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Abstract

Despite the commendable progress of recent001
LLM-based data synthesis methods, they faces002
two limitations in generating table instruction003
tuning data. First, they can not thoroughly ex-004
plore the vast input space of table understand-005
ing tasks, leading to limited data diversity. Sec-006
ond, they ignore the weaknesses in table under-007
standing ability of the target LLM and blindly008
pursue the increase of data quantity, resulting009
in suboptimal data efficiency. In this paper, we010
introduce a progressive and weakness-guided011
data synthesis framework tailored for table in-012
struction tuning, named TableDreamer, to miti-013
gate the above issues. Specifically, we first syn-014
thesize diverse tables and related instructions015
as seed data, and then perform an iterative ex-016
ploration of the input space under the guidance017
of the newly identified weakness data, which018
eventually serve as the final training data for019
fine-tuning the target LLM. Extensive experi-020
ments on 10 tabular benchmarks demonstrate021
the effectiveness of the proposed framework,022
which boosts the average accuracy of Llama3.1-023
8B-instruct by 11.62% (49.07% → 60.69%)024
with 27K GPT-4o synthetic data and outper-025
forms state-of-the-art data synthesis baselines026
which use more training data.027

1 Introduction028

Table understanding technique aims to enable029

models to automatically comprehend tables and030

complete various table-related tasks (Lu et al.,031

2025; Shigarov, 2023). With the recent advance-032

ment of large language models (LLMs), the domi-033

nant paradigm for table understanding has shifted034

to instruction tuning general LLMs with tabular035

task data, leading to the rise of powerful Tabular036

LLMs (Zhang et al., 2024a; Li et al., 2023).037

In early work on tabular LLMs, instruction-038

tuning samples were manually collected by human039

annotators or converted from public datasets using040

fixed instruction templates. However, the reusing041

of existing datasets often leads to poor task and data 042

diversity, while human annotation also faces the 043

challenge of prohibitively expensive cost. There- 044

fore, researchers turned to employ LLMs to gen- 045

erate table instruction tuning data. For instance, 046

Zhang et al. (2024b) uses GPT-3.5 to generate ques- 047

tions based on benchmark tables, which serve as the 048

training data for fine-tuning CodeLlama (Rozière 049

et al., 2024). The resulting TableLLM model out- 050

performs general LLMs on several tabular bench- 051

marks, demonstrating the potential of synthetic 052

data in table instruction tuning. 053

Although existing data synthesis approaches 054

have achieved commendable performance, they 055

still face two limitations in generating table instruc- 056

tion tuning data. First, existing data synthesis 057

methods are unable to fully explore the vast 058

input space composed of input tables and in- 059

structions, leading to limited data diversity. On 060

the one hand, general data generation methods like 061

Self-Instruct (Wang et al., 2023) primarily focus 062

on generating unstructured text data, and they did 063

not adequately consider the unique characteristics 064

of structured tables (e.g., diverse table structures, 065

different table formats). As a result, they tend to 066

produce simple tables and instructions of limited 067

tabular tasks. On the other hand, existing studies on 068

tabular LLMs only explore how to synthesize more 069

instructions based on directly available tables from 070

public datasets to improve instruction diversity, but 071

they lack the ability to synthesize more diversified 072

tabular data, which also limits the diversity of the 073

final table instruction tuning data. 074

Second, existing data synthesis methods ig- 075

nore the LLM’s weaknesses in table understand- 076

ing ability, resulting in suboptimal efficiency of 077

synthetic data. The combination of the input ta- 078

ble and the instruction allows us to easily create a 079

large amount of table instruction tuning data, e.g., 080

we can utilize an LLM to generate dozens of ques- 081

tions based on a single table. However, published 082
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studies have indicated that merely pursuing an in-083

crease in the quantity of instruction tuning data084

does not necessarily yield performance improve-085

ment (Zhou et al., 2023; Si et al., 2023). Given the086

vast input space for table understanding tasks, it087

is more efficient to synthesize valuable data points088

that expose the deficiencies of the target LLM,089

rather than blindly increase the amount of synthetic090

data, which may result in both a waste of training091

resources and a decline in model performance.092

To address these issues, we introduce a progres-093

sive and weakness-guided data synthesis frame-094

work for table instruction tuning, named Table-095

Dreamer, which can not only generate diverse ta-096

bles and instructions from scratch, but can also con-097

tinuously explore the input space under the guid-098

ance of newly identified weakness data to more099

effectively enhance the model performance. As100

illustrated in Figure 1, our framework consists of101

two stages. In stage 1, we first synthesize various102

table titles of different topics and subtopics, and103

then employ the LLM to create diverse tables. In104

stage 2, based on synthetic tables and tabular task105

descriptions, a group of seed data is generated and106

will undergo data evolution in three directions. The107

synthesized new samples are evaluated by LLM-as-108

a-judge to identify weakness-exposing data, which109

is used as the seed data for the next round of data110

evolution. This process can be iterated multiple111

times, with the accumulated weakness data serving112

as the final table instruction tuning data.113

We compare TableDreamer with a series of114

data synthesis methods, general LLMs and tab-115

ular LLMs on 10 tabular benchmarks. Experi-116

mental results demonstrate the effectiveness of117

the proposed framework, which boosts the aver-118

age accuracy of Llama3.1-8B-instruct by 11.62%119

(49.07% → 60.69%) with 27K GPT-4o synthetic120

data and outperforms the state-of-the-art data syn-121

thesis baseline by 8.46%. We also demonstrate the122

effectiveness of TableDreamer as data augmenta-123

tion for the few-shot learning scenario, where only124

a small number of original training samples are125

available (e.g., 20 samples for each benchmark).126

Extensive ablation experiments are conducted to127

reveal the contributions of different components in128

the framework (e.g., the influence of weakness data129

selection and data evolution). We hope this work130

could establish a strong base for future research on131

the table instruction tuning data synthesis and help132

researchers improve models’ table understanding133

ability especially with limited annotation budget.134

We conclude our contributions as follows: 135

1) We introduce a data synthesis framework 136

TableDreamer tailored for table instruction tuning 137

with better data diversity and efficiency, mitigating 138

the limitations of current approaches. 139

2) We construct and release 27K table instruc- 140

tion tuning data, which include diverse tables and 141

instructions of a wide range of tabular tasks that 142

the current open-source community lacks. 143

3) We make a systematic investigation of ex- 144

isting methods to show the effectiveness of Table- 145

Dreamer, which outperforms strong baselines on 10 146

tabular benchmarks including recent tabular LLMs. 147

2 Related Work 148

2.1 Table Instruction Tuning 149

In addition to directly prompting LLMs to fulfill 150

tabular tasks (Chen, 2023; Wang et al., 2024b; 151

Lu et al., 2023a), researchers are increasingly 152

dedicated to developing tabular LLMs with care- 153

fully constructed table instruction tuning data. 154

TableLlama (Zhang et al., 2024a) collected 2.6M 155

instruction-tuning pairs from 14 academic tabular 156

datasets, and TableBenchLLM (Wu et al., 2024) 157

even spent $12,000 US dollars on hiring anno- 158

tators for answering labeling and quality check- 159

ing. Besides, LLM-based data synthesis methods 160

were also adopted to generate table instruction tun- 161

ing data. TableGPT (Li et al., 2023) proposed a 162

Synthesis-then-Augment framework which uses 163

GPT-3.5 to generate instructions based on public 164

tables and then performs data augmentations such 165

as instruction paraphrasing for better data diver- 166

sity. TableLLM (Zhang et al., 2024b) introduced 167

a similar distant supervision approach which first 168

synthesizes instructions and selects high-quality re- 169

sponses with the cross-way Validation of different 170

reasoning methods. However, compared with other 171

areas like code and math, data synthesis for table 172

instruction tuning is still in infancy, with numerous 173

issues deserving further exploration. In this paper, 174

we introduce a novel data synthesis method, and 175

also conduct a comprehensive investigation of rel- 176

evant baselines, providing valuable insights about 177

this emergent yet promising direction. 178

2.2 LLM-based Data Synthesis 179

The large amount of high-quality human-collected 180

data has facilitated the development of deep learn- 181

ing in recent years. Nevertheless, purely depending 182

on human data always involves a trade-off between 183
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Figure 1: The overview of the proposed TableDreamer framework, which includes two stages. In stage 1, we first
synthesize table titles based on different topics and subtopic, and then employ the LLM to generate diverse tables
covering a wide range of key table attributes such as table structures and sizes. In stage 2, starting from a group
of seed data, we perform an iterative exploration of the input space under the guidance of the newly discovered
weakness data, which eventually serve as the table instruction tuning data.

Figure 2: Example of TableDreamer synthetic data. The
synthetic table are clipped due to space limitation.

data quality and quantity due to factors such as184

costs or privacy issues (Long et al., 2024). Given185

the excellent ability to output human-like text, the186

advanced LLMs offer an alternative data source187

with synthetic data generation to mitigate draw-188

backs of human data. One of most prominent appli-189

cation of LLM-based data generation is to synthe-190

size large-scale and diverse instruction tuning data191

in a cost effective way (Wang et al., 2023; Taori192

et al., 2023; Xu et al., 2023; Li et al., 2024a). Based193

on a handful human-created instructions as the ini-194

tial seed data, Self-instruct (Wang et al., 2023) syn- 195

thesizes new instructions by prompting an LLM 196

with randomly selected instructions from the can- 197

didate pool as few-shot demonstrations. Mag- 198

pie (Xu et al., 2024) leverages the autoregressive 199

nature of LLMs and elicits instructions from fine- 200

tuned LLMs by feeding them a pre-query chat tem- 201

plate. Unlike textual tasks, table understanding 202

tasks poses new challenges for LLM-based data 203

synthesis due to the hybrid input of unstructured 204

text and structured table. Unfortunately, existing 205

approaches usually simplify the problem setting 206

by ignoring the demand for synthesizing diverse 207

tables and can only generate questions using pub- 208

lic benchmark tables. By contrast, we take a step 209

further and explore how to synthesize both tables 210

and relevant instructions from scratch. 211

3 TableDreamer Framework 212

3.1 Problem Definition 213

Given a table T including its metadata like the 214

table title and a user instruction Inst about the 215

table, the table understanding problem requires the 216

model f(·) to output a response R that correctly 217

complete the specified table-related tasks in the 218

instruction, i.e., R = f(T, Inst). The goal of the 219

table instruction tuning data synthesis is to obtain 220

a synthetic training dataset Dsyn of N triples for 221

fine-tuning LLMs, i.e., Dsyn = {(Insti, Ti, Ri) | 222
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i = 1, 2, . . . , N}. Existing data synthesis methods223

often simplify the problem setting by assuming that224

tables are always directly available, and thus only225

focus on generating table-related instructions. By226

contrast, we retain the original setting and endeavor227

to synthesize diverse tables and instructions from228

scratch without relying on any public datasets.229

3.2 Table Generation230

Existing general data synthesis methods like self-231

instruct can not fully capture the complexity and232

diversity inherent in structured tabular data, leading233

to limited variety of synthesized tables. Therefore,234

we meticulously design a table synthesis prompt235

that fully considers the important table attributes.236

First of all, various topics, subtopics and cor-237

responding table titles of different domains are238

elicited from an established LLM, which then serve239

as the guidance for generating table content of dif-240

ferent domains. For example, given the topic ‘Sci-241

ence and Technology’ and the subtopic ‘AI Applica-242

tions’, a viable table title could be ‘Detailed Analy-243

sis of AI Integration in Auto. Vehicles, 2022’.244

On this basis, we further incorporate key table245

attributes in the prompt to enhance the diversity of246

synthetic tables. (1) table type. We randomly sam-247

ple one table type from three common candidates248

including flat tables, horizontal tables and hierar-249

chical tables (Cheng et al., 2022; Liu et al., 2024;250

Gupta et al., 2020). (2) table size. We randomly251

choose the row number and the column number252

of the table within an appropriate range to create253

tables of various sizes. (3) header structure. For254

hierarchical tables with multi-level row headers255

and column headers, we randomly appoint the ex-256

pected row header and column header structure257

from common combinations. For instance, a hier-258

archical table could have a 3-level column header259

and 2-level row header. (4) cell relation. There260

may be dependency relations between different ta-261

ble cells, e.g., in a business revenue table, the value262

of ‘net profit’ should be the difference between the263

‘revenue’ and the ‘cost’. Thus, we require the LLM264

to utilize markdown formulas to represent such re-265

lations in the target cells if necessary, which can be266

automatically extracted and computed by scripts to267

obtain the final results. (5) table format. We use268

the HTML format to represent the synthesized hier-269

archical tables in order to accurately reflect merged270

cells and hierarchical headers and the Markdown-271

style format to represent flat and horizontal tables.272

Taking into account the above table attributes,273

Figure 3: The top 25 most prevalent root verbs (the inner
circle) and their top 5 direct nouns (the outer circle) in
the synthetic instructions of TableDreamer-27K.

we employ the LLM as a table generator to syn- 274

thesize diverse tables, which are further processed 275

to compute results of potential formulas and are 276

filtered to remove invalid tables such as incomplete 277

tables with missing cells. 278

3.3 Instruction Tuning Data Generation 279

To provide a better foundation for instruction gen- 280

eration, we collect 20 different table understanding 281

tasks and their descriptions from published stud- 282

ies (Ruan et al., 2024; Sui et al., 2024; Zhao et al., 283

2022, 2023b), such as table-based numerical rea- 284

soning, table structure understanding and so on. 285

The full list of seed tabular tasks are shown in the 286

Table 7. On the basis of synthetic tables and the 287

task descriptions, we use the LLM to generate a set 288

of task instructions which serve as the initial seed 289

instructions for subsequent data evolution. 290

Input Space Exploration. To achieve a more 291

comprehensive exploration of the input space, 292

each sample in the seed data will undergo LLM- 293

based data evolution in three directions respectively, 294

thereby synthesizing more diverse data. 295

Instruction Complication. Inspired by pre- 296

vious instruction generation methods (Xu et al., 297

2023; Luo et al., 2024), we devise different evolu- 298

tion strategies to create more complex instructions 299

based on the original table and the instruction. For 300

instance, ‘increasing the task number’ will create 301

new instructions that ask the LLM to complete 302

multiple tabular tasks at once, and ‘adding the rea- 303
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soning steps’ will generate multi-step problems. As304

LLMs’ capabilities continue to improve, increas-305

ing the difficulty of input instructions assists us in306

uncovering the potential weaknesses in the table un-307

derstanding ability of state-of-the-art LLMs, which308

enables us to enhance the model’s capabilities in a309

more targeted manner.310

Instruction Generalization. Considering that311

the instructions in the seed data are primarily lim-312

ited to 20 predefined tabular tasks, we use the LLM313

to synthesize instructions of new tasks that are dif-314

ferent from the original ones. We find that the315

LLM could create instructions of interesting and316

creative tabular tasks, e.g., analyzing the original317

table and providing recommendations, translating318

several columns into a new language and so on.319

Such task instructions are often not included in320

the public table-related datasets but can greatly im-321

prove the diversity of the instruction tuning data. In322

addition to generating new tabular task instructions,323

we also generate instructions that possess the same324

task type to the original one in order to improve325

model robustness towards instruction variations.326

Table Generalization. Prior studies have found327

that current LLMs lack the robustness towards con-328

tent and structural perturbations of input tables (Liu329

et al., 2024; Zhou et al., 2024; Singha et al., 2023).330

For instance, LLMs may experience significant per-331

formance fluctuations with changes in table for-332

mats and the order of rows and columns. This333

robustness is crucial for the practical application334

of tabular LLMs, as input tables from real-world335

users can vary greatly. To this end, we design table336

evolution strategies to create more table variations337

based on previously synthesized tables, e.g., chang-338

ing the original table format, modifying the table339

header, reordering rows and columns and so on.340

This table generalization further improves the table341

diversity in the final training data which helps the342

model learn to maintain its performance despite343

these perturbations.344

Weakness Data Identification. Although the in-345

put space exploration can generate a large variety346

of data, some of these samples may already be well-347

handled by the target LLM. Fine-tuning with such348

data could yield little performance improvements349

while consuming additional training resources.350

Thus, we utilize the LLM-as-a-judge (Zheng et al.,351

2023) to evaluate the response from the target LLM352

and identify samples where the target LLM under-353

performs. Concretely, given the response from the354

target LLM (e.g., Llama3.1-8B-instruct) and the 355

reference response from a more powerful LLM 356

(e.g., GPT-4o), an LLM rates the correctness of the 357

model response on a 5 point likert scale, with lower 358

scores indicating poorer performance. The samples 359

with scores below 3 points are considered as weak- 360

ness data, which will be used as the seed data for 361

the next round of input space exploration and thus 362

guide the overall data synthesis direction towards 363

valuable data points that exposes the the model’s 364

deficiencies in table understanding ability. This it- 365

erative process between the input space exploration 366

and the weakness detection can be performed mul- 367

tiple times, and the accumulated weakness data 368

together with reference responses are used as the 369

final table instruction tuning data. 370

3.4 Dataset Statistics and Cases 371

Unless otherwise specified, we use GPT-4o to syn- 372

thesize tables, instructions and corresponding re- 373

sponses and select the Llama3.1-8B-instruct as the 374

target LLM for weakness data detection. Starting 375

from 3,272 seed data over 1,541 synthetic tables, 376

we perform 2 rounds of iterative data synthesis pro- 377

cess, ending in 27,083 instruction tuning data over 378

7,950 tables after filtering the invalid samples (e.g., 379

failed data evolution results), which is denoted as 380

TableDreamer-27K. Besides, we also replace GPT- 381

4o with Llama3.1-70B-instruct to synthesize 27K 382

training data, which is used for a fair comparison 383

with other data synthesis baselines that we also 384

reimplemented with Llama3.1-70B-instruct. Fig- 385

ure 2 demonstrates an example of the synthetic 386

data. The diversity of the generated 27K instruc- 387

tions from GPT-4o is illustrated in Figure 3, where 388

we plot the top 25 most prevalent root verbs and 389

their top 5 direct nouns that appears at least 15 390

times. We can find that TableDreamer could gener- 391

ate diverse instructions and tables that encompass 392

a broad range of tabular tasks and domains. More 393

dataset statistics and examples are given in Ap- 394

pendix A. The detailed data evolution strategies 395

and prompts are shown in Appendix B.1. 396

4 Experiments 397

4.1 Experimental Setup 398

Benchmarks. We select 9 public benchmarks: 399

TABMWP (Lu et al., 2023b), WTQ (Pasupat 400

and Liang, 2015), HiTab (Cheng et al., 2022), 401

AIT-QA (Katsis et al., 2021), TabMCQ (Jauhar 402

et al., 2016), TabFact (Chen et al., 2020), In- 403
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foTabs (Gupta et al., 2020), FeTaQA (Nan et al.,404

2022) and QTSumm (Zhao et al., 2023a), which405

cover three tasks including table question answer-406

ing (TQA), table-based fact verification (TFV) and407

table-to-text generation (T2T). The original ques-408

tion and the table in these benchmarks are seri-409

alized into a input text with various instruction410

templates and common table formats (e.g., HTML,411

Markdown, csv) for evaluating the LLM’s robust412

table understanding ability. Besides, we also con-413

sider the synthetic benchmark from TableGPT (Li414

et al., 2023) which contains many unusual tabular415

tasks such as data imputation and thus can be used416

to evaluate the model’s out-of-distribution (OOD)417

generalization ability. The summarization of all418

selected benchmarks is shown in Table 6.419

Evaluation Metrics. For TQA, TFV and420

TableGPT benchmarks, the input instructions ask421

LLMs to output the final answer in the JSON for-422

mat, which can be automatically extracted with reg-423

ular expressions to compute exact match accuracy.424

For T2T benchmarks that are hard to accurately425

evaluate the correctness of the model response with426

automatic text generation metrics like BLEU (Pap-427

ineni et al., 2002), we use LLM-as-a-judge evalua-428

tion, where GPT-4o-mini determines the accuracy429

of the model’s responses based on the gold answer.430

The zero-shot setting is adopted for 9 public bench-431

marks except the TableGPT, as it provides test data432

in zero-shot and few-shot settings. Thus we report433

the average accuracy of two settings.434

Baselines. We consider baselines of four gen-435

res. (1) General LLMs such as Llama3.1-8B-436

instruct (Grattafiori et al., 2024) and Mistral-7B-437

Instruct-v0.3 (Jiang et al., 2023). (2) General438

Instruction Tuning Data Synthesis Methods439

including the Self-Instruct (Wang et al., 2023),440

Dynasour (Yin et al., 2023), Evol-Instruct (Xu441

et al., 2023), GenQA (Chen et al., 2024) and442

Magpie (Xu et al., 2024). (3) Data Synthesis443

Methods for Table Instruction Tuning. We con-444

sider traditional tabular question generation meth-445

ods including the OmniTab (Jiang et al., 2022),446

ReasTap (Zhao et al., 2022) and UCTR-ST (Li447

et al., 2024b), as well as recent LLM-based syn-448

thetic data from the TableGPT (Li et al., 2023) and449

the TableLLM (Zhang et al., 2024b), which use450

GPT-3.5 to generate instructions based on public ta-451

bles. (4) Tabular LLMs including the TableBench-452

LLM (Wu et al., 2024) which is fine-tuned from453

Llama3.1-8B-base with 20K manually collected454

data, and the TableLLM (Zhang et al., 2024b)455

which is fine-tuned from CodeLlama-7B with 80K 456

synthetic data. We also evaluate the powerful 457

TableGPT2-7B (Su et al., 2024) that is fine-tuned 458

from Qwen2.5-7B-instruct (Qwen et al., 2025) with 459

2.36M in-house query-table-output tuples. Imple- 460

mentation details are given in the Appendix B.2. 461

4.2 Results and Analysis 462

Main Results. Performance of general LLMs. 463

As shown in Table 1, recent LLMs demonstrate 464

varying proficiency in the table understanding abil- 465

ity, with the Llama3.1-8B-instruct exhibiting the 466

best performance while models like Baichuan2-7B- 467

Chat showing comparatively weaker performance. 468

Their performance difference is likely due to the 469

construction table-related fine-tuning data during 470

the post-training stage. Moreover, we can find that 471

small language model can also possess great table 472

understanding ability, e.g., MiniCPM3-4B achieves 473

better performance than large models like GLM4- 474

9B-Chat, which opens up new possibilities for de- 475

veloping powerful and efficient tabular LLMs. 476

Performance of tabular LLMs. Compared 477

with general LLMs, recent tabular LLMs such as 478

TableBenchLLM exhibit surprisingly poorer per- 479

formance on the benchmarks where they should be 480

experts, even after being fine-tuned with the corre- 481

sponding training dataset. Moreover, they can not 482

effectively handle the unseen tabular tasks in the 483

TableGPT benchmark. This shows that these tab- 484

ular LLMs actually possess limited generalization 485

ability especially out-of-distribution generalization, 486

which is consistent with the findings from Deng 487

and Mihalcea (2025). After a careful inspection, 488

we find that this is due to the insufficient diversity in 489

their instruction tuning data, e.g., the training data 490

of TableBenchLLM only contain flat tables with a 491

fixed Python dictionary-style table format and the 492

instructions are primally limited to pre-defined tab- 493

ular tasks. As a result, they can only perform well 494

under the in-distribution setting, which highly con- 495

strains their application scenarios. By contrast, the 496

TableGPT2 delivers the best overall results particu- 497

larly on the TableGPT benchmark, showcasing the 498

effectiveness of the 2.36M in-house high-quality 499

training data, which includes not only public tabu- 500

lar datasets but also substantial synthetic data that 501

are further refined by human annotators. 502

Performance of data synthesis methods. General 503

instruction tuning data synthesis methods could 504

be successfully extended to generate table instruc- 505

tion tuning data and bring considerable perfor- 506
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Method # IFT Data
TQA TFV T2T

TableGPT
Ave.
Acc.TABMWP WTQ HiTab AIT-QA TabMCQ TabFact InfoTabs FeTaQA QTSumm

LLM
Baichuan2-7B-Chat - 30.31 4.60 1.58 10.95 41.59 14.39 19.83 57.86 30.24 18.14 22.95

GLM4-9B-Chat - 39.87 20.30 8.94 36.98 43.57 11.99 11.16 77.73 55.19 42.53 34.83
DeepSeek-V2-Lite-16B-Chat - 49.01 15.65 7.67 29.94 63.45 29.75 37.11 64.20 35.81 29.36 36.19

Phi3.5-mini-3.8B - 59.45 19.26 7.99 35.02 64.72 35.60 43.37 77.75 57.14 8.05 40.83
MiniCPM3-4B - 50.53 34.06 20.93 55.34 72.98 28.09 42.33 68.55 42.39 40.79 45.60

Mistral-7B-Instruct-v0.3 - 37.92 25.71 16.41 52.05 57.82 47.80 42.68 78.63 55.57 44.26 45.88
InternLM2.5-7B-Chat - 50.22 32.59 13.51 51.46 36.25 45.07 47.33 81.43 62.86 39.52 46.02

Yi-1.5-9B-Chat - 31.45 38.23 14.02 51.85 55.97 46.15 46.22 82.03 59.18 42.15 46.73
Llama3.1-8B-Instruct - 53.39 36.53 11.35 43.63 75.31 53.87 48.94 78.98 66.98 21.68 49.07

General Instruction Tuning Data Synthesis Methods
Self-Instruct 100K 46.68 28.98 13.77 48.92 80.27 52.92 45.07 81.13 53.48 43.13 49.44

Dynasour 132K 49.71 28.59 20.11 43.44 59.66 50.70 41.01 57.56 42.57 13.40 40.67
GenQA 100K 59.87 41.06 21.63 57.14 70.35 55.01 39.38 67.05 56.49 32.94 50.09

Evol-Instruct 100K 54.61 31.83 12.37 45.20 73.27 54.12 45.61 83.02 62.77 42.55 50.54
Magpie 100K 57.11 34.66 13.89 47.16 76.96 51.21 43.83 80.02 76.90 40.59 52.23

Table Instruction Tuning Data Synthesis Methods
OmniTab 100K 17.53 22.67 18.84 35.02 50.63 16.37 3.14 5.04 4.82 18.38 19.24
ReasTap 100K 11.22 19.54 9.96 20.54 48.49 15.66 5.70 7.14 4.92 20.67 16.38
UCTR 43K 17.61 12.03 8.84 17.31 35.76 20.96 20.35 15.23 7.51 7.09 16.27

TableGPT-syn-data 66K 25.21 16.13 9.13 24.26 47.52 19.70 25.29 46.03 36.64 47.23† 29.71
TableLLM-syn-data 80K 46.10 42.24† 13.92 39.72 25.46 29.24 31.31 79.08† 55.94 23.74 38.68

Tabular LLM
TableBenchLLM (Llama3.1-8B) 20K 25.83 18.50† 12.31 29.74† 30.41 23.97† 17.33 48.27† 42.30 16.78 26.54

TableLLM (CodeLlama-7B) 80K 43.11 37.86† 15.67 45.40 24.87 30.47 27.55 67.35† 37.66 15.14 34.51
TableGPT2 (Qwen2.5-7B)‡ 2.36M 56.35 49.35 38.26 73.97 85.71 60.42 54.87 84.72 64.10 70.25 63.80

Ours
TableDreamer (Llama3.1-70B-Instruct) 27K 60.57 42.47 17.25 56.75 82.99 57.32 49.98 84.67 75.12 33.03 56.02

TableDreamer (GPT-4o) 27K 64.61 54.66 22.88 53.22 84.29 63.09 57.65 84.37 75.97 46.20 60.69

Table 1: Evaluation results on 10 tabular task benchmarks. † indicates that the model’s fine-tuning data includes
training samples from the corresponding dataset. ‡: we only list the performance of the TableGPT2 as its training
data already contains these common benchmark datasets and the data volume also far exceeds others.

mance boost. For instance, fine-tuning with 100K507

Magpie synthetic data boosts the average accu-508

racy from 49.07% to 52.23%. The traditional509

question generation approaches such as ReasTap510

obtain the worst performance because they can511

only generate simple table-related questions ei-512

ther through predefined question templates or by513

converting SQL queries. In comparison, although514

the LLM-based synthetic data from TableGPT and515

TableLLM can enhance the in-distribution model516

performance, e.g., fine-tuning with TableGPT syn-517

thetic data achieves the best result on the corre-518

sponding TableGPT benchmark, they still fail to519

improve the out-of-distribution table understanding520

capability on other benchmarks, which eventually521

yield a degenerated overall performance.522

Effectiveness of TableDreamer. With Llama3.1-523

70B-instruct as the data synthesis LLM, Table-524

Dreamer improves the average accuracy of525

Llama3.1-8B-instruct by 6.95% (49.07% →526

56.02%) ands surpasses other baselines without527

using any data from the public benchmarks, which528

validates the effectiveness of the proposed frame-529

work. The performance boost increases to 11.62%530

with the GPT-4o synthetic data due to better data531

quality. Notably, TableDreamer achieves a strong532

result (46.20%) on the TableGPT benchmark and is 533

comparable to the model fine-tuned with TableGPT 534

training data (47.23%), which showcases its effec- 535

tiveness in improving the out-of-distribution table 536

understanding capability. Moreover, TableDreamer 537

obtains superior results with better data efficiency 538

than data synthesis baselines, and is even competi- 539

tive with the powerful TableGPT2 fine-tuned with 540

2.36M high-quality data. 541

TableDreamer as Data Augmentation. As 542

shown in the Table 2, fine-tuning the model with 543

very little labeled data offers limited improve- 544

ment compared with the original performance, and 545

adding TableDreamer synthetic data can bring a sig- 546

nificant performance boost across various few-shot 547

learning settings, which demonstrates its effective- 548

ness in mitigating the scarcity of annotated table 549

instruction tuning data. 550

Ablation Study. (1) Ablation of synthetic tables. 551

We remove one type of tables and related instruc- 552

tion tuning data from the total data to analyze their 553

influence, respectively. As presented in Table 3, 554

removing each type of synthetic tables will cause 555

negative effects due to the degenerated table diver- 556

sity. We also observe the similar phenomenon in 557
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# Available Train Data
of Each Dataset

TQA TFV T2T Held-out
Ave. Acc

TABMWP WTQ HiTab TabFact InfoTabs FeTaQA QTSumm AIT-QA TabMCQ
Llama3.1-8B-Instruct 53.39 36.53 11.35 53.87 48.94 78.98 66.98 43.63 75.31 50.01

20 55.91 37.43 12.81 56.50 47.62 84.57 72.24 46.77 76.96 52.44
w/ TableDreamer-27K 64.88 56.23 24.17 60.46 53.38 83.87 76.62 53.42 83.28 59.94

△ 8.97 18.80 11.36 3.96 5.76 -0.70 4.38 6.65 6.32 7.50
50 56.18 37.75 14.78 56.34 47.88 83.23 69.48 51.07 77.84 52.23

w/ TableDreamer-27K 70.89 56.37 26.90 60.68 47.22 83.37 74.95 61.64 83.86 60.05
△ 14.71 18.62 12.12 4.34 -0.66 0.14 5.47 10.57 6.02 7.82

100 56.77 40.69 23.28 48.04 45.25 77.57 55.43 55.77 68.12 49.58
w/ TableDreamer-27K 70.96 54.37 36.04 57.07 46.00 81.38 73.28 64.18 84.15 59.87

△ 14.19 13.68 12.76 9.03 0.75 3.81 17.85 8.41 16.03 10.30
200 66.43 40.01 32.61 61.66 52.29 71.34 40.82 57.72 76.48 52.17

w/ TableDreamer-27K 76.59 50.59 41.94 63.33 57.44 78.43 72.26 59.29 84.64 62.94
△ 10.16 10.58 9.33 1.67 5.15 7.09 31.44 1.57 8.16 10.77

Table 2: Evaluation results under the few-shot learning setting, where only a limited number of training samples
from 7 datasets (the first 7 columns) are available and TableDreamer data is used as additional training data.

Mehtod # IFT Data TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-Instruct - 44.04 51.41 72.98 21.68 49.07

w/ TableDreamer 27K 55.93 60.37 80.17 46.20 60.69
w/o Flat Tables

17K
51.41 52.02 74.85 40.59 55.13

△ -4.53 -8.36 -5.33 -5.61 -5.56
w/o Hier. Tables

17K
49.24 52.54 76.37 46.79 55.08

△ -6.69 -7.83 -3.80 +0.59 -5.61
w/o Hori. Tables

18K
54.58 51.40 78.07 45.38 57.72

△ -1.35 -8.98 -2.11 -0.82 -2.97
w/o Data Evolution

3K
47.71 49.50 71.28 38.68 51.88

△ -8.22 -10.87 -8.90 -7.52 -8.82
w/o Inst. Gene.

18K
52.32 51.77 78.26 40.89 56.26

△ -3.61 -8.60 -1.91 -5.31 -4.44
w/o Inst. Comp.

18K
50.83 51.25 73.95 39.82 54.44

△ -5.10 -9.12 -6.22 -6.38 -6.26
w/o Table Gene.

19K
50.20 54.29 76.19 42.35 55.43

△ -5.73 -6.09 -3.98 -3.85 -5.26
w/o Weakness Iden.

34K
53.12 51.72 75.82 42.12 56.28

△ -2.81 -8.65 -4.35 -4.08 -4.41

Table 3: Ablation experiment results. We report average
accuracy on four task types. △ stands for the perfor-
mance gap between the Llama3.1-8B-Instruct finetuned
with TableDreamer data and its variants. ‘Hier.’ and
‘Hori.’ stands for hierarchical and horizontal tables.
‘Inst. Gene.’, ‘Inst. Comp.’, ‘Table. Gene.’ and ‘Weak-
ness Iden.’ represents three data evoluation directions
and weakness data identification respectively.

the main experiments where the fine-tuning with558

TableGPT-syn-data (only including flat tables) re-559

sults in poor performance on tables of different560

types (e.g., hierarchical tables from HiTab). Com-561

pared with others, removing horizontal tables leads562

to a lower performance decrease which may be563

because most benchmarks only contain flat or hi-564

erarchical tables. (2) Ablation of data evolution.565

We remove the data generated from different data566

evolution directions. We can find that all three data567

evolution directions make substantial contributions568

to the final model performance, and ‘w/o Instruc-569

tion Complication’ causes a more significant per-570

formance decline than others, which highlights the571

importance of complex instructions in enhancing 572

the model’s table understanding ability. Unsurpris- 573

ingly, ‘w/o Data Evolution’ causes the worst per- 574

formance as we only fine-tuned the model with 3K 575

seed data. This shows that, simply using LLMs to 576

synthesize instructions of pre-defined types, which 577

is the common practice of recent tabular LLMs, 578

is insufficient to improve the model performance, 579

and we need to thoroughly explore the vase in- 580

put space for better data diversity. (3) Ablation of 581

weakness data identification. We use all generated 582

data from data evolution for fine-tuning rather than 583

the selected weakness data. Despite using more 584

synthetic data (34K), the model actually suffers 585

a performance drop of 4.41, which suggests that 586

choosing the weakness-exposing data is more con- 587

ducive to model performance than blindly increas- 588

ing the data volume. More results and analysis 589

are given in App. C due to space limitation. 590

5 Conclusion 591

This papers introduces a novel data synthesis frame- 592

work for table instruction tuning, which can gener- 593

ate diverse tables together with instructions span- 594

ning a wide range of tabular tasks, without relying 595

on any public datasets. At the core of the pro- 596

posed TableDreamer framework lies the iterative 597

collaboration between input space exploration and 598

weakness data identification. On the basis of Table- 599

Dreamer, we construct and release 27K synthetic 600

data, which can effectively enhance LLMs’ table 601

understanding ability and outperforms strong base- 602

lines. In conclusion, this paper promotes the re- 603

search of data synthesis for the important table 604

instruction tuning with the new method, dataset 605

and thorough empirical study. 606
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6 Limitations607

Though this paper presents an effective framework608

as well as a systematic investigation within the609

scope of table instruction tuning data synthesis,610

there are certain limitations and promising direc-611

tions that deserve future investigations. First, the612

proposed framework generates tables and instruc-613

tions in the textual format. With the devolvement614

of multimodal large language models (MLLMs),615

considerable efforts have been dedicated to the616

multimodal or visual table understanding prob-617

lem (Zheng et al., 2024; Deng et al., 2024; Zhao618

et al., 2024), which takes as input the table images619

rather than textual table sequence for visual under-620

standing and also lacks the large amount of diverse621

instruction tuning data (i.e., triples of table image,622

instruction and response). One potential solution623

is to transform the TableDreamer synthetic textual624

tables into table images with automatic scripts, e.g.,625

rendering the HTML tables into images with the626

python html2image package.627

Second, there are three common paradigms for628

LLM-based data synthesis: Strong2Weak distilla-629

tion (Huang et al., 2022), Weak2Strong General-630

ization (Burns et al., 2023), and self-improving631

or self-evolving (Tao et al., 2024). The proposed632

framework belongs to the Strong2Weak distilla-633

tion where we use a strong LLM (Llama3.1-70B-634

instruct or GPT-4o) to synthesize input tables,635

instructions and responses to enhance the per-636

formance of a weaker LLM (e.g., Llama3.1-8B-637

instruct). The latter two paradigms worth more-638

depth future explorations, e.g., for the self-evolving639

paradigm, how can we continuously the table un-640

derstanding ability of the most powerful LLMs like641

GPT-4o with its own synthetic data.642

Third, current data synthesis methods for table643

understanding including this paper are restricted644

to synthesizing data for the supervised fine-tuning645

stage. It is worthwhile exploring the generation of646

table-related preference data to further improve the647

model performance with reinforce learning (Gal-648

lego, 2024; Wijaya et al., 2024). Particularly, we649

believe it is a very promising direction to explore650

incentivizing the table-based Deepseek-R1-style651

in-depth reasoning (DeepSeek-AI et al., 2025) of652

tabular LLM the with synthetic tabular task data653

that can provide correctness feedback using rule-654

based reward model.655

7 Ethical Considerations 656

The main objective of the proposed TableDreamer 657

framework is to develop a scalable data synthesis 658

method for table instruction tuning to enhance the 659

table understanding capabilities of LLMs. How- 660

ever, the data generated from the LLMs (Llama3.1- 661

70B-instruct and GPT-4o) may contain harmful 662

content in the synthesized tables, instruction and 663

responses. To this end, we use the LLM-as-a-judge 664

based on Llama3.1-70B-instruct to check for harm- 665

ful content within the generated samples, and we 666

also randomly sample 5K samples for manually 667

checking. In our empirical evaluations, we do not 668

observe such unsafe data but we still suggest adding 669

relevant safety filtering strategies when using the 670

proposed framework. The used benchmarks in the 671

experiments are free and open datasets for research 672

use, thus the authors foresee no ethical concerns. 673
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Method TQA TFV T2T TableGPT Ave. Acc
Llama3.1-8B-Instruct 44.04 51.41 72.98 21.68 49.07
w/ TableDreamer-27K 55.93 60.37 80.17 46.20 60.69

△ 11.89 8.96 7.19 24.52 11.63
Mistral-7B-Instruct-v0.3 37.98 45.24 67.10 44.26 45.88
w/ TableDreamer-27K 51.06 49.34 76.19 43.33 54.97

△ 13.07 4.10 9.09 -0.93 9.08
MiniCPM3-4B 46.77 35.21 55.47 40.79 45.60

w/ TableDreamer-27K 53.03 40.50 64.51 42.85 51.80
△ 6.27 5.29 9.04 2.06 6.20

InternLM2.5-7B-Chat 36.81 46.20 72.15 39.52 46.02
w/ TableDreamer-27K 54.99 51.99 73.08 40.14 56.52

△ 18.18 5.79 0.93 0.62 10.50

Table 4: Comparison of average performance of differ-
ent LLMs fine-tuned with the TableDreamer data.

A Dataset Statistics and Examples1031

Table 5 shows the basic statistics of 27K synthetic1032

data from GPT-4o, such as the average instruction1033

number per table, instruction length (we use whites-1034

pace to split instruction and compute word number1035

for simplicity) and so on. Figure 4 illustrates the1036

distribution of row number and column number in1037

the 1,541 synthetic tables from GPT-4o. Figure 61038

illustrates more dataset examples.1039

B Implementation Details1040

B.1 TableDreamer Implementations.1041

The prompt for table generation is shown in the1042

Figure 7, and the prompts and strategies for data1043

evolution in three directions are given in Fig. 8,1044

Fig. 10 , Fig. 11 and Table 8. The LLM-as-a-judge1045

prompt used for weakness data identification is1046

shown in Figure 9, which is modified from the cor-1047

rectness judging standard from HelpSteer2 (Wang1048

et al., 2024a). The 20 seed tasks and their descrip-1049

tions are given in Table 7, which are used by an1050

LLM (Llama3.1-70B-instruct or GPT-4o) to gen-1051

erate seed instructions based on synthetic tables.1052

Multiple instruction templates are used to com-1053

bine the input table, table title and instruction to1054

form the final input prompt in the training data and1055

we adopt the recommended hyper-parameters from1056

Deng and Mihalcea (2025) and perform the stan-1057

dard supervised fine-tuning with a learning rate of1058

1e-6 and a batch size of 128 for 2 epochs. Dur-1059

ing inference, we set the temperature to 0.01 for1060

reproducible evaluation results.1061

B.2 Baseline Implementations.1062

For general data synthesis baselines, we reimple-1063

ment them with Llama3.1-70B-instruct to generate1064

Characteristic Value
Avg. instruction number per table 3.4
Row number per table (median/mean/min/max) 15/16.8/4/43
Column number per table (median/mean/min/max) 13/14.8/4/45
Cell number per table (median/mean/min/max) 200/237/28/1008
Instruction length by word (median/mean/min/max) 29/36.9/6/900
Output length by word (median/mean/min/max) 288/412.9/3/11513

Table 5: Basic statistics of the TableDreamer-27K syn-
thetic data.

table instruction tuning data. For table instruction 1065

tuning data generation baselines, we directly use 1066

the released synthetic data as the training data. To 1067

reimplement self-instruct (Wang et al., 2023), we 1068

construct 175 general tabular task request with the 1069

help of GPT-4o and use them as seed data to gener- 1070

ate more tabular tasks with the original self-instruct 1071

procedure. Then, the filtered tabular tasks are used 1072

to synthesize task-inputs which include input ta- 1073

ble and instructions. For Magpie (Xu et al., 2024) 1074

reimplementation, we modify the system prompt to 1075

ask the LLM to act as a table understanding expert 1076

that fulfills table-related tasks. Then, a pre-query 1077

template with the modified system prompt is in- 1078

put to the LLM and it will autonomously generate 1079

the input table and related instructions autoregres- 1080

sively, which are further filtered with the meth- 1081

ods from the original paper. For GenQA (Chen 1082

et al., 2024), we modify the Generator-Conditional 1083

data synthesis prompt to generate input table and 1084

instructions based on the diverse topics from the 1085

original paper. For evol-instruct (Xu et al., 2023), 1086

we select 40K samples generated from Magpie 1087

and Self-instruct synthetic data as seed data for 1088

synthesizing new samples with the evol-instruct 1089

prompts. For Dynosaur (Yin et al., 2023) which 1090

synthesize instruction-tuning data by converting 1091

existing datasets, we collect 5 table understanding 1092

datasets including FinQA, SQA, WikiSQL, TAT- 1093

QA and PubHealthTab as the basic data source 1094

and carefully construct dataset metadata, which are 1095

used by LLM to design tabular tasks and instruc- 1096

tions. Please refer to the original papers of baseline 1097

methods for more details. All experiments were 1098

conducted on one machine with 8 80GB A100. 1099

C Additional Experimental Results and 1100

Analysis 1101

Effect of Increasing Data Size. We investigate 1102

the performance improvement resulting from the 1103

accumulation of TableDreamer synthetic data. To 1104

this end, we fine-tuned the Llama3.1-8B-Instruct 1105
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Task Category Benchmark # Test samples Ave. Input Length Task Description Metric

Table
Question

Answering
(TQA)

WTQ 4344 496.3
TQA based on tables which usually possesses a flat
structure with the first row as the sole column header.

Accuracy

HiTab 1576 399.4
TQA based on tables which usually possesses
hierachical headers and merged cells.

Accuracy

AIT-QA 511 275.2 TQA based on hierarchical tables from the airline industry. Accuracy
TabMCQ 1029 311.8 TQA with multi-choice questions. Accuracy

TABMWP 7686 89.6
TQA requiring mathematical reasoning operations such as
finding the largest number or do math computations.

Accuracy

Table
Fact

Verification
(TFV)

TabFact 6845 303.7
Given a table as evidence and a statement, the
task is to distinguish whether the given
statement is entailed or refuted by the table.

Accuracy

InfoTabs 5400 155.1
Given a infobox table as evidence and a statement,
the task is to distinguish whether the
givenstatement is entailed or refuted by the table.

Accuracy

Table to
Text

Generation (T2T)

QTSumm 1078 242.8
Given a table and a query, models must perform
human-like reasoning and analysis over
the given table to generate a tailored summary.

LLM-as-a-judge
Acc.

FeTaQA 2003 263
TQA with a free-form text answer rather
than a short text span copied from the table.

LLM-as-a-judge
Acc.

TableGPT

Column
Finding

1682 106.3
Identify the column-name of a
specific value that appears only once in a given table

Accuracy

Data
Imputation

2000 147.8
Predict the missing values in a cell
based on the table context

Accuracy

Row2Row
Transformation

570 101.7
Transform table data based
on input/output examples

Accuracy

Missing Value
Identification

8000 107.1
Identify the row and column
position of the only missing cell in a given table

Accuracy

TQA
(SQA,WTQ)

9048 229.5
Answer a natural-language question
based on the content of a table

Accuracy

Table 6: Detailed description and statistics of used benchmarks. The average input length is computed by whitespace-
spited word number.

with the initial seed data (3K), the synthetic data1106

after the first round (10K, including seed data) and1107

the total data after the second round (27K), respec-1108

tively. From the results in Figure 5, we can observe1109

that the model performance continues to improve1110

with the growth of synthetic data. This demon-1111

strates the value of the proposed progressive frame-1112

work, which continuously explores the vast input1113

space to improve the data diversity.1114

Improvement to Different LLMs. In addition1115

to the Llama3.1-8B-Instruct, we also validated1116

the performance gains of TableDreamer data1117

for other LLMs including Mistral-7B-Instruct-1118

v0.3, InternLM2.5-7B-Chat and MiniCPM3-4B.1119

As shown in Table 4, all three LLMs can benefit1120

from fine-tuning with TableDreamer data, which in-1121

dicates the transferability of TableDreamer frame-1122

work towards other LLMs. Compared with the1123

Llama3.1-8B-Instruct, the performance gains of1124

three LLMs are relatively smaller, which may be1125

because we used the Llama3.1-8B-Instruct as the1126

target LLM to identify vulnerability data in order1127

to achieve targeted performance enhancement.1128 Figure 4: The distribution of row number and column
number in the synthetic tables from GPT-4o.
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Task Category Task Name Task Description

Table
Question

Answering

Numerical
reasoning problem

Given a table and a problem, the model needs to perform mathematical calculations based on numerical values in
the table and the problem, such as addition, subtraction, averaging, calculation of growth rates, etc.

Information
seeking problem

Given a table and a related problem, the model needs to conduct information seeking from
table cells based on the requirements of problem.

Multihop
reasoning problem

Given a table and a related problem, the model needs to conduct multi-hop reasoning according
to the requirements of the problem to get the final answer.

Time
calculation problem

Given a table and a problem, the model needs to perform temporal calculations or comparison based on
the time information, such as calculating the time difference between the release time of two movies.

Table-based
fact verification

Given a table and a statement, the model needs to determine whether the statement is true based on
the table information.

Table-to-text
generation

Table
description

Given a table, the model needs to describe the table contents in detail.

Table
summarization

Given a table, the model is asked to summarize the key information in the table
and generate a summary.

Table
analysis

Given a table, the model is asked to act as a professional data analyst, analyzing the key trends and
phenomena in the table data, such as analyzing the sales of products in each quarter against the sales report.

Table
Structure

Understanding

Table size
detection

Given a table, the model is asked to determine how many rows and columns the table has.

Table cell
extraction

Given a table and some cell locations (represented by row and column numbers),
the model is asked to extract the cell text for the corresponding location.

Table
cell location

Given a table and some cell text, the model is asked to find the position of those cells in the table
(represented by row and column numbers).

Row&Column
extraction

Given a table and some row or column numbers, the model is asked to extract all the text for the
corresponding row or column.

Merged
cell detection

Given a table, the model is asked to determine whether the table contains merged cells and give the location of
all the merged cells (represented by row and column numbers) if so.

Data
Manipulation

Data
formating

Given a table and user requirements, the model needs to modify the formats of some table data according
to user requirements.

Data
cleaning

Given a table that may contain noise or errors, the model needs to identify and correct errors in the table
based on the user requirements, such as typos, duplicate values, or illegal characters and so on.

Data
filtering

Given a table and some filter criteria, the model is asked to filter some rows and columns in
the table based on the given criteria. For example, only reserving rows that meet certain criteria.

Data
classification

Given a table and user requests, the model needs to classify table data into pre-defined categories.
For example, classifying movie reviews in the given table into positive reviews or negative reviews.

Data sorting
The model needs to sort the data in the table according to the user’s requirements and return
the sorted data, which can be sorted in the ascending or descending order.

Table
Processing

Table
modification

Given the table and modification requirements, the model is asked to modify the overall table
according to the user’s requirements and returns the processed table.

Format
transformation

The model needs to convert the original table to the desired format based on user requirements, such as
from Markdown format to Latex format.

Table 7: Description of 20 seed tasks which are used to synthesize seed instructions based on synthetic tables.

Evolution Direction Evolution Strategy Description

Instruction Complication

Add Constrains adding one more constraints/requirements/conditions to the original instruction.

Increase Depth
increasing the depth of the questions or requests in the original instruction. For instance,
rewriting a simple question into a more profound question, or proposing a
complex math problem instead of a simple calculation.

Add Reasoning Steps
increasing the required reasoning steps of the original instruction. For instance, if the original
task can be solved with a few simple steps, you should rewrite it
into more complex problems that request multi-step reasoning.

Add Task Number
adding more tasks/demands to the original instruction so that models need to perform multiple tasks.
For instance, if the original instruction only contains one task,
you can propose more tasks in the instruction and organize them in a Markdown list.

Add Details replacing general concepts in the original instruction with more specific concepts.

Increase Length
writing long and multi-line instructions. Each instruction consists of multiple lines
or paragraphs of text to create complex tasks.

Add Context
designing more complex tasks which require not only the original input
table but also additional input data (e.g., related contexts, code,
background information or task examples, etc).

Instruction Generalization
New Instruction

draw inspiration from the example tabular instruction and come up brand
new instructions about the provided table. New instructions require performing tasks

that are different from example instructions.

Similar Instruction
come up with task instructions about the given table, which are similar with
the original instruction. The new instructions SHOULD belong to the same
task type or the same demand as the example instruction.

Table Generalization

Change Format convert the original table into a table in the new format

Modify Header
paraphrasing some row headers or column headers into new headers
with the same meaning. For instance, replacing original headers with synonyms.

Modify Data
replacing the data in the original table with new data. Make new data
as diverse as possible. You can also replace some data with null values.

Order Permutation randomly changing the order of rows and columns in the original table.
Insert/Remove Data randomly inserting or removing some new rows and columns.

Table 8: Description of 14 detailed data evolution strategies. In the evolution of each direction, one strategy is
randomly sampled to fill in the corresponding data evolution prompt.
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Figure 5: The performance improvement as the TableDreamer synthetic data continues to accumulate.

Figure 6: More examples of TableDreamer synthetic data. Tables and instructions are clipped due to space limitation.
We render tables into images for better visualization, and real tables could have various formats such as HTML,
CSV, Markdown and et al.
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Figure 7: The prompt used for synthesize diverse tables. The string in red color will be replaced with correlative
content in implementation.

Figure 8: The prompt used for data evolution in the instruction complication direction.

Figure 9: The LLM-as-a-judge prompt used for weakness data identification, which is modified from the correctness
judging standard from HelpSteer2 (Wang et al., 2024a).
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Figure 10: The prompt used for data evolution in the instruction generalization direction.

Figure 11: The prompt used for data evolution in the table generalization direction.
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