
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LADDER RESIDUAL: REDEFINING TENSOR PARALLELISM
IN TRANSFORMERS FOR ACCELERATED INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model inference is both memory-intensive and time-consuming, often
requiring distributed algorithms to efficiently scale. Tensor parallelism (TP) is a
common technique used in multi-gpu training and inference to partition computation
across multiple devices, reducing memory load and computation time. However, such
parallelism necessitates fast interconnects between the devices which has been a major
bottleneck and limits the gains obtained by scaling up the number of devices. We
introduce Ladder Residual, a simple architectural modification applicable to all residual-
based models that enable straightforward overlapping that effectively hides the latency
of communication. Our insight is that in addition to systems optimization, one can also
redesign the model architecture to decouple communication from computation. For a
Transformer model of 8B size, applying Ladder Residual to all its layers achieves 29%
end-to-end wall clock speed up at inference time with TP world size of 8 devices. We re-
fer to such model as the Ladder Transformer. We train a 1B and 3B Ladder Transformer
from scratch and observe comparable performance to a standard dense transformer
baseline. We also conduct adaptation experiments for our approach and show that it’s
possible to adapt parts of the Llama-3.1 8B model with minimal accuracy degradation
by only retraining for 3B tokens. To further push the performance frontier, we
propose another architectural modification which drops communications in the model,
unlocking fast LLM inference in settings devoid of NVLink or other fast interconnects.

1 INTRODUCTION

With the rapid scaling of Large Language Models (LLMs) (Smith et al., 2022; Workshop et al., 2023;
Brown, 2020), the compute and memory requirements for training and inference have grown significantly.
Tensor parallelism (TP) (Shoeybi et al., 2020) is a widely used model parallelism technique that partitions
the weights and intermediate activations across multiple GPUs. In contrast to pipeline parallelism
(Narayanan et al., 2021) and data parallelism (Li et al., 2020), which rely on processing independent batches
of user requests on each device, tensor-parallel inference enables multiple devices to cooperate to process
a single batch of user requests at a time, therefore in theory allowing infinite scaling given a sufficient
number of processors. However, TP requires synchronizing the partitioned intermediate activations across
the GPUs. This synchronization is a blocking AllReduce operation on the activations across the GPUs
and is therefore bottlenecked by the network communication latency. Even for GPUs connected via fast
interconnects (like NVLink (NVIDIA Corporation, 2024)), the communication costs can account for 40%
of the latency at inference time when running llama 3 8B with batch size 4 and TP world size of 8.

Past works have attempted to overlap the communication latency of TP by overlapping computation
and communication. Chang et al. (2024) write fused kernels for AllGather followed by matmul and
matmul followed by ReduceScatter. They break down matmuls into tiles and try to hide the latency
of communicating a matmul tile with the computation of subsequent tiles. Jangda et al. (2022) propose
CoCoNet, a domain-specific language to express distributed machine learning workloads. They propose
to generate efficient GPU kernels for computation and communication using a custom compiler for
the DSL. This approach has limited applicability with existing frameworks like PyTorch (Paszke et al.,
2019) and JAX (Frostig et al., 2018) since the user needs to be well-acquainted with the DSL to generate
efficient GPU kernels. Moreover, with the breakneck pace of accelerator and interconnect changes, these
low-level systems optimizations require a rewrite for every new generation of hardware. However, there
is a fundamental limit to how much communication latency can be reduced on such works which do not
change the underlying model architecture. Instead of pure hardware optimizations (e.g., larger NVLink
domain connecting 36 or 72 Blackwell GPUs) or pure low-level software optimization (e.g., rewriting
all matmuls to overlap with communication), we explore model architectural changes that would enable

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a reduction in communication latency while maintaining accuracy. This makes our approach quite simple
to apply in practice using a high level machine learning framework like PyTorch (Paszke et al., 2019)
or JAX (Frostig et al., 2018) without writing any low-level device code.

Figure 1: Illustration of a standard Transformer block (left) and a Ladder Residual block (right). The blue
edge denotes the residual connection. In Ladder Residual, the residual connection remains the same while
each module hi takes the stale input ri−2.

Communication is blocking because there is a sequential structure between communication and
computation in existing model designs: we wait for communication in order to prepare the correct input
for the next computation. In the prevalent residual-based architectures, the computation flow can be written
as xi+1=hi+1(xi)+xi, where xi is the residual stream after layer i and hi+1 is the computation at layer
i+1. Notice that the communication of xi needs to be done before executing hi+1 if hi is partitioned
across devices. Liu et al. (2023b) found that activation changes slowly in Transformer, as the norm of
each update hi+1(xi) is small compared to the residual. Based on this observation, we hypothesize that
maintaining the regular residual connection is enough to restrict the representation shift, and we can feed
each module a “stale” input to create overlapping opportunities.

We propose Ladder Residual, a simple change where we reroute the residual stream after layer i− 1
(instead of layer i) as input to layer i+1: xi+1=hi+1(xi−1)+xi. With this design, the computation of
hi+1 is decoupled from the communication of xi, enabling straightforward overlapping to hide the latency
of communication. Figure 1 shows how Ladder Residual can be applied to the Transformer architecture. At
inference time with TP world size of 8 (i.e., across 8 devices), running a Transformer with Ladder Residual
can be around 30% faster over the standard Transformer. In Table 1, we provide the inference speedup
on Transformers of different sizes. The proposed Ladder Residual method is also fully compatible with
Sequence Parallelism (SP) (Korthikanti et al., 2022) which helps in reducing the activation memory when
training large models with long context lengths. Our method obtains 5-7% training speedup when training
an 8B model with 8k context length on 64 H100s with 3D parallelism across the GPUs (Tensor Parallel,
Sequence Parallel and Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023; Rajbhandari et al., 2020)),
but we decide to focus on the inference speed ups in this paper since training with just FSDP and SP and
is usually faster because weights can be pre-fetched and gradient synchronization using ReduceScatter
can be overlapped in FSDP making communications in FSDP non-blocking.

Because of the widespread use of Transformer (Vaswani, 2017) based Language models, we focus
on applying Ladder Residual on the Transformers in this paper, and we call the resulting model as
Ladder Transformer. We conduct experiments under two scenarios to verify if we can maintain the same
performance after applying Ladder Residual to a Transformer-based model:

• Pretraining from scratch: We train a 1B and a 3B parameter Ladder Transformer model with 100B
tokens on the FineWeb-edu dataset (Lozhkov et al., 2024) and compared it with the standard transformer
of the same size trained on the same amount of tokens. We find that the Ladder Transformer matches
the performance of the standard Transformer model.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Post-training adaptation: We take the pretrained Llama-3.1-8B-instruct model (Dubey et al., 2024)
and apply Ladder Residual on the upper half layers. We then train it on 3B tokens to adapt to
the representation shift. With this relatively light retraining, we can obtain a hybrid Ladder Llama
that is on par with the original Llama model on AlpacaEval, math, commonsense reasoning, and
knowledge-intensive tasks while only being slightly worse on coding benchmarks.

In section 5, as a proof of concept of what Ladder Residual can unlock, we additionally propose Desynced
Residual, an architectural modification that eliminates communication by restricting certain modules to act
on the local activations on each device independently. We found that it’s possible to eliminate 75% of the
communication without much performance degradation when training a 1B model. Since communication
can be too heavy to overlap in some scenarios (for example, with cross-node communication or even
wireless communication), applying Ladder Residual can further unlock the potential of scaling TP to a
giant GPU cluster.

Table 1: Inference speed up from applying Ladder Residual on Transformer. The test setup is 1024 prompt
length, 256 generated tokens, batch size 1, and TP world size of 8. The speedup value is calculated by
comparing Ladder Transformer with Standard Transformer’s inference throughput in tokens per second.
We measure the speedup with both with and without NVLink inteconnect.

Model size Ladder Transformer (No NVLink) Ladder Transformer (NVLink)

1B 1.51x 1.38x
3B 1.38x 1.24x
8B 1.56x 1.29x
70B 1.37x 1.17x

2 BACKGROUND

We provide some background of Tensor Parallelism (TP), where the communication happens in TP, and
how communication is a major latency bottleneck in standard Transformer.

2.1 TENSOR PARALLELISM

Tensor parallelism (Shoeybi et al., 2020) is a commonly used technique in distributed training/inference.
It partitions weights and activations across devices and performs partial computations on each device.
Consider a sequence of 2 linear layers with weight matrices A and B and input activation X that is running
on 2 GPUs (TP world size of 2), we split A along the output dimension into [A1,A2], and split B along

the input dimension into
[
B1

B2

]
. Then the output of the sequence of the 2 linear layers can be computed

as (XA)B=(XA1)B1+(XA2)B2 and we effectively partition the computation on the two devices. The
final summation requires an AllReduce operation to aggregate the partial sums on each device, which
introduces communication overhead. The AllReduce overhead increases with increasing message size
and increasing number of devices participating in the AllReduce. A transformer layer consists of an
attention block and an MLP block: both can be considered as a sequence of two matrix multiplications and
therefore fit into the tensor parallelism paradigm described above. Thus each transformer layer contains
2 AllReduce operations: one for attention and another for MLP. Denoting the input to the ith block as
xi−1, the transformer can be viewed as the following sequential structure:

x∗i =hi(xi−1)

xi=AllReduce(x∗i )+xi−1

x∗i+1=hi+1(xi)

xi+1=AllReduce(x∗i+1)+xi

(1)

where the ∗ denotes a partial-sum that requires an AllReduce for the full output replicated across all
the GPUs. Note that the AllReduce operation is the identity function for a model running on 1 GPU.

A Transformer with N layers needs to perform the AllReduce 2N times and this can account for 40%
of the inference latency for a 8B model using TP world size of 8, even with NVLink interconnect. For
communication without NVLink support or inter-node communication, their latency can account for around
85% of the end-to-end latency. Modern nodes contain GPUs connected via NVLink but usually have

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

no more than 8 GPUs per node, due to limited PCIe lanes or power and cooling constraints in datacenters.
There is a steep falloff in communication bandwidth and latency when communication happens outside
a node either over InfiniBand or Ethernet thus making scaling TP practically infeasible outside a node.

3 LADDER TRANSFORMER

In this section we propose our Ladder Residual approach applied to a Transformer model and validate
that it can speed up inference.

Algorithm 1 Ladder Transformer Layer with Tensor Parallelism. Note that the AsyncAllReduce returns a
handle which is passed to the next layer.

1: function LAYER(residual, prev attn out, prev mlp out,
prev attn handle, prev mlp handle)

2: prev attn handle.wait()
3: residual←residual+prev attn out
4:
5: attn out←AttentionNorm(residual)
6: attn out←Attention(attn out)
7: attn out, attn handle←AsyncAllReduce(attn out)
8:
9: prev mlp handle.wait()

10: residual←residual+prev mlp out
11:
12: mlp out←MLPNorm(residual)
13: mlp out←MLP(mlp out)
14: mlp out, mlp handle←AsyncAllReduce(mlp out)
15:
16: return residual, attn out, mlp out, attn handle, mlp handle
17: end function

3.1 ARCHITECTURE DESCRIPTION

In Equation 1, the AllReduce operation is blocking the next block from execution since hi+1 requires
xi as the input. Ladder Residual mitigates this problem by routing the xi−1 to block hi+1, effectively
making the input of hi+1 independent of the output of the AllReduce, therefore allowing overlapping
AllReduce(x∗i ) with hi+1.

Specifically, we change the computation flow of Equation 1 into:

x∗i =hi(xi−2)

xi=AllReduce(x∗i )+xi−1

x∗i+1=hi+1(xi−1)

xi+1=AllReduce(x∗i+1)+xi

(2)

Note that the residual stream of each block still takes the output from the previous module as usual, this
ensures the module i is still able to process output from all previous i−2 modules.

3.2 INFERENCE IMPLEMENTATION

Ladder Residual Implementation: We present the Ladder Transformer’s layer’s pseudo-code in Algorithm
1. To implement the Ladder Transformer, following the description of Equation 2 we call AsyncAllReduce
for the Attention’s output. This returns a handle that can be used to synchronize the output to ensure that
the AsyncAllReduce has finished. It should be noted that NCCL collectives in PyTorch always run on a
different CUDA stream than the default compute stream used by PyTorch thus making them asynchronous.
As soon as the AsyncAllReduce is called, we synchronize by calling wait on the previous layer’s MLP’s
output and subsequently the CPU launches the kernels for MLPNorm and then MLP on the default compute
stream and eventually calling the AsyncAllReduce for MLP. The handles for these NCCL operations
are then passed onto the next layer which uses them for synchronization when needed.

Alignment with Real-World Scenarios: To evaluate the practical benefits of Ladder Residual, we
integrated this mechanism into a standard Llama-like Transformer. Building upon gpt-fast (PyTorch

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Labs, 2024), we partition the weights of the attention and feedforward modules for tensor parallelism
to optimize inference speed. We use CUDA graphs (Coleman, 2020) to generate static computation graphs
for both the prefill and decode phase to reduce CPU kernel launch overheads which can be a big bottleneck
especially during the decode phase of Transformer inference. Additionally, we use FlashAttention (Dao,
2023) during prefill and FlashDecode (Dao et al., 2023) during the autoregressive decode phase of
generation for accelerating inference.

3.3 FASTER INFERENCE WITH LADDER RESIDUAL

In this section, we benchmark Ladder Residual under various scenarios and show that across various model
sizes, batch sizes, and varying TP world size, Ladder Residual can obtain considerable speedup over the
standard Transformer. We also compare against the parallel attention and mlp design in Chowdhery et al.
(2022); Wang & Komatsuzaki (2021), which effectively cuts half of the communication. We also consider
a scenario without NVLink, and show that our method can obtain more than 50% of the speedup when
high-speed interconnect is not available.

3.3.1 SETUP

We benchmark several algorithmic variants to evaluate their performance in large-scale language model
inference. The candidates include:

• Standard Transformer: The standard transformer implementation.

• Parallel Attention and Mlp: Following the PaLM parallelization strategy Chowdhery et al. (2022); Wang
& Komatsuzaki (2021), we fuse the weights of the query, key, value, gate, and up projections into a
single matrix. The outputs are then split, and the attention and swiglu are performed in parallel. This
effectively cut half of the communication, with the extra benefit of being able to fuse attention and
mlp together. PaLM has shown its feasibility when trained from scratch, and we also experiment with
it in subsection 4.1.

• Ladder Residual: The architectural optimization we propose to overlap computation with communication
required for Tensor Parallelism.

• Communication-Free Upper Bound: An upper bound that removes all communication operations in
the model to represent the theoretical maximum speedup achievable.

Note that different Transformer-based models usually have slightly different designs. The Transformer
we used followed Llama-3’s design and we designed the width and depth to meet specific parameter
counts. The benchmarking results here won’t be too different when moving to a different design since
the communication patterns are mostly the same across various transformer variants.

To simulate realistic inference scenarios, we select multiple experimental configurations. Users typically set
prompt lengths not exceeding 1024 tokens and generate short outputs upto 32 new tokens while using an
LLM as a chat assistant. Therefore, we set the prompt length to 1024 and the generation length to 32 tokens.

We vary the tensor parallel world sizes among 1, 2, 4, and 8, and batch fsizes among 1, 4, 16, and 64
to understand performance under different generation settings. All models are benchmarked on 1, 2, 4
or 8 NVIDIA H100 GPUs.

To evaluate the impact of hardware communication capabilities, we adjust the NVLink settings using en-
vironment variables. We enable NVIDIA SHARP (Graham et al., 2016) by setting NCCL NVLS ENABLE=1
and disable NVLINK communication by setting NCCL P2P DISABLE=1. This allows us to assess the
performance of different algorithms in varying communication environments. All of results has been
re-run for 3 times to ensure the results is stable and confident.

3.3.2 BENCHMARKING

We characterize the inference efficiency improvements enabled by Ladder Residual in three different ways.

First, we measure the best latency achievable using both the Ladder Residual architecture and a traditional
transformer baseline, both in terms of end-to-end latency and broken down by inference phase (prefill
vs decode). The best latency in our setting is achieved using a batch size of 1 and a TP degree of 8 (the
maximum TP world size possible on our 8-GPU node). We present the results of these latency-optimized
experiments in Table 2. In this latency-optimized regime, both with and without NVLink, we find that
the Ladder Residual architecture outperforms the baseline in both prefill and decode latency.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Improvement in end-to-end inference throughput achieved by communication-efficient architec-
tures relative to a traditional transformer, benchmarked on Llama-3 8B and 70B. Running with NVLink,
Ladder Residual architecture can achieve up to 24% greater throughput than the traditional Transformer.
Without NVLink, we observe speedups up to 60%. All experiments were conducted on a generation task
with 1024 prompt tokens and 512 completion tokens. Some data points are missing due to OOM.

Figure 3: End-to-end inference throughput improvement on Llama-3-405B on a generation task with 1024
prompt tokens and 512 completion tokens. Here we use TP size 16 across two nodes each with 8 GPUs,
connected with InfiniBand. ”Upper Bound” denote the model without doing communication at all (which
results in incorrect computation). Due to the high cost of cross-node communication, Ladder Residual
architecture is able to achieve more than 30% improvement across various batch size even with NVLink
enabled adn around 50% without NVLink.

Second, we measure the throughput achievable at each TP world size, and at a representative selection
of batch sizes, for 8B and 70B size. We present the results of these experiments in Figure 2. In these
throughput-oriented experiments, we again find that the Ladder Residual architecture significantly
outperforms the traditional transformer architecture, and that these improvements are robust to the presence
or absence of NVLink. We also find that the throughput gains from adopting the Ladder Residual
architecture increase as the TP degree increases, reflecting the greater proportion of run time spent in
communication relative to compute as we partition the computation across a larger number of devices.
Lastly, we see the amount of improvement decreases as we increase from 8B to 70B when running with
NVLink, as the computation scales faster than communication. However, the trend is reversed at large TP
size when running without NVLink, likely due to the much higher cost of communication in that scenario.

Serving a model of larger size can be a challenge since even loading the model can require more than 8
GPUs. Cross-node TP communication is very expensive, however the common practice of using intra-node
TP with cross-node Pipeline Parallelism (PP) is dependent on batch size to reduce gpu idle time (for
example, with batch size = 1, half of the GPUs will be idle at any given time). With the speedup from
Ladder Residual, cross-node TP can be a viable option. We benchmarked 405B under such setting in
Figure 3, found that even for nodes with fast InfiniBand interconnect, Ladder Residual architecture can
achieve more than 30% throughput improvement across various batch sizes.

Finally, recognizing that different practitioners may wish to pursue different tradeoffs between latency
and throughput depending on their application, we characterize the latency/throughput Pareto frontier
achieved by each architecture in Figure 4. Consistent with typical deployment practice, we find that
throughput per device for our 8B model is maximized when the model is served from just a single device,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(1) With NVLINK (2) Without NVLINK

batch_size=16, tp_size=4, 331.51 token/sec

batch_size=4, tp_size=1, 303.54 token/sec

Figure 4: Pareto frontier of completion latency vs aggregate throughput per GPU for different 8B-scale
model architectures in a batched inference setting. For each architecture, we sweep over both batch
size and TP world size to find the Pareto-optimal configurations. Because an 8B model fits on a single
device, the configurations which maximize throughput are always those which use no TP (points on the
top-right corner), in which case the differences in communication overhead between architectures disappear.
However, when jointly optimizing for both latency and throughput, we find that TP is beneficial (all points
before top-right), in which case the Ladder architecture achieves Pareto improvements over the standard
transformer architecture. All experiments measure end-to-end time on a generation task with 1024 prompt
tokens and 32 completion tokens per sequence.

in which case our communication efficiency interventions provide no benefit. However, when jointly
optimizing throughput and latency, we find that adopting the Ladder Residual architecture significantly
shifts the Pareto frontier towards more favorable latency/throughput tradeoffs compared to the standard
transformer architecture. We note that that this demonstrates that even for a relatively small model of
only 8B parameters, it can still be worthwhile to optimize the design of one’s model to support efficient
inference with high degrees of tensor parallelism.

Table 2: Detailed breakdown for prefill, decode and token/sec improvement (%) for different model. The
speedup (%) calculated by using latency of optimized model divided by original model. All the experiment
are based on batch size 1, TP world size of 8 GPUs.

Model Prefill Improvement (%) Decode Improvement (%) Token/sec Improvement (%)

NVLINK-UpperBound-Llama-8B 37.00 28.69 41.66
NVLINK-Parallel-Llama-8B 16.93 17.30 21.00
NVLINK-Ladder-Llama-8B 12.46 23.71 29.65

NO-NVLINK-UpperBound-Llama-8B 50.72 43.44 78.72
NO-NVLINK-Parallel-Llama-8B 19.61 24.01 30.86
NO-NVLINK-Ladder-Llama-8B 24.40 30.71 43.01

4 EXPERIMENTS AND RESULTS

We empirically verify our assumption that applying Ladder Residual does not hurt the performance. We
show that Ladder Residual can be either used when training from scratch, or be applied to a pre-trained
model with hybrid adaptation, and in both cases, the performance is on par with the original architecture.

4.1 TRAINING FROM SCRATCH

We train a 1B and 3B Ladder Transformer from scratch and compare its performance with an equally
sized standard Transformer model. All our models are trained on 100B tokens of FineWeb-edu dataset
(HuggingFaceFW, 2024) using the StarCoder tokenizer (Li et al., 2023b). We also compare our model
with the Parallel Attention/MLP architecture (Chowdhery et al., 2022; Wang & Komatsuzaki, 2021)
which parallelizes the computation of the attention and the MLP module. This effectively reduces the
communication cost by 50% for the tensor parallel all-reduce in both the forward and backward computation.

4.1.1 EXPERIMENTAL DETAILS

We use DDP (Distributed Data Parallel) (Li et al., 2020) to train the 1B and HSDP (Hybrid Sharded Data
Parallel) (Zhao et al., 2023; Rajbhandari et al., 2020) to train the 3B models. For HSDP, we shard the model

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

within 1 node (equipped with 8x H100 GPUs) and replicate the model outside the node. We use mixed preci-
sion training (Micikevicius et al., 2018) in BF16 (Kalamkar et al., 2019) with gradient accumulation and gra-
dient all-reduce/reduce-scatter in FP32 for training stability. We train all our models with 2048 context length
with a batch size of 4M tokens in a batch. The models are trained with cosine scheduler with a warmup of
8B tokens to a peak learning rate of 3×10−4. The learning rate is then decayed over 92B tokens to 3×10−5.

We use EleutherAI’s LM eval harness (Gao et al., 2024) to evaluate all our models on ARC (Clark et al.,
2018), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017) and Winogrande
(Trinh & Le, 2018). We also evaluate Wikitext (Merity et al., 2017) perplexity for all our models.

4.1.2 RESULTS

The full results can be found at Table 3. We find that at the 1B model scale, the Ladder Transformer
achieves obtains similar performance compared with the Standard Transformer while beating the Parallel
Transformer. At the 3B parameter scale, we find that the Standard Transformer baseline model is better than
the Ladder Transformer model with 3.2% lower perplexity and 1.2 points of absolute difference in accuracy.
The Parallel Transformer has almost the same performance as the Ladder Transformer at the 3B scale.

Table 3: Performance of three architectures under two sizes, trained on FineWeb-edu for 100B tokens.

Model ARC-C ARC-E HellaSwag PIQA SciQ Winogrande Average Wikitext PPL

Standard-Transformer-1B 34.22 70.33 41.10 71.49 87.30 55.41 59.98 18.54
Parallel-Transformer-1B 30.46 67.97 40.35 71.16 87.40 55.17 58.75 18.95
Ladder-Transformer-1B 31.31 67.76 41.18 71.49 86.60 55.17 58.92 18.42

Standard-Transformer-3B 38.99 74.12 46.48 74.59 92.00 58.48 64.11 14.48
Parallel-Transformer-3B 38.48 73.02 45.55 73.67 90.00 57.46 63.03 14.96
Ladder-Transformer-3B 36.77 72.43 45.66 73.72 89.90 58.96 62.91 14.90

4.2 POST-TRAINING ADAPTATION

We investigate the feasibility of directly applying Ladder Residual on an existing pre-trained model, and
we choose Llama-3.1 8B Instruct as the target. We applied Ladder Residual to the upper half of the Llama
to keep the performance since we hypothesize that touching the lower layers can destroy knowledge that
is hard to recover without large-scale retraining. We evaluate the adapted models on 8 benchmarks across
a range of domains: accuracy on MMLU (5-shots) (Hendrycks et al., 2021) and ARC-Challenge (ARC-C,
25-shots) (Clark et al., 2018), normalized accuracy on OpenBookQA (OBQA) (Mihaylov et al., 2018),
HellaSwag (HS, 10-shots) (Zellers et al., 2019), and TruthfulQA (TQ, mc1) (Lin et al., 2022). exact-match
accuracy on GSM8K(GSM, 8-shots) (Cobbe et al., 2021), pass@1 on HumanEval+(HE+) (Chen et al.,
2021), aggregated accuracy on IFEval (Zhou et al., 2023), and length controlled win rate (Dubois et al.,
2024) against gpt4-turbo on AlpacaEval (Li et al., 2023c). The evaluation of HumanEval+ is conducted
with EvalPlus (Liu et al., 2023a), AlpacaEval is done with the AlpacaEval2 library, and the rest of the
evaluations are conducted with the LM-Evaluation-Harness library (Gao et al., 2024).

4.2.1 EXPERIMENTAL DETAILS

We convert a state-of-the-art open-source model, Llama-3.1-8B-Instruct into a hybrid Ladder Residual
structure, by applying Ladder Residual to the upper half of the model (layers 16-32 for LLaMA-3.1-
8B-Instruct). We call this variant Hybrid-Ladder-8B-16L in Table 4. We also experiment with more
aggressive adaptation where we applied Ladder Residual to the layers 12-32 and we call this experiment
Hybrid-Ladder-8B-20L. We conduct supervised fine-tuning (SFT) for the resulting model on the 7M
subset and the Gen subset of the Infinity-Instruct dataset1, which contains 3B tokens. We train for 2 epochs
with AdamW optimizer with a batch size of 32. We use 5e-6 learning rate with 200 steps of linear warmup,
followed by cosine annealing to the end. We use Axolotl 2 for our SFT experiments.

As shown in Table 4, after adaptation, there is a huge performance drop mainly on generative tasks as
the computation flow is messed up. But after light retraining, the hybrid Ladder Llama is able to reach
the same level of performance with the original Llama. By applying Ladder Residual on the last 16 layers
(half of the 32 layers), we are able to obtain 14.5% end-to-end wall clock speed up at the inference time
with TP world size of 8 and batch size of 1. Our results demonstrate the potential of Ladder Residual being

1https://huggingface.co/datasets/BAAI/Infinity-Instruct
2https://github.com/axolotl-ai-cloud/axolotl

8

https://huggingface.co/datasets/BAAI/Infinity-Instruct
https://github.com/axolotl-ai-cloud/axolotl


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: All models are either LLama-3.1 models or are adapted from Llama-3.1 8B Instruct in this table.
Performance comparison across various benchmarks. Zeroshot denotes directly applying Ladder Residual
without any retraining. xL denotes how many layers of the Llama-3.1-8B-Instruct are applied Ladder
Residual.

Model MMLU ARC-C OBQA HS TQ GSM HE+ IE AE Average

Llama-3.1-8B-Instruct 68.14 60.32 43.00 80.04 36.84 84.99 60.40 52.57 18.69 56.11
Hybrid-Ladder-8B-16L-zeroshot 63.19 56.57 42.60 77.70 35.50 10.54 30.50 46.25 11.99 41.65
Hybrid-Ladder-8B-16L-retrained 65.93 59.13 42.20 78.86 39.66 80.29 59.10 59.02 21.95 56.24
Hybrid-Ladder-8B-16L-distill 67.49 60.24 44.20 79.03 N/A 82.56 N/A N/A N/A N/A
Hybrid-Ladder-8B-20L-retrained 62.31 59.90 42.60 77.49 36.72 76.19 48.80 59.05 21.72 53.86

a drop-in adaptation technique to make the model faster without sacrificing performance. We additionally
experiment with applying Ladder Residual to the last 20 layers of Llama and found that it leads to a slight
drop in performance. There is a chance that with longer adaptation, or smarter adaptation techniques like
distillation or iterative training, we can obtain a Ladder-Llama with more layers adapted. We leave the
further exploration to future work.

5 ELIMINATING COMMUNICATION WITH DESYNCED RESIDUAL

We find that in settings where there is no NVLink connection, the latency for AllReduce dominates and its
not possible to hide the latency of the AllReduce completely with the computation of another block in the
Ladder Residual method. We thus propose an alternative method, Desynced Reisudal, that entirely drops
the AllReduce communication and lets each device process its own activations independently. We call
this architecture Desynced Residual because dropping the communication leads to desynchonization of the
residual stream in the model which is re-synchronized at the next AllReduce operation. We experiment
with 2 different Desync configurations: Desync Residual-2x and Desync Residual-4x. Desync Residual-nx
means that we only retain the last AllReduce operation in a group of n sequential AllReduce operations
i.e (n−1) AllReduce operations are dropped from the model. While its possible to use an arbitrary
communication pattern, we find that dropping AllReduce for Attention yields a model with lower Wikitext
perplexity than dropping AllReduce for MLP while offering a good tradeoff between inference speed
and model accuracy. We compare the latency improvement of Desyncd-nx and Ladder Residual in Table 6.
While Desync-Residaul-2x performs slightly worse than Ladder Residaul, Desynced-Residaul-4x is able to
achieve a larger gain, especially under the no NVLink setup (39% for Desynced-Residual-4x compare with
23% for Ladder Residual). The promising speedup shows the potential of Desync Residual as an alternative
architecture to be further explored espeically in cases where communictaion can be very expensive.

5.1 EXPERIMENTS AND RESULTS

We run both 1B and 3B pretraining from scratch experiments for Desync Residual-2x and Desync
Residual-4x models in the same setting as described in subsection 4.1. We find that the Desync Residual-4x
model performs better than Desync Residual-2x model on 1B scale on Wikitext perplexity while being
slightly worse on accuracy. While on the 3B scale, the Desync Residual-4x model is better on both
perplexity and average accuracy. This is quite surprising and demonstrates that its possible to train models
using the Desync Residual in a way to significantly reduce communication. For instance, the Desync
Residual-4x drops 75% communications with almost no drop in model performance.

In our benchmarking results, we find that at a large batch sizes (64 in our experiments) with a TP world
size of 8, it is possible to achieve around 30% improvement in inference throughput over NVLink and
around 40% improvement without NVLink using the Desync Residual-4x architecture. We also observe
a significant improvement in the first token latency (prefill latency) using the Desync Residual-4x model
over Ladder Residual and Desync Residual-2x. The first token latency is especially important in scenarios
where the LLM might be used as a classifier for example or in cases where multiple calls to the LLM need
to be issues (agentic workflows for example). By manipulating where to communicate, Desync Residual
allows designing networks that can drop arbitrary percent of the communication, which allows flexible
architecture design giving different needs. For setup with very slow communication (for example wireless
communication), Desync Residual enables sacrificing a small amount of performance in exchange for speed.

6 RELATED WORK

Communication overlapping in parallelism Overlapping communication has been a widely explored
area in prior works in order to achieve higher performance for distributed training. For Tensor Parallelism,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance of Desync Residual compared to the Standard Transformer model trained on
FineWeb-edu for 100B tokens.

Model ARC-C ARC-E HellaSwag PIQA SciQ Winogrande Average Wikitext PPL

Standard-Transformer-1B 34.22 70.33 41.10 71.49 87.30 55.41 59.98 18.54
Desync Residual-2x-1B 32.51 69.36 40.53 72.03 86.00 56.04 59.41 18.70
Desync Residual-4x-1B 32.17 68.60 41.25 71.60 87.40 54.70 59.29 18.58

Standard-Transformer-3B 38.99 74.12 46.48 74.59 92.00 58.48 64.11 14.48
Desync Residual-2x-3B 37.97 73.57 46.56 74.43 90.30 58.80 63.61 14.67
Desync Residual-4x-3B 38.57 73.15 46.49 73.72 91.90 58.64 63.75 14.60

Table 6: Detailed breakdown for prefill, decode and token/sec improvement (%) for different model. The
speedup (%) calculated by using latency of optimized model divided by original model. All the experiment
are based on batch size 64, TP degree 8.

Model Prefill Improvement (%) Decode Improvement (%) Token/sec Improvement (%)

NVLINK-UpperBound-Llama-8B 25.43 27.22 34.31
NVLINK-Ladder-Llama-8B 9.93 18.70 14.43
NVLINK-Desync-Residual-2x-Llama-8B 8.40 12.03 10.51
NVLINK-Desync-Residual-4x-Llama-8B 17.07 16.53 20.36

NO-NVLINK-UpperBound-Llama-8B 31.60 51.95 64.97
NO-NVLINK-Ladder-Llama-8B 15.07 26.26 23.98
NO-NVLINK-Desync-Residual-2x-Llama-8B 13.36 24.36 21.59
NO-NVLINK-Desync-Residual-4x-Llama-8B 22.11 37.73 39.01

prior works (Jangda et al., 2022; Wang et al., 2022; NVIDIA, 2023) decompose the communication into
more fine-grained operations in order to find computations with no dependency to overlap. Our work
doesn’t rely on such decompositions and therefore doesn’t require Sequence Parallelism to handle the
partitioned activations before all-gather. In FSDP (FairScale authors, 2021), the all-gather communication
is usually prefetched to be overlapped with the communication. Pipeline Parallelism (NVIDIA, 2023;
Li et al., 2023a; Lamy-Poirier, 2023) on the other hand, chunks the data into mini-batches which creates
more opportunity for overlapping. Compared to these other parallelism approaches, TP has the advantage
to be independent from the batch size or sequence length, and is able to partition the computation as much
as possible given enough GPUs in theory.

Efficiency-aware architecture improvements Prior works have explored various alternative designs for
Transformer, for example parallel attention and mlp (Chowdhery et al., 2022; Wang & Komatsuzaki, 2021),
linear attention (Katharopoulos et al., 2020), Grouped Query Attention (Ainslie et al., 2023), Cross-Layer
Attention (Brandon et al., 2024) to improve the training and inference efficiency. Some of these variants
are more widely adopted than others, due to the degree of impact they have on performance and efficiency.
Past works have also considered adapting an existing checkpoint to these efficient variants. Ainslie et al.
(2023) extracted grouped-query attention from a multi-head attention model, and Wang et al. (2024)
converted a Llama model to a Mamba model. It retrained on 50B tokens to close the performance gap
where our adaptation is much lighter (3B tokens), showing that the representation shift introduced by
Ladder Residual is easier to recover. Wang et al. (2024) considered converting a Llama model to a Mamba
model and used distillation to retrain the converted model. Such training paradigms that specifically tunes
the model to align the original model could further improve the Ladder Residual based models.

7 CONCLUSION

We introduce Ladder Residual and Desync Residual, architectural modifications that allow overlapping
communication with computation or dropping it entirely when running Tensor Parallelism. When applying
Ladder Residual to Llama-3.1 8B Instruct, we only need lightweight retraining to reach the same level of per-
formance with the original model, showing its potential to be a plug-in for any pretrained Transformer and
we are able to obtain 14.5% end-to-end wall clock speed up at the inference time with TP world size of 8 and
batch size of 1. We also trained a 1B and 3B Ladder Transformer from scratch, and find that they are compa-
rable to the standard Transformer of the same size while achieving 25% speedup. On the other hand, Desync
Residual provides flexible removal of communication when designing an architecture to train from scratch,
which can be helpful in the case where the communication is too costly to overlap. Given that such a simple
architectural change can obviate the need for expensive interconnects while maintaining model quality, we
hope that our methods will inspire even closer co-design between model architecture and inference systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints, 2023.
URL https://arxiv.org/abs/2305.13245.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ra-
gan Kelly. Reducing transformer key-value cache size with cross-layer attention, 2024. URL
https://arxiv.org/abs/2405.12981.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun Zhang,
Zuquan Song, Ziheng Jiang, Haibin Lin, Xin Jin, and Xin Liu. Flux: Fast software-based communication
overlap on gpus through kernel fusion, 2024. URL https://arxiv.org/abs/2406.06858.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes,
Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor
Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan
Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. Evaluating large language models trained on code, 2021. URL
https://arxiv.org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen
Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer,
Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana
Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine
Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason
Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling
language modeling with pathways, 2022. URL https://arxiv.org/abs/2204.02311.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge, 2018. URL
https://arxiv.org/abs/1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman.
Training verifiers to solve math word problems, 2021. URL https://arxiv.org/abs/2110.14168.

Cody Coleman. Cuda graphs: Flexible, efficient parallelism in cuda, 2020. URL
https://developer.nvidia.com/blog/cuda-graphs/. Accessed: 2024-09-29.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Tri Dao, Daniel Haziza, Francisco Massa, and Grigory Sizov. Flash decoding: Accelerating neural network
inference with dynamic quantization, 2023. URL https://pytorch.org/blog/flash-decoding/.

11

https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2405.12981
https://arxiv.org/abs/2406.06858
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://developer.nvidia.com/blog/cuda-graphs/
https://pytorch.org/blog/flash-decoding/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo
Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang,
Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang,
Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian
Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis,
Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary, Dhruv
Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve,
Gabrielle Lee, Georgia Lewis Anderson, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell,
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel
Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo
Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen,
Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat,
Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas,
Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar
Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri
Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He,
Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert
Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan
Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay
Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney
Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei Wang,
Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li,
Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew
Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf,
Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau
James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape,
Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian
Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide Testug-
gine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland,
Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank Seide, Gabriela Medina Florez,
Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj,
Igor Molybog, Igor Tufanov, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli,
Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizen-
stein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena,
Karthik Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen, Lakshya
Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich,

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria Tsimpoukelli, Martynas Mankus,
Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan
Keneally, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel
Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad
Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
Singhal, Nick Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman
Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul
Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham
Murthy, Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun
Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser,
Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar,
Vishal Mangla, Vı́tor Albiero, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang
Wang, Xiaojian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi
Qian, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei
Zhao. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval:
A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

FairScale authors. Fairscale: A general purpose modular pytorch library for high performance and large
scale training. https://github.com/facebookresearch/fairscale, 2021.

Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs via
high-level tracing. Systems for Machine Learning, 4(9), 2018.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad Shainer, Gil Bloch, Dror
Goldenerg, Mike Dubman, Sasha Kotchubievsky, Vladimir Koushnir, Lion Levi, Alex Margolin, Tamir
Ronen, Alexander Shpiner, Oded Wertheim, and Eitan Zahavi. Scalable hierarchical aggregation protocol
(sharp): A hardware architecture for efficient data reduction. In 2016 First International Workshop on
Communication Optimizations in HPC (COMHPC), pp. 1–10, 2016. doi: 10.1109/COMHPC.2016.006.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song,
and Jacob Steinhardt. Measuring massive multitask language understanding, 2021. URL
https://arxiv.org/abs/2009.03300.

HuggingFaceFW. fineweb-edu (revision 22b0aca), 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hossein Nodehi Sabet, Saeed Maleki, Youshan
Miao, Madanlal Musuvathi, Todd Mytkowicz, and Olli Sarikivi. Breaking the computation
and communication abstraction barrier in distributed machine learning workloads, 2022. URL
https://arxiv.org/abs/2105.05720.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee, Sasikanth
Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen, et al. A study
of bfloat16 for deep learning training. arXiv preprint arXiv:1905.12322, 2019.

13

https://arxiv.org/abs/2407.21783
https://github.com/facebookresearch/fairscale
https://zenodo.org/records/12608602
https://arxiv.org/abs/2009.03300
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/2105.05720


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns: Fast
autoregressive transformers with linear attention, 2020. URL https://arxiv.org/abs/2006.16236.

Vijay Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad
Shoeybi, and Bryan Catanzaro. Reducing activation recomputation in large transformer models, 2022.
URL https://arxiv.org/abs/2205.05198.

Joel Lamy-Poirier. Breadth-first pipeline parallelism, 2023. URL https://arxiv.org/abs/2211.05953.

Fanxin Li, Shixiong Zhao, Yuhao Qing, Xusheng Chen, Xiuxian Guan, Sen Wang, Gong Zhang, and
Heming Cui. Fold3d: Rethinking and parallelizing computational and communicational tasks in the
training of large dnn models. IEEE Transactions on Parallel and Distributed Systems, 34(5):1432–1449,
2023a. doi: 10.1109/TPDS.2023.3247883.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161, 2023b.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on accelerating data parallel
training. arXiv preprint arXiv:2006.15704, 2020.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca eval, 5 2023c.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human false-
hoods. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational Linguis-
tics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.acl-long.229.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code genera-
tion. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a. URL
https://openreview.net/forum?id=1qvx610Cu7.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Re, and Beidi Chen. Deja vu: Contextual sparsity for efficient
llms at inference time, 2023b. URL https://arxiv.org/abs/2310.17157.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu, May 2024.
URL https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL
https://openreview.net/forum?id=Byj72udxe.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=r1gs9JgRZ.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
a new dataset for open book question answering, 2018. URL https://arxiv.org/abs/1809.02789.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Anand
Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu clusters using
megatron-lm, 2021. URL https://arxiv.org/abs/2104.04473.

NVIDIA. Transformerengine, 2023. URL https://github.com/NVIDIA/TransformerEngine.

NVIDIA Corporation. Nvlink, 2024. URL https://www.nvidia.com/en-us/data-center/nvlink/.

14

https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2205.05198
https://arxiv.org/abs/2211.05953
https://github.com/tatsu-lab/alpaca_eval
https://aclanthology.org/2022.acl-long.229
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2310.17157
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=r1gs9JgRZ
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2104.04473
https://github.com/NVIDIA/TransformerEngine
https://www.nvidia.com/en-us/data-center/nvlink/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32, 2019.

PyTorch Labs. gpt-fast, 2024. URL https://github.com/pytorch-labs/gpt-fast. Accessed:
2024-09-29.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. URL
https://arxiv.org/abs/1909.08053.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajbhandari, Jared Casper,
Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Korthikanti, Elton Zhang, Rewon Child,
Reza Yazdani Aminabadi, Julie Bernauer, Xia Song, Mohammad Shoeybi, Yuxiong He, Michael
Houston, Saurabh Tiwary, and Bryan Catanzaro. Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative language model, 2022. URL https://arxiv.org/abs/2201.11990.

Trieu H Trinh and Quoc V Le. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model, 2021.

Junxiong Wang, Daniele Paliotta, Avner May, Alexander M. Rush, and Tri Dao. The mamba in the llama:
Distilling and accelerating hybrid models, 2024. URL https://arxiv.org/abs/2408.15237.

Shibo Wang, Jinliang Wei, Amit Sabne, Andy Davis, Berkin Ilbeyi, Blake Hechtman, Dehao Chen,
Karthik Srinivasa Murthy, Marcello Maggioni, Qiao Zhang, Sameer Kumar, Tongfei Guo, Yuanzhong
Xu, and Zongwei Zhou. Overlap communication with dependent computation via decomposition in
large deep learning models. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1, ASPLOS 2023, pp. 93–106,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450399159. doi:
10.1145/3567955.3567959. URL https://doi.org/10.1145/3567955.3567959.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions. In
Leon Derczynski, Wei Xu, Alan Ritter, and Tim Baldwin (eds.), Proceedings of the 3rd Workshop on
Noisy User-generated Text, pp. 94–106, Copenhagen, Denmark, September 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/W17-4413. URL https://aclanthology.org/W17-4413.

BigScience Workshop, :, Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow,
Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoı̂t Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz
Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel,
Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van
Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan
Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady
Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios,
Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing,
Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber,
Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud,
Maŕıa Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang,
Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla
Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo,
Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro,

15

https://github.com/pytorch-labs/gpt-fast
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2201.11990
https://arxiv.org/abs/2408.15237
https://doi.org/10.1145/3567955.3567959
https://aclanthology.org/W17-4413


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad,
Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink,
Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika
Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinz-
erling, Chenglei Si, Davut Emre Taşar, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht
Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan
Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang
Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel
Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry,
Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked
Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir
Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin,
Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane
Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix,
Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers,
Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian,
Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva,
Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jeka-
terina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine
Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal,
Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shachar Mirkin, Shani Pais, Tatiana Shavrina, Thomas
Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruk-
sachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir
Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol,
Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat
Saxena, Carlos Muñoz Ferrandis, Daniel McDuff, Danish Contractor, David Lansky, Davis David,
Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline
Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar
Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Livia Dutra, Mairon Samagaio, Maraim El-
badri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed
Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel,
Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy,
Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh
Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh,
Benjamin Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier,
Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann,
Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun
Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani,
Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo,
Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De
Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg,
Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata
Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda,
Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar,
Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis
Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie,
Zifan Ye, Mathilde Bras, Younes Belkada, and Thomas Wolf. Bloom: A 176b-parameter open-access
multilingual language model, 2023. URL https://arxiv.org/abs/2211.05100.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully sharded data
parallel. arXiv preprint arXiv:2304.11277, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-following evaluation for large language models, 2023.

16

https://arxiv.org/abs/2211.05100
https://arxiv.org/abs/1905.07830

	Introduction
	Background
	Tensor parallelism

	Ladder Transformer
	Architecture description
	Inference Implementation
	Faster Inference with Ladder Residual
	Setup
	Benchmarking


	Experiments and Results
	Training From Scratch
	Experimental details
	Results

	Post-training adaptation
	Experimental details


	Eliminating communication with Desynced Residual
	Experiments and Results

	Related Work
	Conclusion

