradient

8: xt+1 = x̂t+1 − γĝt ⋄ Update the main iterate xt
9: ht+1 = ĥt+1 + 1

γ(1+ω) (xt+1 − x̂t+1) ⋄ Update the main shift ht
10: end for

B.2 Convergence Theory

Consider the Lyapunov function:

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt,

where h∗ = ∇f(x∗).
Theorem B.2. Let Assumption 4.4 hold, and let gt be a gradient estimator satisfying Assumption B.1. Let
Cω ∈ Bd(ω) and CΩ ∈ Bd(Ω) be the compression operators. If B > 0, choose any W > λmax(LΩ̃)B

1−B̃ and then

β = 1 − B̃ − λmax(LΩ̃)B
W > 0. In case of B = 0, set W = 0 and β = B̃. If the stepsize γ ≤ 1

Aλmax(LΩ̃)+WÃ
,

then the iterates of VR-GradSkip+ (Algorithm 3) satisfy

E [Ψt] ≤ (1 − min(γµ, δ, β))t Ψ0 + γ2λmax(LΩ̃)C +WC̃

min(γµ, δ, β) ,

where
δ = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
, Ω̃ = I + ω(ω + 2)Ω(I + Ω)−1. (16)

B.3 Special Cases

Case 1 (GradSkip+). Consider the case when stochastic gradients are full batch gradients, i.e., gt = ∇f(xt)
for all t ≥ 0. Then Algorithm 3 reduces to GradSkip+.

Case 2 (ProxSkip-VR). To recover ProxSkip-VR from VR-GradSkip+, we need the same conditions we had for
recovering ProxSkip from GradSkip+. That is, let CΩ be the identity compressor (i.e., Ω = I) and Cω be the
Bernoulli compressor Cp with parameter p ∈ (0, 1] (note that here ω = 1/p − 1). In this case, ĥt+1 ≡ ht and
xt+1 is either proxγ/pψ (x̂t+1 − γ/pht) (with probability p) or x̂t+1 (with probability 1 − p). Thus, we recover
the ProxSkip-VR algorithm.

B.4 Proofs for Algorithm 3

Here, we start proving the convergence of Algorithm 3 by first proving some auxiliary lemmas. Let

wt := xt − γgt, and w⋆ := x⋆ − γ∇f(x⋆).

Lemma B.3. If γ > 0 and Cω ∈ Bd(ω), CΩ ∈ Bd(Ω), then

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
≤ ∥wt − w⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

I−(I+Ω)−1

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1 ,
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where the expectation is with respect to the randomness from Cω and CΩ.

Proof of Lemma B.3. In order to simplify notation, let P (·) := proxγ(1+ω)ψ(·), and

x := x̂t+1 − γ(1 + ω)ĥt+1, y := x⋆ − γ(1 + ω)h⋆. (17)

STEP 1 (Optimality conditions). Using the first-order optimality conditions for f + ψ and using
h⋆ := ∇f(x⋆), we obtain the following fixed-point identity for x⋆:

x⋆ = proxγ(1+ω)ψ (x⋆ − γ(1 + ω)h⋆)
(17)= P (y). (18)

STEP 2 (Recalling the steps of the method). Recall that the vectors xt+1 and ht+1 are in Algorithm 3
updated as follows:

xt+1 = x̂t+1 − γĝt = x̂t+1 − 1
1 + ω

Cω (x̂t+1 − P (x)) , (19)

and
ht+1 = ĥt+1 + 1

γ(1 + ω) (xt+1 − x̂t+1) = ĥt+1 − 1
γ(1 + ω)2 Cω (x̂t+1 − P (x)) . (20)

STEP 3 (One-step expectation of the Lyapunov function). The expected value of the Lyapunov
function

Ψt := ∥xt − x⋆∥2 + γ2(1 + ω)2∥ht − h⋆∥2 + γ2Wσt (21)
at time t+ 1, with respect to the randomness of Cω, is

Et

[
Ψt+1 − γ2W σt+1 | CΩ, gt

]
= Et

[∥∥∥x̂t+1 −
1

1 + ω
Cω (x̂t+1 − P (x)) − x⋆

∥∥∥2
| CΩ, gt

]
+ Et

[
γ2(1 + ω)2

∥∥∥ĥt+1 −
1

γ(1 + ω)2 Cω (x̂t+1 − P (x)) − h⋆

∥∥∥2
| CΩ, gt

]
= Et

[
∥x̂t+1 − x⋆∥2 −

2
1 + ω

⟨Cω (x̂t+1 − P (x)) , x̂t+1 − x⋆⟩

+
1

(1 + ω)2 ∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]
+ Et

[
γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
− 2γ

〈
Cω (x̂t+1 − P (x)) , ĥt+1 − h⋆

〉
+

1
(1 + ω)2 ∥Cω (x̂t+1 − P (x))∥2 | CΩ, gt

]
≤ ∥x̂t+1 − x⋆∥2 +

2
1 + ω

⟨P (x) − x̂t+1, x̂t+1 − x⋆⟩ +
1

1 + ω
∥P (x) − x̂t+1∥2

+ γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2
+

2
1 + ω

〈
P (x) − x̂t+1, γ(1 + ω)(ĥt+1 − h⋆)

〉
+

1
1 + ω

∥P (x) − x̂t+1∥2

= ∥x̂t+1 − x⋆∥2 +
1

1 + ω

(
∥P (x) − x⋆∥2 − ∥x̂t+1 − x⋆∥2)

+ γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2

+
1

1 + ω

(∥∥P (x) − x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥2

− γ2(1 + ω)2
∥∥ĥt+1 − h⋆

∥∥2
)

=
(

1 −
1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
)

+
1

1 + ω

(
∥P (x) − x⋆∥2 +

∥∥P (x) − x̂t+1 + γ(1 + ω)(ĥt+1 − h⋆)
∥∥2
)

=
(

1 −
1

1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥ĥt+1 − h⋆

∥∥2
)

+
1

1 + ω

(
∥P (x) − P (y)∥2 + ∥P (x) − x + y − P (y)∥2) .
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STEP 4 (Applying firm non-expansiveness). Applying firm non-expansiveness of prox operator P , this
leads to the inequality

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥x− y∥2

=
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥∥∥x̂t+1 − γ(1 + ω)ĥt+1 − (x⋆ − γ(1 + ω)h⋆)
∥∥∥2

=
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥∥∥x̂t+1 − x⋆ − γ(1 + ω)
(
ĥt+1 − h⋆

)∥∥∥2
.

STEP 5 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

Et
[
Ψt+1 − γ2Wσt+1 | CΩ, gt

]
≤
(

1 − 1
1 + ω

)(
∥x̂t+1 − x⋆∥2 + γ2(1 + ω)2

∥∥∥ĥt+1 − h⋆

∥∥∥2
)

+ 1
1 + ω

∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩ + γ2(1 + ω)∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆∥2 − 2γ⟨x̂t+1 − x⋆, ĥt+1 − h⋆⟩ + γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 − γ2∥ĥt+1 − h⋆∥2 + γ2(1 + ω)2∥ĥt+1 − h⋆∥2

= ∥x̂t+1 − x⋆ − γ(ĥt+1 − h⋆)∥2 +
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2∥ĥt+1 − h⋆∥2.
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STEP 6 (Tower property). Applying the expectation with respect to the randomness of CΩ and using the
tower property, we get

Et
[
Ψt+1 − γ2Wσt+1 | gt

]
= Et

[∥∥∥xt − γ(gt − ĥt+1) − x⋆ − γ(ĥt+1 − h⋆)
∥∥∥2

| gt
]

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − (I + Ω)−1CΩ (gt − ht) − h⋆
∥∥2 | gt

]
= ∥xt − γgt − (x⋆ − γh⋆)∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2Et

[∥∥gt − h⋆ − (I + Ω)−1CΩ (gt − ht)
∥∥2 | gt

]
≤ ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2

(
2 ⟨gt − h⋆, ht − gt⟩(I+Ω)−1 + ∥gt − ht∥2

(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω2)2 ∥gt − h⋆∥2

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω2)2

(
∥ht − h⋆∥2

(I+Ω)−1 − ∥gt − h⋆∥2
(I+Ω)−1

)
= ∥wt − w⋆∥2 +

(
1 − 1

(1 + ω)2

)
γ2(1 + ω)2 ∥gt − h⋆∥2

I−(I+Ω)−1

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1 .

Next, we upper bound the first two terms.
Lemma B.4. Denote Ω̃ = I + ω(ω + 2)Ω(I + Ω)−1. Then

Et
[
∥wt − w⋆∥2

]
+
(

1 − 1
(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2

I−(I+Ω)−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γ

(
1 − γAλmax(LΩ̃)

)
Df (xt, x⋆) + γ2λmax(LΩ̃)Bσt

+ γ2λmax(LΩ̃)C.

Proof of Lemma B.4. Expanding the first term and rearranging terms, we get

Et
[
∥wt − w⋆∥2

]
+
(

1 − 1
(1 + ω)2

)
(1 + ω)2γ2Et

[
∥gt − h⋆∥2

I−(I+Ω)−1

]
= Et

[
∥xt − x⋆ − γ (gt − ∇f(x⋆))∥2

]
+ ω(ω + 2)γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω(I+Ω)−1

]
= ∥xt − x⋆∥2 − 2γ ⟨xt − x⋆,∇f(xt) − ∇f(x⋆)⟩

+ γ2Et
[
∥gt − ∇f(x⋆)∥2

]
+ ω(ω + 2)γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω(I+Ω)−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2Et

[
∥gt − ∇f(x⋆)∥2

Ω̃

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2λmax(LΩ̃)Et

[
∥gt − ∇f(x⋆)∥2

L−1

]
≤ (1 − γµ) ∥xt − x⋆∥2 − 2γDf (xt, x⋆) + γ2λmax(LΩ̃) (2ADf (xt, x⋆) +Bσt + C)

= (1 − γµ) ∥xt − x⋆∥2 − 2γ
(

1 − γAλmax(LΩ̃)
)
Df (xt, x⋆) + γ2λmax(LΩ̃)Bσt

+ γ2λmax(LΩ̃)C.
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Proof of Theorem B.2. The proof is a direct combination of the two lemmas we have proved.

E [Ψt+1] ≤ (1 − γµ) ∥xt − x⋆∥2 − 2γ
(

1 − γAλmax(LΩ̃)
)
Df (xt, x⋆)

+ γ2λmax(LΩ̃)Bσt + γ2λmax(LΩ̃)C

+
(

1 − 1
(1 + ω)2

)
γ2(1 + ω)2 ∥ht − h⋆∥2

(I+Ω)−1

+ γ2W
(
2ÃDf (xt, x⋆) + B̃σt + C̃

)
= (1 − γµ) ∥xt − x⋆∥2 − 2γ

(
1 − γ(Aλmax(LΩ̃) +WÃ)

)
Df (xt, x⋆)

+ ω(ω + 2)
(1 + λmin(Ω))(1 + ω)2 γ

2(1 + ω)2 ∥ht − h⋆∥2

+
(
λmax(LΩ̃)B

W
+ B̃

)
γ2Wσt + γ2(λmax(LΩ̃)C +WC̃).

Next we choose the stepsize γ ≤ 1
Aλmax(LΩ̃)+WÃ

so that the term with Df (xt, x⋆) is non-negative and can be
suppressed for further steps. Let

δ = 1 − ω(ω + 2)
(1 + λmin(Ω))(ω + 1)2 = 1 − 1

1 + λmin(Ω)

(
1 − 1

(1 + ω)2

)
∈ [0, 1],

β = 1 − B̃ − λmax(LΩ̃)B
W

> 0,

provided that W > λmax(LΩ̃)B
1−B̃ , and continue the above derivation

E [Ψt+1] ≤ max (1 − γµ, 1 − δ, 1 − β) Ψt + γ2(λmax(LΩ̃)C +WC̃)
= (1 − min(γµ, δ, β)) Ψt + γ2(λmax(LΩ̃)C +WC̃)

≤ (1 − min(γµ, δ, β))t+1 Ψ0 + γ2λmax(LΩ̃)C +WC̃

min(γµ, δ, β) .

C Proofs for Section 3 (GradSkip)

C.1 Proof of Lemma 3.1

Lemma 3.1. Suppose that Algorithm 1 does not communicate for τ ≥ 1 consecutive iterates, i.e., θt =
θt+1 = · · · = θt+τ−1 = 0 for some fixed t ≥ 0. Besides, let for some client i ∈ [n] we have ηi,t = 0. Then,
regardless of the coin tosses {ηi,t+j}τj=1, client i does fake local steps without any gradient computation in τ
iterates. Formally, for all j = 1, 2, . . . , τ + 1, we have

x̂i,t+j = xi,t+j = xi,t,

ĥi,t+j = hi,t+j = hi,t = ∇fi(xi,t).
(22)

Proof. The proof is rather straightforward and follows by following the corresponding lines of the algorithm.
Note that ηi,t = θt = 0 implies (see lines 6 and 7 in Algorithm 1) that

x̂i,t+1 = xi,t+1 = xi,t, (23)
ĥi,t+1 = hi,t+1 = hi,t = ∇fi(xi,t), (24)
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which proves (22) when j = 1. Consider the two possible cases for ηi,t+1 coupled with θt+1 = 0. If ηi,t+1 = 1,
then

x̂i,t+2 = xi,t+1 − γ(∇fi(xi,t+1) − hi,t+1)
(23)= xi,t+1 − γ(∇fi(xi,t) − hi,t+1)
(24)= xi,t+1
(23)= xi,t,

and
ĥi,t+2 = hi,t+1

(24)= hi,t = ∇fi(xi,t).

In case of ηi,t+1 = 0, we have

x̂i,t+2 = xi,t+1
(23)= xi,t

and
ĥi,t+2 = ∇fi(xi,t+1) (23)= ∇fi(xi,t)

(23)= hi,t.

Hence, in both cases, we get

x̂i,t+2 = xi,t+1 = xi,t, (25)
ĥi,t+2 = hi,t = ∇fi(xi,t). (26)

It remains to combine (25)–(26) with the condition that θt+1 = 0, which implies xi,t+2 = x̂i,t+2, hi,t+2 = ĥi,t+2.
Thus, we proved (22) when j = 2. The proof can be completed by applying induction on j.

C.2 Proof of Lemma 3.2

Lemma 3.2. The expected number of local gradient computations in each communication round of GradSkip
is 1/(1−qi(1−p)) for all clients i ∈ [n].

Proof. As mentioned in the text preceding the lemma, the proof follows from the fact that for two geometric
random variables Θ ∼ Geo(p) and H ∼ Geo(q), their minimum min(Θ, H) is also a geometric random variable
with parameter 1 − (1 − p)(1 − q). To see this, consider the corresponding Bernoulli trials with success
probability p and q for each geometric random variable. Notice that the probability that both trials fail is
(1 − p)(1 − q). Hence, min(Θ, H) is the number of joint trials of the two Bernoulli variables until one of them
succeeds with probability 1 − (1 − p)(1 − q). Therefore, min(Θ, H) is also a geometric random variable with
success probability 1 − (1 − p)(1 − q).

C.3 Proof of Theorem 3.5

Denote Et [ · ] := E [ · | x1,t, · · · , xn,t] the conditional expectation with respect to the randomness of all local
models x1,t, · · · , xn,t at tth iterate.
Lemma C.1. If γ > 0 and 0 ≤ p, qi ≤ 1, then

Et [Ψt+1] =
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]
,

where the expectation is taken over θt and ηi,t in Algorithm 1.
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Proof of Lemma C.1. In order to simplify notation, denote

xi := x̂i,t+1 − γ

p
ĥi,t+1, yi := x⋆ − γ

p
hi,⋆. (27)

x̄ := 1
n

n∑
i=1

xi, ȳ := 1
n

n∑
i=1

yi = x∗. (28)

STEP 1 (Recalling the steps of the method). Recall that

xi,t+1 =
{
x̄, with probability p,

x̂i,t+1, with probability 1 − p,
(29)

and

hi,t+1 =
{
ĥi,t+1 + p

γ (x̄− x̂i,t+1), with probability p,

ĥi,t+1, with probability 1 − p.
(30)

STEP 2 (One-step expectation w.r.t. the global coin toss θt). The expected value of the Lyapunov
function

Ψt :=
n∑
i=1

∥xi,t − x⋆∥2 + γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2 (31)

at (t+ 1)th iterate with respect to the coin toss θt is

Et [Ψt+1 | η1,t, . . . , ηn,t]
(29)−(31)= p

n∑
i=1

(
∥x̄− x⋆∥2 + γ2

p2

∥∥∥∥ĥi,t+1 + p

γ
(x̄− x̂i,t+1) − hi,⋆

∥∥∥∥2
)

+ (1 − p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

(28)= p

n∑
i=1

(
∥x̄− ȳ∥2 + ∥x̄− xi + yi − ȳ∥2

)
+ (1 − p)

n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

= p

n∑
i=1

∥xi − yi∥2 + (1 − p)
n∑
i=1

(
∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)

=
n∑
i=1

[
p

∥∥∥∥x̂i,t+1 − γ

p
ĥi,t+1 −

(
x⋆ − γ

p
hi,⋆

)∥∥∥∥2

+ (1 − p)
(

∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)]

.
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STEP 3 (Simple algebra). Next, we expand the squared norm and collect the terms, obtaining

Et [Ψt+1 | η1,t, . . . , ηn,t]

=
n∑
i=1

[
p∥x̂i,t+1 − x⋆∥2 + p

γ2

p2 ∥ĥi,t+1 − hi,⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩

+ (1 − p)
(

∥x̂i,t+1 − x⋆∥2 + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
)]

=
n∑
i=1

[
∥x̂i,t+1 − x⋆∥2 − 2γ⟨x̂i,t+1 − x⋆, ĥi,t+1 − hi,⋆⟩ + γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2
− γ2

∥∥∥ĥi,t+1 − hi,⋆

∥∥∥2
+ γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]

=
n∑
i=1

[∥∥∥x̂i,t+1 − x⋆ − γ
(
ĥi,t+1 − hi,⋆

)∥∥∥2
+
(
1 − p2) γ2

p2 ∥ĥi,t+1 − hi,⋆∥2
]
.

STEP 4 (One-step expectation w.r.t. local coin tosses ηi,t). Applying the expectation with respect
to (independent) coin tosses ηi,t and using the tower property we get

Et [Ψt+1]

=
n∑
i=1

[
qi

(
∥xi,t − γ(∇fi(xi,t) − hi,t) − x⋆ − γ (hi,t − hi,⋆)∥2

+
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
)

+ (1 − qi)
(

∥xi,t − x⋆ − γ (∇f(xi,t) − hi,⋆)∥2 +
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2
)]

=
n∑
i=1

[
qi

(
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 +

(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
)

+ (1 − qi)
(

∥xi,t − x⋆ − γ (∇f(xi,t) − hi,⋆)∥2 +
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2
)]

=
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

=
n∑
i=1

[
∥wi,t − wi,⋆∥2 + (1 − qi)

(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]
.

Next, we upper bound the first two terms of the above equality by adjusting the stepsize.

Lemma C.2. If 0 < γ ≤ mini
{

1
Li

p2

1−qi(1−p2)

}
, then

∥wi,t − wi,⋆∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2 ≤ (1 − γµ)∥xi,t − x⋆∥2.
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Proof of Lemma C.2. After some algebraic transformations we get

∥wi,t − wi,⋆∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

= ∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

= ∥xi,t − x⋆∥2 − 2γ ⟨xi,t − x⋆,∇fi(xi,t) − hi,⋆⟩

+ γ2 ∥∇fi(xi,t) − hi,⋆∥2 + (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

≤ (1 − γµ) ∥xi,t − x⋆∥2 − 2γDfi
(xi,t, x⋆)

+ γ2

(
1 +

(1 − qi)
(
1 − p2)

p2

)
∥∇fi(xi,t) − hi,⋆∥2

≤ (1 − γµ) ∥xi,t − x⋆∥2 − 2γDfi(xi,t, x⋆)
(

1 − γLi

(
p2 + (1 − qi)

(
1 − p2)

p2

))
≤ (1 − γµ) ∥xi,t − x⋆∥2

,

where we used the bound
∥∇fi(xi,t) − hi,⋆∥2 ≤ 2LiDfi(xi,t, x⋆)

and the last inequality holds since γ ≤ 1
Li

p2

1−qi(1−p2) .

Proof of Theorem 3.5. The proof of the theorem is direct combination of the above proved lemmas.

Et [Ψt+1] =
n∑
i=1

[
∥xi,t − x⋆ − γ (∇fi(xi,t) − hi,⋆)∥2

+ (1 − qi)
(
1 − p2) γ2

p2 ∥∇f(xi,t) − hi,⋆∥2

+ qi
(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

≤
n∑
i=1

[
(1 − γµ) ∥xi,t − x⋆∥2 + qi

(
1 − p2) γ2

p2 ∥hi,t − hi,⋆∥2
]

≤ (1 − γµ)
n∑
i=1

∥xi,t − x⋆∥2 + qmax
(
1 − p2) γ2

p2

n∑
i=1

∥hi,t − hi,⋆∥2

≤ max
{

1 − γµ, qmax
(
1 − p2)}Ψt

=
(
1 − min

{
γµ, 1 − qmax

(
1 − p2)})Ψt.

C.4 Proof of Theorem 3.6

From the choice of qi = 1−1/κi

1−1/κmax
, we immediately imply qmax = 1. Furthermore, choosing the optimal

p = 1√
κmax

, we get

γ = min
i

{
1
Li

p2

1 − qi (1 − p2)

}
= min

i

{
Lip

2

Liµ

}
= 1
Lmax

.

Now, if we plug these values back to the rate (7), we get the best rate of ProxSkip as

1 − min
{
γµ, 1 − qmax

(
1 − p2)}} = 1 − min

{
µ

Lmax
, p2
}

= 1 − µ

Lmax
= 1 − 1

κmax
.
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This implies O
(
κmax log 1

ε

)
total iteration complexity of the method. Due to the choice p = 1√

κmax
, the

method enjoys O
(√
κmax log 1

ε

)
accelerated communication complexity.

We have two geometric random variables, Θ ∼ Geom(p) and Hi ∼ Geom(1 − qi), for each client describing
local training. From the algorithm description, we see that the number of local steps for client i is min(Θ, Hi),
which is still a Geometric random variable with parameter 1 − qi(1 − p). Therefore, the expected number of
local steps for client i is the inverse of that parameter, i.e., 1

1−qi(1−p) . If we plug in the values for p and qi,
we have

E [min(Θ, Hi)] = 1
1 − qi(1 − p) = 1

1 −
(

1 − 1√
κmax

)
1−1/κi

1−1/κmax

= 1
1 − 1−1/κi

1+1/√
κmax

= 1 + 1/√
κmax

1/κi + 1/√
κmax

= κi(1 + √
κmax)

κi + √
κmax

≤ min(κi,
√
κmax),

where the last inequality can be verified with simple algebraic steps.

D Proofs for Section 4 (GradSkip+)

D.1 Proof of Lemma 4.2

The proof follows from the following simple inequalities:

∥x∥2
(I+Ω)−1 ≤ λmax

(
(I + Ω)−1) ∥x∥2 = 1

1 + λmin(Ω)∥x∥2,

∥(I + Ω)−1C(x)∥2 ≥ λmin
(
(I + Ω)−1)2 ∥C(x)∥2 = 1

(1 + λmax(Ω))2 ∥C(x)∥2.

D.2 Proof of Theorem 4.5

Since GradSkip+ is a special case of a VR-GradSkip+, Theorem 4.5 is a corollary of Theorem B.2. Indeed, as
shown below, Theorem B.2 reduces to Theorem 4.5.
Lemma D.1. Let Assumption 4.4 hold. Then for the gradient estimator gt = ∇f(xt), Assumption B.1 holds
with the following parameters:

A = 1, B = 0, C = 0, Ã = 0, B̃ = 0, C̃ = 0, σt ≡ 0.

Proof. The proof is rather trivial and follows from the L-smoothness of f ,

E
[
∥gt − ∇f(x⋆)∥2

L−1

]
= ∥∇f(xt) − ∇f(x⋆)∥2

L−1 ≤ 2Df (xt, x⋆).

D.3 Special Cases

Case 1 (ProxGD). If Cω is the identity compressor (i.e., ω = 0), then Algorithm 2 reduces to the ProxGD
algorithm as xt+1 = proxγψ(x̂t+1 − γĥt+1) = proxγψ(xt − γ∇f(xt)) for any choice of CΩ.

Case 2 (ProxSkip). Let CΩ be the identity compressor (i.e., Ω = I) and Cω be the Bernoulli compressor
Cp with parameter p ∈ (0, 1] (note that here ω = 1/p − 1). In this case, ĥt+1 ≡ ht and xt+1 is either
proxγ/pψ (x̂t+1 − γ/pht) (with probability p) or x̂t+1 (with probability 1 − p). Thus, we recover the ProxSkip
algorithm.
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Case 3 (RandProx-FB). Let CΩ be the identity compressor and CΩ = R ∈ Bd(ω). Then, after the following
change of notation: ht = −ut, ĝt = dt/1+ω2, the method is equivalent to RandProx-FB (Condat & Richtárik,
2022), which is a generalization of ProxSkip when additional smoothness information for the regularizer ψ is
known2.

Case 4 (GradSkip). Finally, we can specialize GradSkip+ to recover GradSkip. Consider the lifted space Rnd
where x ∈ Rnd represents the concatenations of models x1, . . . , xn ∈ Rd from all clients. The central example
of an unbiased compression operator for that would be the probabilistic switching mechanism used in GradSkip,
which is sometimes referred to as Bernoulli compressor: for any given p ∈ [0, 1], the compressor Cndp (x)
outputs x/p (with probability p) or 0 (with probability 1 − p) for any input vector x ∈ Rnd. GradSkip employs
one Bernoulli compressor Cndp with parameter p ∈ (0, 1] controlling communication rounds, and one Bernoulli
compressor Cdqi

with parameter qi ∈ (0, 1] for each client to control local gradient steps. Therefore, choosing
Cω = Cndp and CΩ = Cdq1

× · · · × Cdqn
in the lifted space Rnd, GradSkip+ reduces to GradSkip.

2We do not consider smooth regularizers as our primary example of regularizer is the non-smooth consensus constraint (4).
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