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ABSTRACT

While Key-Value (KV) cache succeeds in reducing redundant computations in
auto-regressive models, it introduces significant memory overhead, limiting its
practical deployment in long-sequence scenarios. Existing KV retrieval methods
attempt to mitigate this by dynamically retaining only a subset of KV entries on
the GPU. However, they still suffer from notable efficiency and accuracy bottle-
necks due to per-token retrieval and coarse-grained page-level KV management
strategy, especially in long-output reasoning scenarios. With the emergence of
large reasoning models, efficiently handling such scenarios has become increas-
ingly important. To address this issue, we present two key observations: (1) crit-
ical KVs exhibit strong temporal locality during decoding, and (2) these KVs
exhibit distinct distribution patterns across the input prompt and the generated
output. Building on these observations, we propose LouisKV, an efficient KV
cache retrieval framework designed for various long-sequence scenarios. Specifi-
cally, LouisKV introduces a semantic-aware retrieval strategy that leverages tem-
poral locality to trigger retrieval only at semantic boundaries, drastically reduc-
ing computation and data transfer overhead. LouisKV also designs a decoupled,
fine-grained management scheme that tailors differentiated strategies for input and
output sequences to create retrieval units that better match the model’s attention
patterns, thereby enabling the precise identification of critical KVs. Furthermore,
to boost system efficiency, LouisKV incorporates several kernel-level optimiza-
tions, including custom Triton and CUDA kernels to accelerate the KV clustering
and retrieval. Evaluation results show that LouisKV achieves up to 4.7 x speedup
over state-of-the-art KV retrieval methods while maintaining near-lossless accu-
racy across diverse long-sequence tasks, including long-input short-output, short-
input long-output, and long-input long-output scenarios.

1 INTRODUCTION

Large language models (LLMs) (Achiam et al.,[2023; |Guo et al.,|2025) have demonstrated remark-
able capabilities in both long-context understanding for tasks like long document question answer-
ing (Bai et al.| 2023)), and in long chain-of-thought (CoT) generation for complex reasoning tasks
like mathematics (Hendrycks et al.| [2021). The inference process of mainstream LLMs is auto-
regressive, with the KV cache (Shi et al., 2024) stored in memory to avoid recomputation. However,
the memory footprint of the KV cache grows approximately linearly with the sequence length, easily
exceeding GPU memory capacity.

To address this challenge, recent studies have proposed sparse attention mechanisms to reduce KV
cache usage. One line of work, known as KV dropping (Xiao et al.| 2023} [Zhang et al.,[2023; [Feng
et al.| [2024), retains only important tokens and permanently discards those deemed less relevant.
However, such methods fail to account for the dynamic nature of KV importance, that is, tokens ini-
tially considered unimportant may become critical in subsequent steps, leading to reduced inference
accuracy. To address this, another line of work, KV retrieval (Chen et al., 2024a}; |Tang et al.| [2024;
Liu et al., 2024a; |Chen et al.| [2024b), has emerged as a promising alternative. This approach pre-
serves the full KV cache, typically in CPU memory to avoid GPU Out-Of-Memory (OOM) errors,
whereas dynamically estimating a subset of important entries and retrieving them for the current
token’s generation.
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Figure 1: Comparison of Arkvale and LouisKV. Arkvale adopts page-level KV management and
retrieves critical pages from the CPU for every decoding token, leading to high transfer overhead
and potential accuracy degradation. In contrast, LouisKV reuses critical KVs by exploiting temporal
locality to significantly reduce retrieval frequency. It also employs a decoupled KV management
scheme, enabling precise retrieval to improve transfer efficiency while maintaining high accuracy.
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Figure 2: Accuracy and efficiency comparison on various long-sequence tasks. (a) LouisKV
achieves accuracy comparable to FullCache (the lossless baseline) and superior to state-of-the-art
retrieval methods. (b) LouisKV significantly reduces inference latency, substantially outperform-
ing state-of-the-art retrieval methods, while also avoiding the Out-Of-Memory errors that FullCache
faces in long-sequence and large batch size scenarios.

Although existing KV retrieval methods achieve better accuracy than KV dropping approaches by
retaining complete information, these methods still face significant bottlenecks in both inference
efficiency and retrieval performance. As shown in Figure[] a primary issue is that existing methods
(Zhang et al.| 2025} [Lee et al.l [2024) trigger retrieval at every decoding step. This introduces two
primary sources of overhead: the computational cost of estimating token importance and the data
transfer latency of recalling KV entries from the CPU. This accumulated overhead becomes par-
ticularly prohibitive in scenarios involving long-output reasoning models (Guo et al.l 2025)), which
have become a mainstream paradigm. Meanwhile, existing methods (Chen et al., [2024a; Xiao et al.}
2024; Yuan et al.,[2025) typically adopt page-level KV management strategies. However, this coarse-
grained management strategy frequently transfers entire pages containing numerous non-critical KV
entries, which either increase data transfer overheads or reduce inference accuracy. Therefore, en-
hancing inference efficiency while preserving accuracy across all long-sequence scenarios has be-
come a key challenge.

To address this bottleneck, we conduct an empirical analysis of critical KV access patterns in long-
output reasoning models (Yang et al., 2025). Our two key observations bring new insights to well
address two fundamental questions: how fto trigger retrieval to reduce overhead, and how to man-
age the KV cache to improve retrieval precision. First, we observe that critical KVs access exhibits
strong temporal locality. Specifically, the sets of critical KV entries accessed in adjacent decoding
tokens show high similarity. For instance, during mathematical reasoning, the model produces inter-
mediate reasoning steps wherein tokens within the same step consistently attend to the same math-
ematical lemmas. This insight motivates triggering retrieval only at semantic boundaries. Second,
we observe that critical KVs exhibit distinct distribution patterns across input and output sequences.
Specifically, for the currently generated token, critical KVs in long input sequences are often dis-
tributed sparsely throughout the context, while those in long output sequences of reasoning models
tend to concentrate locally within some reasoning steps. This inspires the adoption of different KV
management strategies for the prefill and decode stages.
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Building on these observations, we propose LouisKV, an efficient KV cache retrieval framework that
integrates a semantic-aware retrieval strategy with a decoupled fine-grained management scheme,
as shown in Figure[I} To exploit temporal locality during decoding, LouisKV groups consecutive
decoding tokens into coherent segments based on query vector similarity. It triggers retrieval only at
segment boundaries to drastically reduce the retrieval overhead. Based on the attention distribution,
LouisKV proposes a decoupled KV management scheme tailored for distinct distribution patterns
in the input and output sequence. Specifically, for the long input sequence, LouisKV employs clus-
tering to group KV entries of semantically similar tokens into semantic clusters; for the long output
sequence, it leverages dynamic boundaries to partition the KV cache into temporal segments. By
creating retrieval units that better match attention distributions, LouisKV enables precise identifi-
cation and transfer of critical KV entries, achieving higher accuracy and lower transfer overheads
than page-level methods. Furthermore, to boost system efficiency, LouisKV incorporates several
kernel-level optimizations, including custom Triton and CUDA kernels to accelerate KV clustering
and retrieval. As validated by extensive experiments summarized in Figure [2} LouisKV maintains
near-lossless accuracy on various long-sequence tasks while achieving up to a 4.7 x speedup in
end-to-end latency compared to state-of-the-art retrieval methods.

Our contributions are as follows: (1) We conduct an empirical analysis of critical KV access pat-
terns, revealing two key observations: strong temporal locality and distinct distribution patterns.
(2) Based on these insights, we propose LouisKV, a novel KV retrieval framework that incorpo-
rates a semantic-aware retrieval strategy and a decoupled management scheme. To our knowl-
edge, LouisKV is the first KV retrieval framework designed to comprehensively cover diverse long-
sequence tasks. (3) We extensively evaluate LouisKV on various LLM benchmarks, demonstrating
that it achieves a 4.7x speedup in end-to-end latency while maintaining near-lossless accuracy, as
shown in Figure[2]

2 RELATED WORK

Scaling LLMs to Long Contexts and Generations. The capability of LLMs to process long-
sequence tasks is rapidly advancing. On the one hand, modern models have supported vastly longer
inputs. For instance, Qwen3 (Yang et al.,2025) can handle contexts of 128K tokens, while Gemini
(Team et al. [2023) models push the boundary to 2M tokens. On the other hand, a parallel trend
involves generating longer outputs. Driven by test-time scaling laws, prompting models to generate
more extensive, step-by-step reasoning at inference has proven to be a cost-effective method to boost
model performance (Guo et al.,[2025;|OpenAl [2024; |Yang et al.,[2025). Our work, LouisKYV, targets
KV cache optimization in both long-input and long-output scenarios.

KYV Cache Dropping. These methods typically discard a subset of KV entries permanently based on
attention scores. For instance, SnapKV (Li et al.,|2024) employs a local window of recent tokens to
filter the KV cache of the prompt. However, it only compresses the KV cache during prefilling and
does not support long-output scenarios. In contrast, H20 (Zhang et al., [2023) retains a fixed size of
KV cache during decoding by selecting tokens with the highest cumulative attention scores, while
RaaS (Hu et al.l [2025) evicts tokens that have not received substantial attention over a sustained
period. Although these methods are computationally efficient in long-output scenarios, they often
lead to significant accuracy degradation due to the irreversible loss of discarded token information.

KV Cache Retrieval. To avoid information loss inherent in KV dropping methods, KV retrieval
methods preserve the complete KV cache and dynamically retrieve a critical subset for computa-
tion. However, existing approaches face several challenges. Methods like Quest (Tang et al., [2024)
and SparQ (Ribar et al.| 2023 encounter memory limitations when attempting to store the entire
KV cache on the GPU. To overcome these GPU memory constraints, other approaches (Chen et al.,
2024a; [Zhang et al.l 2025} [Sun et al. |2024) offload the entire KV cache to CPU DRAM. How-
ever, these methods suffer from efficiency and accuracy bottlenecks. First, as illustrated in Figure|]
frequent retrieval operations for each token’s generation introduce significant overhead, especially
in long-output scenarios. Second, the coarse-grained management results in transferring numerous
non-critical tokens, causing unnecessary data transfer overhead and even degrading model accu-
racy. A detailed analysis of these bottlenecks is provided in the Appendix [A] In contrast, our work,
LouisKYV, provides a comprehensive solution that efficiently handles both long-input and long-output
scenarios without compromising inference accuracy.
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Semantic-Based KV Optimization. Recently, leveraging semantic information to enhance KV
cache efficiency has garnered increasing attention. One line of work identifies semantic units based
on natural language boundaries. For instance, SepLLM (Chen et al., | 2025) compresses the informa-
tion of a text segment into its corresponding separator, while SentenceKV (Zhu et al., 20235)) treats
full sentences as fundamental retrieval units, managing the KV cache at a coarse-grained sentence
level. Another line of methods employs clustering to organize the KV cache. For example, Squeezed
Attention (Hooper et al.,|2025) and ClusterKV (Liu et al.,[2024b) apply K-means clustering to group
semantically similar key vectors from the input sequence. While these approaches demonstrate the
potential of semantic-aware KV management, they typically rely on static linguistic rules or apply
a uniform strategy across the entire sequence. In contrast, LouisKV distinguishes itself through
two key innovations: (1) An adaptive retrieval strategy that exploits temporal locality to dynami-
cally identify semantic boundaries during decoding; and (2) A decoupled management scheme that
uniquely tailors clustering for the sparse patterns in input sequences and temporal segmentation for
the dense patterns in output sequences.

3  MOTIVATION

3.1 PRELIMINARIES

The auto-regressive inference of LLMs involves two phases: prefill and decode. During prefilling,
the model processes the entire input prompt to generate initial KV cache for each layer, denoted
Kinp € RP*4and V,,,,, € RP*4 where P is the prompt length and d is the hidden dimension. Dur-
ing decoding, the model generates tokens auto-regressively until encountering an end-of-sequence
token. At decoding step ¢, the model generates a query vector ¢; € R'*? for each layer. Simultane-
ously, the corresponding key k; and value v; € R'*¢ are computed and appended to the historical
KV cache, forming updated K; and V;. The output o, is then computed via the attention mechanism:

KT
%Z&WZ%MM(%t)W
Vd
Here, A; represents the attention weights indicating the importance of each historical KV entry to
the current query ¢;.

KV retrieval methods usually select a subset of KV entries under a fixed budget B. Quest (Tang
et al.,[2024) and Arkvale (Chen et al.,[2024a) partition the entire key cache (ko, k1, ..., kp1¢) into
m fixed-size pages and construct index C; for each page i. At every decoding step ¢, they select
the most critical pages by computing the similarity between the current query ¢; and all indices
(Co...Crn—1). ALKV entries within a selected page are retrieved for the attention computation. The
selection process can be formalized as Z; = Sel(q;, K;), where Z; is the set of KV indices selected in
step t, with the constraint |Z;| < B. Ultimately, only the selected KV subset (Kz,, Vz,) participates
in the attention computation, significantly reducing the inference latency and memory footprint.

3.2 OBSERVATIONS

We conducted an in-depth analysis of critical KV access patterns on long-sequence tasks (Jia, 2025}
Ling et al.| [2025), leading to two key observations that directly motivate our design. These observa-
tions provide insights into two fundamental questions: 1) When should retrieval be triggered, and 2)
How should the KV cache be managed to enable precise and efficient retrieval?

Observation 1: Critical KVs access exhibits strong temporal locality during decoding. The
model tends to produce its output as a sequence of semantically coherent segments. For instance,
one reasoning step in a mathematical problem forms one segment, as illustrated in Figure [3(b). We
hypothesize that within each segment, the model continuously attends to a relatively similar subset
of tokens to maintain semantic coherence.

To validate this hypothesis, we calculated the Jaccard similarity between the critical KV index sets,
T and Z;4 1, of adjacent decoding tokens within the same segment. The results provide clear ev-
idence for our hypothesis. As shown in Figure a) and (b), the similarity curves (bottom left)
indicate that the Jaccard similarity remains consistently above 0.8 within Current Segment for both
document QA and mathematical reasoning examples. This observation is also visually confirmed
by the attention heatmaps (bottom right of Figure [3[a) and (b)). The bright, vertical bands in the
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(a) Long Document Question Answer (QA) Sample

Prompt: Background Information... At the university‘s graduate program, located in an academic setting dedicated to fostering advanced
research capabilities... Most students ﬁoften find themselves at the top of these rankings... is composed of
outstanding students who have consistently demonstrated ...both outstanding students and those in - have valuable contributions

Current Segment: We conclude that the proportion of high-degree students in Group B is smaller than in Group A.
10 Critical KV Sparse In Long Input Sequence
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(b) Mathematical Reasoning Sample

Prompt: Convert the point (0,3) in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\\theta)...
Previous Output: <think/> Okay, so | need to convert the rectangular point \((0,3)\) to its polar coordinate representation\((r, \theta)\)... First,
we calculate the radius \(r\) ... Second, we determine the angle \(\theta\)...

Current Segment: Therefore, the polar coordinates should be (3, rt/2).
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Figure 3: Access patterns of critical KVs in different long-sequence tasks. First, both tasks demon-
strate temporal locality: during the generation of a coherent segment (Current Segment), the similar-
ity of critical KV sets maintains high values. Second, they reveal a distinct spatial distribution: (a) in
a long-document task, attention is sparsely distributed in the prompt, whereas (b) in a mathematical
reasoning task, attention is densely focused on some intermediate steps in the previous output.

heatmaps indicate that attention is persistently focused on the same regions of the prompt and previ-
ous output across the iterations of the current segment’s generation. The observed temporal locality
renders per-token KV retrieval unnecessary, motivating a semantic-aware strategy that amortizes the
retrieval overhead across multiple tokens.

Observation 2: Critical KVs exhibit distinct distribution patterns across the input and output
sequences. While temporal locality informs when to retrieve, the spatial distribution of critical KVs
informs how to retrieve critical KV entries both efficiently and precisely.

As exemplified by the long-document QA task in Figure [3(a), we observe that critical KVs in the
long input sequence are distributed sparsely. Specifically, the attention heatmap reveals that high-
attention regions are sparsely dispersed across the long input sequence. This shows that the model
must extract scattered information from distant parts of the context to generate the answer. In con-
trast, critical KVs in a long output sequence are often concentrated densely. As shown in Figure
[b), for tasks like mathematical reasoning, the model’s attention focuses densely on the previously
generated segments, such as intermediate lemmas. As discussed in Section[3.1} existing KV retrieval
methods typically employ fixed-size pages as the fundamental unit for management and selection.
However, this approach ignores the distinct spatial distribution of critical KVs, leading to the re-
trieved pages containing numerous non-critical KV entries. This distinct distribution pattern poses
a fundamental challenge for conventional page-level management mechanisms. This strongly moti-
vates the design of a finer-grained KV management mechanism capable of adapting to this distinct
distribution.

4 LOUISKYV SYSTEM

4.1 SEMANTIC-AWARE ADAPTIVE RETRIEVAL

As established in Observation 1, the model tends to focus on a highly similar KV subset across
multiple consecutive tokens during decoding, rendering per-token retrieval redundant and inefficient.
To leverage this temporal locality, LouisKV introduces a semantic-aware adaptive retrieval strategy
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Figure 4: The design of LouisKV. (a) Retrieval is triggered when the query similarity r drops below
a threshold 7, loading critical KV entries from the CPU cache pool. (b) During prefilling, K-means
clustering is employed to group semantically similar KVs into clusters. During decoding, consecu-
tively generated KVs are partitioned into temporal segments. These clusters and segments are then
offloaded to a unified cache pool on the CPU. The detailed algorithm is provided in Appendix E}

that operates at the granularity of temporal segments, thereby amortizing the retrieval cost over
multiple decoding tokens.

The central challenge is to identify the boundaries of these segments accurately with low overhead.
A naive approach is to compare the critical KV index sets of adjacent tokens. However, this approach
incurs substantial computational costs, as the Sel function itself involves dense matrix computations.
LouisKV therefore employs a lightweight alternative (Xu et al.,|2024; |Liu et al., | 2025)). Specifically,
for each transformer layer at each decoding step ¢, LouisKV computes the cosine similarity between
the current query vector ¢; and the previous one ¢;_1, averaged across all attention heads:

H

1 .
= }Z:l cosine(q" 1, q")
—

where H is the total number of attention heads and ¢* is the query vector for head & at step . As
shown in Figure [4(a), when this similarity score r drops below a predefined threshold 7, LouisKV
identifies a semantic boundary and triggers a KV retrieval operation. This operation selects the
critical units that scored the highest by computing the similarity between the current query ¢; and
the centroids C' of all units, and subsequently loads the corresponding KV cache from CPU to GPU.

4.2 DECOUPLED FINE-GRAINED MANAGEMENT

After determining when to trigger the retrieval, the subsequent challenge is how to manage the KV
cache to improve retrieval precision. According to Observation 2, traditional coarse-grained page-
level management failed to efficiently adapt to the distinct distribution patterns across the input and
output sequences. LouisKV therefore designs a decoupled fine-grained management scheme (Figure
[(b)) that tailors retrieval units separately for each phase.

Prefill Stage. To manage the sparse critical KVs in the input sequence, LouisKV introduces a
cluster-granularity strategy. Since the attention score for a query vector ¢, is primarily determined
by its dot product with each key vector, key vectors that are similar in semantic space tend to exhibit
similar attention scores (Liu et al., 2024b)). Accordingly, LouisKV employs the k-means clustering
algorithm to group similar key vectors into the same cluster. Subsequently, LouisKV calculates the
centroid C;; for each cluster by averaging all its key vectors. Unlike traditional page-level strategies,
the key vectors within the same cluster are semantically similar, allowing this centroid to serve as
a more precise index for subsequent retrieval. This KV clustering and offloading process occurs
asynchronously with the prefill forward pass, avoiding blocking the forward computation.

Decode Stage. To handle the highly dense attention pattern in the output sequence, LouisKV lever-
ages the semantic boundaries identified in Section [4.1] to partition the generated KV cache into
multiple temporal segments. Similar to the semantic clusters from the prefill stage, each temporal
segment is represented by an index vector derived from averaging its key vectors. To prevent ex-
cessive GPU memory consumption during decoding, LouisKV maintains a fixed-size local buffer
on the GPU to cache the most recently generated KV segments. When this buffer becomes full,
the oldest segment will be offloaded to CPU memory. These offloaded temporal segments from the
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Figure 5: Performance comparison of LouisKV against four baseline methods across various cache
budgets. Subplots (a-f) present the results on six long-input understanding tasks using Llama-3.1-
8B-Instruct. Subplots (g-1) display the results on six long-output reasoning tasks using Qwen3-8B.
For detailed experimental results on more models, please refer to Appendix @

decode stage, together with the semantic clusters from the prefill stage, form a unified KV cache
pool in CPU memory.

4.3 SYSTEM OPTIMIZATIONS

To enhance overall system efficiency, LouisKV incorporates several system-level and kernel-level
optimizations. First, we implement a custom Triton (Tillet et al.| 2019) kernel to efficiently execute
the clustering operation during prefilling. Second, we introduce a group-consistent selection strategy
that selects a unified set of KV clusters and segments for an entire query group, which efficiently
adapts to the Grouped-Query Attention (Ainslie et al.l [2023) by avoiding redundant data transfers
(see Appendix [B] for details). Finally, since these clusters or segments contain a variable number
of KV entries, selecting critical items under a fixed budget in standard frameworks like PyTorch is
complex and inefficient. To address this, we design a highly optimized CUDA kernel that supports
rapid, batched selection of critical KVs under a given budget. Furthermore, to facilitate efficient
transfer of selected KV entries between CPU and GPU, we use the DGL library (Wang| [2019) to
directly transfer specific rows from CPU tensors to the GPU device, rather than first gathering the
rows on the CPU and then transferring them.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Datasets and Models. To comprehensively evaluate LouisKV, we select the following datasets:
(1) Long-Input, Short-Output. This type of task primarily involves document understanding. Thus,
we select six representative and popular datasets from the LongBench (Bai et al.| [2023) bench-
mark: NarrativeQA, Qasper, MultiFieldQA, HotpotQA, Musique, and GovReport. (2) Short-Input,
Long-Output. We chose three challenging mathematical and scientific reasoning datasets, sampling
50 problems from each: MATHS500 (Hendrycks et al.l [2021) and AIME (J1a, 2025)), which require
multi-step mathematical problem-solving, and GPQA (Rein et al.,[2024)), which comprises graduate-
level questions demanding complex reasoning. (3) Long-Input, Long-Output. We choose the Lon-
gReason (Ling et al.| [2025)) dataset. This dataset synthetically extends short-context reasoning prob-
lems into complex versions requiring long-range dependency, and we sample 100 problems from
each of its 16K, 32K, and 64K input-length subsets, denoted as LongReason-16K, LongReason-
32K, and LongReason-64K, respectively. Our evaluation is conducted on two models: Qwen3-8B
(Yang et al.| [2025) and Llama-3.1-8B-Instruct (Grattafiori et al.l [2024). We leverage the thinking
mode of Qwen3-8B to handle long-output tasks requiring complex reasoning, while Llama-3.1-8B-
Instruct addresses traditional long-input, short-output tasks.
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Baselines. We compare LouisKV against state-of-the-art KV cache optimization methods, including
KV dropping methods such as H20 (Zhang et al., 2023) and RaaS (Hu et al., 2025), KV retrieval
methods such as Quest (Tang et al., 2024) and Arkvale (Chen et al., [2024a). We set a uniform KV
cache budget B for all methods. Following the setting of Quest, we preserve the complete KV cache
for the first two layers and retain the sink tokens S and a local buffer W on the GPU across all
methods, where the values of S and W are adjusted according to the specific task. Furthermore,
to maintain a fair comparison, we adapt the implementations of RaaS, Quest, and Arkvale to be
group-consistent. For method-specific parameters, we set the page size to 16 for Quest, Arkvale,
and RaaS. For our proposed LouisKV, we set the average cluster size to 16 for the input sequence
and use varying similarity thresholds 7 for the output sequence, depending on the model and task.

Environment. Our server is equipped with a single NVIDIA A6000 GPU (48 GB) and an AMD
Ryzen 9 5950X 16-Core Processor. The CPU and GPU are interconnected via PCle 4.0 x16
(32GB/s). All experiments run on Ubuntu 20.04 with Linux kernel 5.4.0 and CUDA 12.4.

5.2 ACCURACY EVALUATION

Long-Input Understanding Tasks. We follow the methodology of Quest by simulating the decod-
ing process, feeding the question part to the model token-by-token. We configure S = 32, W = 512,
and 7 = 0.85, where the window size W is set to be large enough to fully retain the KV cache of
all generated tokens in these short-output tasks. Figure Bfa-f) illustrates the superiority of LouisKV
on long-input tasks. The results show that KV retrieval methods, including Quest and Arkvale,
generally outperform KV dropping methods like H20 and RaaS, which confirms that permanently
discarding the KV cache leads to accuracy degradation. More importantly, LouisKV surpasses other
page-level management methods on nearly all long-input tasks under the same KV cache budget.
Under a budget of 512, LouisKV achieves an average accuracy improvement of 1.1% over Arkvale
and 3.3% over Quest. The superior performance of LouisKV further validates the effectiveness of
our clustering management designed for the input sequence. Unlike coarse-grained page-level man-
agement, our approach more precisely identifies and retains the most critical K'Vs, thereby achieving
higher accuracy under limited budgets.

Long-Output Reasoning Tasks. For long-output tasks that demand complex reasoning, we apply
different parameter configurations. In short-input, long-output tasks, we set S = 500, W = 128,
and 7 = 0.7, where S is configured to ensure the short prompt’s KV cache is fully retained for
inference, without exceeding the actual input length. In long-input, long-output tasks, we set S =
64, W = 256, and 7 = 0.7. The maximum generation length for all long-output tasks is set to 16K
tokens, except for AIME, which is set to 32K. As depicted in Figure [5(g-1), LouisKV achieves the
best or second-best accuracy in all long-output reasoning tasks under various budgets. The accuracy
degradation of KV dropping methods is particularly pronounced on highly challenging tasks like
AIME and long-input tasks like LongReason. Specifically, under a budget of 1024, the average
accuracy of LouisKV is 2.0% higher than Arkvale and 4.8% higher than Quest across these tasks.
These results ultimately validate the effectiveness of our decoupled KV management scheme for
input and output sequences.

5.3 EFFICIENCY EVALUATION

We evaluate the inference efficiency of LouisKV in comparison with FullCache and Arkvale. Specif-
ically, the FullCache baseline, which retains the entire KV cache on GPU, is implemented using
FlashAttention-2 (Dao, 2023). The evaluation covers three long-sequence patterns: long-input,
short-output (32K input, 512 output); short-input, long-output (500 input, 16K output); and long-
input, long-output (32K input, 16K output). Following the experimental setup from the Section
we use Llama-3.1-8B-Instruct for long-input scenarios and Qwen3-8B for long-output scenarios.

End-to-End Latency. As illustrated in Figure [6] compared to the state-of-the-art KV retrieval
method Arkvale, LouisKV achieves up to 1.9, 2.9x and 4.7 x speedups across the three patterns,
respectively. This efficiency gain stems from our semantic-aware retrieval strategy, which signifi-
cantly reduces computation and data transfer overhead, and optimized kernels, which enhance the
efficiency of importance estimation and data transfer. In particular, this advantage becomes more
pronounced as the batch size increases, because larger batches exacerbate the data transfer bot-
tleneck. LouisKV exhibits comparable latency compared with FullCache. When processing long
sequences with larger batches, FullCache encounters OOM errors due to its significant memory
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Figure 6: End-to-end latency comparison under different batch sizes and long-sequence scenarios.
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Figure 7: Per-layer latency breakdown during the decoding phase across the three scenarios.
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Figure 8: Ablation studies. (a) Accuracy comparison of our adaptive stride retrieval against a fixed
stride baseline. (b) Accuracy comparison of our decoupled, fine-grained management against a
coarse-grained baseline. (c) Impact of the similarity threshold 7 on accuracy and latency. (d) Effi-
ciency contribution of individual system optimizations.

footprint. In contrast, LouisKV offloads the entire KV cache to CPU memory, enabling support for
larger batch sizes, thereby achieving higher system throughput.

Latency Breakdown. We evaluate the latency breakdown for a single transformer layer during
decoding. As shown in Figure [7] although Arkvale retrieves only a subset of the KV cache, the
overhead associated with retrieval, including both estimation and transfer, still accounts for 65%
of the total latency, highlighting the necessity to reduce this overhead. LouisKV drastically reduces
this overhead, lowering its contribution to just 11% of the total latency. We also provide the analyses
of memory efficiency in Appendix[D.2]

5.4 ABLATION STUDY

Effectiveness of Core Strategies. We independently validate the effectiveness of the two core
strategies in LouisKV. First, we evaluate the adaptive retrieval against a baseline that employs a
fixed-stride retrieval. This result in Figure 8[a) shows that our strategy consistently achieves higher
accuracy in all tasks. Furthermore, we assess the effectiveness of our fine-grained management by
comparing it to a coarse-grained baseline with page-level management. The results in Figure [§[b)
show that our management scheme consistently outperforms the baseline. A detailed analysis of this
ablation study is provided in Appendix[D.3]

Impact of Similarity Threshold 7. The threshold 7 is a key hyperparameter that governs the trade-
off between accuracy and efficiency. We explore the impact of 7 on the long-output reasoning tasks.
As shown in Figure [§]c), a higher 7 leads to more frequent retrievals, thus improving inference
accuracy. However, this comes at the cost of higher latency due to the overhead of retrieval. The
results show that for Qwen3-8B, 7 = 0.7 represents an ideal balance, achieving significant efficiency
gains while maximally preserving inference accuracy. Further details are in Appendix [D.4]

Impact of System Optimizations. Finally, we quantify the efficiency contribution of the system
optimizations in LouisKYV, testing on the Qwen3-8B model in long-input, long-output scenarios.
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As shown in Figure [§[d), we incrementally apply each optimization on top of a baseline system.
Semantic-Aware Retrieval (SR) contributes the largest performance improvement, achieving a nearly
2.6 x speedup by drastically reducing the overhead from redundant retrieval and data loading oper-
ations. Building on this, Group-Consistent Selection (GS) and our Custom Retrieval Kernel (CK)
provide additional performance gains of 13.1% and 15.7%, respectively.

6 CONCLUSION

In this paper, we propose LouisKYV, an effective KV retrieval framework designed for various long-
sequence scenarios. Our work is motivated by two key observations: the strong temporal locality
of critical KVs, and their distinct distribution patterns across input and output sequences. Building
on these insights, LouisKV introduces a semantic-aware adaptive retrieval strategy and a decoupled
management scheme. Evaluation results show that LouisKV achieves up to a 4.7 x speedup com-
pared to state-of-the-art KV retrieval methods while maintaining near-lossless inference accuracy.
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A DETAILED BOTTLENECK ANALYSIS OF KV RETRIEVAL METHODS
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Figure 9: Bottleneck analysis of KV retrieval methods. Left: Per-layer latency breakdown com-
paring LouisKV with other methods. OffloadCache serves as a baseline that preloads the full KV
cache of the next layer from CPU during inference, while Arkvale is a representative state-of-the-art
retrieval method. Right: Inference accuracy (middle) and end-to-end latency (right) of LouisKV and
Arkvale in long-output scenarios under different KV cache budgets.

While existing KV retrieval methods avoid GPU Out-Of-Memory errors by offloading the entire KV
cache to CPU memory, they still face two fundamental bottlenecks regarding inference efficiency
and retrieval accuracy.

First, the per-token retrieval strategy incurs prohibitive camulative overhead. As illustrated in Figure
[ (eft), although retrieval methods like Arkvale attempt to reduce KV cache transfer costs by loading
less data, they introduce an additional computational overhead to estimate the importance of each
page. Meanwhile, due to the limited CPU-GPU bandwidth, the data transfer overhead continues
to be a primary performance bottleneck. While this overhead might seem minor for a single token
generation, it accumulates linearly as each decoding token in a long-output sequence requires a new
retrieval operation. This cumulative effect becomes substantial in long-output scenarios, leading to
a dramatic increase in total inference latency, as shown in Figure 9] (right) for Arkvale.

Second, the coarse-grained page-level management scheme leads to suboptimal retrieval perfor-
mance, creating a dilemma between efficiency and accuracy. These methods partition the sequence
into fixed-size pages and use the page as the minimum unit for retrieval, which introduces a difficult
trade-off. On the one hand, it results in a significant accuracy drop under tight KV cache budgets, as
shown in Figure [0] (middle). On the other hand, allocating a larger budget to prevent this accuracy
loss results in significantly higher end-to-end latency, as depicted in Figure[9](right). In contrast, by
retrieving the critical KVs precisely, LouisKV maintains high inference accuracy even under a small
budget while simultaneously achieving high efficiency.

B DETAILS OF SYSTEM OPTIMIZATION

Group-consistent Selection. Existing retrieval methods are primarily designed for Multi-Head At-
tention architectures, where the number of query heads h, equals the number of KV heads hy,.
However, modern models often adopt Grouped-Query Attention, in which a group of g = h,/hy,
query heads share the same KV head. To avoid excessive transfer overhead caused by retrieving dis-
tinct KV heads for each query head, we propose a group-consistent retrieval strategy. This approach
selects a common set of KV indices for all queries within a group, guided by a group-aggregated
score A¢, computed by averaging the softmax-normalized attention scores from each query:

1 Z i*g+j ( vi\T
A =— Z softmax @ ()
9 Vd
ikg+J

where ¢, is the query of the j-th head within group i at step ¢, and C* is the matrix containing
the centroid vectors of all clusters and segments belonging to the i-th KV head, the one shared by
the i-th query group. Based on this aggregated score, LouisKV ranks all KV clusters and segments
and selects the top-scoring units. This strategy ensures that all requests from the group are unified
into a single, coalesced data transfer, perfectly aligning with the computational pattern of the GQA
architecture and fundamentally eliminating the transfer overhead. Notably, for conventional MHA
architectures where the group size g = 1, our group-aware strategy naturally simplifies to a standard
per-head retrieval mechanism, thus providing a unified approach for different attention structures.
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C

ALGORITHM OVERVIEW

Algorithm 1 The LouisKV Algorithm

27:

28:
29:
30:

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:

: Input: Model M, Input Sequence X;,,,,, KV Cache Budget B, Similarity Threshold r, A KV

Manager kvm
Output: Generated Token Sequence O

function KVM.STORE_CACHE(K, V, stage)
if stage == "prefill’ then
Kojusters <+ KMeans(K)
for each cluster c in K jsters do
centroid < ComputeCentroid(c);
Store centroid on GPU;
end for
Offload (K, V') to CPU memory pool asynchronously
else if stage == ’decode’ then
K%ocal — [K‘/Zocal : (ktyvt”
if K'Vjseq is full then
Kyeg, Vieg <+ the oldest KV segment in K'Vjycq
centroid <— ComputeCentroid (K cg);
Store centroid on GPU
Offload (K seq, Vsey) to CPU memory pool asynchronously.
end if
end if
end function

: function KVM.RETRIEVE(q;, B)

Scores < Compute similarity scores between query ¢; and all centroids

TopIndices < Select the set of top-scoring clusters and segments based on Scores and budget B
KV, iticai < Load the corresponding KVs of T'opIndices from CPU memory pool

return KV, itical

: end function

procedure LOUISKV(M, X;,,,,, B, 7, kvm)

// Phase 1: Prefill Stage
Kinp, Vinp < Process X, with model M to get initial KV cache
kvm.store_cache (K ;pp, Vinp, 'prefill’)

O < 0; gprey <+ None;
// Phase 2: Decode Stage
fort=1,2,...,T do
G+, kt, v+ < Generate query and KV cache from the previous token’s state
is_new_segment <— (t == 1) V (CosineSimilarity(q, ¢prev) < 7); Gprev < Q1
if is_new_segment == True then
KV, itical < kvm.retrieve( q¢, B)
kvm.store_cache(ky, vy, "decode’); K Viypn < [K Veritical : K Viocal)

else if is_new_segment == False then
kvm.store_cache(ky, vt, ‘decode’); K Vaien < [K Veritical © K Viocal]
end if
ot < Model M Generate token using ¢; and K V4,5 O.append(o;);
end for
return O

end procedure
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D DETAILED EXPERIMENTAL RESULTS AND ANALYSIS

D.1 ACCURACY EVALUATION

Long-Input, Short-Output Tasks

Methods
NarrativeQA  Qasper MultifieldQA HotpotQA Musique GovReport

Llama3.1-8B-Instruct 28.26 44.38 55.27 55.97 31.68 35.02
H20 20.90 24.50 34.82 31.29 12.70 26.69

RaaS 22.01 30.72 40.31 41.54 15.02 26.74

Quest 25.35 43.65 51.49 51.63 25.09 32.20

Arkvale 27.32 42.59 52.88 55.92 29.07 32.79
LouisKV 27.53 45.31 54.22 55.64 31.20 33.30
Qwen2.5-7B-Instruct 20.1 39.29 46.66 55.84 25.88 314
H20 7.36 20.04 31.07 30.75 15.29 22.48

RaaS 10.7 25.21 35.90 39.43 15.83 26.2

Quest 15.41 34.56 44.75 45.58 22.51 29.21

Arkvale 17.64 38.78 44.40 53.16 25.81 30.6
LouisKV 19.39 37.67 46.63 52.14 28.51 30.57

Table 1: Accuracy comparison on Long-Input Understanding tasks with a KV cache budget of 512
tokens across all methods. The best results for each model family (excluding the baseline) are in
bold.

Methods Short-Input, Long-Output Tasks Long-Input, Long-Output Tasks
MATHS500 GPQA AIME LongReason-64K  LongReason-32K LongReason-16K
Qwen3-8B 0.86 0.66 0.70 0.70 0.74 0.76
H20 0.66 0.24 0.26 0.43 0.53 0.54
RaaS 0.78 0.50 0.43 0.38 0.42 0.52
Quest 0.76 0.56 0.60 0.67 0.70 0.73
Arkvale 0.82 0.60 0.63 0.68 0.68 0.75
LouisKV 0.86 0.62 0.66 0.70 0.73 0.74
DeepSeek-RI-Distill-Qwen-7B 0.84 0.32 0.50 0.20 0.37 0.40
H20 0.74 0.26 0.23 0.15 0.18 0.28
RaaS 0.82 0.30 0.40 0.17 0.23 0.32
Quest 0.86 0.38 0.43 0.16 0.34 0.34
Arkvale 0.84 0.44 0.53 0.20 0.38 0.38
LouisKV 0.86 0.48 0.50 0.22 0.39 0.42

Table 2: Accuracy comparison on Long-Output Reasoning tasks with a KV cache budget of 1024
tokens across all methods. The best results for each model family (excluding the baseline) are in
bold.

D.2 MEMORY FOOTPRINT ANALYSIS

In this section, we analyze the KV cache memory footprint of different methods. We assume the
number of layers is L, the number of heads is h, the head dimension is d},, the input sequence length
is n, and the output sequence length is m. All KV cache is stored in FP16, leading to a base factor
of 4Lhdy,. As detailed in Table [3} FullCache retains the entire KV cache on the GPU. Quest builds

Method Memory Parameters

FullCache 4Lhdy(n + m) -

Quest 4Lhdp(n +m + "£™)  page size: p

Arkvale 4Lhdy(B + "£m) page size: p, budget size: B

LouisKV  4Lhdy(B + 55 + 3%) cluster size: c, segment size: s, budget size: B

Table 3: Theoretical analysis of GPU KV cache memory footprint for different methods, where n is
the input length and m is the output length.
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Figure 10: Comparison of KV cache memory consumption during the decoding phase for different
methods, with a prefill length of 32K tokens and a batch size of 4.
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Figure 11: Ablation study on retrieval strategy. We compare the inference accuracy of our adaptive
semantic-aware retrieval against a fixed-stride retrieval baseline. The adaptive strategy achieves
higher accuracy across most tasks by retrieving information at critical decoding points.

upon this by adding indexing overhead for each page of size p. Both Arkvale and LouisKV are of-
floading methods that keep a budget of size B on the GPU, but they differ in their indexing overhead.
Specifically, both Quest and Arkvale create two index vectors for each key page, whereas LouisKV
requires only one for each semantic cluster or segment. We empirically validate this analysis by
comparing memory consumption in a long-input scenario (32K prefill tokens), with results shown in
Figure[I0] The memory usage of FullCache and Quest grows linearly with decoded tokens, making
them susceptible to out-of-memory errors. In contrast, Arkvale and LouisKV maintain consistently
low memory footprints. As future work, LouisKV’s memory consumption could be further reduced
by offloading KV cache indices to CPU DRAM.

D.3 EFFECTIVENESS OF CORE STRATEGIES

In this section, we conduct ablation studies to independently analyze the effectiveness of LouisKV’s
two core designs, adaptive semantic-aware retrieval strategy and decoupled fine-grained manage-
ment scheme, to increase inference accuracy. We follow the parameter settings in Section [5] testing
on long-input understanding tasks with the Llama3.1-8B-Instruct model and on long-output reason-
ing tasks with the Qwen3-8B model.

Fixed Stride vs. Adaptive Stride. To validate the superiority of our adaptive retrieval strategy,
we compare it against a baseline that employs a fixed-stride retrieval. For a fair comparison, the

[] coarse-grained [ll] Fine-grained

=
Q
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Figure 12: Ablation study on management scheme. We compare the inference accuracy of our
decoupled, fine-grained management against a coarse-grained page-level baseline. The superior
performance of our fine-grained approach validates the necessity of its tailored design: semantic
clusters for inputs and temporal segments for outputs.
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Figure 13: Impact of the similarity threshold 7 on inference accuracy, retrieval frequency, and la-
tency. Subplots (a-f) show the accuracy on various long-input and long-output benchmarks. Subplots
(g-h) illustrate the corresponding increase in retrieval frequency, and subplot (i) shows the resulting
impact on inference latency. The results demonstrate the trade-off between accuracy and efficiency
governed by 7.

baseline triggers a retrieval every 5 tokens for long-input tasks and every 16 tokens for long-output
tasks. These values are chosen to closely match the average retrieval frequency of our adaptive
strategy on the respective tasks. As shown in Figure[IT]a), our adaptive retrieval strategy achieves
higher accuracy across the majority of tasks. This result strongly indicates that a fixed-stride retrieval
method can degrade accuracy by failing to retrieve information at critical points. In contrast, our
adaptive strategy more precisely identifies the critical decoding points where information must be
updated, leading to better inference accuracy.

Coarse-grained vs. Fine-grained Management. Next, we evaluate the contribution of our decou-
pled, fine-grained management mechanism, comparing it against a baseline that applies a uniform
page-level management strategy. To ensure a fair comparison, we force both our strategy and the
baseline to perform a retrieval at every decoding step. We set the page size of baseline to 16, aligning
it with the average cluster and segment size used in our approach. As depicted in Figure [[2[b), our
fine-grained management strategy consistently outperforms the coarse-grained baseline. This result
confirms the necessity of our tailored design: semantic clusters are better suited for the sparse at-
tention patterns of input sequences, while temporal segments effectively capture the dense attention
patterns of output sequences. This tailored design is crucial for achieving high inference accuracy.

D.4 IMPACT OF SIMILARITY THRESHOLD 7.

The threshold 7 is a key hyperparameter that governs the trade-off between accuracy and efficiency.
It defines the sensitivity for triggering a new KV retrieval operation. A lower value of 7 imposes a
stricter criterion for identifying a semantic boundary, thereby reducing the frequency of retrievals.
While this enhances inference efficiency, it typically leads to accuracy degradation by potentially
failing to update the set of critical KVs. Conversely, a higher 7 results in better inference accuracy.
However, the frequent retrievals incur additional computational and data transfer overhead, thus
reducing overall efficiency. We experimentally analyze the impact of 7 on both inference accuracy
and efficiency.

Analysis of Inference Accuracy. To quantify the impact of 7, we conducted a series of ablation
studies on long-input and long-output tasks using the Llama-3.1-8B and Qwen3-8B models, respec-
tively. As shown in Figure[I3] a consistent trend is observed: model accuracy improves on all tasks
with an increasing 7. This is because a higher 7 leads to more frequent retrievals, ensuring that
critical information is recalled promptly. More importantly, long-input tasks (Figure [I3[a-c)) ex-
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Figure 14: Distribution of semantic segment lengths. Histograms for (a) MATHS500 and (b)
LongReason-64K. The long-tailed distribution indicates that reasoning tasks frequently form long
stable semantic segments, which allows LouisKV to effectively amortize the retrieval overhead by
skipping redundant operations during these stable periods.

hibit significantly higher sensitivity to the value 7 than long-output reasoning tasks (Figure[I3|d-)).
We attribute this to the difference in task nature: to generate an answer, long-input understanding
tasks often require shifting attention between disparate parts of the context, thus demanding a more
responsive tan to capture these semantic changes. In contrast, long-output reasoning tasks exhibit
stronger local coherence, as each reasoning step primarily attends to consistent context. This results
in naturally longer semantic segments, making the model’s performance less sensitive to the precise
value of tan.

Analysis of Inference Efficiency. To quantify the impact of 7 on efficiency, we measured the
retrieval frequency and inference latency across different thresholds. As shown in Figure [I3]g-
h), the number of retrievals increases with 7 for both task types. Since each retrieval introduces
non-negligible overhead, the inference latency consequently increases as well. We measured the
average per-token inference latency for different 7 values in a long-input, long-output (32K+16K)
scenario using Qwen3-8B, as depicted in Figure [I3[i). The results show that for Qwen3-8B, 7 =
0.7 represents an ideal balance, achieving significant efficiency gains while maximally preserving
inference accuracy.

D.5 DISTRIBUTION OF SEMANTIC SEGMENT LENGHTS.

To substantiate our amortization claim with hard numbers, we perform a detailed analysis using the
Qwen3-8B model with the default threshold 7 = 0.7.

We first measure the average semantic segment length across different tasks. Reasoning tasks like
MATHS500 and GPQA exhibit an average segment length of approximately 14-18 tokens. This
implies that LouisKV reduces the retrieval frequency by more than 10x compared to per-token
methods. Even for long-document QA tasks (e.g., NarrativeQA) which involve more frequent topic
shifts, the average length remains around 3-6 tokens. This provides strong evidence that LouisKV
significantly amortizes the retrieval cost across diverse scenarios.

We further visualize the full distribution of segment lengths in Figure [T4] of the paper. The his-
tograms illustrate a long-tailed distribution for reasoning tasks. While short segments are present,
a significant proportion of the generation steps fall into long segments (spanning 16 to 128 tokens).
These long segments play a crucial role in reducing retrieval overhead, thereby contributing sub-
stantially to the overall end-to-end speed improvement.

D.6 PER-LAYER BOUNDARY ANALYSIS

To provide a rigorous justification for our layer-wise retrieval design, we analyze the similarity of
semantic boundary detection across different Transformer layers. The analysis is conducted using
the Qwen3-8B model on the MATHS500 dataset.

Layer-wise Segment Length. We first measure the average length of semantic segments at each
layer. As shown in Figure [T3]a) of the paper, shallow layers (Layers 0-3) exhibit shorter average
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Figure 15: Per-layer analysis of semantic segmentation. (a) Average semantic segment length at
each Transformer layer. Shallow layers (e.g., 0-10) exhibit shorter segments while deep layers (e.g.,
28-34) form longer segments. (b) Jaccard similarity of boundary trigger indices between adjacent
layers. The low similarity across most layers indicates that semantic boundaries are detected at
different points, validating the necessity of our per-layer retrieval strategy.

segments (approximately 4-6 tokens). This observation aligns with the intuition that lower layers
capture lower-level, rapidly changing features such as syntactic structures or lexical choices, thus
identifying more frequent semantic boundaries. In stark contrast, deep layers (e.g., Layers 28-34)
exhibit substantially longer segments. This reflects their function in processing high-level abstract
concepts, which remain stable during extended reasoning chains.

Inter-Layer Similarity on Boundaries. To further quantify the similarity in trigger points across
layers, we calculate the Jaccard similarity of the boundary-triggering token indices between adjacent
layers. As illustrated in Figure [I3[b), the similarity is notably low, especially in the shallow layers.
This low similarity indicates that a semantic shift occurring in a lower layer does not necessarily
result in a corresponding shift in a higher layer. This phenomenon validates the necessity of our
per-layer segmentation strategy, which enables each layer to independently manage the retrieval and
segmentation frequencies.

E USE OF LLMS

In this research, we utilized Large Language Models (LLMs) as an auxiliary tool to enhance research
efficiency and the quality of the manuscript. The authors maintained strict oversight throughout this
process, ensuring adherence to the principles of academic integrity. We affirm that the authors bear
full and final responsibility for all content, analyses, and conclusions presented herein. A detailed
breakdown of our specific use cases for these models is provided below:

LANGUAGE POLISHING AND COPY-EDITING

We utilized LLMs to assist with language refinement in this manuscript. Its use was confined to
improving grammar, clarity, and overall readability. The authors reviewed all suggested changes to
ensure the integrity of our original arguments and that the scientific content remained unaltered.

LITERATURE REVIEW AND BRAINSTORMING

In the preliminary stages of research, an LLM was used to summarize established concepts and
survey related work, which helped in identifying potential research gaps. However, all final litera-
ture citations and core research ideas were independently developed, verified, and validated by the
authors.
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