
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

TABLEMASTER: A Recipe to Advance Table Understanding
with Language Models

Anonymous Authors1

Abstract
Tables serve as a fundamental format for repre-
senting structured relational data. While current
language models (LMs) excel at many text-based
tasks, they still face challenges in table under-
standing due to the complex characteristics of tab-
ular data, such as their structured nature. In this
paper, we aim to enhance LMs for improved table
understanding. We identify four key challenges:
1) difficulty in locating target data, 2) deficiency
in table semantics, 3) numerical inaccuracies in
textual reasoning, and 4) semantic inflexibility in
symbolic reasoning. To address these issues, we
propose TableMaster, a recipe and comprehen-
sive framework that integrates multiple solutions
to overcome these obstacles. TableMaster first
extracts relevant table content and verbalizes it
with enriched semantic context. Additionally, we
introduce adaptive reasoning, a flexible approach
that dynamically adjusts between textual and sym-
bolic reasoning, tailoring the reasoning process to
each query. Extensive analyses and experiments
demonstrate our findings and the effectiveness
of TableMaster. On the WikiTQ dataset, Table-
Master achieves an accuracy of 78.13% using
GPT-4o-mini, surpassing existing baselines.

1. Introduction

“Data gains extraordinary power as it transcends the
simplicity of one dimension to embrace the richness of
higher dimensions.”

Tables are widely used in daily life and across various fields,
such as healthcare (Ghasemi & Amyot, 2016) and finance
(Li et al., 2020), due to their unique ability to efficiently

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

represent two-dimensional relational data. It is crucial to
process tabular data with both efficiency and accuracy. Re-
cently, large language models (LLMs) (Gunasekar et al.,
2023; OpenAI, 2024; Touvron et al., 2023) have achieved
significant progress in the field of natural language process-
ing. They perform well in a wide range of downstream
text-based tasks, including language understanding (Minaee
et al., 2024; Zhu et al., 2024) and reasoning (Plaat et al.,
2024). Naturally, language models (LMs) are increasingly
being used to process and understand tabular data (Fang
et al., 2024; Zhang et al., 2024b), enabling reasoning for
downstream tasks such as table-based question answering
(Pasupat & Liang, 2015) and table-based fact verification
(Chen et al., 2020).

However, the data structure of tables inherently possess a
unique two-dimensional structure that contrasts with the
linear text, which dominates the content in language model
pretraining corpora. Most advanced LMs are not specifically
optimized for processing tabular data. While techniques
such as chain-of-thought prompting (Wei et al., 2023) and
other reasoning-enhanced methods (Yao et al., 2023) have
enabled LMs to perform satisfactorily in reasoning with
linear text, significant room for improvement remains in
table-based reasoning (Chen, 2023). A notable gap persists
in LMs’ ability to fully understand tables and effectively
reason with tabular data.

Many previous studies have aimed to improve the table un-
derstanding capabilities of LMs. One efficient approach
is using prompting to adapt LMs for table understanding
without requiring fine-tuning, making it applicable to any
advanced LM. Recent studies primarily adopt two main
strategies to enhance table understanding with LMs. The
first strategy involves extracting a sub-table that contains
relevant content from the original table to reduce the context
size, thereby making it easier for LMs to comprehend. Ex-
amples include Dater (Ye et al., 2023) and Chain-of-Table
(Wang et al., 2024), among others. The second strategy
leverages SQL or Python programs to augment numerical
reasoning, locate target data, and enhance table understand-
ing of numerical information, as demonstrated by Binder
(Cheng et al., 2023) and LEVER (Ni et al., 2023), etc. How-
ever, these studies primarily focus on a single basic aspect

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

A Recipe to Advance Table Understanding with Language Models

C2 - Deficiency of Table Semantics

C3 - Numerical Inaccuracy in Textual Reasoning

C4 – Semantic Inflexibility in Symbolic Reasoning

C1 – Difficulty in Locating Target Data S1 - Table of Focus

S2 - Table Verbalization

S4 – Table Normalization & Text-guided Symbolic Reasoning

S3 - Program-aided Reasoning

Intensive

Numerical

Concise

Structured

Tabular Data
Characteristics

Challenges Proposed Solutions

Table

Question

Table w/ Full Information

Hallucination Question
Table w/ Full Information

Construct
Table of Focus

Table w/ numerical data
or Large Table

Question

1, 2, …, 5, 6, 7, -> 9

Table w/ numerical data
or Large Table

Question

Program

667 x 226 + 31 = 150,707
Calculation Error

Count Error

Wild Table
Question

Error Program
Logical Error

Data Error

Wild Table
Question

Program
Text Guidance

Table
Question

Sparse Sematic Context

Hallucination

Long-Context

1. Structure Information
2. Content of Each Cell

Table
Verbalization Question

Verbalized Table Rich Sematic Context

Short-Context

LM

LM

Textual Reasoning

LM

LM

Potential
Causes

Symbolic Reasoning Symbolic Reasoning

Textual Reasoning

Normalized
Table

1. Structure Normalization
2. Column Normalization

Figure 1. Overview of the challenges and proposed solutions in this work. Tabular data is inherently structured, dense, concise, and
numerical. Based on these characteristics, we identify four key challenges. To address them, we propose four targeted solutions. The gray
arrows between the characteristics and challenges represent the potential causes of these challenges stemming from specific characteristics.
Each proposed solution corresponds to the challenge presented on the left in the same row. TableMaster is a unified recipe developed
based on these findings.

to enhance the performance of LMs in table understanding
or design complex methods with isolated strategies. There
is currently an absence of work that provides a systematic
and fundamental analysis of table understanding with lan-
guage models and proposes comprehensive methods for its
improvement.

In this paper, we first provide extensive experiments and
discussions to identify the challenges in table understanding
with language models. To address these challenges, we then
introduce TableMaster, a recipe and comprehensive frame-
work that integrates multiple solutions to tackle these issues
effectively. In summary, this paper makes the following key
contributions:

• Challenges of Table Understanding. We observe that
tabular data is inherently structured, dense, concise, and
numerical. Through empirical analysis, we identify four
challenges associated with LMs’ table understanding: dif-
ficulty in locating target data, deficiency of table seman-
tics, numerical inaccuracies in textual reasoning, and se-
mantic inflexibility in symbolic reasoning. (Section 3)

• A Recipe for Table Understanding. To address these
challenges, we propose targeted solutions: table-of-focus,
table verbalization, program-aided reasoning, table nor-
malization, and text-guided symbolic reasoning. Building
on these solutions, we introduce a framework as a uni-
fied recipe, TableMaster. It also incorporates Adaptive
Reasoning (AR), a flexible approach that dynamically ad-

justs between textual and symbolic reasoning, tailoring
the reasoning process to each query. (Section 4)

• Extensive Experiments and Detailed Analyses. We
conduct extensive experiments and provide in-depth anal-
yses to support our findings on table understanding with
language models. Furthermore, we evaluate and demon-
strate the superior performance of TableMaster across
three widely used table understanding datasets: WikiTQ,
TabFact, and FetaQA. Notably, on the WikiTQ dataset,
TableMaster achieves an accuracy of 78.13% based on
GPT-4o-mini, surpassing existing baselines. (Section 3,
Section 5, and Appendix)

2. Related Work
Reasoning with Language Models. It has been observed
that language models (LMs) can exhibit reasoning abilities
when they are sufficiently large (Wei et al., 2022; Suzgun
et al., 2022). LMs are now widely used for various reasoning
tasks, such as question answering (Kamalloo et al., 2023),
decision making (Yang et al., 2023), and mathematical rea-
soning (Ahn et al., 2024). At the inference stage, techniques
such as chain-of-thought prompting (Wei et al., 2023) are
used to trigger step-by-step reasoning processes and im-
prove reasoning performance. Few-shot prompting (Brown
et al., 2020), least-to-most prompting (Zhou et al., 2023),
and program-of-thought prompting (Chen et al., 2023) have
proven effective in specific scenarios. Methods like self-

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

A Recipe to Advance Table Understanding with Language Models

a

b c d

Figure 2. Experimental analysis of challenges in table understanding with language models. (a) Impact of table size on task difficulty. (b)
Effect of verbalized tables with enriched semantic context. (c) Performance comparison of different reasoning methods on calculation-
required versus non-calculation questions. (d) Performance differences when processing normalized versus noisy tables.

consistency (Wang et al., 2023b) and structuring the reason-
ing process in forms like trees (Yao et al., 2023) or graphs
(Besta et al., 2024; Cao, 2024a) are also useful for more
complex reasoning tasks. Recently, many works have fo-
cused on using reinforcement learning (Lightman et al.,
2023; Uesato et al., 2022) to improve the reasoning abilities
of LMs during training. Our work focuses on inference-time
improvements and proposes a general framework applicable
to all kinds of LMs for table understanding and reasoning.

Fine-Tuning LMs for Table Understanding. Several stud-
ies have focused on fine-tuning language models to enhance
their understanding of tabular data. For example, based
on the masked language modeling approach introduced in
BERT (Devlin et al., 2019), models like TaPas (Herzig et al.,
2020), Pasta (Gu et al., 2022), and TUTA (Wang et al.,
2021) propose specialized pre-training methods to improve
LMs’ ability to process tables. Similarly, TAPEX (Liu et al.,
2022) pre-trains an encoder-decoder model to function as a
SQL executor, enabling better table comprehension. Recent
advancements, such as TableLlama (Zhang et al., 2024a),
TableGPT (Zha et al., 2023), and StructLLM (Zhuang et al.,
2024), leverage open-sourced decoder-only models like
Llama (Touvron et al., 2023) to pre-train larger models
optimized for various downstream table-related tasks.

Adapting LMs for Table Understanding Without Fine-
Tuning. Other studies focus on adapting LMs to table-
related tasks without requiring fine-tuning. For instance,
Binder (Cheng et al., 2023), LEVER (Ni et al., 2023), and
PoTable (Mao et al., 2024) generate SQL or Python pro-

grams, extending the capabilities of LMs to analyze tab-
ular data. Dater (Ye et al., 2023), TabSQLify (Nahid &
Rafiei, 2024a), ReAcTable (Zhang et al., 2023), TAP4LLM
(Sui et al., 2024), and Tree-of-Table (Ji et al., 2024) intro-
duce different methods to construct sub-tables, modifying
the tabular context for improved understanding. Chain-of-
Table (Wang et al., 2024) generalizes various table oper-
ations, dynamically generating reasoning chains to create
sub-tables. MIX-SC (Liu et al., 2024b) employs table nor-
malization and leverages self-consistency, combining re-
sults from Python agents and textual reasoning to enhance
performance. SpreadsheetEncoder (Dong et al., 2024) is
specifically designed to interpret tabular data within spread-
sheet environments. Our work also follows this direction to
focus on adapting LMs without fine-tuning. We identify key
challenges in table understanding and address them through
our proposed method, which can be applied to any advanced
LMs.

3. Challenges in Table Understanding
As illustrated in Figure 1, we identify and analyze the chal-
lenges in table understanding with language models (LMs)
through the experiments shown in Figure 2 and related dis-
cussions. Additionally, we propose targeted solutions to
address these challenges. The detailed settings of the chal-
lenge analysis experiment are provided in Appendix B.

Tabular Data Characteristics. Tabular data differs from
regular text, which is typically linear and sequential, due
to its structured nature. Although tabular data can be

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

A Recipe to Advance Table Understanding with Language Models

represented as sequential text, it is fundamentally a two-
dimensional array of cells. Each cell primarily contains
text, but the cells are interconnected and share relation-
ships with one another. Typically, cells within the same
column represent the same feature or type, while cells in the
same row correspond to a single data instance. Tables are
highly efficient for data representation, often containing a
large amount of information, making them inherently data-
intensive. Moreover, the text in tables is typically concise,
consisting of simple words and phrases rather than contin-
uous sentences, leading to sparse semantic context. Lastly,
tables frequently include substantial amounts of numerical
data, such as dates, times, scores, and measurements, which
often require specialized processing.

3.1. Difficulty in Locating Target Data

When LMs encounter tabular data, they often struggle to
locate the target data relevant to a given query, leading to
misunderstandings. This challenge arises because tabular
data is inherently data-intensive, typically containing large
volumes of information. Additionally, the structured nature
of tabular data makes it challenging for LMs to interpret in-
dividual cell contents within the broader context of headers
and other structural information. This issue can lead to long-
context hallucination (Huang et al., 2024). Moreover, LMs
are prone to neglecting information in the middle of the con-
text (Liu et al., 2024a), making it even harder to locate target
data and further impairing their overall comprehension of
the table. (Figure 1 - C1)

As shown in Figure 2(a), we present the changes in table
understanding accuracy across four different table size met-
rics: row count, column count, area size, and token count,
ranging from small to extra-large tables. Row count repre-
sents the number of data entries, while column count reflects
the number of dimensions or attributes per entry. Area size
is the product of row count and column count, and token
count refers to table sizes from the perspective of LMs. All
figures indicate that, regardless of the model used, overall
performance tends to decline as table size increases. For
weaker LMs, the performance drop is more pronounced.

To address this, we propose let LMs focusing on specific
parts of the table by explicitly constructing a focused sub-
table that includes only the relevant information needed for
the given context. We define this as the table-of-focus. By
narrowing the scope, table understanding becomes signifi-
cantly easier, which aligns with both our previous findings
and intuition. (Figure 1 - S1)

3.2. Table Semantic Deficiency

Tabular data is typically concise, with most cells contain-
ing simple words or phrases. Additionally, for each data
entry in a row, some descriptive information may reside

outside the row, such as in the top header or other structural
elements. Understanding a cell in isolation is challenging
and often requires a deeper comprehension of the structural
relationships within the table. This leads to the problem of
sparse semantic context, which is fundamentally differ-
ent from the rich semantic context found in most data used
during LMs’ pretraining (Dong et al., 2022). The semantic
deficiency in tables makes it difficult for LMs to effectively
understand and process tabular data. (Figure 1 - C2)

As shown in Figure 2(b), the Table represents the case where
the LM is provided only with the table input, while the
Table+Verbal indicates the table along with an additional
description, which we refer to as a verbalized table. This
description is generated by the LMs themselves, whereas
verbal plus refers to a description produced by more ad-
vanced LMs, which can be considered a ground-truth. We
observe that verbalization helps LMs perform better on
certain tables, leading to a slight overall performance im-
provement. This effect is more pronounced in weaker LMs,
resulting in a 1.5% increase in accuracy. Additionally, the
quality of the description plays a crucial role in improve-
ment.

To address this issue, we propose a solution where tables
are first verbalized into sequential, natural text as a descrip-
tion and then provided to LMs alongside the original table
before they directly tackle table-related tasks. It is similar
to table2text (Parikh et al., 2020). This transformation en-
riches the semantic context, making the data more aligned
with the LMs’ pretraining, thereby enhancing their ability
to effectively understand and process tabular data. (Figure 1
- S2)

3.3. Numerical Inaccuracy in Textual Reasoning

Tabular data often contains numerical values, such as dates,
times, scores, and other recorded numbers, and is typically
intensive. However, when LMs are used to process numer-
ical data in textual reasoning, they often face significant
limitations. LMs are prone to arithmetic calculation errors,
especially when dealing with large numbers. LMs are also
inefficient at handling iterative processes, particularly when
the number of iteration steps is large (Chen et al., 2023).
(Figure 1 - C3)

As shown in Figure 2(c), questions that do not require cal-
culations are relatively easier, allowing textual reasoning
to achieve a strong performance of 72.4%. However, when
calculations are required, performance drops significantly,
falling below that of the enhanced symbolic reasoning intro-
duced later. Specifically, textual reasoning suffers a 20.1%
decline, whereas enhanced symbolic reasoning experiences
a more moderate drop of 7.6%.

Symbolic methods offer a promising solution to these chal-

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

A Recipe to Advance Table Understanding with Language Models

1. Table Structure Understanding 2. Table Content Understanding 3. Table Reasoning for QA

Row
Lookup

Structure Extraction
Column Lookup

Table
Verbalization

TopHeaders KeyColumn

Re-Construct Table of Focus

Information
Estimation

Adaptive
Reasoning

Textual Reasoning

Text-guided Symbolic Reasoning

Reasoning Strategy
AssessmentTable 1st Row

2ndColumn

Table of Focus

Question

Construct
Table of Focus

Table of Focus

Verbalized Table

Textual
Guidance

Question

Answer

Structure Information
Program

Normalized
Table

Table
Normalization

Figure 3. The framework of TableMaster. It comprises three stages: (1) table structure understanding, where the table’s structure is
analyzed, and a table-of-focus is constructed through row and column lookup; (2) table content understanding, where the table-of-focus
is reconstructed based on the question, and its information is verbalized to enhance the semantic context; and (3) table reasoning for
question answering, where an adaptive reasoning strategy determines whether to use textual reasoning or text-guided symbolic reasoning
to derive the final answer. The dashed arrows indicate optional workflows, such as the table-of-focus re-construction and incorporating
text-guided symbolic reasoning.

lenges and have been explored extensively in prior research
(Cheng et al., 2023; Ni et al., 2023; Mao et al., 2024). Using
symbolic tools, such as SQL or Python programs in combi-
nation with LMs, provides an effective approach to handling
numerical data in tabular formats. (Figure 1 - S3)

3.4. Semantic Inflexibility in Symbolic Reasoning

Symbolic methods excel at arithmetic calculations. How-
ever, when prompting LMs to generate code for program of
thought reasoning, the performance is suboptimal. Instead
of truly understanding the context and generating problem-
solving code, LMs often rely on memorized code from the
pretraining stage (Yang et al., 2024). We refer to this limita-
tion as semantic inflexibility. In table understanding, this
challenge is exacerbated by the table’s complex structure
and concise text content. In real-world scenarios, noisy ta-
bles further hinder LMs’ symbolic reasoning capabilities.
Consequently, while symbolic reasoning with numerical
data is highly accurate, the generated code may be incorrect
due to issues in program logic or data handling, leading to
errors or unintended results. (Figure 1 - C4)

As shown in Figure 2(c), basic symbolic reasoning per-
forms worse overall, regardless of whether calculations are
required. It indicates that basic symbolic reasoning with
current LMs is ineffective. Furthermore, as illustrated in
Figure 2(d), when processing the same content in a noisy for-
mat, symbolic reasoning suffers a larger performance drop
of 31.8%, compared to a 20.5% decline for textual reason-
ing. This highlights the semantic inflexibility of symbolic
reasoning when handling noisy tables.

To address this, we first normalize the table structure and
content, ensuring that each column follows a consistent for-
mat. We then propose a solution where LMs first engage
in textual reasoning before generating symbolic reasoning

programs. This preliminary textual reasoning step serves
as a guide for subsequent symbolic reasoning, improving
alignment with the task context. Our approach can be seen
as encouraging LMs to think more thoroughly before rea-
soning, aligning with techniques like plan-and-solve (Wang
et al., 2023a). By incorporating textual reasoning as a foun-
dation, we enhance the accuracy and contextual relevance
of symbolic reasoning. As demonstrated in Figure 2(c), this
method achieves a higher accuracy of 59.1% for calculation-
required questions. (Figure 1 - S4)

4. TableMaster: A Recipe for Table
Understanding

Based on findings in Section 3, we introduce a recipe and
comprehensive framework, TableMaster, as shown in Fig-
ure 3. It integrates the propose solution proposed in Sec-
tion 3 into a unified recipe for table understanding. The
framework encompasses three key processes: Table Struc-
ture Understanding, Table Content Understanding, and Ta-
ble Reasoning for QA.

4.1. Task Formulation

In table understanding, the objective is to determine an
answer A given a table T and a question or statement Q
related to it. The table T is represented as a two-dimensional
array of cells,

Tm×n =

C1,1 C1,2 . . .
C2,1 Ci,j . . .

...
...

. . .

, where Ci,j denotes the cell in the i-th row and j-th column,
with the table consisting of m rows and n columns. In table-
based question answering tasks, Q represents a question,

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

A Recipe to Advance Table Understanding with Language Models

and A is the expected answer in natural language. In table-
based fact verification tasks, Q is a statement about the
table’s contents, and A ∈ {True, False} is a Boolean value
indicating whether the statement is correct. Therefore, the
goal is to develop a system F that can predict the answer
accurately based on the table and the given question or
statement, formalized as F(T, Q) = A.

4.2. Table Structure Understanding

The goal of table structure understanding is to analyze the
table’s structure and construct a Table-of-Focus that contains
relevant content for the given question. This process reduces
context length and simplifies the table as much as possible.

To enhance the efficiency of the framework, we introduce
the table peek technique. For structure extraction and cer-
tain operations, it is often unnecessary to process the entire
table; instead, inspecting only the top rows is sufficient.
Given a peek size k, the original table Tm×n is transformed
into a peek table Tk×n, where all columns are retained, but
the table is truncated to the first k rows.

Given a wild table TW , we first normalize it. We begin by
determining whether the table is in row-major or column-
major format. If it is in column-major format, we transpose
it using T = Transpose(T′). Next, we normalize and clean
all columns containing numerical information, ensuring con-
sistency in formats such as dates and numerical values, mak-
ing them directly processable in bulk by a program. After
this normalization process, we obtain the normalized table
TN .

We begin by extracting the top headers H and the key col-
umn. The top headers are used for column lookup, while
the key column serves as the subject or unique identifier for
each row. Next, we prompt LMs to perform column lookup
and row lookup to identify the relevant rows and columns
required for the task. Specifically, for column lookup, we
first define the set of candidate columns as C = Rank(H).
LMs will also rank all candidates based on their relevance
to the question. We then prompt the LMs to select b relevant
columns based on a given question Q:

C0 = Column Lookup(TN | Q),

where C0 = {ci | ci ∈ H} and |C0| = b. For row lookup,
we instruct the LMs to generate an SQL query to efficiently
filter and select a relevant rows R:

R = Row Lookup(TN | Q).

Using the identified rows and columns, we construct the
initial table-of-focus:

TF
a×b = Table Construction(TN , C0, R),

which contains only the filtered information necessary for
the task.

4.3. Table Content Understanding

The goal of table content understanding is to enrich the
semantic context of the table.

Studies have shown that LMs can assess whether sufficient
information is available to answer a question (Cao, 2024b;
Yin et al., 2023). We first prompt the LMs to estimate
whether the constructed Table-of-Focus TF

a×b, containing
C0, provides enough information to answer the given ques-
tion Q. If not, additional column attributes from the candi-
date column set C are incrementally added from the ranked
candidate headers until sufficient information is available or
all relevant top headers have been utilized. Subsequently,
a total of a′ columns from C are selected for further rea-
soning. We use re-construction to mitigate information loss
during the table-of-focus construction process. The detailed
re-construction algorithm can be found in Appendix H.

Once the information sufficiency check is passed, we ver-
balize the table into natural language, adding descriptions
to enrich the semantic context and producing a verbalized
table:

TT = Verbalization(TF
a×b).

This verbalized table is represented as sequential natural
language text T essentially rather than a structured table,
preserving rich semantic context while maintaining a con-
cise size. This transformation enhances information density,
further facilitating the LMs’ reasoning for the given ques-
tion.

4.4. Table Reasoning for Question Answering

The goal of this stage is to answer table-related questions by
understanding the table precisely and calculating accurately.

We employ an adaptive reasoning approach. First, we
prompt the LMs to determine the most appropriate reason-
ing strategy S for the given task. In the instruction, for
small tables or those without numerical data, the LMs are
allowed to perform textual reasoning directly to derive the
final result. For larger tables or those containing numerical
data, symbolic reasoning with programmatic execution is
selected.

S = Strategy Assessment(TF , TT, Q),

where S ∈ {T ,S} represents the chosen reasoning strategy,
with T denoting textual reasoning and S denoting symbolic
reasoning.

In symbolic reasoning, we first prompt the LMs to perform
textual reasoning to generate guidance G without providing
the final result. This intermediate reasoning step is then
used as input for symbolic reasoning, transitioning to a
text-guided symbolic reasoning approach using program-
matic methods. This adaptive method dynamically adjusts

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

A Recipe to Advance Table Understanding with Language Models

Table 1. Performance comparison between TableMaster and previous work on WikiTQ and TabFact. The values in the table represent
accuracy (%). The best result is bold, the second-best result is underlined, and the improvement over the previous best result is highlighted
in green. ‘-’ indicates that the result values were not reported in the related papers. Our method outperforms all other methods across both
datasets and different language models.

Method WikiTQ TabFact

gpt-3.5-turbo∼175B gpt-4o-mini∼8B Llama-3.170B gpt-3.5-turbo∼175B gpt-4o-mini∼8B Llama-3.170B

Text-to-SQL (Rajkumar et al., 2022) 52.90 - - 64.71 - -
End-to-End QA (Wang et al., 2024) 51.84 - - 70.45 - -
Few-Shot QA (Wang et al., 2024) 52.56 - - 71.54 - -
Chain-of-Thought (Wang et al., 2024) 53.48 - - 65.37 - -
ReAcTable (Zhang et al., 2023) 52.50 - - 74.40 - -
Binder (Cheng et al., 2023) 56.74 58.86 50.51 79.17 84.63 78.16
Dater (Ye et al., 2023) 52.81 58.33 43.53 78.01 80.98 81.57
TabSQLify (Nahid & Rafiei, 2024a) 64.70 57.02 55.78 79.50 78.75 70.70
Chain-of-Table (Wang et al., 2024) 59.94 55.60 62.22 80.20 84.24 85.62
Tree-of-Table (Ji et al., 2024) 61.11 - - 81.92 - -
PoTable (Mao et al., 2024) - 64.73 65.56 - 88.93 87.06

Ours (TableMaster) 68.21 (+3.51) 78.13 (+13.40) 77.95 (+12.39) 83.65 (+1.73) 90.12 (+1.19) 91.16 (+4.10)

based on the table’s size, complexity, and the nature of the
question, ensuring accurate and reliable results.

A =

{
Chain-of-Thought(TF , TT, Q), if S = T
P(Program-of-Thought(TF , TT, Q | G)), if S = S

where chain-of-thought and program-of-thought are two
prompting techniques, P represents a Python or SQL pro-
gram executor, A is the final answer for the current table
understanding task.

5. Experiments
5.1. Settings

We conduct extensive experiments to evaluate the perfor-
mance of TableMaster. Specifically, we assess its effec-
tiveness across three different table understanding datasets:
WikiTQ (Pasupat & Liang, 2015) (table-based question an-
swering), TabFact (Chen et al., 2020) (table-based fact veri-
fication), and FetaQA (Nan et al., 2022) (table-based free-
form question answering). For WikiTQ and TabFact, fol-
lowing previous work (Wang et al., 2024; Liu et al., 2024b),
we use exact match accuracy as the evaluation metric. For
FetaQA, we evaluate performance using BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores. Tables are
encoded in Markdown format before being input into lan-
guage models, with or without addresses, depending on the
specific case ??.

Our experiments utilize OpenAI models. Unless otherwise
stated, we set the temperature to 0 to ensure stable output
while keeping all other hyperparameters at their default val-
ues. The models used in our evaluation include gpt-4o (gpt-
4o-0806), gpt-4o-mini (gpt-4o-mini-0718), gpt-3.5-turbo
(gpt-3.5-turbo-0125), o1 (o1-preview-0912), and o1-mini
(o1-mini-0912). Additionally, we evaluate our methods on

Llama-3.1-70B (Llama-3.1-70B-Instruct). The exact num-
ber of parameters for several LMs (e.g., GPT, o1) has not
been publicly disclosed. Most parameter counts are esti-
mates reported to provide context for understanding model
performance. For more precise information, please refer to
the original or future official documentation (Abacha et al.,
2025).

For comparison, we select several strong baselines, includ-
ing both classic and state-of-the-art methods such as Binder
(Cheng et al., 2023), Dater (Ye et al., 2023), and Chain-of-
Table (Wang et al., 2024). Performance results for other
methods not in this work are cited directly from their origi-
nal or related papers, with sources indicated alongside the
method names in the results table.

Further analysis and additional experiments on TableMaster
can be found in the Appendix. The prompts used in Table-
Master can be found in Appendix N, while other prompts
used in this work are provided in Appendix O.

5.2. Main Results

As shown in Table 1, our TableMaster approach consistently
achieves the highest performance across both WikiTQ and
TabFact under different backbone models (gpt-3.5-turbo,
gpt-4o-mini, and Llama-3.1-70B). On WikiTQ, TableMas-
ter outperforms the strongest baselines by +3.51, +13.40,
and +12.39 points, respectively. A similar trend is observed
on TabFact, with improvements of +1.73, +1.19, and +4.10
points, demonstrating the robustness of our method across
diverse large language models. Results on the FetaQA
dataset are provided in Appendix C. These results confirm
that TableMaster not only generalizes well across different
base language models but also significantly enhances table
understanding and reasoning in complex QA tasks.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

A Recipe to Advance Table Understanding with Language Models

Table 2. Ablation results on WikiTQ and TabFact. The values in
the table represent accuracy (%), with ▽ indicating the perfor-
mance drop. The red text highlights the drop magnitude. Re-
moving any component from TableMaster results in a decrease in
performance.

Method WikiTQ ▽ TabFact ▽

TableMaster (gpt-4o-mini) 78.13 – 90.12 –

Structure
w/o Structure Extraction 74.75 (-3.38) 88.98 (-1.14)
w/o Column Lookup 77.00 (-1.13) 90.51 (-0.40)
w/o Row Lookup 76.59 (-1.54) 89.23 (-0.89)
w/o Table of Focus 76.40 (-1.73) 89.33 (-0.79)

Content
w/o Re-Construction 75.55 (-2.58) 89.72 (-0.40)
w/o Verbalization 75.78 (-2.35) 89.23 (-0.89)

Reasoning
w/o Textual Reasoning 73.85 (-4.28) 88.39 (-1.73)
w/o Symbolic Reasoning 76.10 (-2.03) 89.18 (-0.94)
w/o Textual Guidance 75.21 (-2.92) 89.67 (-0.44)

Notably, methods such as Binder, Dater, TabSQLify, and
Chain-of-Table exhibit subpar performance with gpt-4o-
mini, in some cases performing worse than with gpt-3.5-
turbo. Our empirical analysis suggests that these methods
primarily rely on symbolic approaches to construct subta-
bles, which often fail to leverage the strengths of chain-
of-thought reasoning in textual contexts. This limitation
underscores the necessity of integrating advanced textual
reasoning strategies, as effectively demonstrated by our
TableMaster approach.

5.3. Ablation Study

To analyze the contribution of each component in TableMas-
ter, we conduct an ablation study on WikiTQ and TabFact.
Table 2 presents the results, and the performance drop from
the full model is highlighted in red. The results demon-
strate that removing any component leads to a decrease in
accuracy, confirming the importance of each module in the
overall framework.

Structure. The structure understanding components play
a crucial role in table comprehension. Removing structure
extraction results in a notable accuracy drop of 3.38% on
WikiTQ and 1.14% on TabFact, indicating that explicitly
extracting the table’s structure is essential for effective rea-
soning, as failing to do so can lead to errors in subsequent
steps. Among lookup strategies, removing row lookup leads
to a 1.54% decrease in WikiTQ accuracy, whereas removing
column lookup results in a smaller drop of 1.13%. This sug-
gests that row-based information retrieval is more critical
than column-based lookup, as large tables typically contain
a greater number of rows. Additionally, removing the table-
of-focus reduces performance by 1.73% on WikiTQ and
0.79% on TabFact, further emphasizing its important role in

structuring relevant table content to extract key information
for reasoning.

Content. Table content understanding also significantly
influences performance. Eliminating re-construction, which
iteratively refines the Table-of-Focus based on the question,
results in a 2.58% accuracy drop on WikiTQ and 0.40%
on TabFact, highlighting the importance of this process.
Similarly, removing table verbalization, which enriches the
semantic context of the table by adding descriptive elements,
leads to a 2.35% decrease in WikiTQ accuracy. However, its
impact on TabFact is minimal (0.23% drop), suggesting that
verbalization becomes even more beneficial for complex
table understanding tasks.

Reasoning. The reasoning stage exhibits the most signifi-
cant performance drop when removed. Removing textual
reasoning leads to the largest accuracy decline, with a 4.28%
drop on WikiTQ and 1.73% on TabFact, underscoring its
necessity for complex reasoning tasks. Similarly, remov-
ing symbolic reasoning results in a 2.03% and 0.79% drop
on WikiTQ and TabFact, respectively, demonstrating that
symbolic reasoning enhances numerical and structured table
interpretations. Finally, removing textual guidance, which
improves the semantic flexibility of symbolic reasoning,
reduces accuracy by 2.92% on WikiTQ and 0.44% on Tab-
Fact. This highlights that textual guidance is particularly
beneficial and important in symbolic reasoning by ensuring
alignment with the problem context.

These results reveal that TableMaster ’s performance relies
on a combination of structural understanding, content adap-
tation, and an effective reasoning strategy. Among these,
structural extraction and reasoning components contribute
the most to performance, with textual reasoning being the
most critical. Additionally, while content understanding
components such as re-construction and verbalization pro-
vide meaningful improvements, their impact varies across
datasets. These findings validate the effectiveness of our
framework in handling diverse table understanding tasks.

6. Conclusion
In this paper, we explore table understanding with language
models. Given the characteristics of tabular data, we iden-
tify key challenges in table understanding. To overcome
these challenges, we propose TableMaster, a recipe and
comprehensive framework that integrates multiple solutions.
Extensive analyses and experiments demonstrate our find-
ings and the effectiveness of TableMaster. In the future,
we plan to extend and refine the framework to improve its
performance across diverse practical applications.

Our code can be found at https://anonymous.
4open.science/r/TableMaster-8646.

8

https://anonymous.4open.science/r/TableMaster-8646
https://anonymous.4open.science/r/TableMaster-8646

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A Recipe to Advance Table Understanding with Language Models

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Abacha, A. B., wai Yim, W., Fu, Y., Sun, Z., Yetisgen, M.,

Xia, F., and Lin, T. Medec: A benchmark for medical
error detection and correction in clinical notes, 2025.
URL https://arxiv.org/abs/2412.19260.

Ahn, J., Verma, R., Lou, R., Liu, D., Zhang, R., and Yin,
W. Large language models for mathematical reason-
ing: Progresses and challenges. In Falk, N., Papi, S.,
and Zhang, M. (eds.), Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics: Student Research Workshop,
pp. 225–237, St. Julian’s, Malta, March 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-srw.17.

Anil, R., Dai, A. M., Firat, O., Johnson, M., Lepikhin, D.,
Passos, A., Shakeri, S., Taropa, E., Bailey, P., Chen, Z.,
Chu, E., Clark, J. H., Shafey, L. E., Huang, Y., Meier-
Hellstern, K., Mishra, G., Moreira, E., Omernick, M.,
Robinson, K., Ruder, S., Tay, Y., Xiao, K., Xu, Y., Zhang,
Y., Abrego, G. H., Ahn, J., Austin, J., Barham, P., Botha,
J., Bradbury, J., Brahma, S., Brooks, K., Catasta, M.,
Cheng, Y., Cherry, C., Choquette-Choo, C. A., Chowd-
hery, A., Crepy, C., Dave, S., Dehghani, M., Dev, S.,
Devlin, J., Díaz, M., Du, N., Dyer, E., Feinberg, V.,
Feng, F., Fienber, V., Freitag, M., Garcia, X., Gehrmann,
S., Gonzalez, L., Gur-Ari, G., Hand, S., Hashemi, H.,
Hou, L., Howland, J., Hu, A., Hui, J., Hurwitz, J., Isard,
M., Ittycheriah, A., Jagielski, M., Jia, W., Kenealy, K.,
Krikun, M., Kudugunta, S., Lan, C., Lee, K., Lee, B.,
Li, E., Li, M., Li, W., Li, Y., Li, J., Lim, H., Lin, H.,
Liu, Z., Liu, F., Maggioni, M., Mahendru, A., Maynez,
J., Misra, V., Moussalem, M., Nado, Z., Nham, J., Ni,
E., Nystrom, A., Parrish, A., Pellat, M., Polacek, M.,
Polozov, A., Pope, R., Qiao, S., Reif, E., Richter, B.,
Riley, P., Ros, A. C., Roy, A., Saeta, B., Samuel, R.,
Shelby, R., Slone, A., Smilkov, D., So, D. R., Sohn, D.,
Tokumine, S., Valter, D., Vasudevan, V., Vodrahalli, K.,
Wang, X., Wang, P., Wang, Z., Wang, T., Wieting, J.,
Wu, Y., Xu, K., Xu, Y., Xue, L., Yin, P., Yu, J., Zhang,
Q., Zheng, S., Zheng, C., Zhou, W., Zhou, D., Petrov,
S., and Wu, Y. Palm 2 technical report, 2023. URL
https://arxiv.org/abs/2305.10403.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., and Hoefler, T. Graph

of thoughts: Solving elaborate problems with large lan-
guage models. Proceedings of the AAAI Conference
on Artificial Intelligence, 38(16):17682–17690, March
2024. ISSN 2159-5399. doi: 10.1609/aaai.v38i16.
29720. URL http://dx.doi.org/10.1609/
aaai.v38i16.29720.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners, 2020. URL https://
arxiv.org/abs/2005.14165.

Cao, L. GraphReason: Enhancing reasoning capabilities of
large language models through a graph-based verification
approach. In Dalvi Mishra, B., Durrett, G., Jansen, P., Lip-
kin, B., Neves Ribeiro, D., Wong, L., Ye, X., and Zhao, W.
(eds.), Proceedings of the 2nd Workshop on Natural Lan-
guage Reasoning and Structured Explanations (@ACL
2024), pp. 1–12, Bangkok, Thailand, August 2024a. As-
sociation for Computational Linguistics. URL https:
//aclanthology.org/2024.nlrse-1.1.

Cao, L. Learn to refuse: Making large language mod-
els more controllable and reliable through knowledge
scope limitation and refusal mechanism. In Al-Onaizan,
Y., Bansal, M., and Chen, Y.-N. (eds.), Proceedings
of the 2024 Conference on Empirical Methods in Nat-
ural Language Processing, pp. 3628–3646, Miami,
Florida, USA, November 2024b. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
212. URL https://aclanthology.org/2024.
emnlp-main.212.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-
Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak,
N., Tang, J., Babuschkin, I., Balaji, S., Jain, S., Saun-
ders, W., Hesse, C., Carr, A. N., Leike, J., Achiam,
J., Misra, V., Morikawa, E., Radford, A., Knight, M.,
Brundage, M., Murati, M., Mayer, K., Welinder, P., Mc-
Grew, B., Amodei, D., McCandlish, S., Sutskever, I., and
Zaremba, W. Evaluating large language models trained
on code, 2021. URL https://arxiv.org/abs/
2107.03374.

9

https://arxiv.org/abs/2412.19260
https://aclanthology.org/2024.eacl-srw.17
https://aclanthology.org/2024.eacl-srw.17
https://arxiv.org/abs/2305.10403
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://aclanthology.org/2024.nlrse-1.1
https://aclanthology.org/2024.nlrse-1.1
https://aclanthology.org/2024.emnlp-main.212
https://aclanthology.org/2024.emnlp-main.212
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A Recipe to Advance Table Understanding with Language Models

Chen, W. Large language models are few(1)-shot ta-
ble reasoners. In Vlachos, A. and Augenstein, I.
(eds.), Findings of the Association for Computational
Linguistics: EACL 2023, pp. 1120–1130, Dubrovnik,
Croatia, May 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-eacl.
83. URL https://aclanthology.org/2023.
findings-eacl.83.

Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li, S.,
Zhou, X., and Wang, W. Y. Tabfact: A large-scale dataset
for table-based fact verification, 2020. URL https:
//arxiv.org/abs/1909.02164.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks, 2023. URL
https://arxiv.org/abs/2211.12588.

Cheng, Z., Xie, T., Shi, P., Li, C., Nadkarni, R., Hu, Y.,
Xiong, C., Radev, D., Ostendorf, M., Zettlemoyer, L.,
Smith, N. A., and Yu, T. Binding language models in sym-
bolic languages, 2023. URL https://arxiv.org/
abs/2210.02875.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019. URL https://arxiv.
org/abs/1810.04805.

Dong, H., Cheng, Z., He, X., Zhou, M., Zhou, A., Zhou,
F., Liu, A., Han, S., and Zhang, D. Table pre-training:
A survey on model architectures, pre-training objectives,
and downstream tasks, 2022. URL https://arxiv.
org/abs/2201.09745.

Dong, H., Zhao, J., Tian, Y., Xiong, J., Zhou, M., Lin, Y.,
Cambronero, J., He, Y., Han, S., and Zhang, D. En-
coding spreadsheets for large language models. In Al-
Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Proceed-
ings of the 2024 Conference on Empirical Methods in
Natural Language Processing, pp. 20728–20748, Miami,
Florida, USA, November 2024. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
1154. URL https://aclanthology.org/2024.
emnlp-main.1154.

Fang, X., Xu, W., Tan, F. A., Zhang, J., Hu, Z., Qi, Y., Nick-
leach, S., Socolinsky, D., Sengamedu, S., and Faloutsos,
C. Large language models(llms) on tabular data: Pre-
diction, generation, and understanding – a survey, 2024.
URL https://arxiv.org/abs/2402.17944.

Ghasemi, M. and Amyot, D. Process mining in healthcare:
a systematised literature review. International Journal of
Electronic Healthcare, 9(1):60–88, 2016.

Gu, Z., Fan, J., Tang, N., Nakov, P., Zhao, X., and Du,
X. Pasta: Table-operations aware fact verification via
sentence-table cloze pre-training, 2022. URL https:
//arxiv.org/abs/2211.02816.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,
Giorno, A. D., Gopi, S., Javaheripi, M., Kauffmann, P.,
de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T., Lee,
Y. T., and Li, Y. Textbooks are all you need, 2023. URL
https://arxiv.org/abs/2306.11644.

Herzig, J., Nowak, P. K., Müller, T., rancesco Piccinno,
and Eisenschlos, J. M. TAPAS: weakly supervised table
parsing via pre-training. CoRR, abs/2004.02349, 2020.
URL https://arxiv.org/abs/2004.02349.

Huang, L., Yu, W., Ma, W., Zhong, W., Feng, Z., Wang,
H., Chen, Q., Peng, W., Feng, X., Qin, B., and Liu,
T. A survey on hallucination in large language mod-
els: Principles, taxonomy, challenges, and open ques-
tions. ACM Transactions on Information Systems, nov
2024. ISSN 1558-2868. doi: 10.1145/3703155. URL
http://dx.doi.org/10.1145/3703155.

Ji, D., Zhu, L., Gao, S., Xu, P., Lu, H., Ye, J., and Zhao, F.
Tree-of-table: Unleashing the power of llms for enhanced
large-scale table understanding, 2024. URL https:
//arxiv.org/abs/2411.08516.

Kamalloo, E., Dziri, N., Clarke, C., and Rafiei, D. Evaluat-
ing open-domain question answering in the era of large
language models. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 5591–5606, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.307. URL https:
//aclanthology.org/2023.acl-long.307.

Li, Y., Huang, Z., Yan, J., Zhou, Y., Ye, F., and Liu, X.
Gfte: Graph-based financial table extraction, 2020. URL
https://arxiv.org/abs/2003.07560.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Lin, C.-Y. ROUGE: A package for automatic evalua-
tion of summaries. In Text Summarization Branches
Out, pp. 74–81, Barcelona, Spain, July 2004. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/W04-1013/.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How

10

https://aclanthology.org/2023.findings-eacl.83
https://aclanthology.org/2023.findings-eacl.83
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/1909.02164
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/2210.02875
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2201.09745
https://arxiv.org/abs/2201.09745
https://aclanthology.org/2024.emnlp-main.1154
https://aclanthology.org/2024.emnlp-main.1154
https://arxiv.org/abs/2402.17944
https://arxiv.org/abs/2211.02816
https://arxiv.org/abs/2211.02816
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2004.02349
http://dx.doi.org/10.1145/3703155
https://arxiv.org/abs/2411.08516
https://arxiv.org/abs/2411.08516
https://aclanthology.org/2023.acl-long.307
https://aclanthology.org/2023.acl-long.307
https://arxiv.org/abs/2003.07560
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

A Recipe to Advance Table Understanding with Language Models

language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157–173,
2024a. doi: 10.1162/tacl_a_00638. URL https://
aclanthology.org/2024.tacl-1.9.

Liu, Q., Chen, B., Guo, J., Ziyadi, M., Lin, Z., Chen, W.,
and Lou, J.-G. Tapex: Table pre-training via learning
a neural sql executor, 2022. URL https://arxiv.
org/abs/2107.07653.

Liu, T., Wang, F., and Chen, M. Rethinking tabular data
understanding with large language models. In Duh,
K., Gomez, H., and Bethard, S. (eds.), Proceedings of
the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pp.
450–482, Mexico City, Mexico, June 2024b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2024.naacl-long.26. URL https://aclanthology.
org/2024.naacl-long.26.

Mao, Q., Liu, Q., Li, Z., Cheng, M., Zhang, Z., and Li,
R. Potable: Programming standardly on table-based
reasoning like a human analyst, 2024. URL https:
//arxiv.org/abs/2412.04272.

Maynez, J., Agrawal, P., and Gehrmann, S. Benchmarking
large language model capabilities for conditional gen-
eration. In Rogers, A., Boyd-Graber, J., and Okazaki,
N. (eds.), Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 9194–9213, Toronto, Canada,
July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.511. URL https:
//aclanthology.org/2023.acl-long.511/.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher,
R., Amatriain, X., and Gao, J. Large language models:
A survey, 2024. URL https://arxiv.org/abs/
2402.06196.

Nahid, M. and Rafiei, D. TabSQLify: Enhancing reason-
ing capabilities of LLMs through table decomposition.
In Duh, K., Gomez, H., and Bethard, S. (eds.), Pro-
ceedings of the 2024 Conference of the North Ameri-
can Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1:
Long Papers), pp. 5725–5737, Mexico City, Mexico,
June 2024a. Association for Computational Linguistics.
doi: 10.18653/v1/2024.naacl-long.320. URL https://
aclanthology.org/2024.naacl-long.320.

Nahid, M. M. H. and Rafiei, D. NormTab: Improving
symbolic reasoning in LLMs through tabular data normal-
ization. In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N.
(eds.), Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pp. 3569–3585, Miami, Florida,

USA, November 2024b. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
203. URL https://aclanthology.org/2024.
findings-emnlp.203/.

Nan, L., Hsieh, C., Mao, Z., Lin, X. V., Verma, N., Zhang,
R., Kryściński, W., Schoelkopf, H., Kong, R., Tang, X.,
Mutuma, M., Rosand, B., Trindade, I., Bandaru, R., Cun-
ningham, J., Xiong, C., Radev, D., and Radev, D. Fe-
TaQA: Free-form table question answering. Transactions
of the Association for Computational Linguistics, 10:35–
49, 2022. doi: 10.1162/tacl_a_00446. URL https:
//aclanthology.org/2022.tacl-1.3/.

Ni, A., Iyer, S., Radev, D., Stoyanov, V., tau Yih, W., Wang,
S. I., and Lin, X. V. Lever: Learning to verify language-
to-code generation with execution, 2023. URL https:
//arxiv.org/abs/2302.08468.

OpenAI. Gpt-4 technical report, 2024. URL https://
arxiv.org/abs/2303.08774.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu: a
method for automatic evaluation of machine translation.
In Isabelle, P., Charniak, E., and Lin, D. (eds.), Proceed-
ings of the 40th Annual Meeting of the Association for
Computational Linguistics, pp. 311–318, Philadelphia,
Pennsylvania, USA, July 2002. Association for Computa-
tional Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040/.

Parikh, A. P., Wang, X., Gehrmann, S., Faruqui, M., Dhin-
gra, B., Yang, D., and Das, D. Totto: A controlled
table-to-text generation dataset, 2020. URL https:
//arxiv.org/abs/2004.14373.

Pasupat, P. and Liang, P. Compositional semantic pars-
ing on semi-structured tables. In Zong, C. and Strube,
M. (eds.), Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 1470–1480,
Beijing, China, July 2015. Association for Computa-
tional Linguistics. doi: 10.3115/v1/P15-1142. URL
https://aclanthology.org/P15-1142.

Plaat, A., Wong, A., Verberne, S., Broekens, J., van Stein,
N., and Back, T. Reasoning with large language models,
a survey, 2024. URL https://arxiv.org/abs/
2407.11511.

Rajkumar, N., Li, R., and Bahdanau, D. Evaluating the
text-to-sql capabilities of large language models, 2022.
URL https://arxiv.org/abs/2204.00498.

Sui, Y., Zou, J., Zhou, M., He, X., Du, L., Han,
S., and Zhang, D. TAP4LLM: Table provider on

11

https://aclanthology.org/2024.tacl-1.9
https://aclanthology.org/2024.tacl-1.9
https://arxiv.org/abs/2107.07653
https://arxiv.org/abs/2107.07653
https://aclanthology.org/2024.naacl-long.26
https://aclanthology.org/2024.naacl-long.26
https://arxiv.org/abs/2412.04272
https://arxiv.org/abs/2412.04272
https://aclanthology.org/2023.acl-long.511/
https://aclanthology.org/2023.acl-long.511/
https://arxiv.org/abs/2402.06196
https://arxiv.org/abs/2402.06196
https://aclanthology.org/2024.naacl-long.320
https://aclanthology.org/2024.naacl-long.320
https://aclanthology.org/2024.findings-emnlp.203/
https://aclanthology.org/2024.findings-emnlp.203/
https://aclanthology.org/2022.tacl-1.3/
https://aclanthology.org/2022.tacl-1.3/
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://aclanthology.org/P02-1040/
https://arxiv.org/abs/2004.14373
https://arxiv.org/abs/2004.14373
https://aclanthology.org/P15-1142
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2407.11511
https://arxiv.org/abs/2204.00498

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

A Recipe to Advance Table Understanding with Language Models

sampling, augmenting, and packing semi-structured
data for large language model reasoning. In Al-
Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.), Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 10306–10323, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
603. URL https://aclanthology.org/2024.
findings-emnlp.603.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay,
Y., Chung, H. W., Chowdhery, A., Le, Q. V., Chi, E. H.,
Zhou, D., and Wei, J. Challenging big-bench tasks and
whether chain-of-thought can solve them, 2022. URL
https://arxiv.org/abs/2210.09261.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro,
E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models, 2023. URL https://arxiv.org/
abs/2302.13971.

Uesato, J., Kushman, N., Kumar, R., Song, F., Siegel, N.,
Wang, L., Creswell, A., Irving, G., and Higgins, I. Solv-
ing math word problems with process- and outcome-
based feedback, 2022. URL https://arxiv.org/
abs/2211.14275.

Wang, L., Xu, W., Lan, Y., Hu, Z., Lan, Y., Lee, R. K.-
W., and Lim, E.-P. Plan-and-solve prompting: Improv-
ing zero-shot chain-of-thought reasoning by large lan-
guage models. In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 2609–2634, Toronto, Canada,
July 2023a. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.147. URL https:
//aclanthology.org/2023.acl-long.147.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language mod-
els, 2023b. URL https://arxiv.org/abs/2203.
11171.

Wang, Z., Dong, H., Jia, R., Li, J., Fu, Z., Han, S., and
Zhang, D. Tuta: Tree-based transformers for generally
structured table pre-training. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1780–1790, 2021.

Wang, Z., Zhang, H., Li, C.-L., Eisenschlos, J. M., Perot,
V., Wang, Z., Miculicich, L., Fujii, Y., Shang, J., Lee,
C.-Y., and Pfister, T. Chain-of-table: Evolving tables in
the reasoning chain for table understanding, 2024. URL
https://arxiv.org/abs/2401.04398.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D.,
Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,
Liang, P., Dean, J., and Fedus, W. Emergent abili-
ties of large language models, 2022. URL https:
//arxiv.org/abs/2206.07682.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter,
B., Xia, F., Chi, E., Le, Q., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models, 2023. URL https://arxiv.org/abs/
2201.11903.

Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and
Schuurmans, D. Foundation models for decision mak-
ing: Problems, methods, and opportunities, 2023. URL
https://arxiv.org/abs/2303.04129.

Yang, Y., Xiong, S., Payani, A., Shareghi, E., and Fekri,
F. Can LLMs reason in the wild with programs? In
Al-Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.),
Findings of the Association for Computational Linguis-
tics: EMNLP 2024, pp. 9806–9829, Miami, Florida,
USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.
573. URL https://aclanthology.org/2024.
findings-emnlp.573/.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. Tree of thoughts: Deliberate
problem solving with large language models, 2023. URL
https://arxiv.org/abs/2305.10601.

Ye, Y., Hui, B., Yang, M., Li, B., Huang, F., and Li, Y. Large
language models are versatile decomposers: Decompose
evidence and questions for table-based reasoning, 2023.
URL https://arxiv.org/abs/2301.13808.

Yin, Z., Sun, Q., Guo, Q., Wu, J., Qiu, X., and
Huang, X. Do large language models know what they
don’t know? In Rogers, A., Boyd-Graber, J., and
Okazaki, N. (eds.), Findings of the Association for
Computational Linguistics: ACL 2023, pp. 8653–8665,
Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.findings-acl.
551. URL https://aclanthology.org/2023.
findings-acl.551.

Zha, L., Zhou, J., Li, L., Wang, R., Huang, Q., Yang, S.,
Yuan, J., Su, C., Li, X., Su, A., Zhang, T., Zhou, C.,
Shou, K., Wang, M., Zhu, W., Lu, G., Ye, C., Ye, Y.,
Ye, W., Zhang, Y., Deng, X., Xu, J., Wang, H., Chen,
G., and Zhao, J. Tablegpt: Towards unifying tables, na-
ture language and commands into one gpt, 2023. URL
https://arxiv.org/abs/2307.08674.

12

https://aclanthology.org/2024.findings-emnlp.603
https://aclanthology.org/2024.findings-emnlp.603
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2211.14275
https://arxiv.org/abs/2211.14275
https://aclanthology.org/2023.acl-long.147
https://aclanthology.org/2023.acl-long.147
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2401.04398
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2303.04129
https://aclanthology.org/2024.findings-emnlp.573/
https://aclanthology.org/2024.findings-emnlp.573/
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2301.13808
https://aclanthology.org/2023.findings-acl.551
https://aclanthology.org/2023.findings-acl.551
https://arxiv.org/abs/2307.08674

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

A Recipe to Advance Table Understanding with Language Models

Zhang, T., Yue, X., Li, Y., and Sun, H. Tablellama: Towards
open large generalist models for tables, 2024a. URL
https://arxiv.org/abs/2311.09206.

Zhang, X., Wang, D., Dou, L., Zhu, Q., and Che, W. A sur-
vey of table reasoning with large language models, 2024b.
URL https://arxiv.org/abs/2402.08259.

Zhang, Y., Henkel, J., Floratou, A., Cahoon, J., Deep, S., and
Patel, J. M. Reactable: Enhancing react for table question
answering, 2023. URL https://arxiv.org/abs/
2310.00815.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.,
Schuurmans, D., Cui, C., Bousquet, O., Le, Q., and Chi,
E. Least-to-most prompting enables complex reasoning in
large language models, 2023. URL https://arxiv.
org/abs/2205.10625.

Zhu, Y., Moniz, J. R. A., Bhargava, S., Lu, J., Piraviperu-
mal, D., Li, S., Zhang, Y., Yu, H., and Tseng, B.-H. Can
large language models understand context? In Graham,
Y. and Purver, M. (eds.), Findings of the Association for
Computational Linguistics: EACL 2024, pp. 2004–2018,
St. Julian’s, Malta, March 2024. Association for Compu-
tational Linguistics. URL https://aclanthology.
org/2024.findings-eacl.135.

Zhuang, A., Zhang, G., Zheng, T., Du, X., Wang, J.,
Ren, W., Huang, S. W., Fu, J., Yue, X., and Chen,
W. Structlm: Towards building generalist models for
structured knowledge grounding, 2024. URL https:
//arxiv.org/abs/2402.16671.

13

https://arxiv.org/abs/2311.09206
https://arxiv.org/abs/2402.08259
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2310.00815
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://aclanthology.org/2024.findings-eacl.135
https://aclanthology.org/2024.findings-eacl.135
https://arxiv.org/abs/2402.16671
https://arxiv.org/abs/2402.16671

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

A Recipe to Advance Table Understanding with Language Models

Contents of Appendix

A Limitations, Extendability, and Future Works 15

A.1 Technical Refinement . 15

A.2 Downstream Applications . 15

B Detailed Settings of Challenge Analysis Experiments 16

C Experimental Results on the FetaQA Dataset 16

D Table Understanding Baselines 17

E Performance Analysis Under Different Table Sizes 18

F Performance Analysis Under Different Table Peek Sizes 20

G Efficiency Analysis of TableMaster 21

G.1 Theoretical Analysis . 21

G.2 Empirical Analysis . 21

H Detailed Algorithm of Table-of-Focus Re-Construction 22

I Analysis of Table-of-Focus Re-Construction 23

J Analysis of Adaptive Reasoning 23

K Information Missing and Table Reasoning with Full Table 25

L Case Study of Table Verbalization 25

M Case Study of TableMaster 27

N Prompt Design in TableMaster 28

O Prompts Used in Analysis Experiments 37

P Notion Table 42

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

A Recipe to Advance Table Understanding with Language Models

A. Limitations, Extendability, and Future Works
Although we conduct extensive experiments and in-depth analysis, this work still has certain limitations. However, we
believe that TableMaster possesses extensibility, allowing for future refinements. These improvements may include technical
refinement as well as optimizing its application in downstream applications.

A.1. Technical Refinement

Wild Table. In our experiments, the tables in the three datasets we use are already cleaned; therefore, we do not explicitly
implement table normalization in our evaluation experiments. However, we conduct analysis experiments to highlight the
importance of table normalization for handling wild tables. In practical scenarios, various tools are available for table
normalization. Regular expression matching can be employed for formatting, and small language models can also be
leveraged to efficiently process and normalize tables (Nahid & Rafiei, 2024b).

Hierarchy Table. In our work, we assume all tables are flat, allowing for straightforward utilization and extraction of
structural information. However, many real-world tables are hierarchical, where data is organized in a tree structure, making
table structure understanding more challenging. We envision two possible solutions: converting hierarchical tables into flat
tables or designing a tree-based structure extraction method to effectively locate target data.

Table-of-Focus Construction. In designing the Table-of-Focus, we employ two efficient methods: LM prompting for
column lookup and SQL generation for row lookup. The Table-of-Focus is then constructed based on the results of these
two lookups. Many previous works (Ji et al., 2024; Wang et al., 2024) have introduced complex approaches for extracting
relevant sub-tables. In contrast, our method remains intentionally simple, prioritizing efficiency and adaptability. We believe
that in the future, more advanced techniques may emerge to further enhance the extraction of key information.

Table Verbalization. To facilitate the implementation of TableMaster, we utilize language models themselves to verbalize
the table. However, the quality of the generated text is not optimal due to the challenges of open-ended text generation.
Several existing studies, such as Table-to-Text (Parikh et al., 2020), have explored this sub-task. In the future, we can
enhance performance and efficiency by replacing this step with specifically trained small language models, which could
further improve the semantic density of the verbalized table.

Adaptive Reasoning. Adaptive reasoning can be unstable, as language models may not always select the optimal strategy.
We further explore this issue in Appendix J. In the future, training a dedicated machine learning model to guide LMs in
selecting the most effective reasoning strategy could improve stability and performance.

Information Missing. The construction of the Table-of-Focus involves a trade-off between precision and recall. If recall is
insufficient, essential information may be missing for final reasoning, while low precision can render the extracted content
less useful. Although we use re-construction to mitigate information loss during the Table-of-Focus construction process,
our analysis reveals that some information missing persist in row lookup. We further investigate this issue in Appendix K.

Efficiency. Efficiency is crucial in table processing and table understanding. To enhance efficiency, we incorporate the table
peek technique, which reduces the context that language models need to process at certain steps. We further explore this
technique in Appendix F and analyze the overall efficiency in Appendix G. In real-world applications, for optimal efficiency,
we consider replacing certain steps with specialized small language models, balancing the trade-off between efficiency and
performance .

A.2. Downstream Applications

Web Tables. The web contains a vast number of structured tables, including Wikipedia tables, government reports, and
other online tabular data. Extracting and reasoning over these tables is crucial for applications such as fact verification, web
search, and knowledge graph construction. TableMaster enhances the ability to interpret, query, and reason over these tables,
enabling more accurate and context-aware information retrieval.

Spreadsheets. Spreadsheets are widely used in business, finance, and scientific research for data management and
analysis. Traditional spreadsheet tools require manual formula creation and human intervention to derive insights. In
contrast, TableMaster can automate tasks such as data summarization, trend analysis, anomaly detection, and reasoning-
based computations. By integrating with tools like Microsoft Excel and Google Sheets, TableMaster enables intelligent
spreadsheet interactions, allowing users to query data using natural language and receive precise, structured responses.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

A Recipe to Advance Table Understanding with Language Models

Databases. Structured databases store vast amounts of relational data, typically accessed through SQL queries or predefined
interfaces. However, many users lack SQL proficiency, posing barriers to efficient data retrieval. TableMaster, with its Table-
of-Focus mechanism, facilitates the quick understanding of large databases, enabling seamless querying of relational data
without the need for manual SQL query writing. Additionally, it enhances database reasoning tasks, including knowledge
extraction, making structured data more accessible to non-technical users.

In real-world applications, different scenarios have varying requirements, and it may not be necessary to incorporate all
aspects of TableMaster. Instead, certain components can be adapted or selectively applied based on specific needs.

Finally, as discussed above, there is still much work to be done in the future to further enhance language model-based table
understanding. We hope this work serves as a recipe of comprehensive references on current state-of-the-art methods and
provides guidance for future advancements in this field.

B. Detailed Settings of Challenge Analysis Experiments
We conduct extensive experiments to analyze the challenges of table understanding with language models (LMs). Specifically,
we perform challenge analysis experiments on the WikiTQ dataset (Pasupat & Liang, 2015), which consists of 4,344 data
instances. Following previous work (Wang et al., 2024; Liu et al., 2024b), we use the exact match of the final answer as
the evaluation metric to measure accuracy. Our experiments utilize OpenAI models. Unless otherwise stated, we set the
temperature to 0 to ensure stable output while keeping all other hyperparameters at their default values. For each model, we
use the following versions: gpt-4o (gpt-4o-0806), gpt-4o-mini (gpt-4o-mini-0718), gpt-3.5-turbo (gpt-3.5-turbo-0125), and
o1 (o1-preview-0912).

Effect of Table Size (Figure 2(a)). We evaluate how table size impacts task difficulty using a direct prompting approach
(Prompt 21) with gpt-4o, gpt-4o-mini and gpt-3.5-turbo to generate answers. We categorize table size based on four metrics:
row count, column count, area size (computed as the product of row and column counts), and token count (measured using
the cl100k_base encoding). The tables are divided into four size categories—small, medium, large, and extra-large—strictly
partitioned into quartiles from the smallest to the largest. We then analyze results by splitting performance based on table
size.

Effect of Verbalization (Figure 2(b)). We investigate the impact of enriching semantic context through verbalized tables
by comparing three approaches. In the Table setting, the LM processes the raw table directly using direct prompting
(Prompt 21). In Table + Verbal, the table is first verbalized using the LM itself (Prompt 24), and both the original and
verbalized tables are then provided as input. Lastly, in Table + Verbal Plus, the verbalized table is generated using gpt-4o,
further enhancing the semantic richness of the input.

Comparison of Reasoning Methods (Figure 2(c)). We compare different reasoning approaches—textual reasoning
(Prompt 22), symbolic reasoning (Prompt 23), and text-guided symbolic reasoning (Prompt 25)—on calculation-required
versus non-calculation questions using gpt-3.5-turbo. To classify WikiTQ questions into calculation-required or not, we use
o1 (Prompt 28), identifying 2,692 calculation-required questions and 1,652 non-calculation questions. The results are then
analyzed based on this classification.

Impact of Noisy Tables (Figure 2(d)). We investigate how performance varies between normalized and noisy tables. To
generate noisy tables, we use o1 (Prompt 29), instructing it to introduce noise into table contents while preserving actual
values and diversifying entries within columns. Additionally, each table has a 50% chance of being randomly transposed
from the default row-major format to the column-major format. We then filter the generated tables through a combination
of human verification and o1 checks to ensure that answers remain derivable from the noisy tables. After filtering, 2,565
noisy tables remain. We evaluate textual reasoning (Prompt 22) and symbolic reasoning (Prompt 23) on both the noisy and
original normalized tables using gpt-4o-mini.

C. Experimental Results on the FetaQA Dataset
PaLM 2 has been deprecated (Anil et al., 2023) and is no longer accessible. Therefore, we use a comparable language
model, gpt-4o, to conduct experiments on FetaQA and compare the results with previous methods. Additionally, we use 20
exemplars for few-shot in-context learning to align with the dataset’s format.

Table 3 shows that TableMaster improves free-form question answering performance on FetaQA compared to the base

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

A Recipe to Advance Table Understanding with Language Models

Table 3. Performance comparison on FetaQA. The values are multiplied by 100, and the percentage improvement represents the
performance gain compared to the end-to-end QA of the base model. The results demonstrate that TableMaster achieves strong
performance in long-form question answering.

Methods BLEU ROUGE-1 ROUGE-2 ROUGE-L

Fine-Tuning (T5-large) (Ye et al., 2023) 30.54 63 41 53
End-to-End QA (Codex) (Chen et al., 2021) 27.96 62 40 52

End-to-End QA (PaLM 2) (Wang et al., 2024) 28.37 63 41 53
Dater (PaLM 2) (Ye et al., 2023) 29.47 63 41 53
Chain-of-Table (PaLM 2) (Wang et al., 2024) 32.61 (+14.9%) 66 (+4.8%) 44 (+7.3%) 56 (+5.7%)

End-to-End QA (gpt-4o) 24.91 62.05 41.29 50.36
Ours (Tablemaster - gpt4o) 28.94 (+16.2%) 66.06 (+6.5%) 45.29 (+9.7%) 54.56 (+8.3%)

%VotesCandidatePartyParty

175,467Phil GarwoodRepublican-

185,580Victoria NapolitanoRepublican-

175,321Pete PalkoRepublican-

175,345J. Greg NewcomerDemocratic-

154,899Brian SattingerDemocratic-

154,869Mark HinesDemocratic-

Question: How did Napolitano perform compared to the other candidates?

On election day, Napolitano was the top vote-getter with
5,580 votes, outpacing her Republican running mates as
well as her Democrat opponents.

Victoria Napolitano performed the best among
the candidates, receiving the highest percentage
of votes at 18% with a total of 5,580 votes.

BLEU: 0.0411
ROUGE-1: 0.2791
ROUGE-2: 0.0976
ROUGE-L: 0.2790

TableMaster Prediction

Ground-truth
Evaluation Results

Figure 4. An example (fetaqa-164) from the FetaQA dataset where the result is accurate, but the evaluation metric assigns a low score.

End-to-End QA model, achieving improvements of 16.2% in BLEU and 6.5% in ROUGE-1. These improvements surpass
those of Chain-of-Table when compared to its respective End-to-End QA baseline.

However, the improvement of TableMaster over baseline methods remains marginal, with some values even falling below
those of previous approaches in absolute terms. We believe this does not fully reflect the model’s actual performance in
free-form QA. We attribute this to the n-gram text similarity metrics used in ROUGE-1/2/L (Lin, 2004), which are known to
be insensitive to improvements gained from in-context learning (Maynez et al., 2023). These metrics struggle to capture
stylistic and structural enhancements in free-form text generation. Since models rely on instructions and a limited number of
examples, they may not fully adapt to the expected output format, leading to an underestimation of performance gains.

To further investigate this, we analyze a specific case, FetaQA-164, as shown in Figure 4. In this instance, the BLEU and
ROUGE metrics assign low scores, as only two words match in the entire sentence. However, manual review confirms that
the generated answer is indeed correct—these two words are the most important, and the overall meaning of the response is
both accurate and superior to the ground truth. This highlights the limitations of ROUGE in evaluating free-form QA and
suggests that qualitative analysis is essential for a more comprehensive assessment of model improvements. Nonetheless,
based on quantitative analysis, TableMaster is overall effective.

D. Table Understanding Baselines
To better facilitate future research, we evaluate different reasoning methods across various base models. Table 4 presents
the accuracy results of our reproduced baselines on WikiTQ and TabFact, comparing different base LLMs and reasoning
methods. The table includes evaluations on o1-preview (∼300B), o1-mini (∼100B), gpt-4o (∼200B), gpt-4o-mini (∼8B),

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

A Recipe to Advance Table Understanding with Language Models

Table 4. Results of our reproduced baselines on WikiTQ and TabFact. The values in the table represent accuracy (%).

Base LLM Method WikiTQ TabFact

o1-preview∼300B Direct 84.60 92.05
o1-mini∼100B Direct 83.49 91.35

gpt-4o∼200B

Direct 73.07 84.73
Chain of Thought 83.98 91.90
Program of Thought 74.63 90.02

TableMaster (gpt-4o) 84.55 94.52

gpt-4o-mini∼8B

Direct 59.53 71.25
Chain of Thought 72.97 87.40
Program of Thought 61.83 85.18

TableMaster (gpt-4o-mini) 78.13 90.12

gpt-3.5-turbo∼175B

Direct 56.58 70.90
Chain of Thought 59.92 69.52
Program of Thought 50.32 68.82

TableMaster (gpt-3.5-turbo) 68.21 83.65

and gpt-3.5-turbo (∼175B). Each model is tested with various reasoning strategies, including Direct, chain of thought, and
Program of Thought, alongside our proposed TableMaster.

Across all base models, TableMaster consistently achieves the highest accuracy. For gpt-4o, TableMaster reaches 84.55% on
WikiTQ and 94.52% on TabFact, outperforming both chain of thought (83.98%, 91.90%) and Program of Thought (74.63%,
90.02%). Similarly, for gpt-4o-mini, TableMaster achieves 78.13% on WikiTQ and 90.12% on TabFact, significantly
improving over the Direct method (59.53%, 71.25%) and surpassing chain of thought (72.97%, 87.40%).

The performance gap is even more pronounced for gpt-3.5-turbo, where TableMaster reaches 68.21% on WikiTQ and
83.65% on TabFact, significantly outperforming both chain of thought (59.92%, 69.52%) and Program of Thought (50.32%,
68.82%). Interestingly, we observe that while TableMaster ’s improvement is limited on gpt-4o, the weaker the base model,
the greater the performance improvement. While o1-preview and o1-mini achieve high accuracy with the Direct method
(84.60%, 92.05% for o1-preview and 83.49%, 91.35% for o1-mini), the results of TableMaster on gpt-4o demonstrate that
our method is capable of achieving state-of-the-art performance across different LL architectures.

Additionally, we find that chain of thought reasoning is highly effective, achieving strong accuracy across models. Even a
simple chain of thought approach outperforms previous methods that rely solely on symbolic reasoning (Mao et al., 2024),
indicating that chain of thought should be retained as a key component in the reasoning framework.

These results confirm that TableMaster enhances table reasoning performance across various LLMs, effectively outperform-
ing both direct prompting and traditional reasoning strategies, particularly in cases where table complexity and reasoning
demands are higher.

E. Performance Analysis Under Different Table Sizes
Table 5 presents a performance comparison across different table sizes, categorized into small (<2k tokens), medium (2k∼4k
tokens), and large (>4k tokens). The results compare several methods, including Binder (Cheng et al., 2023), Dater (Ye
et al., 2023), and Chain-of-Table (Wang et al., 2024), against TableMaster. All methods are evaluated using gpt-3.5-turbo,
with additional results of TableMaster provided for gpt-4o-mini.

Across all table sizes, TableMaster consistently outperforms baseline methods. Specifically, for gpt-3.5-turbo, TableMaster
achieves the highest performance in all table size categories, scoring 69.01% on small tables, 58.00% on medium tables, and
56.73% on large tables. This demonstrates its ability to maintain robust performance even as table size increases, significantly
outperforming Binder, Dater, and Chain-of-Table, especially on medium and large tables, where the performance gap
becomes more pronounced.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

A Recipe to Advance Table Understanding with Language Models

Table 5. Performance Comparison Across Table Sizes (Token).

Method Table Size (Token)

Small (<2k) Medium (2k ∼ 4k) Large (>4k)

Binder (Cheng et al., 2023) 56.54 26.13 6.41
Dater (Ye et al., 2023) 62.50 42.34 34.62
Chain-of-Table (Wang et al., 2024) 68.13 52.25 44.87
TableMaster (gpt-3.5-turbo) 69.01 58.00 56.73

TableMaster (gpt-4o-mini) 78.71 70.50 70.19

Figure 5. Performance Comparison Across Table Sizes (Row Count, Column Count, Area Size, Token Count).

Furthermore, TableMaster with gpt-4o-mini achieves even stronger performance, with accuracy scores of 78.71% (small
tables), 70.50% (medium tables), and 70.19% (large tables). These results highlight that leveraging stronger base models
further enhances TableMaster ’s effectiveness, making it particularly well-suited for large-scale table reasoning tasks.
Notably, when transitioning from medium to large tables, TableMaster (gpt-4o-mini) experiences only a 0.31% performance
drop (from 70.50% to 70.19%), demonstrating its strong capability in handling increasing table complexity. This minimal
decline contrasts sharply with other methods, which show significantly larger drops, further reinforcing the scalability and
robustness of TableMaster in processing large-scale tabular data.

Figure 5 illustrates the accuracy trends of different models across various table sizes, categorized based on row count, column
count, area size, and token count. The models evaluated in this study include gpt-3.5-turbo (gpt35), gpt-4o-mini (gpt4m),
TableMaster (gpt35), and TableMaster (gpt4m). The results provide insights into how these models handle increasing table
complexity and size, revealing the comparative strengths and limitations of each approach. The size split in this study is
strictly partitioned into quartiles, ranging from the smallest to the largest tables.

Row Count. The top-left plot analyzes accuracy trends as row count increases. TableMaster (gpt4m) consistently
outperforms other models, maintaining high accuracy levels even with an increasing number of rows. In contrast, gpt-
3.5-turbo (gpt35) starts with the highest accuracy, peaking in the 11–15 row range before experiencing a decline as row
count further increases. Smaller models such as gpt35 and gpt4m exhibit a sharper decline, highlighting the challenge of

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

A Recipe to Advance Table Understanding with Language Models

processing larger tables with more rows.

Column Count. The top-right plot examines model performance as column count increases. TableMaster (gpt4m) again
achieves strong performance, peaking at around five columns before showing a slight decline. This result highlights the
effectiveness of table-of-focus re-construction, demonstrating that column re-selection can effectively adapt to scenarios
with many columns. While gpt35 initially maintains the highest accuracy, other models experience a steeper drop as
the number of columns increases. These trends suggest that column-heavy tables pose greater challenges for reasoning
compared to row-heavy tables, likely due to the increased dimensional complexity and interdependencies between attributes.

Area Size. The bottom-left plot evaluates the relationship between accuracy and table area size, calculated as the product of
row and column counts. TableMaster (gpt4m) reaches peak performance in the mid-range (96–167 area size) before slightly
declining for larger tables. gpt35 initially performs well but deteriorates as table area size increases, while gpt4m and gpt35
show a noticeable decline overall, reinforcing that larger tables significantly impact accuracy across models.

Token Count. The bottom-right plot assesses accuracy as a function of table token count, which reflects the amount of
textual information models need to process. TableMaster (gpt4m) consistently achieves the highest accuracy, followed by
TableMaster (gpt35). A general downward trend is observed across all models as token count increases, indicating that larger
input lengths negatively affect performance. Notably, gpt35 experiences the sharpest drop, suggesting its lower capacity for
handling long-context table data compared to gpt4m.

Overall, these findings confirm that TableMaster is highly scalable and generalizable across different table sizes, consistently
outperforming previous methods, particularly in handling larger and more complex tables. Its robust performance and
gradual decline in accuracy as table size increases make it a reliable and efficient solution for table-based reasoning tasks.

F. Performance Analysis Under Different Table Peek Sizes

0 20 40 60 80 100 120 140
Number of Rows per Table

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

Density Plot of Row Sizes in WikiTQ Dataset

(a)

2 4 10 25 50 All
Peek Size

70

72

74

76

78

80

A
cc

ur
ac

y
(%

)

74.2

72.3

73.7

75.6

76.1

77.2

78.1

Accuracy vs Peek Size

(b)

Figure 6. The row count distribution in the WikiTQ dataset and the analysis of accuracy variation with different peek sizes.

We propose the concept of table peek, which enhances the efficiency of TableMaster for table understanding tasks by
reducing the context that language models need to process at certain steps.

To analyze the effectiveness of this approach, we first examine the row count distribution in the WikiTQ dataset, as shown in
Figure 6(a). To improve visualization, we remove 72 extreme outliers with exceptionally large row counts. The resulting
density plot illustrates that the majority of tables contain fewer than 20 rows, with a pronounced peak around 10 rows. As
the number of rows increases, the density gradually declines, indicating that large tables are relatively uncommon. Although
a small number of tables exceed 100 rows, their frequency is minimal.

The line graph in Figure 6(b) illustrates the variation in accuracy with different peek sizes, where the peek size determines
the number of rows considered during processing. Initially, accuracy is relatively low when only a small number of rows
(e.g., 2–4) are used, reaching its minimum at a peek size of 4. We hypothesize that this occurs because, at a peek size of
2, the table includes only the top headers and a single example row, which may provide a clear structure for the language
model to follow. However, at a peek size of 4, the table includes three example rows, potentially causing the language model
to overfit the first few rows and misinterpret the overall table structure. This misalignment may lead to ineffective SQL

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

A Recipe to Advance Table Understanding with Language Models

generation for row lookup, resulting in a temporary drop in accuracy.

As the peek size increases, accuracy improves significantly, showing a sharp rise up to 25 rows. Beyond this point, the
accuracy continues to improve but at a slower rate, eventually reaching its peak when the entire table is utilized (‘All’). This
trend suggests that a moderate peek size can effectively balance efficiency and accuracy, eliminating the need to process the
full table while still maintaining strong performance.

G. Efficiency Analysis of TableMaster

G.1. Theoretical Analysis

Efficiency is a critical factor in table-understanding methods. We analyze the efficiency of TableMaster theoretically,
following the notations introduced in Section 4. Our analysis considers the length of the table input as the primary
computational cost, excluding any additional prompts or external information, and does not account for output length. This
is because, in most cases, the output is relatively short compared to the large volume of data in the table. Specifically, we
define the computational cost in terms of the total area size of the table that the language model processes.

Below are the main components of our efficiency analysis:

• Structure extraction: k × n

• Row lookup: k × n

• Column lookup: n

• Table-of-Focus Re-Construction a× b× e

• Table Verbalization: a× b,

• Reasoning Strategy Assessment: a× b,

• Reasoning: 1.5 a × b (where the factor 1.5 accounts for textual processes weighted as 1 and symbolic processes
weighted as 2)

Here, k represents the size of table peek, and e represents the number of table-of-focus re-constructions after information
estimation. a and b denote the dimensions of the table-of-focus Ta×b. Combining these components, the total computational
cost is given by:

Total Cost = (2 k + 1)× n+ (e+ 2.5)× (a× b). (1)

G.2. Empirical Analysis

The bar chart in Figure 7 illustrates the change in table area size before and after table condensation for the WikiTQ and
TabFact datasets. The y-axis represents the table size, while the x-axis categorizes the datasets. Each dataset has two bars:
the blue bar represents the original table size, and the orange bar represents the condensed table size after table-of-focus
construction. WikiTQ exhibits a significant reduction in table size, approximately 1:3, with the condensed table being much
smaller than the original. In contrast, TabFact also undergoes condensation but to a lesser extent, around 1:2. This suggests
that WikiTQ tables require more substantial structural modifications to focus on relevant content, while TabFact tables need
comparatively less condensation.

As shown in Equation 1, the theoretical cost is independent of the number of rows m, while a× b reflects the size of the
small sub-table, which is influenced by the estimated table condensation ratio 2.5. As stated in Table 6, the reconstruction
occurs 1.5 averagely, so e is typically 1.5. In an ideal scenario, if the peek size is negligible, the cost is approximately
1.6× (m× n). In the worst-case scenario, where the entire table must be examined and all content is required, the cost
reaches 6× (m× n) approximately.The estimation range for each table is 1.6 to 6 times the original table size.

Recent advancements in table understanding, such as Chain-of-Table (Wang et al., 2024) and Tree-of-Table (Ji et al., 2024),
involve a step-by-step evolution of tables through a long chain of transformations. In each new step, both the original table

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

A Recipe to Advance Table Understanding with Language Models

WikiTQ TabFact
Dataset

Si
ze

Change of Table Size
Original Table
Condensed Table

Figure 7. Changes in Table Condensation After Table-of-Focus Construction in Table Structure Understanding.

and the newly generated sub-table must be processed by language models. Additionally, their iterative process is complex,
unstable, and difficult to analyze theoretically. In contrast, our approach is general and comprehensive, avoiding the trivial
overhead of sub-table extraction. Instead, it focuses on holistic reasoning while maintaining ideal efficiency.

H. Detailed Algorithm of Table-of-Focus Re-Construction
Here, we provide a detailed description of the Table-of-Focus Re-Construction algorithm, as shown in Algorithm 1.

Algorithm 1 Algorithm of Table-of-Focus Re-Construction
Require: T: The original table
Require: Q: The question
Require: R: Selected rows
Require: C0: Initially selected columns
Require: C: Ranked candidate column indices
Ensure: TF : Final table-of-focus
Ensure: C: Updated selected columns

1: Initialize Ccandidate ← {c ∈ C | c /∈ C0}
2: Initialize C ← Copy(C0)
3: while true do
4: TF ← extractTable(T, R, C)
5: E ← estimateInformation(TF , Q)
6: if E or len(Ccandidate) = ∅ then
7: break
8: else
9: c← popFront(Ccandidate) {Select the next candidate column}

10: C ← C ∪ {c}
11: end if
12: end while
13: return TF , C

The Table-of-Focus Re-Construction Algorithm iteratively refines a table by selecting relevant columns to form the final
table-of-focus TF . It starts by initializing the set of candidate columns Ccandidate that are not part of the initially selected
columns C0, and copies C0 to initialize C. In each iteration, it extracts a sub-table TF using the current selected columns and
estimates whether the extracted sub-table contains sufficient information to answer the given question Q. If the information
is sufficient E = True or no more candidate columns remain, the process terminates. Otherwise, the next ranked candidate
column is selected and added to C, repeating the process. The algorithm ultimately returns the refined table TF and

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

A Recipe to Advance Table Understanding with Language Models

the updated set of selected columns, ensuring an efficient and structured approach to dynamically refining a table while
balancing relevance and minimal table size.

I. Analysis of Table-of-Focus Re-Construction

Table 6. Column Selection Statistics Before and After Table-of-Focus Re-Construction for TabFact and WikiTQ.

Dataset Initial Columns Final Columns Added Columns

Number (#) Percentage (%) Number (#) Percentage (%) Number (#) Percentage (%)

TabFact 2.44 40.74 3.34 54.64 0.90 13.91
WikiTQ 2.87 47.67 4.72 75.91 1.85 28.23

Table 6 presents Column Selection Statistics before and after Table-of-Focus Re-Construction for two datasets: TabFact and
WikiTQ. The table measures how many columns were initially selected, how many remained after refinement, and how
many were newly added during the reconstruction process.

The table is structured into three main sections: Initial Columns, Final Columns, and Added Columns. Each section includes
two metrics: the number of columns and the percentage of total columns in the dataset. The Initial Columns represent
the starting number of columns before any refinement. The Final Columns show the number of columns retained after
the reconstruction process. The Added Columns indicate the number of additional columns incorporated to enhance table
comprehension.

For the TabFact dataset, the number of Initial Columns is 2.44, covering 40.74% of the table’s total columns. After the
reconstruction process, the Final Columns increase to 3.34, covering 54.64%. This means that 0.90 additional columns were
introduced averagely, which accounts for 13.91% of the total columns. For the WikiTQ dataset, the pattern is similar but
with higher values. The Initial Columns start at 2.87, representing 47.67% of the total table. After reconstruction, the Final
Columns expand to 4.72, covering 75.91% of the table’s total structure. This increase results from 1.85 additional columns,
which make up 28.23% of the total columns.

Overall, this mechanism has been proven to be effective while remaining lightweight. The table demonstrates that Table-of-
Focus Re-Construction slightly increases the number of selected columns, with a more pronounced effect in the WikiTQ
dataset compared to TabFact. This suggests that WikiTQ tables require a greater degree of expansion to ensure adequate
information coverage, whereas TabFact tables undergo a more moderate refinement process.

J. Analysis of Adaptive Reasoning

Table 7. Performance of Different Reasoning Methods Across Base LLMs

Base LLM Method Calculation Required #2692 No Calculation Required #1652 Overall #4344

gpt-4o
Textual Reasoning 81.17 88.56 83.98
Symbolic Reasoning 74.59 74.70 74.63
Text-Guided Symbolic Reasoning 76.49 77.36 76.82

gpt-4o-mini
Textual Reasoning 67.50 81.90 72.97
Symbolic Reasoning 61.55 62.29 61.83
Text-Guided Symbolic Reasoning 67.24 71.43 68.83

gpt-3.5-turbo
Textual Reasoning 52.27 72.40 59.92
Symbolic Reasoning 43.28 61.80 50.32
Text-Guided Symbolic Reasoning 59.10 66.65 61.97

Table 7 compares different reasoning methods—textual reasoning, symbolic reasoning, and text-guided symbolic reason-
ing—across various LLMs under calculation-required and no-calculation-required scenarios. This experiment is conducted
using gpt-4o-mini on the WikiTQ dataset.

For gpt-4o, textual reasoning achieves the highest accuracy (83.98% overall), excelling in both calculation-required (81.17%)

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

A Recipe to Advance Table Understanding with Language Models

and no-calculation-required (88.56%) cases. Symbolic reasoning performs worse (74.63% overall), while text-guided
symbolic reasoning offers slight improvements (76.82%). For gpt-4o-mini, a similar trend is observed, with textual reasoning
maintaining the highest accuracy (72.97% overall), followed by text-guided symbolic reasoning (68.83%), and symbolic
reasoning performing the worst (61.83%). For gpt-3.5-turbo, performance drops significantly, with textual reasoning at
59.92%, symbolic reasoning struggling at 50.32%, and text-guided symbolic reasoning achieving the best results (61.97%),
indicating that symbolic guidance benefits weaker models.

Symbolic reasoning is consistently outperformed by textual reasoning, while text-guided symbolic reasoning surpasses
textual reasoning only in gpt-3.5-turbo under calculation-required scenarios. One reason for this is that not all calculation-
required questions necessarily benefit from symbolic reasoning; for simple calculations, textual reasoning is more effective.
However, for complex calculation-required questions, text-guided symbolic reasoning is the preferred approach. This
provides a key insight for prompt design of reasoning strategy assessment.

Overall, textual reasoning consistently outperforms symbolic reasoning across all models, while text-guided symbolic
reasoning helps mitigate weaker numerical capabilities in smaller models. These results suggest that adaptive reasoning
should prioritize textual approaches, incorporating symbolic methods selectively for numerical calculations in weaker
models.

Table 8. Performance and Inference Times for Different Methods
Method Accuracy (%) Inference Times (#)

Chain of Thought 72.97 1
Program of Thought 61.83 1
Text-Guided Program of Thought 68.83 1

Self-Consistency (5 CoT) 74.98 3
Self-Consistency (5 PoT) 63.97 3
Mix Self-Consistency (3+3) 76.70 6
Mix Self-Consistency (5+5) 77.46 10
Self-Eval 70.58 2

Adaptive Reasoning (POT) 71.18 1
Adaptive Reasoning (TPOT) 74.08 1
Adaptive Reasoning (POT - Upper Bound) 82.99 1
Adaptive Reasoning (TPOT - Upper Bound) 85.06 1

Table 8 compares the performance (accuracy %) and inference times of various reasoning methods, including chain of
thought (CoT), program of thought (PoT), text-guided program of thought (TPoT), self-consistency, and adaptive reasoning.
This experiment is conducted using gpt-4o-mini on the WikiTQ dataset.

Among single-pass methods (1 inference), chain of thought achieves 72.97% accuracy, outperforming program of thought
(61.83%) and text-guided program of thought (68.83%). This suggests that CoT is more effective than pure symbolic
reasoning when only one inference is allowed.

Self-consistency methods, which perform multiple inferences to improve reliability, achieve better results. Five-shot CoT
self-consistency reaches 74.98%, while five-shot PoT self-consistency lags behind at 63.97%. As introduced in (Liu et al.,
2024b), mixed self-consistency (3 CoT + 3 PoT) and (5+5) further improve accuracy to 76.70% and 77.46%, respectively, at
the cost of increased inference time (6 and 10 passes). Self-evaluation (self-eval) first performs CoT and PoT inferences
(Prompt 26), then selects the better result, achieving 70.58% with 2 inferences.

Adaptive reasoning achieves competitive performance while maintaining single-pass efficiency. PoT-based adaptive
reasoning reaches 71.18%, while TPOT-based adaptive reasoning, which combines textual and text-guided symbolic
methods, improves to 74.08%. The upper-bound performance of these adaptive strategies (assuming perfect strategy
selection) reaches 82.99% (PoT) and 85.06% (TPOT), significantly outperforming all other methods, highlighting the
importance of textual guidance and strategy selection.

For the selection distribution between CoT and PoT (TPoT):

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

A Recipe to Advance Table Understanding with Language Models

• Self-eval: 1,962 PoT and 2,382 CoT

• Adaptive reasoning (PoT): 1,590 PoT and 2,754 CoT

• Adaptive reasoning (TPoT): 1,590 PoT and 2,754 CoT

• Adaptive reasoning (PoT - upper bound): 435 PoT and 3,909 CoT

• Adaptive reasoning (TPoT - upper bound): 525 PoT and 3,819 CoT

These results suggest that language models should prioritize textual reasoning and reserve symbolic reasoning for more
complex numerical calculations where it provides a clear advantage.

Overall, self-consistency enhances accuracy but requires multiple inferences, whereas adaptive reasoning effectively balances
accuracy and efficiency. To further improve strategy assessment, we will explore ways to approach this upper bound in
future work. This demonstrates that well-designed adaptive reasoning strategies can rival more computationally expensive
self-consistency methods while maintaining efficiency.

K. Information Missing and Table Reasoning with Full Table

Table 9. Performance comparison of reasoning with and without the full table on WikiTQ and TabFact.

Method WikiTQ TabFact

PoTable (Previous SOTA) (Mao et al., 2024) 64.73 88.93
TableMaster w/ Full Table in Reasoning 78.13 90.12
TableMaster w/o Full Table in Reasoning 77.23 (-0.90) 89.58 (-0.54)

As discussed in our limitations, the table-of-focus process may sometimes lead to the loss or omission of key relevant
information. This issue is inevitable when attempting to locate specific data. If no relevant data exists within the selected
portion, the reasoning result will naturally be incorrect.

In our experiments, we found that when using the table-of-focus and its verbalized representation for reasoning, 265 out of
4,344 questions in the WikiTQ dataset had no available answers. This led to a performance drop, as the language model
responded with an inability to provide an answer. To address this, we replaced the table-of-focus with the original full table,
combined with verbalized table-of-focus as input in those questions. The performance under this adjustment is shown in
Table 9, reaching 77.23% in WikiTQ. When we directly replaced the table-of-focus with the full table for all questions in
WikiTQ, the performance increased to 78.13%, resulting in a slight improvement of 0.9%. Two results are similar.

We believe this approach does not contradict previous steps such as structure extraction and table-of-focus selection. These
steps remain valuable, as the extracted target data is retained in the verbalized table, where the information density is higher
and semantic context is richer. The language model prioritizes this high-density information, and if it is insufficient, it can
then reference the global information from the full table. This demonstrates the complementary nature of the full table and
the verbalized table-of-focus. From an efficiency perspective, it is preferable to use the sub-table for reasoning initially and
only switch to the full table when necessary.

To highlight the performance of TableMaster, we report the best scores of 78.13 and 90.12 in the main results table.
Regardless, our method consistently outperforms the previous state-of-the-art, PoTable (Mao et al., 2024), on both WikiTQ
and TabFact.

L. Case Study of Table Verbalization
Table verbalization brings a slight overall improvement in table understanding and is particularly effective in cases where
deeper comprehension of the table’s context is required to answer questions accurately.

Figure 8 presents a case study on the impact of table verbalization in helping language models reason about structured data.
The setup includes a table listing U.S. congressional representatives, their terms in office, political affiliations, and notable
events. The question posed is: How many people stayed at least 3 years in office?, with a ground-truth answer of 4.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

A Recipe to Advance Table Understanding with Language Models

Notes/EventsPartyLeft officeTook officeNameParty

Democratic RepublicanMarch 3, 1809March 4, 1803William McCreery11

Democratic RepublicanMarch 3, 1815March 4, 1809Alexander McKim12

Resigned to …Democratic RepublicanApril 18, 1816March 4, 1815William Pinkney13

Democratic RepublicanMarch 3, 1823September 2, 1816Peter Little14

Jacksonian DRMarch 3, 1825March 4, 1823Peter Little14

AdamsMarch 3, 1829March 4, 1825Peter Little14

JacksonianMarch 3, 1833March 4, 1829Benjamin C. Howard15

Question: how many people stayed at least 3 years in office? Ground-truth: 4

William McCreery, a Democratic-Republican, served in office from March 4, 1803, to March 3, 1809, followed by
Alexander McKim, also a Democratic-Republican, who held the position from March 4, 1809, to March 3, 1815.
William Pinkney then took office on March 4, 1815, but resigned on April 18, 1816, to accept a diplomatic role as
Minister Plenipotentiary to Russia. Peter Little succeeded him, serving from September 2, 1816, to March 3, 1823,
as a Democratic-Republican, then continued in office under different political affiliations: as a Jacksonian
Democratic-Republican from March 4, 1823, to March 3, 1825, and later as an Adams supporter from March 4,
1825, to March 3, 1829. His tenure was followed by Benjamin C. Howard, a Jacksonian, who served from March 4,
1829, to March 3, 1833.

Table Verbalization

Table

Verbalized Table

Prediction: 4

Prediction: 5

LM Reasoning

LM Reasoning

Figure 8. Case study on the impact of table verbalization. The data is from the WikiTQ dataset.

When the table is input directly, the model incorrectly predicts 5, as it mistakenly counts rows rather than identifying unique
individuals. This suggests that the model relies on simple row counting instead of truly understanding the data. However,
with the verbalized table, the model accurately interprets the descriptions, grasps the actual meaning, and correctly answers
with 4.

26

1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

A Recipe to Advance Table Understanding with Language Models

M. Case Study of TableMaster

As shown in Figure 9, we present a case study of TableMaster to provide a detailed illustration of its workflow. The process
begins with SQL generation, followed by structure extraction, where key columns such as Nominated work are identified.
Next, row and column lookup selects relevant data, leading to table-of-focus construction, which refines the table to retain
only essential information. Table verbalization then converts structured data into a human-readable summary, and a textual
overview highlights Leona Lewis’s major awards and nominations. Additionally, a step-by-step guide explains the counting
process, providing a structured approach to symbolic reasoning. The reasoning and execution phase includes code execution,
where a Python snippet correctly counts the occurrences of Won, yielding the correct prediction of 20.

This case study demonstrates TableMaster ’s effectiveness in extracting, processing, and reasoning over structured data,
ultimately enabling accurate table-based question answering.

ResultCategoryNominated workAwardYear

WonNewcomer of the YearLeona LewisCosmopolitan Ultimate Woman of the Year2007
WonThe Record of the YearBleeding LoveThe Record of the Year2007
WonFavourite UK Female ArtistLeona LewisCapital Awards2008
WonMusic AwardLeona LewisBritain's Best2008
WonThe Kylie Award: Next International CrossoverLeona LewisNewNowNext Awards2008

WonUK Solo ArtistLeona LewisGlamour Woman Of The Year Awards2008

WonFavourite SongBleeding LoveNickelodeon UK Kids Choice Awards2008
WonPeople's Choice AwardBleeding LoveUK Music Video Awards2008
WonShooting StarLeona LewisBambi Award2008
WonTop 40 New Artist of the YearLeona LewisNew Music Weekly Awards2008
WonBest New ArtistLeona LewisBillboard 2008 Year End Award2008
WonBest VideoBleeding LoveVh1 Video of the Year2008

NominatedBest AlbumSpiritNME Best Album2008
WonPerson Of The YearLeona LewisPETA2008

NominatedOutstanding New ArtistLeona LewisNAACP Image Awards2009
WonBest International NewcomerLeona LewisSwiss Music Awards2009
WonNew Artist Of The YearLeona LewisJapan Gold Disc Awards2009
WonBest Western SongBleeding LoveHITO Pop Music Awards2009
WonSexiest Vegetarian Celebrity 2009Leona LewisPETA - Sexiest Vegetarian Alive Awards2009
WonMost Played Foreign WorkBleeding LoveAPRA Awards2009
WonBest Female ActLeona LewisBEFFTA Awards2009
WonUltimate Music StarLeona LewisCosmopolitan Awards2009

Question: how many awards has leona lewis won? Ground-truth: 20

Structure Extraction

Top Headers: Year, Award, Nominated
work, Category, Result
Key Column: Nominated work

Row Lookup Column Lookup

SQL = SELECT row_id, Year, Award,
Nominated work, Category, Result
FROM T WHERE Result = 'Won'

Selected Row Indices: [1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17,
18, 19, 20, 21, 22, 23]

Selected Column Indices': ['C',
'E', ‘B’] Ranked Column Indices':
['C', 'E', 'B', 'A', 'D']

ResultNominated workAward

WonLeona LewisCosmopolitan Ultimate Woman of the Year
WonBleeding LoveThe Record of the Year
WonLeona LewisCapital Awards
WonLeona LewisBritain's Best
WonLeona LewisNewNowNext Awards

WonLeona LewisGlamour Woman Of The Year Awards

WonBleeding LoveNickelodeon UK Kids Choice Awards
WonBleeding LoveUK Music Video Awards
WonLeona LewisBambi Award
WonLeona LewisNew Music Weekly Awards
WonLeona LewisBillboard 2008 Year End Award
WonBleeding LoveVh1 Video of the Year

NominatedSpiritNME Best Album
WonLeona LewisPETA

NominatedLeona LewisNAACP Image Awards
WonLeona LewisSwiss Music Awards
WonLeona LewisJapan Gold Disc Awards
WonBleeding LoveHITO Pop Music Awards
WonLeona LewisPETA - Sexiest Vegetarian Alive Awards
WonBleeding LoveAPRA Awards
WonLeona LewisBEFFTA Awards
WonLeona LewisCosmopolitan Awards

Steps to Count Leona Lewis’s Awards
1. Find the “Result” Column – Identify the column that shows whether she
won or was nominated.
2. Locate Wins – Look for entries where the result is “Won.”
3. Count Wins – Keep track of how many times “Won” appears.
4. Exclude Nominations – Ignore any entries marked “Nominated.”
5. Get the Total – Sum up all the winning entries.
6. Check for Accuracy – Review the count to ensure no mistakes.

Following these steps will give the total number of awards Leona Lewis has
won.

Prediction: 20

SQL Generation

Table-of-Focus
Construction

The table highlights Leona Lewis’s awards and nominations, mainly for her hit
Bleeding Love. She won several major awards, including Cosmopolitan
Ultimate Woman of the Year, The Record of the Year, and honors from Capital
Awards, Britain’s Best, and Glamour Woman Of The Year Awards. Bleeding
Love received multiple awards, such as Nickelodeon UK Kids Choice Award,
UK Music Video Award, and Vh1 Video of the Year. She also won the Bambi
Award, Billboard 2008 Year End Award, and Japan Gold Disc Award, and was
named Sexiest Vegetarian Alive by PETA. Her album Spirit was nominated for
NME Best Album, and she received a nomination at the NAACP Image Awards.
Overall, the table showcases her widespread recognition and success in the
music industry.

Table
Verbalization

Textual Guidance Generation

Program of Thought

Code Execution

Figure 9. Case study of TableMaster. The data is from the WikiTQ dataset.

27

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

A Recipe to Advance Table Understanding with Language Models

N. Prompt Design in TableMaster

Objective
You are provided with a text representation of a table in string format, detailing the content of each cell.
Your task is to identify and extract the Top Header and Key Column of the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Instructions
1. Top Header: The section at the top of the table, often spanning multiple columns horizontally, that describes the primary information
presented in the table.
2. Key Column: A column where the values best represent the subject or key identifier for each row in the table, typically containing row
labels or keys (e.g., year, date, number, name, etc.).
3. You should extract the top headers with address and value, like ['A1,Year', 'A2,Profit', ...].
4. key_column_index should be like 'A' or 'B' ...
5. The key column should contain meaningful values instead of id.

Response Format
The response should be in JSON format:
```json
{{

"topheaders": ["address1,header1", "address2,header2", ...],
"key_column_index": "column1",

}}
```

Prompt for TableMaster – Structure Extraction

Figure 10. Prompt for structure extraction in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt
guides the language model in extracting the table’s structure.

28

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with information of a table and a question related to the table.
Your task is to rank the column indices based on the relevance to the question.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table Information
Table:
{table}

Top Headers: {topheaders}

Question
{question}

Instructions
1. The column indices must only contain letters, like ['A', 'B', 'C', ...].
2. You should first rank all the column indices based on the relevance to the question.
3. Your output should contain all the column indices.

Response Format
The response should be in JSON format:
```json
{{

"ranked_column_indices": ["column indexA", "column indexB", ...]
}}
```

Prompt for TableMaster – Column Ranking

Figure 11. Prompt for column ranking in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt
guides the language model to rank the priority of all columns based on the given table, top headers, and related question.

29

1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with information of a table and a question related to the table.
Your task is to lookup the column indices that are needed to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table Information
Table:
{table}

Top Headers: {topheaders}

Question
{question}

Instructions
1. The column indices must only contain letters, like ['A', 'B', 'C', ...].
2. Your output of the column indices should not any contain number, like ['A1', 'B2', 'C1', ...].
3. Your output of the column indices should not contain the column name.
4. You should select the column that are relevant and necessary to answer the question.

Response Format
The response should be in JSON format:
```json
{{

"selected_column_indices": ["column indexA", "column indexB", ...]
}}
```

Prompt for TableMaster – Column Lookup

Figure 12. Prompt for column lookup in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt guides
the language model to select relevant columns based on the given table, top headers, and related question.

30

1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with information of a table and a question related to the table.
Your task is to generate a SQL query that can be used to find the rows that answer the question.

Table Information
Part of Table:
{table}

Question
{question}

Instructions
1. The SQL query must be in the format of `SELECT XXX, ... FROM Table WHERE XXX ...`,
where Table is the table name, XXX is the column name, and WHERE... is the criteria.
2. If the information is not enough to answer the question, you should return a sql to select all rows.
3. Do not give complex sql query, just simple query to select rows.
4. Use this SQL query only to select relevant rows, not for getting the final answer.

Response Format
Provide the response in the following JSON format:
```json
{{

"sql": "SELECT XXX, ... FROM Table WHERE XXX ..."
}}
```

Prompt for TableMaster – SQL Generation for Row Lookup

Figure 13. Prompt for SQL generation for row lookup in TableMaster. Blue text indicates placeholders for variables within the prompt.
The prompt guides the language model to generate SQL for selecting relevant rows based on the given table and related question.

Objective
You are provided with a table in string format.
Your task is to convert the table into a detailed text description.

Table
{table}

Instructions
1. Provide a detailed description of the table, covering all rows and columns.
2. Include every detail and numerical value without omitting or summarizing.
3. Use external knowledge only to enhance clarity, while staying faithful to the table's content.
4. If the table only contains headers and no rows, it should be described as an empty table.

Now, please provide the verbalized description of the table:

Prompt for TableMaster – Table Verbalization

Figure 14. Prompt for table verbalization in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt
guides the language model to verbalize the given table by adding detailed descriptions and additional knowledge about the table.

31

1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with information from a table and a question related to the table.
Your task is to estimate whether the current information of the table can answer the question.

Table Information
Top Headers: {topheader_info}
Table Content:
{table}

Question
{question}

Response Format
The response should be in JSON format:
```json
{{

"results": True of False
}}
```

Prompt for TableMaster – Information Estimation

Figure 15. Prompt for information estimation in TableMaster. Blue text indicates placeholders for variables within the prompt. The
prompt guides the language model to evaluate the given table’s content and determine whether it contains sufficient information to answer
the provided question

Objective
You are provided with a table and a question related to the table.
Your task is to assess whether answering this question needs mathematical calculation.

Table
{table}

Question
{question}

Instructions
1. If the question can be directly answered using the information in the table, you should respond with `False`.
2. If the question involves counting something, you should respond with `True`.
3. If the question requires calculations based on the data in the table, you should respond with `True`.

Response Format
The response should be in JSON format:
```json
{{

"results": True of False
}}
```

Prompt for TableMaster – Reasoning Strategy Assessment

Figure 16. Prompt for reasoning strategy assessment in TableMaster. Blue text indicates placeholders for variables within the prompt.
The prompt guides the language model to evaluate whether answering the given question requires direct information retrieval, counting, or
mathematical calculations based on the table’s content. The response determines the subsequent reasoning strategy.

32

1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with a table, a verbalization of the table, and a question related to the table.
Your task is to reason step by step to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should end with `Answer: xxx` (answer to the question).

Your response should end with `Answer: true` or `Answer: false` (answer to the question).
If the table only contain headers and no rows, it indicates there is no information available for this question, therefore the answer
should be "false."

Now, give me the answer step by step:
Question: {question}

Prompt for TableMaster – Textual Reasoning

Question Answering

Fact Verification

Figure 17. Prompt for textual reasoning in TableMaster. Blue text represents placeholders for variables within the prompt, while the grey
region indicates optional sections to adapt the prompt for question-answering or fact-verification tasks. The prompt guides the language
model to answer the question step by step.

33

1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with a table, a verbalized table, and a question related to the table.
Your task is to give a step-by-step guidance to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

You do not need to give the answer. You need to give a reasoning process as a guidance that will be used later.

Response Format
The response should be a list of steps:
1. xxx
2. xxx
...

Now, give me the guidance to answer the question step by step:
Question: {question}

Prompt for TableMaster – Textual Guidance Generation

Figure 18. Prompt for textual guidance generation in TableMaster. Blue text indicates placeholders for variables within the prompt. The
prompt guides the language model to generate textual guidance that can be utilized for subsequent symbolic reasoning.

34

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with a table, a verbalized table, a guidance, and a question related to the table.
Your task is to generate Python code that answers the question using the table and the guidance as a guide.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

Verbalized Table
{verbalized_table}

Guidance
{textual_guidance}

Question
{question}

Instructions
1. The actual data of the table is stored in the variable `table` as a list of lists.
2. The result should be store in the variable `answer` as a string and do not need to print it.
3. You need to generate Python code within ```python``` code block.

Now, give me the executable python code to answer the question:
```python
table = {table_array}

Prompt for TableMaster – Symbolic Reasoning (Programming of Thought)

Figure 19. Prompt for symbolic reasoning in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt
guides the language model to generate Python code to answer the question.

35



1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

A Recipe to Advance Table Understanding with Language Models

## Objective
You are provided with a process of text-guided reasoning with programming and a question related to the table.
Your task is to answer the question using the reasoning process.

## Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated 
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

## Table
{table}

## Textual Reasoning Process
{textual_reasoning_process}

## Programmed Reasoning Process
{symbolic_reasoning_process}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should be in the format of `Answer: xxx` (answer to the question).

Question: {question}
Answer:

Prompt for TableMaster – Answer Formatting

Figure 20. Prompt for answer formatting in TableMaster. Blue text indicates placeholders for variables within the prompt. The prompt
guides the language model to format the final answer based on the given table, question, and reasoning process.

36



1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

A Recipe to Advance Table Understanding with Language Models

O. Prompts Used in Analysis Experiments

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question directly based on the table.

## Table
{table}

## Question
{question}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Now, answer the question directly:
Answer: 

Prompt for Direct Baseline

Figure 21. Direct prompt for table understanding in analysis experiment. Blue text indicates placeholders for variables within the prompt.
The prompt guides the language model to directly give the final answer based on the given table and question.

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question step by step based on the table.

## Table
{table}

## Question
{question}

The answer should be short and simple. It can be a number, a word, or a phrase in the table, but not a full sentence.
Your response should end with `Answer: xxx` (answer to the question).
Now, answer the question step by step:

Prompt for Chain of Thought Baseline

Figure 22. Chain of thought prompt for table understanding in analysis experiment. Blue text indicates placeholders for variables within
the prompt. The prompt guides the language model to give the answer step by step based on the given table and question.

37



2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089

A Recipe to Advance Table Understanding with Language Models

## Objective
You are provided with a table and a question related to the table.
Your task is to answer the question based on the table by writing python code as a solution.

## Table
{table}

## Reasoning Instructions
1. You must use executable python code to solve the question.
2. The final answer should be variable named "answer" in the code.
3. Do not execute the code in the response.
4. The python code should be in the following format:
```python
your code here
```

Now, answer the question by writing python code as a solution:
Question: {question}
```python

Prompt for Program of Thought Baseline

Figure 23. Program of thought prompt for table understanding in analysis experiment. Blue text indicates placeholders for variables within
the prompt. The prompt guides the language model to generate code to derive the answer based on the given table and question.

Objective
You are provided with a table in string format.
Your task is to convert the table into a detailed text description.

Table
{table}

Instructions
1. Provide a comprehensive description of the table.
2. Include all details and numerical values from the table in your response.
3. Do not omit or summarize any information from the table.
4. You may use external knowledge to enhance your understanding of the table, but the response must remain faithful to the table's
content.

Now, please provide the verbalized description of the table:

Prompt for Verbalization Baseline

Figure 24. Prompt for table verbalization in analysis experiment. Blue text indicates placeholders for variables within the prompt. The
prompt guides the language model to verbalize a table to add detailed description.

38

2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144

A Recipe to Advance Table Understanding with Language Models

Objective
You are provided with a table, and a question related to the table.
Your task is to give a step-by-step guidance to answer the question based on the table.

Table Definition
The table is represented by cell-value pairs, where each pair consists of a cell address and a value of the content in that cell, separated
by a comma (e.g., 'A1,Year').
Multiple cells are separated by '|' (e.g., 'A1,Year|A2,Profit').
Cells may contain empty values, represented as 'A1,|A2,Profit'.

Table
{table}

You do not need to give the answer. You need to give a reasoning process as a guidance that will be used later.
Keep the reasoning process concise and clear.
Control the number of steps in the reasoning process in the range of 1-5.

Response Format
The response should be a list of steps:
1. xxx
2. xxx
...

Now, give me the guidance to answer the question step by step:
Question: {question}

Prompt for Textual Guidance Generation

Figure 25. Prompt for textual guidance generation in analysis experiment. Blue text indicates placeholders for variables within the prompt.
The prompt guides the language model to generate textual guidance that used for symbolic reasoning.

Question: {question}

Table: {table}

Method 1 Solution: {cot_prediction}
Method 1 Reasoning: {cot_reasoning}

Method 2 Solution: {pot_prediction}
Method 2 Reasoning: {pot_reasoning}

Please evaluate which method is better.
Respond in the following JSON format:
{{

"better_method": 1 or 2
}}

Prompt for Reasoning Strategy Evaluation

Figure 26. Prompt for reasoning strategy evaluation in analysis experiment. Blue text indicates placeholders for variables within the
prompt. The prompt guides the language model to select the better reasoning process after table reasoning.

39

2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199

A Recipe to Advance Table Understanding with Language Models

You are provided with a table and a question related to the table.
Your task is to assess whether answering this question needs mathematical calculation.

Table
{table}

Question
{question}

Instructions
1. If the question can be easily answered using the information in the table, respond with False.
2. If the question involves comparison, respond with False.
2. When the question involves counting a substantial number (more than 5) of items or rows, respond with True.
3. If the question demands complex calculations or multi-step mathematical operations based on the table's data, the response should
be True.
4. For simple arithmetic or small-scale counting that requires minimal computational effort, respond with False.

Response Format
The response should be in JSON format:
```json
{{

"need_calculation": true/false
}}
```

Prompt for Reasoning Strategy Assessment in Adaptive Reasoning

Figure 27. Prompt for reasoning strategy evaluation in analysis experiment. Blue text indicates placeholders for variables within the
prompt. The prompt guides the language model to select the better reasoning strategy before table reasoning.

Table:
{table}

Question:
{question}

Determine whether a calculation is required to answer the question, or if the question can be directly answered using the information in
the table.

Provide your response in the following JSON format:
{{

"need_calculation": true/false
}}

Prompt for Question Type Classification (Calculation Required)

Figure 28. Prompt for classifying a question type based on whether calculation is required in the analysis experiment. Blue text indicates
placeholders for variables within the prompt.

40

2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

A Recipe to Advance Table Understanding with Language Models

Given a table, you need to generate a new table by disrupting the content in the table.

Table:
{table}

Rules:
- Your goal is to make the content in each row within the same column follows a different format to increase diversity as much as
possible.
- You cannot change the structure of the table.
- You cannot add or remove any rows or columns.
- You cannot modify the column names in the first row.
- You can only alter the format of the content in each cell, not the actual values.
- You should not make the content in each row within the same column in the same format as much as possible.

Format Change Examples:
- Change a number format from 123456 to 123,456.
- Change a date format from 2024-01-01 to 2024/01/01.
- Simplify or abbreviate text content.

Provide your new table in the following JSON format:
```json
{{

"table": [[...], [...], [...]],
}}
```

Prompt for Noised Table Generation

Figure 29. Prompt for generating noised tables in the analysis experiment. Blue text represents placeholders for variables within the
prompt. The prompt instructs the language model to add noise by altering the cell content format based on a given table.

41

2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309

A Recipe to Advance Table Understanding with Language Models

P. Notion Table
Table 10 provides a comprehensive list of the notations used throughout this paper, along with their corresponding
descriptions. This table serves as a quick reference to help readers better understand the concepts presented in our work.

Table 10. Notation used throughout the paper

Notation Description

General
Q Given question or query
A Generated answer
T Input table
TW Wild table before normalization
TN Normalized table
TF Table-of-Focus
Ci,j Cell in the i-th row and j-th column
m,n Number of rows and columns in the table

Table Structure Understanding
H Set of top headers
K Key column serving as row identifier
C Candidate column set
C0 Selected relevant columns
R Selected relevant rows
k Peek size for table processing

Table Content Understanding
TT Verbalized table (natural language text)
a′, b′ Number of refined columns and rows after reconstruction

Table Reasoning
S Selected reasoning strategy
T Textual reasoning strategy
S Symbolic reasoning strategy
G Textual reasoning guidance
P Program executor (Python/SQL)

42

	Introduction
	Related Work
	Challenges in Table Understanding
	Difficulty in Locating Target Data
	Table Semantic Deficiency
	Numerical Inaccuracy in Textual Reasoning
	Semantic Inflexibility in Symbolic Reasoning

	TableMaster: A Recipe for Table Understanding
	Task Formulation
	Table Structure Understanding
	Table Content Understanding
	Table Reasoning for Question Answering

	Experiments
	Settings
	Main Results
	Ablation Study

	Conclusion
	Limitations, Extendability, and Future Works
	Technical Refinement
	Downstream Applications

	Detailed Settings of Challenge Analysis Experiments
	Experimental Results on the FetaQA Dataset
	Table Understanding Baselines
	Performance Analysis Under Different Table Sizes
	Performance Analysis Under Different Table Peek Sizes
	Efficiency Analysis of TableMaster
	Theoretical Analysis
	Empirical Analysis

	Detailed Algorithm of Table-of-Focus Re-Construction
	Analysis of Table-of-Focus Re-Construction
	Analysis of Adaptive Reasoning
	Information Missing and Table Reasoning with Full Table
	Case Study of Table Verbalization
	Case Study of TableMaster
	Prompt Design in TableMaster
	Prompts Used in Analysis Experiments
	Notion Table

