Adaptive Refinement of Time Series Foundation Models via Pattern and Context-Awareness

Anonymous Author(s)

Affiliation Address email

Abstract

Time-series forecasting in domains such as ITOps and IoT faces two major challenges: data are non-stationary and multivariate, and state-of-the-art Time-Series Foundation Models (TSFMs) rely on fixed-size windows that miss transient phenomena (e.g., spikes, drifts) and their historical context. Prior efforts address this with seasonal-trend decompositions or frequency-aware pre-training, but these require retraining and offer limited adaptability.

We propose a dynamic two-stream framework that augments any pre-trained TSFM with frequency pattern awareness and contextual retrieval as the two streams. Each input window is decomposed via Fast Fourier Transforms (FFT) and Discrete Wavelet Transforms (DWT) to extract key low- and high-frequency patterns, which are fused into a TSFM through lightweight adapters and gated embedding augmentation. In parallel, frequency pattern signatures are used to retrieve semantically similar historical sequences, enriching long-range context. This approach enhances forecasting robustness of deployed TSFMs without retraining, achieving consistent improvements over baselines on both standard and zero-shot forecasting benchmarks, particularly with abrupt data fluctuations and complex temporal dynamics.

1 Introduction

Time-series forecasting underpins critical decisions in finance, energy, healthcare, and IoT. The emergence of time-series foundation models (TSFMs) such as Chronos [1], TimesFM [4], MOMENT [9], and Time-MoE [13] has demonstrated the promise of large-scale pre-training: by training on massive corpora, these models capture general temporal patterns, enable zero- or few-shot forecasting across diverse tasks, and have the potential to become the default backbone for forecasting. However, deploying TSFMs in practice faces two persistent challenges. First, real-world time series are non-stationary: they exhibit abrupt spikes, irregular cycles, and regime shifts that a fixed sliding window often fails to capture. Second, once a TSFM is deployed in production Fine-tuning or retraining is impractical due to strict latency, compute, and data-sharing constraints. Organizations typically treat foundation models as frozen inference engines, requiring adaptation methods that enrich their forecasts without altering the model weights. Existing solutions fall short: lightweight adaptation (e.g., adapters, LoRA, prompts) stays confined to the time domain and struggles with transients, while frequency-aware models (e.g., FEDformer[19], CoST, LaST) require training new architectures and are expensive to adapt post-deployment. This leaves a crucial gap: how do we dynamically enhance a pre-trained TSFM at inference to handle real-world temporal dynamics?

We propose a two-stream refinement framework that augments any pre-trained TSFM [1, 4] with frequency pattern awareness and context awareness with historical retrieval, without modifying its core parameters. In the first stream, we apply analytic transforms (FFT and DWT) to decompose the input window into frequency components (details, approx, or trends). This approach exposes transient oscillations and periodic signatures overlooked by time-domain-only encodings. In the second stream, we retrieve semantically similar historical sequences by matching frequency signatures, capturing

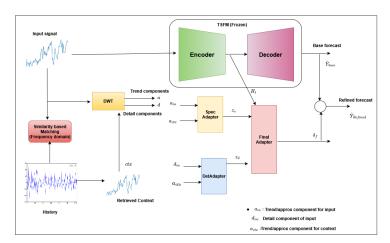


Figure 1: Dynamic two-stage adaptation: (1) decompose the input window into spectral component and detail components; (2) retrieve matching historical windows by frequency signature and integrate them with both components; (3) fuse both streams into a frozen TSFM via adapters

long-range dependencies and rare patterns beyond the fixed receptive field. Both streams are fused into the pre-trained TSFM through lightweight adapters, enriching its representation with the core TSFM untouched. This design offers three deployment-oriented benefits. (i) Plug-and-play adaptability: Our method augments deployed TSFMs without retraining them or additional compute overhead. (ii) Frequency-driven robustness: by conditioning dynamically on the frequency spectrum of the input windows, our framework captures sharp fluctuations and non-stationary patterns that static windows miss. (iii) Scalability across models: large TSFMs gain improved robustness, while compact TSFMs (e.g., TTM) benefit especially from long-range retrieval. Empirical results across cross domain datasets (zero-shot) and long horizon forecasting benchmarks confirm consistent improvements, with notable gains in spiky, irregular, and high-frequency regimes. By coupling frequency decomposition and context retrieval in the two-stream framework, we provide a dynamic, efficient, and generalizable way to refine deployed TSFMs, enabling reliable real-world forecasting.

2 Related Work

TSFMs and Adaptation. TSFMs aim to learn general-purpose representations from massive corpora. Chronos [1] tokenizes series into discrete tokens and trains T5-style transformers, while Moirai [17] employs a masked encoder trained on 27B observations. TimesFM [5] introduces a decoder-only architecture with input patching, and Time-MoE [13] scales this idea via sparse mixture-of-experts. Tiny Time Mixers (TTMs) [6] demonstrate that even lightweight MLP-Mixer-style models (<1M parameters) can achieve strong zero-/few-shot results. Despite their success, these models operate primarily in the time domain with fixed input windows, limiting their ability to capture transient bursts or rare frequency patterns. Adaptation methods have explored parameter-efficient fine-tuning (adapters, LoRA) [10, 8], in-context learning [3], and curriculum-based strategies such as CCL [11]. While effective, these approaches still rely on time-domain adjustments. Some recent works leverage decomposition signals (e.g., trends, seasonality) in diffusion models [12], however involve training models from scratch rather than augmenting existing TSFMs. TSPulse [7] employs a dual-space masked reconstruction strategy, learning from time and frequency domains to capture complementary signal structures in a unified embedding space; however, it is pre-trained from scratch, and does not consume historical context with varying lengths.

Frequency Domain Analysis. Independent of TSFMs, frequency-aware models explicitly exploit spectral structure. FEDformer [19] combines sparse Fourier attention with seasonal-trend decomposition, LaST [16] disentangles latent trends via variational autoencoding, and CoST [18] applies contrastive learning across time and frequency. More integrated designs like TimeMixer++ [15] and TEMPO [2] fuse temporal and spectral patterns through multi-resolution mixing or structured decomposition. While effective, these methods rely on fixed transformation schemes and require full model retraining, limiting their adaptability to accommodate temporal dynamics.

3 Proposed Solution

We propose a **context-guided two-stream adaptation framework** that refines forecasts from any frozen TSFM f_{θ} without retraining, as demonstrated in Figure 1. Given a query window

77 $X_{t-k+1:t} \in \mathbb{R}^{k \times C}$, the base TSFM produces

$$\hat{Y}_{\text{base}} = f_{\theta}(X_{t-k+1:t}), \quad \hat{Y}_{\text{base}} \in \mathbb{R}^{h \times C}.$$
(1)

Frequency Decomposition. Each window is decomposed into low-frequency trend $a^{(0)}$ and high-frequency details $d^{(1:L)}$ by DWT:

$$[a^{(0)}, d^{(1)}, \dots, d^{(L)}] = DWT(X_{t-k+1:t}).$$
 (2)

Context Retrieval. To capture long-range patterns, we compute FFT-based embeddings and retrieve the top-1 most similar historical window H^* as:

$$H^* = \arg\max_{H_i \in \mathcal{H}} \frac{\langle |\text{FFT}(X)|, |\text{FFT}(H_i)| \rangle}{\|\text{FFT}(X)\| \|\text{FFT}(H_i)\|}.$$
 (3)

We retrieve the adjacent window of the best-matched context H^* , denoted as ctx. Using DWT,

- we then decompose both the input and context signals into approximation and detail components,
- represented as (a_{in}, d_{in}) and (a_{ctx}, d_{ctx}) , respectively.
- Two-Stream Integration. Spectral Adapter stream encodes trend-level signals:

$$z_s = \operatorname{SpecAdapter}([\operatorname{FFT}(a_{\text{in}}^{(0)}), \operatorname{FFT}(a_{\text{ctx}}^{(0)})]), \tag{4}$$

while the detail stream encodes fluctuations:

$$z_d = \text{DetAdapter}(\left[d_{\text{in}}^{(1:L)}, d_{\text{ctx}}^{(1:L)}\right]). \tag{5}$$

Fusion with TSFM. Hidden states of the frozen TSFM are enriched with spectral features:

$$\tilde{H}_t = f_\theta^{\text{enc}}(X_{t-k+1:t}) \tag{6}$$

88 yielding a refined offset forecast as:

$$\delta_f = FinalAdapter((\tilde{H}_t), z_s, z_t).$$
 (7)

89 Then the final refined forecasting is given by:

$$\hat{Y}_{\text{refined}} = \hat{Y}_{\text{base}} + \delta_f \tag{1}$$

Training Objective. All Adapters are optimized with a loss:

$$\mathcal{L} = \frac{1}{hc} \|Y - \hat{Y}_{refined}\|_2^2 \tag{8}$$

ensuring both accurate forecasts and alignment of high-frequency details.

4 Experimental Setup and Results

93 We follow the similar setting as TimeMixer++ [15], evaluating four horizons (96, 192, 336, 720).

94 In our fine-tuning setup, we train each frozen foundation model (Chronos-Bolt, TimesFM, TTM)

95 for just three epochs using our two-stream adapters. We present the average MSE and MAE across

all horizon sizes here, while the appendix (Table 3) provides the detailed results for each individual

97 horizon. In the zero-shot setup, we fine-tune one series (e.g., ETTh1) and directly test on unseen ones

98 (e.g., ETTh2, ETTm1). To demonstrate the robustness of our approach, we report average results

99 over three independent runs.

92

103

108

Table 1 reports long-term forecasting results, showing consistent improvements over most classical

baselines (TimeMixer++, PatchTST, FEDformer) and foundation models (Chronos-bolt, TimesFM).

Our two-stream injection framework exploits complementary cues: the frequency stream applies DWT

to separate smooth trends from rapid fluctuations, enabling targeted corrections, while the context

stream captures long-range temporal dependencies beyond the TSFM's receptive field. Injecting both

spectral and context signals into the frozen model's latent space refines its inductive biases, preserving

short-range accuracy while enhancing medium- and long-horizon forecasts. For short-term settings,

results in Appendix Table 5 confirm similar gains over baselines.

4.1 Zero-Shot Forecasting

Table 2 reports zero-shot forecasting under the same TimeMixer++ setup, where our method achieves

110 significant improvements. This cross-dataset success arises because both streams learn abstractions

that transfer across domains. This is due to our adapters learn to correct universal frequency motifs

112 (e.g., seasonal cycles vs. noise) and distill recent history into a compact context embedding.

4.2 Refining the Foundation Model's Base Forecast

In Tables 1, 2, we report results using the Chronos-Bolt TSFM. To demonstrate the generalizability of our approach, we also evaluated it with TimesFM and TTM, with the corresponding results presented in the Figure 2 and Appendix Table 6. These results clearly show that our method significantly refines the base forecasts produced by pre-trained TSFMs.

Table 1: Long-term forecasting results. We average over horizons {96,192,336,720}. Best results are in red, second best in blue.

	Prop (Or	osed irs)		os-Bolt 024)	Time (20	esFM 124)	TimeM	lixer++		Mixer (24)		former (24)	Patch (20	TST 23)		former 123)		DE (23)	Time (20	esNet (23)		inear 022)	SC1 (20			former ()22)
Dataset	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Electricity	0.238	0.340	0.326	0.391	0.285	0.357	0.165	0.253	0.182	0.272	0.178	0.270	0.205	0.290	0.244	0.334	0.251	0.344	0.192	0.295	0.212	0.300	0.268	0.365	0.214	0.327
ETT (Avg)	0.236	0.283	0.276	0.325	0.427	0.389	0.349	0.399	0.367	0.388	0.383	0.377	0.381	0.397	0.685	0.578	0.482	0.470	0.391	0.404	0.442	0.444	0.689	0.597	0.408	0.428
Exchange	0.1560	0.2185	0.173	0.235	0.470	0.480	0.357	0.391	0.391	0.453	0.378	0.360	0.403	0.404	0.940	0.707	0.370	0.413	0.416	0.443	0.354	0.414	0.750	0.626	0.519	0.429
Traffic	0.1756	0.2480	0.212	0.272	0.718	0.372	0.416	0.264	0.484	0.297	0.428	0.282	0.481	0.304	0.550	0.304	0.760	0.473	0.620	0.336	0.625	0.383	0.804	0.509	0.610	0.376
Weather	0.091	0.073	0.098	0.0920	0.343	0.365	0.226	0.262	0.240	0.271	0.258	0.278	0.259	0.281	0.259	0.315	0.271	0.320	0.259	0.287	0.265	0.317	0.292	0.363	0.309	0.360
Solar-Energy	0.184	0.209	0.310	0.352	0.559	0.503	0.203	0.238	0.216	0.280	0.233	0.262	0.270	0.307	0.641	0.639	0.347	0.417	0.301	0.319	0.330	0.401	0.282	0.375	0.291	0.381

Table 2: Zero-shot learning results. Results are averaged over horizons {96,192,336,720}. Best results are in red, second best in blue.

		osed roach		os-Bolt 24)	Time (20	esFM (24)	TimeM	lixer++		Mixer (24)	LLM (20	Time 23)	DLi (20		Patcl (20	TST 23)		esNet (23)	iTrans (20	former (24)		former 123)		-LLM (24)
Transfer Task	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
$ETT_{h1\rightarrow h2}$	0.260	0.322	0.297	0.416	0.446	0.454	0.367	0.391	0.427	0.424	0.992	0.708	0.493	0.488	0.380	0.405	0.421	0.431	0.481	0.474	0.555	0.574	0.353	0.387
$ETT_{h1\rightarrow m2}$	0.241	0.346	0.285	0.405	0.478	0.437	0.301	0.357	0.361	0.397	1.867	0.869	0.415	0.452	0.314	0.360	0.327	0.361	0.311	0.361	0.613	0.629	0.273	0.340
$ETT_{h2\rightarrow h1}$	0.198	0.341	0.233	0.367	0.510	0.455	0.511	0.498	0.679	0.577	1.961	0.981	0.703	0.574	0.565	0.513	0.865	0.621	0.552	0.511	0.587	0.518	0.479	0.474
$ETT_{m1\rightarrow h2}$	0.318	0.407	0.356	0.416	0.431	0.428	0.417	0.422	0.452	0.441	0.992	0.708	0.464	0.475	0.439	0.438	0.457	0.454	0.434	0.438	0.624	0.541	0.381	0.412
$ETT_{m1\rightarrow m2}$	0.180	0.320	0.287	0.408	0.441	0.414	0.291	0.331	0.329	0.357	1.867	0.869	0.335	0.389	0.296	0.334	0.322	0.354	0.324	0.331	0.595	0.572	0.268	0.320
$ETT_{m2\rightarrow m1}$	0.205	0.304	0.216	0.318	0.417	0.405	0.427	0.448	0.554	0.478	1.933	0.984	0.649	0.537	0.568	0.492	0.769	0.567	0.559	0.491	0.611	0.593	0.414	0.438

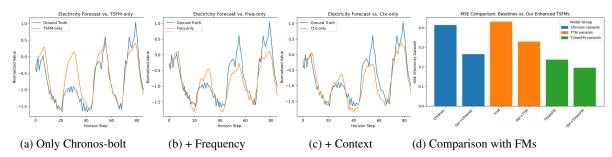


Figure 2: Visualization of forecasting results: (a) only Chronos-bolt, (b) with frequency component, (c) with context information, and (d) comparison with other TSFMs.

5 Ablation Study

Table 6 shows that frequency adapters reduce local errors, context adapters improve long-horizon coherence, and their combination yields the best overall performance in both zero-shot and fine-tuned settings. Figure 2 shows that while the frozen TSFM drifts, frequency-only captures bursts but misses trends, and context-only preserves slope but ignores spikes. Only the full two-stream model aligns with both global and local patterns, highlighting the benefit of combining frequency and context. We varied context window sizes (96, 192, 336, 720) with a fixed query of 96 and horizon of 192. Figure 3 shows performance drops when the window is much shorter or longer than the horizon, with the best results when both are similar. We report the computational cost analysis in Table 8 of the Appendix.

6 Conclusion and Limitations

We proposed a dynamic two-stage adaptation framework that augments pre-trained time-series foundation models (TSFMs) with explicit frequency decomposition and retrieval-based long-range context. By integrating short-term spectral features with similar historical patterns via lightweight adapter modules, our method enables zero-shot forecasting without modifying TSFM weights. This design captures both local transients and rare long-range signals.

However, our approach has some limitations. Spectral retrieval may miss semantically relevant patterns in noisy or irregular time series. The added adapters, while efficient, still introduce some inference overhead. Moreover, the framework assumes that informative frequency structures exist—an assumption that may not hold in highly non-periodic or abrupt series. Future work could explore more flexible retrieval objectives and hybrid feature integration to address these challenges.

References

- [1] A. F. Ansari, L. Stella, A. C. Turkmen, X. Zhang, P. Mercado, H. Shen, O. Shchur, S. S.
 Rangapuram, S. P. Arango, S. Kapoor, et al. Chronos: Learning the language of time series.
 Transactions on Machine Learning Research, 2024.
- [2] D. Cao, F. Jia, S. O. Arik, T. Pfister, Y. Zheng, W. Ye, and Y. Liu. Tempo: Prompt-based generative pre-trained transformer for time series forecasting. In *The Twelfth International Conference on Learning Representations*.
- [3] A. Das, M. Faw, R. Sen, and Y. Zhou. In-context fine-tuning for time-series foundation models. arXiv preprint arXiv:2410.24087, 2024.
- [4] A. Das, W. Kong, R. Sen, and Y. Zhou. A decoder-only foundation model for time-series forecasting, 2024.
- [5] A. Das, W. Kong, R. Sen, and Y. Zhou. A decoder-only foundation model for time-series forecasting. In *Forty-first International Conference on Machine Learning*, 2024.
- [6] V. Ekambaram, A. Jati, P. Dayama, S. Mukherjee, N. Nguyen, W. M. Gifford, C. Reddy, and
 J. Kalagnanam. Tiny time mixers (ttms): Fast pre-trained models for enhanced zero/few-shot
 forecasting of multivariate time series. Advances in Neural Information Processing Systems,
 37:74147–74181, 2024.
- V. Ekambaram, S. Kumar, A. Jati, S. Mukherjee, T. Sakai, P. Dayama, W. M. Gifford, and
 J. Kalagnanam. Tspulse: Dual space tiny pre-trained models for rapid time-series analysis.
 arXiv preprint arXiv:2505.13033, 2025.
- [8] M. Germán-Morales, A. Rivera-Rivas, M. del Jesus Díaz, and C. Carmona. Transfer learning
 with foundational models for time series forecasting using low-rank adaptations. *Information Fusion*, page 103247, 2025.
- [9] M. Goswami, K. Szafer, A. Choudhry, Y. Cai, S. Li, and A. Dubrawski. Moment: A family of open time-series foundation models. In *International Conference on Machine Learning*, pages 16115–16152. PMLR, 2024.
- [10] D. Gupta, A. Bhatti, and S. Parmar. Beyond lora: Exploring efficient fine-tuning techniques
 for time series foundational models. In *NeurIPS Workshop on Time Series in the Age of Large Models*, 2024.
- 167 [11] R. Liang, Y. Deng, D. Xie, F. He, and D. Wang. Enabling time-series foundation model for building energy forecasting via contrastive curriculum learning. *arXiv preprint arXiv:2412.17285*, 2024.
- [12] L. Shen, W. Chen, and J. Kwok. Multi-resolution diffusion models for time series forecasting.
 In The Twelfth International Conference on Learning Representations, 2024.
- [13] X. Shi, S. Wang, Y. Nie, D. Li, Z. Ye, Q. Wen, and M. Jin. Time-moe: Billion-scale time series foundation models with mixture of experts. *arXiv preprint arXiv:2409.16040*, 2024.
- 174 [14] V. Sovrasov. ptflops: a flops counting tool for neural networks in pytorch framework, 2018-2024.
- 175 [15] S. Wang, J. Li, X. Shi, Z. Ye, B. Mo, W. Lin, S. Ju, Z. Chu, and M. Jin. Timemixer++: A general time series pattern machine for universal predictive analysis. *arXiv preprint arXiv:2410.16032*, 2024.
- 178 [16] Z. Wang, X. Xu, W. Zhang, G. Trajcevski, T. Zhong, and F. Zhou. Learning latent seasonal-trend 179 representations for time series forecasting. *Advances in Neural Information Processing Systems*, 180 35:38775–38787, 2022.
- [17] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo. Unified training of universal time series forecasting transformers. In *International Conference on Machine Learning*, pages 53140–53164. PMLR, 2024.

- [18] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. Hoi. Cost: Contrastive learning of disentangled
 seasonal-trend representations for time series forecasting. In *International Conference on Learning Representations*, 2022.
- 187 [19] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In *International conference on machine learning*, pages 27268–27286. PMLR, 2022.

190 A Appendix

192

193

194

195

191 B Long-term forecasting

Table 3 presents comprehensive results for the long-term forecasting task, comparing a wide range of competitive models across various prediction lengths. The 'Avg' column represents the average performance over all four prediction horizons: 96, 192, 336, and 720. Our proposed approach consistently outperforms existing state-of-the-art methods.

Table 3: Full results for the long-term forecasting task.

Dataset	Len	Ours (MSE)	Ours (MAE)	TimeN	/lixer++	TimeN	Mixer	iTr	ans	Patcl	hTST	Cre	ossF	Ti	DE	Time	esNet	DLi	near	SCI	Net	FF	Df	Statio	onary	Aı	utof
				MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
	96	0.0049	0.0544	0.155	0.205	0.163	0.209	0.174	0.214	0.186	0.227	0.195	0.271	0.202	0.261	0.172	0.220	0.195	0.252	0.221	0.306	0.217	0.296	0.173	0.223	0.266	0.336
	192	0.0102	0.0837	0.201	0.245	0.208	0.250	0.221	0.254	0.234	0.265	0.209	0.277	0.242	0.298	0.219	0.261	0.237	0.295	0.261	0.340	0.276	0.336	0.245	0.285	0.307	0.367
Weather	336	0.0095	0.0791	0.237	0.265	0.251	0.287	0.278	0.296	0.284	0.301	0.273	0.332	0.287	0.335	0.280	0.306	0.282	0.331	0.309	0.378	0.339	0.380	0.321	0.338	0.359	0.395
	720	0.0089	0.0749	0.312	0.334	0.339	0.341	0.358	0.347	0.356	0.349	0.379	0.401	0.351	0.386	0.365	0.359	0.345	0.382	0.377	0.427	0.403	0.428	0.414	0.410	0.419	0.428
	Avg	0.0084	0.0730	0.226	0.262	0.240	0.271	0.258	0.278	0.265	0.285	0.264	0.320	0.271	0.320	0.259	0.287	0.265	0.315	0.292	0.363	0.309	0.360	0.288	0.314	0.338	0.382
	96	0.2625	0.3730	0.135	0.222	0.153	0.247	0.148	0.240	0.190	0.296	0.219	0.314	0.237	0.329	0.168	0.272	0.210	0.302	0.247	0.345	0.193	0.308	0.169	0.273	0.201	0.317
	192	0.2371	0.3583	0.147	0.235	0.166	0.256	0.162	0.253	0.199	0.304	0.231	0.322	0.236	0.330	0.184	0.322	0.210	0.305	0.257	0.355	0.201	0.315	0.182	0.286	0.222	0.334
Electricity	336	0.2608	0.3719	0.164	0.245	0.185	0.277	0.178	0.269	0.217	0.319	0.246	0.337	0.249	0.344	0.198	0.300	0.223	0.319	0.269	0.369	0.214	0.329	0.200	0.304	0.231	0.443
	720	0.3138	0.4206		0.310	0.225																					
	Avg	0.2686	0.3809	0.165	0.253	0.182	0.272	0.178	0.270	0.216	0.318	0.244	0.334	0.251	0.344	0.192	0.304	0.225	0.319	0.268	0.365	0.214	0.327	0.193	0.296	0.227	0.338
	96	0.2574	0.3102	0.392		0.462																					
	192	0.2616	0.2956	0.402		0.473																					
Traffic	336	0.2363	0.2925	0.428		0.498																					
	720	0.2645	0.3267	0.441		0.506																					
	Avg	0.25495	0.30625	0.416	0.264	0.484	0.297	0.428	0.282	0.529	0.341	0.667	0.426	0.760	0.473	0.620	0.336	0.625	0.383	0.804	0.509	0.610	0.376	0.624	0.340	0.628	0.379
	96	0.0680	0.1968	0.085	0.214	0.090	0.235	0.086	0.206	0.088	0.205	0.256	0.367	0.094	0.218	0.107	0.234	0.088	0.218	0.267	0.396	0.148	0.278	0.111	0.237	0.197	0.323
	192	0.1000	0.2409	0.175	0.313	0.187																					
Exchange		0.2429	0.3837		0.420	0.353																					
	720	0.4022	0.5270			0.934																					
	Avg	0.203275	0.3371	0.357	0.391	0.391	0.453	0.360	0.403	0.367	0.404	0.940	0.707	0.370	0.413	0.416	0.443	0.354	0.414	0.750	0.626	0.519	0.429	0.461	0.454	0.613	0.539
	96	0.1722	0.3044			0.375																					
	192	0.1827	0.3242		0.441	0.429																					
ETThl	336	0.1956	0.3382	0.430		0.484																					
	720	0.1980	0.3413	0.467		0.498																					
	Avg	0.1871	0.3270	0.419	0.432	0.447	0.440	0.454	0.447	0.516	0.484	0.529	0.522	0.541	0.507	0.458	0.450	0.461	0.457	0.747	0.647	0.498	0.484	0.570	0.537	0.496	0.487
	96	0.2144	0.3584	0.276		0.289																					
	192	0.2509	0.3902			0.372																					
ETTh2	336	0.2675	0.4017			0.386																					
	720	0.2806	0.3992			0.412																					
	Avg	0.2534	0.3874	0.339	0.380	0.364	0.395	0.383	0.407	0.391	0.411	0.942	0.684	0.611	0.550	0.414	0.427	0.563	0.519	0.954	0.723	0.437	0.449	0.526	0.516	0.450	0.459
	96	0.1079	0.2380		0.334																						
	192	0.1562	0.2902	0.348		0.361																					
ETTm1	336	0.2206	0.3533			0.390																					
	720	0.2395	0.3709	0.440		0.454																					
	Avg	0.1811	0.3131	0.369	0.378	0.381	0.395	0.407	0.410	0.406	0.407	0.513	0.495	0.419	0.419	0.400	0.406	0.404	0.408	0.485	0.481	U.448	0.452	0.481	0.456	0.588	0.517
	96	0.2131	0.3455		0.245																						
	192	0.2014	0.3353	0.229		0.237																					
ETTm2	336	0.2983	0.4137	0.303		0.298																					
	720	0.3098	0.4120	0.373		0.391																					
	Avg	0.2557	0.3766	0.269	0.320	0.275	0.323	0.288	0.332	0.290	0.334	0.757	0.610	0.358	0.404	0.291	0.333	0.354	0.402	0.954	0.723	0.305	0.349	0.306	0.347	0.327	0.371

Table 4: Ablation study: contribution of each component on four datasets (MSE / MAE).

Dataset	Bas	Base FM		requency	FM + 0	Context	FM + Frequency + Context			
	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE		
Electricity	0.295	0.379	0.232	0.351	0.235	0.353	0.227	0.346		
Traffic	0.237	0.261	0.220	0.290	0.249	0.305	0.201	0.223		
Exchange	0.202	0.347	0.0912	0.228	0.0887	0.225	0.069	0.198		
Weather	0.021	0.0934	0.0054	0.0614	0.0067	0.0679	0.0102	0.0837		

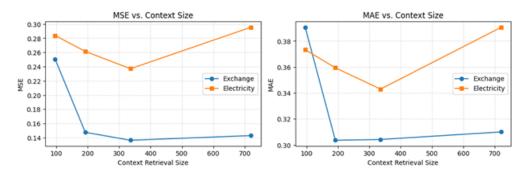


Figure 3: Effect of context size in the forecasting.

C Short-term forecasting

196

199

200

201

202

203

204

205

Table 5 presents the experimental results on the M4 dataset for short-term forecasting, demonstrating that our proposed approach leads to significant improvements in forecasting performance.

Table 5: Short-term forecasting results on the M4 dataset (single variate, prediction lengths in [6, 48]). Lower SMAPE and MASE indicate better performance.

Frequency	Metric	Ours	TimeMixer++ (Ours)	TimeMixer (2024b)		TiDE (2023a)	TimesNet (2023)	N-HiTS (2023)	N-BEATS* (2019)	PatchTST (2023)		FiLM (2022a)	LightTS (2022a)	DLinear (2023)	FED. (2022b)	Stationary (2022c)	Auto. (2021)
Yearly	SMAPE MASE	11.675 2.147	13.179 2.934	13.206 2.916	13.923 3.214	15.320 3.540	13.387 2.996	13.418 3.045	13.436 3.043	16.463 3.967	25.022 7.162	17.431 4.043	14.247 3.109	16.965 4.283	13.728 3.048	13.717 3.078	13.974 3.134
Quarterly	SMAPE MASE	3.3665 1.3325		9.996 1.166	10.757 1.283	11.830 1.410	10.100 1.182	10.202 1.194	10.124 1.169	10.644 1.278	15.214 1.963	12.925 1.664	11.364 1.328	12.145 1.520	10.792 1.283	10.958 1.325	11.338 1.365
Monthly	SMAPE MASE	1.4036 0.8780		12.605 0.919	13.796 1.083	15.180 1.190	12.670 0.933	12.791 0.969	12.677 0.937	13.399 1.031	16.943 1.442	15.407 1.298	14.014 1.053	13.514 1.037	14.260 1.102	13.917 1.097	13.958 1.103
Others	SMAPE MASE	2.980 2.150	4.698 2.931	4.564 3.115	5.569 3.940	6.120 4.330	4.891 3.302	5.061 3.216	4.925 3.391	6.558 4.511	41.985 62.734	7.134 5.090	15.880 11.434	6.709 4.953	4.954 3.264	6.302 4.064	5.485 3.865

Table 6: Comparison of Chronos-Bolt, TimesFM, Our+TimesFM, and Our+Chronos on six datasets. Lower MSE/MAE indicate better performance.

Dataset	Chron	os-Bolt	Our+C	Chronos	Time	esFM	Our+TimesFM		
Dataset	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
Electricity	0.3260	0.3914	0.2319	0.3424	0.1924	0.2650	0.1654	0.2150	
Traffic	0.2126	0.2727	0.1722	0.2572	0.6581	0.6890	0.5868	0.3847	
Weather	0.0017	0.0287	0.0071	0.0718	0.1488	0.2360	0.1028	0.2116	
Exchange	0.0680	0.1947	0.0340	0.1445	0.0924	0.1768	0.0524	0.1739	
ETTm1	0.1560	0.2750	0.1079	0.2380	0.4900	0.6860	0.4125	0.5621	
ETTh1	0.2133	0.3122	0.1722	0.3044	0.4289	0.5150	0.3924	0.4738	

We evaluated our proposed approach on different versions of the Chronos-Bolt model—mini, small, and tiny to demonstrate that our method is not limited to a specific foundation model variant. As shown in Table 4, our approach significantly improves forecasting performance across all model versions.

C.1 Contribution of each component

We present the component-wise performance of our approach in Table 4. In our visual comparisons figure 2, the baseline TSFM produces overly smooth straight-line forecasts that miss both rapid spikes and long-term trend shifts. The Freq-only variant corrects high-frequency oscillations and periodic

Table 7: Performance comparison of Chronos-Bolt (Small, Mini, Tiny) and our approach on four datasets. Lower MSE/MAE indicate better performance.

Dataset	Sma	all	Min	ni	Tiny				
Dataset	Ours (MSE/MAE)	CB (MSE/MAE)	Ours (MSE/MAE)	CB (MSE/MAE)	Ours (MSE/MAE)	CB (MSE/MAE)			
Electricity	0.2319 / 0.3424	0.3260 / 0.3914	0.2305 / 0.3413	0.3288 / 0.3963	0.2351 / 0.3499	0.3379 / 0.4059			
Traffic	0.1722 / 0.2572	0.2126 / 0.2727	0.1728 / 0.2577	0.2147 / 0.2740	0.1780 / 0.2597	0.2191 / 0.2798			
Weather	0.0071 / 0.0718	0.0017 / 0.0287	0.0071 / 0.0718	0.0017 / 0.0291	0.0071 / 0.0718	0.0017 / 0.0289			
Exchange	0.0340 / 0.1445	0.0680 / 0.1947	0.0321 / 0.1395	0.0664 / 0.1926	0.0298 / 0.1363	0.0662 / 0.1919			

bumps, but, lacking context awareness, its forecasts still drift off the true slow trend over longer horizons. Conversely, the Ctx-only model preserves the overall trajectory and prevents drift, but fails to capture transient spikes and oscillations. Only the full two-stream approach combines both strengths, faithfully tracking global trends while adjusting to every local fluctuation.

C.2 The improvement in forecasting using our proposed approach with FMs

We evaluated our approach in conjunction with the pre-trained Chronos-Bolt, TimesFM, and TTM foundation models. As shown in Figure 2, integrating our method with these pre-trained models leads to significant improvements in forecasting performance.

C.3 Effect of context window size

211

215

223

224

225

226

227

228

229

We evaluated our approach using various context window sizes to assess their impact on forecasting performance. For this experiment, we fixed the input query size at 96 and the forecasting horizon at 192, while varying the context window size across 96, 192, 336, and 720. The results, illustrated in Figure 3, show that forecasting performance declines when the context window is either smaller or much larger than the forecasting horizon. Notably, our model achieves optimal performance when the context window size is approximately equal to the forecasting horizon, as the extracted context segment most closely aligns with the prediction interval in this scenario.

D Computational complexity

In this section, we compare the computational complexity of our adapter layers with computational complexities of original TSFM models. We follow common practices and measure the number of floating point operations (FLOPs) in multiply-accumulate operations (MACs) using batch size of 1 in forward pass. We use ptflops [14] utility that estimates FLOPs and number of parameters of PyTorch models. Results of comparison are shown in table 8. For family of Chronos models, the number of parameters in our adapters is only 5.52% of the parameters of the original tiny model, 2.56% of the mini model, 1.27% of the small model and 0.36% of the base model. FLOPs vary from 0.69% for the tiny model to only 0.04% for the base model.

Table 8: Comparison of computation complexity (FLOPs measured in multiply-accumulate operations) of our adaptor layers with original TSFM models. FLOPs and parameters are in millions (M).

Model	Original N	Model	MLP ada	ptors	As percents of or	iginal models
Model	parameters (M)	FLOPs (M)	parameters (M)	FLOPs (M)	parameters (%)	FLOPS (%)
chronos-bolt-tiny	8.65	137.83	0.48	0.95	5.52	0.69
chronos-bolt-mini	21.24	348.08	0.54	1.08	2.56	0.31
chronos-bolt-small	47.72	794.38	0.61	1.21	1.27	0.15
chronos-bolt-base	205.29	3473.93	0.74	1.48	0.36	0.04