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Abstract

Time-series forecasting in domains such as ITOps and IoT faces two major chal-1

lenges: data are non-stationary and multivariate, and state-of-the-art Time-Series2

Foundation Models (TSFMs) rely on fixed-size windows that miss transient phe-3

nomena (e.g., spikes, drifts) and their historical context. Prior efforts address this4

with seasonal-trend decompositions or frequency-aware pre-training, but these5

require retraining and offer limited adaptability.6

We propose a dynamic two-stream framework that augments any pre-trained TSFM7

with frequency pattern awareness and contextual retrieval as the two streams. Each8

input window is decomposed via Fast Fourier Transforms (FFT) and Discrete9

Wavelet Transforms (DWT) to extract key low- and high-frequency patterns, which10

are fused into a TSFM through lightweight adapters and gated embedding augmen-11

tation. In parallel, frequency pattern signatures are used to retrieve semantically12

similar historical sequences, enriching long-range context. This approach enhances13

forecasting robustness of deployed TSFMs without retraining, achieving consistent14

improvements over baselines on both standard and zero-shot forecasting bench-15

marks, particularly with abrupt data fluctuations and complex temporal dynamics.16

1 Introduction17

Time-series forecasting underpins critical decisions in finance, energy, healthcare, and IoT. The emer-18

gence of time-series foundation models (TSFMs) such as Chronos [1], TimesFM [4], MOMENT [9],19

and Time-MoE [13] has demonstrated the promise of large-scale pre-training: by training on massive20

corpora, these models capture general temporal patterns, enable zero- or few-shot forecasting across21

diverse tasks, and have the potential to become the default backbone for forecasting. However, deploy-22

ing TSFMs in practice faces two persistent challenges. First, real-world time series are non-stationary:23

they exhibit abrupt spikes, irregular cycles, and regime shifts that a fixed sliding window often fails24

to capture. Second, once a TSFM is deployed in production Fine-tuning or retraining is impractical25

due to strict latency, compute, and data-sharing constraints. Organizations typically treat foundation26

models as frozen inference engines, requiring adaptation methods that enrich their forecasts without27

altering the model weights. Existing solutions fall short: lightweight adaptation (e.g., adapters, LoRA,28

prompts) stays confined to the time domain and struggles with transients, while frequency-aware29

models (e.g., FEDformer[19], CoST, LaST) require training new architectures and are expensive to30

adapt post-deployment. This leaves a crucial gap: how do we dynamically enhance a pre-trained31

TSFM at inference to handle real-world temporal dynamics?32

We propose a two-stream refinement framework that augments any pre-trained TSFM [1, 4] with33

frequency pattern awareness and context awareness with historical retrieval, without modifying its34

core parameters. In the first stream, we apply analytic transforms (FFT and DWT) to decompose the35

input window into frequency components (details, approx, or trends). This approach exposes transient36

oscillations and periodic signatures overlooked by time-domain-only encodings. In the second stream,37

we retrieve semantically similar historical sequences by matching frequency signatures, capturing38
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Figure 1: Dynamic two-stage adaptation: (1) decompose the input window into spectral component
and detail components; (2) retrieve matching historical windows by frequency signature and integrate
them with both components; (3) fuse both streams into a frozen TSFM via adapters

long-range dependencies and rare patterns beyond the fixed receptive field. Both streams are fused into39

the pre-trained TSFM through lightweight adapters, enriching its representation with the core TSFM40

untouched. This design offers three deployment-oriented benefits. (i) Plug-and-play adaptability:41

Our method augments deployed TSFMs without retraining them or additional compute overhead. (ii)42

Frequency-driven robustness: by conditioning dynamically on the frequency spectrum of the input43

windows, our framework captures sharp fluctuations and non-stationary patterns that static windows44

miss. (iii) Scalability across models: large TSFMs gain improved robustness, while compact TSFMs45

(e.g., TTM) benefit especially from long-range retrieval. Empirical results across cross domain46

datasets (zero-shot) and long horizon forecasting benchmarks confirm consistent improvements, with47

notable gains in spiky, irregular, and high-frequency regimes. By coupling frequency decomposition48

and context retrieval in the two-stream framework, we provide a dynamic, efficient, and generalizable49

way to refine deployed TSFMs, enabling reliable real-world forecasting.50

2 Related Work51

TSFMs and Adaptation. TSFMs aim to learn general-purpose representations from massive corpora.52

Chronos [1] tokenizes series into discrete tokens and trains T5-style transformers, while Moirai [17]53

employs a masked encoder trained on 27B observations. TimesFM [5] introduces a decoder-only54

architecture with input patching, and Time-MoE [13] scales this idea via sparse mixture-of-experts.55

Tiny Time Mixers (TTMs) [6] demonstrate that even lightweight MLP-Mixer–style models (<1M56

parameters) can achieve strong zero-/few-shot results. Despite their success, these models operate57

primarily in the time domain with fixed input windows, limiting their ability to capture transient58

bursts or rare frequency patterns. Adaptation methods have explored parameter-efficient fine-tuning59

(adapters, LoRA) [10, 8], in-context learning [3], and curriculum-based strategies such as CCL [11].60

While effective, these approaches still rely on time-domain adjustments. Some recent works leverage61

decomposition signals (e.g., trends, seasonality) in diffusion models [12], however involve training62

models from scratch rather than augmenting existing TSFMs. TSPulse [7] employs a dual-space63

masked reconstruction strategy, learning from time and frequency domains to capture complementary64

signal structures in a unified embedding space; however, it is pre-trained from scratch, and does not65

consume historical context with varying lengths.66

Frequency Domain Analysis. Independent of TSFMs, frequency-aware models explicitly exploit67

spectral structure. FEDformer [19] combines sparse Fourier attention with seasonal-trend decom-68

position, LaST [16] disentangles latent trends via variational autoencoding, and CoST [18] applies69

contrastive learning across time and frequency. More integrated designs like TimeMixer++ [15]70

and TEMPO [2] fuse temporal and spectral patterns through multi-resolution mixing or structured71

decomposition. While effective, these methods rely on fixed transformation schemes and require full72

model retraining, limiting their adaptability to accommodate temporal dynamics.73

3 Proposed Solution74

We propose a context-guided two-stream adaptation framework that refines forecasts from75

any frozen TSFM fθ without retraining, as demonstrated in Figure 1. Given a query window76
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Xt−k+1:t ∈ Rk×C , the base TSFM produces77

Ŷbase = fθ(Xt−k+1:t), Ŷbase ∈ Rh×C . (1)

Frequency Decomposition. Each window is decomposed into low-frequency trend a(0) and high-78

frequency details d(1:L) by DWT:79

[a(0), d(1), . . . , d(L)] = DWT(Xt−k+1:t). (2)

Context Retrieval. To capture long-range patterns, we compute FFT-based embeddings and retrieve80

the top-1 most similar historical window H∗ as:81

H∗ = arg max
Hi∈H

⟨ |FFT(X)|, |FFT(Hi)| ⟩
∥FFT(X)∥ ∥FFT(Hi)∥

. (3)

We retrieve the adjacent window of the best-matched context H∗, denoted as ctx. Using DWT,82

we then decompose both the input and context signals into approximation and detail components,83

represented as (ain, din ) and (actx, dctx ), respectively.84

Two-Stream Integration. Spectral Adapter stream encodes trend-level signals:85

zs = SpecAdapter([ FFT(a
(0)
in ),FFT(a

(0)
ctx ) ]), (4)

while the detail stream encodes fluctuations:86

zd = DetAdapter([ d
(1:L)
in , d

(1:L)
ctx ]). (5)

Fusion with TSFM. Hidden states of the frozen TSFM are enriched with spectral features:87

H̃t = f enc
θ (Xt−k+1:t) (6)

yielding a refined offset forecast as:88

δf = FinalAdapter((H̃t), zs, zt). (7)

Then the final refined forecasting is given by:89

Ŷrefined = Ŷbase + δf (1)

Training Objective. All Adapters are optimized with a loss:90

L =
1

hc
∥Y − Ŷrefined∥22 (8)

ensuring both accurate forecasts and alignment of high-frequency details.91

4 Experimental Setup and Results92

We follow the similar setting as TimeMixer++ [15], evaluating four horizons (96, 192, 336, 720).93

In our fine-tuning setup, we train each frozen foundation model (Chronos-Bolt, TimesFM, TTM)94

for just three epochs using our two-stream adapters. We present the average MSE and MAE across95

all horizon sizes here, while the appendix (Table 3) provides the detailed results for each individual96

horizon. In the zero-shot setup, we fine-tune one series (e.g., ETTh1) and directly test on unseen ones97

(e.g., ETTh2, ETTm1). To demonstrate the robustness of our approach, we report average results98

over three independent runs.99

Table 1 reports long-term forecasting results, showing consistent improvements over most classical100

baselines (TimeMixer++, PatchTST, FEDformer) and foundation models (Chronos-bolt, TimesFM).101

Our two-stream injection framework exploits complementary cues: the frequency stream applies DWT102

to separate smooth trends from rapid fluctuations, enabling targeted corrections, while the context103

stream captures long-range temporal dependencies beyond the TSFM’s receptive field. Injecting both104

spectral and context signals into the frozen model’s latent space refines its inductive biases, preserving105

short-range accuracy while enhancing medium- and long-horizon forecasts. For short-term settings,106

results in Appendix Table 5 confirm similar gains over baselines.107

4.1 Zero-Shot Forecasting108

Table 2 reports zero-shot forecasting under the same TimeMixer++ setup, where our method achieves109

significant improvements. This cross-dataset success arises because both streams learn abstractions110

that transfer across domains. This is due to our adapters learn to correct universal frequency motifs111

(e.g., seasonal cycles vs. noise) and distill recent history into a compact context embedding.112
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4.2 Refining the Foundation Model’s Base Forecast113

In Tables 1, 2, we report results using the Chronos-Bolt TSFM. To demonstrate the generalizability of114

our approach, we also evaluated it with TimesFM and TTM, with the corresponding results presented115

in the Figure 2 and Appendix Table 6. These results clearly show that our method significantly refines116

the base forecasts produced by pre-trained TSFMs.117

Table 1: Long-term forecasting results. We average over horizons {96,192,336,720}. Best results are
in red, second best in blue.

Proposed
(Ours)

Chronos-Bolt
(2024)

TimesFM
(2024) TimeMixer++ TimeMixer

(2024)
iTransformer

(2024)
PatchTST

(2023)
Crossformer

(2023)
TiDE
(2023)

TimesNet
(2023)

DLinear
(2022)

SCINet
(2022)

FEDformer
(2022)

Dataset MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.238 0.340 0.326 0.391 0.285 0.357 0.165 0.253 0.182 0.272 0.178 0.270 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327
ETT (Avg) 0.236 0.283 0.276 0.325 0.427 0.389 0.349 0.399 0.367 0.388 0.383 0.377 0.381 0.397 0.685 0.578 0.482 0.470 0.391 0.404 0.442 0.444 0.689 0.597 0.408 0.428
Exchange 0.1560 0.2185 0.173 0.235 0.470 0.480 0.357 0.391 0.391 0.453 0.378 0.360 0.403 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429
Traffic 0.1756 0.2480 0.212 0.272 0.718 0.372 0.416 0.264 0.484 0.297 0.428 0.282 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376
Weather 0.091 0.073 0.098 0.0920 0.343 0.365 0.226 0.262 0.240 0.271 0.258 0.278 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360
Solar-Energy 0.184 0.209 0.310 0.352 0.559 0.503 0.203 0.238 0.216 0.280 0.233 0.262 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381

Table 2: Zero-shot learning results. Results are averaged over horizons {96,192,336,720}. Best
results are in red, second best in blue.

Proposed
Approach

Chronos-Bolt
(2024)

TimesFM
(2024) TimeMixer++ TimeMixer

(2024)
LLMTime

(2023)
DLinear
(2023)

PatchTST
(2023)

TimesNet
(2023)

iTransformer
(2024)

Crossformer
(2023)

Time-LLM
(2024)

Transfer Task MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1→h2 0.260 0.322 0.297 0.416 0.446 0.454 0.367 0.391 0.427 0.424 0.992 0.708 0.493 0.488 0.380 0.405 0.421 0.431 0.481 0.474 0.555 0.574 0.353 0.387
ETTh1→m2 0.241 0.346 0.285 0.405 0.478 0.437 0.301 0.357 0.361 0.397 1.867 0.869 0.415 0.452 0.314 0.360 0.327 0.361 0.311 0.361 0.613 0.629 0.273 0.340
ETTh2→h1 0.198 0.341 0.233 0.367 0.510 0.455 0.511 0.498 0.679 0.577 1.961 0.981 0.703 0.574 0.565 0.513 0.865 0.621 0.552 0.511 0.587 0.518 0.479 0.474
ETTm1→h2 0.318 0.407 0.356 0.416 0.431 0.428 0.417 0.422 0.452 0.441 0.992 0.708 0.464 0.475 0.439 0.438 0.457 0.454 0.434 0.438 0.624 0.541 0.381 0.412
ETTm1→m2 0.180 0.320 0.287 0.408 0.441 0.414 0.291 0.331 0.329 0.357 1.867 0.869 0.335 0.389 0.296 0.334 0.322 0.354 0.324 0.331 0.595 0.572 0.268 0.320
ETTm2→m1 0.205 0.304 0.216 0.318 0.417 0.405 0.427 0.448 0.554 0.478 1.933 0.984 0.649 0.537 0.568 0.492 0.769 0.567 0.559 0.491 0.611 0.593 0.414 0.438

(a) Only Chronos-bolt (b) + Frequency (c) + Context (d) Comparison with FMs

Figure 2: Visualization of forecasting results: (a) only Chronos-bolt, (b) with frequency component,
(c) with context information, and (d) comparison with other TSFMs.

5 Ablation Study118

Table 6 shows that frequency adapters reduce local errors, context adapters improve long-horizon119

coherence, and their combination yields the best overall performance in both zero-shot and fine-tuned120

settings. Figure 2 shows that while the frozen TSFM drifts, frequency-only captures bursts but misses121

trends, and context-only preserves slope but ignores spikes. Only the full two-stream model aligns122

with both global and local patterns, highlighting the benefit of combining frequency and context. We123

varied context window sizes (96, 192, 336, 720) with a fixed query of 96 and horizon of 192. Figure 3124

shows performance drops when the window is much shorter or longer than the horizon, with the best125

results when both are similar. We report the computational cost analysis in Table 8 of the Appendix.126

6 Conclusion and Limitations127

We proposed a dynamic two-stage adaptation framework that augments pre-trained time-series128

foundation models (TSFMs) with explicit frequency decomposition and retrieval-based long-range129

context. By integrating short-term spectral features with similar historical patterns via lightweight130

adapter modules, our method enables zero-shot forecasting without modifying TSFM weights. This131

design captures both local transients and rare long-range signals.132

However, our approach has some limitations. Spectral retrieval may miss semantically relevant133

patterns in noisy or irregular time series. The added adapters, while efficient, still introduce some134

inference overhead. Moreover, the framework assumes that informative frequency structures exist—an135

assumption that may not hold in highly non-periodic or abrupt series. Future work could explore136

more flexible retrieval objectives and hybrid feature integration to address these challenges.137
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A Appendix190

B Long-term forecasting191

Table 3 presents comprehensive results for the long-term forecasting task, comparing a wide range192

of competitive models across various prediction lengths. The ’Avg’ column represents the average193

performance over all four prediction horizons: 96, 192, 336, and 720. Our proposed approach194

consistently outperforms existing state-of-the-art methods.195

Table 3: Full results for the long-term forecasting task.

Dataset Len Ours (MSE) Ours (MAE) TimeMixer++ TimeMixer iTrans PatchTST CrossF TiDE TimesNet DLinear SCINet FEDf Stationary Autof
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.0049 0.0544 0.155 0.205 0.163 0.209 0.174 0.214 0.186 0.227 0.195 0.271 0.202 0.261 0.172 0.220 0.195 0.252 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.0102 0.0837 0.201 0.245 0.208 0.250 0.221 0.254 0.234 0.265 0.209 0.277 0.242 0.298 0.219 0.261 0.237 0.295 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.0095 0.0791 0.237 0.265 0.251 0.287 0.278 0.296 0.284 0.301 0.273 0.332 0.287 0.335 0.280 0.306 0.282 0.331 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.0089 0.0749 0.312 0.334 0.339 0.341 0.358 0.347 0.356 0.349 0.379 0.401 0.351 0.386 0.365 0.359 0.345 0.382 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428
Avg 0.0084 0.0730 0.226 0.262 0.240 0.271 0.258 0.278 0.265 0.285 0.264 0.320 0.271 0.320 0.259 0.287 0.265 0.315 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

Electricity

96 0.2625 0.3730 0.135 0.222 0.153 0.247 0.148 0.240 0.190 0.296 0.219 0.314 0.237 0.329 0.168 0.272 0.210 0.302 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.2371 0.3583 0.147 0.235 0.166 0.256 0.162 0.253 0.199 0.304 0.231 0.322 0.236 0.330 0.184 0.322 0.210 0.305 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.2608 0.3719 0.164 0.245 0.185 0.277 0.178 0.269 0.217 0.319 0.246 0.337 0.249 0.344 0.198 0.300 0.223 0.319 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.443
720 0.3138 0.4206 0.212 0.310 0.225 0.310 0.225 0.317 0.258 0.352 0.280 0.363 0.284 0.373 0.220 0.320 0.258 0.350 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361
Avg 0.2686 0.3809 0.165 0.253 0.182 0.272 0.178 0.270 0.216 0.318 0.244 0.334 0.251 0.344 0.192 0.304 0.225 0.319 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

Traffic

96 0.2574 0.3102 0.392 0.253 0.462 0.285 0.395 0.268 0.526 0.347 0.644 0.429 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.2616 0.2956 0.402 0.258 0.473 0.296 0.417 0.276 0.522 0.332 0.665 0.431 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.2363 0.2925 0.428 0.263 0.498 0.296 0.433 0.283 0.517 0.334 0.674 0.420 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.2645 0.3267 0.441 0.282 0.506 0.313 0.467 0.302 0.552 0.352 0.683 0.424 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408
Avg 0.25495 0.30625 0.416 0.264 0.484 0.297 0.428 0.282 0.529 0.341 0.667 0.426 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

Exchange

96 0.0680 0.1968 0.085 0.214 0.090 0.235 0.086 0.206 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.1000 0.2409 0.175 0.313 0.187 0.343 0.177 0.299 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.2429 0.3837 0.316 0.420 0.353 0.473 0.331 0.417 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.4022 0.5270 0.851 0.689 0.934 0.761 0.847 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941
Avg 0.203275 0.3371 0.357 0.391 0.391 0.453 0.360 0.403 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

ETTh1

96 0.1722 0.3044 0.361 0.403 0.375 0.400 0.386 0.405 0.460 0.447 0.423 0.448 0.479 0.464 0.384 0.402 0.397 0.412 0.654 0.599 0.395 0.424 0.513 0.491 0.449 0.459
192 0.1827 0.3242 0.416 0.441 0.429 0.421 0.441 0.512 0.477 0.429 0.471 0.474 0.525 0.492 0.436 0.429 0.446 0.441 0.719 0.631 0.469 0.470 0.534 0.504 0.500 0.482
336 0.1956 0.3382 0.430 0.434 0.484 0.458 0.487 0.458 0.546 0.496 0.570 0.546 0.565 0.515 0.491 0.469 0.489 0.467 0.778 0.659 0.530 0.499 0.588 0.535 0.521 0.496
720 0.1980 0.3413 0.467 0.451 0.498 0.482 0.503 0.491 0.544 0.517 0.653 0.621 0.594 0.558 0.521 0.500 0.513 0.510 0.836 0.699 0.598 0.544 0.643 0.616 0.514 0.512
Avg 0.1871 0.3270 0.419 0.432 0.447 0.440 0.454 0.447 0.516 0.484 0.529 0.522 0.541 0.507 0.458 0.450 0.461 0.457 0.747 0.647 0.498 0.484 0.570 0.537 0.496 0.487

ETTh2

96 0.2144 0.3584 0.276 0.328 0.289 0.341 0.297 0.349 0.308 0.355 0.745 0.584 0.400 0.440 0.340 0.374 0.340 0.394 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.2509 0.3902 0.342 0.379 0.372 0.392 0.380 0.400 0.393 0.405 0.877 0.656 0.528 0.509 0.402 0.414 0.482 0.479 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.2675 0.4017 0.346 0.398 0.386 0.414 0.428 0.432 0.427 0.436 1.043 0.731 0.643 0.571 0.452 0.452 0.591 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.2806 0.3992 0.392 0.415 0.412 0.434 0.427 0.445 0.436 0.450 1.104 0.763 0.874 0.679 0.462 0.468 0.839 0.661 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511
Avg 0.2534 0.3874 0.339 0.380 0.364 0.395 0.383 0.407 0.391 0.411 0.942 0.684 0.611 0.550 0.414 0.427 0.563 0.519 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

ETTm1

96 0.1079 0.2380 0.310 0.334 0.320 0.357 0.334 0.368 0.352 0.374 0.404 0.426 0.364 0.387 0.338 0.375 0.346 0.374 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.1562 0.2902 0.348 0.362 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.398 0.404 0.374 0.387 0.382 0.391 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.2206 0.3533 0.376 0.391 0.390 0.404 0.426 0.420 0.421 0.414 0.532 0.515 0.428 0.425 0.410 0.411 0.415 0.415 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.2395 0.3709 0.440 0.423 0.454 0.441 0.491 0.459 0.462 0.449 0.666 0.589 0.487 0.461 0.478 0.450 0.473 0.451 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561
Avg 0.1811 0.3131 0.369 0.378 0.381 0.395 0.407 0.410 0.406 0.407 0.513 0.495 0.419 0.419 0.400 0.406 0.404 0.408 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ETTm2

96 0.2131 0.3455 0.170 0.245 0.175 0.258 0.180 0.264 0.183 0.270 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.293 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.2014 0.3353 0.229 0.291 0.237 0.299 0.250 0.309 0.255 0.314 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.361 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.2983 0.4137 0.303 0.343 0.298 0.340 0.311 0.348 0.309 0.347 0.597 0.542 0.377 0.422 0.321 0.351 0.382 0.429 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.3098 0.4120 0.373 0.399 0.391 0.396 0.412 0.407 0.412 0.404 1.730 1.042 0.558 0.524 0.408 0.403 0.558 0.525 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432
Avg 0.2557 0.3766 0.269 0.320 0.275 0.323 0.288 0.332 0.290 0.334 0.757 0.610 0.358 0.404 0.291 0.333 0.354 0.402 0.954 0.723 0.305 0.349 0.306 0.347 0.327 0.371

Table 4: Ablation study: contribution of each component on four datasets (MSE / MAE).

Dataset Base FM FM + Frequency FM + Context FM + Frequency + Context

MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.295 0.379 0.232 0.351 0.235 0.353 0.227 0.346
Traffic 0.237 0.261 0.220 0.290 0.249 0.305 0.201 0.223
Exchange 0.202 0.347 0.0912 0.228 0.0887 0.225 0.069 0.198
Weather 0.021 0.0934 0.0054 0.0614 0.0067 0.0679 0.0102 0.0837
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Figure 3: Effect of context size in the forecasting.

C Short-term forecasting196

Table 5 presents the experimental results on the M4 dataset for short-term forecasting, demonstrating197

that our proposed approach leads to significant improvements in forecasting performance.198

Table 5: Short-term forecasting results on the M4 dataset (single variate, prediction lengths in [6,
48]). Lower SMAPE and MASE indicate better performance.

Frequency Metric Ours TimeMixer++ TimeMixer iTrans TiDE TimesNet N-HiTS N-BEATS∗ PatchTST MICN FiLM LightTS DLinear FED. Stationary Auto.
(Ours) (2024b) (2024) (2023a) (2023) (2023) (2019) (2023) (2023a) (2022a) (2022a) (2023) (2022b) (2022c) (2021)

Yearly
SMAPE 11.675 13.179 13.206 13.923 15.320 13.387 13.418 13.436 16.463 25.022 17.431 14.247 16.965 13.728 13.717 13.974
MASE 2.147 2.934 2.916 3.214 3.540 2.996 3.045 3.043 3.967 7.162 4.043 3.109 4.283 3.048 3.078 3.134

Quarterly
SMAPE 3.3665 9.755 9.996 10.757 11.830 10.100 10.202 10.124 10.644 15.214 12.925 11.364 12.145 10.792 10.958 11.338
MASE 1.3325 1.159 1.166 1.283 1.410 1.182 1.194 1.169 1.278 1.963 1.664 1.328 1.520 1.283 1.325 1.365

Monthly
SMAPE 1.4036 12.432 12.605 13.796 15.180 12.670 12.791 12.677 13.399 16.943 15.407 14.014 13.514 14.260 13.917 13.958
MASE 0.8780 0.904 0.919 1.083 1.190 0.933 0.969 0.937 1.031 1.442 1.298 1.053 1.037 1.102 1.097 1.103

Others
SMAPE 2.980 4.698 4.564 5.569 6.120 4.891 5.061 4.925 6.558 41.985 7.134 15.880 6.709 4.954 6.302 5.485
MASE 2.150 2.931 3.115 3.940 4.330 3.302 3.216 3.391 4.511 62.734 5.090 11.434 4.953 3.264 4.064 3.865

Table 6: Comparison of Chronos-Bolt, TimesFM, Our+TimesFM, and Our+Chronos on six datasets.
Lower MSE/MAE indicate better performance.

Dataset Chronos-Bolt Our+Chronos TimesFM Our+TimesFM
MSE MAE MSE MAE MSE MAE MSE MAE

Electricity 0.3260 0.3914 0.2319 0.3424 0.1924 0.2650 0.1654 0.2150
Traffic 0.2126 0.2727 0.1722 0.2572 0.6581 0.6890 0.5868 0.3847
Weather 0.0017 0.0287 0.0071 0.0718 0.1488 0.2360 0.1028 0.2116
Exchange 0.0680 0.1947 0.0340 0.1445 0.0924 0.1768 0.0524 0.1739
ETTm1 0.1560 0.2750 0.1079 0.2380 0.4900 0.6860 0.4125 0.5621
ETTh1 0.2133 0.3122 0.1722 0.3044 0.4289 0.5150 0.3924 0.4738

We evaluated our proposed approach on different versions of the Chronos-Bolt model—mini, small,199

and tiny to demonstrate that our method is not limited to a specific foundation model variant. As200

shown in Table 4, our approach significantly improves forecasting performance across all model201

versions.202

C.1 Contribution of each component203

We present the component-wise performance of our approach in Table 4. In our visual comparisons204

figure 2, the baseline TSFM produces overly smooth straight-line forecasts that miss both rapid spikes205

and long-term trend shifts. The Freq-only variant corrects high-frequency oscillations and periodic206
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Table 7: Performance comparison of Chronos-Bolt (Small, Mini, Tiny) and our approach on four
datasets. Lower MSE/MAE indicate better performance.

Dataset Small Mini Tiny
Ours (MSE/MAE) CB (MSE/MAE) Ours (MSE/MAE) CB (MSE/MAE) Ours (MSE/MAE) CB (MSE/MAE)

Electricity 0.2319 / 0.3424 0.3260 / 0.3914 0.2305 / 0.3413 0.3288 / 0.3963 0.2351 / 0.3499 0.3379 / 0.4059
Traffic 0.1722 / 0.2572 0.2126 / 0.2727 0.1728 / 0.2577 0.2147 / 0.2740 0.1780 / 0.2597 0.2191 / 0.2798
Weather 0.0071 / 0.0718 0.0017 / 0.0287 0.0071 / 0.0718 0.0017 / 0.0291 0.0071 / 0.0718 0.0017 / 0.0289
Exchange 0.0340 / 0.1445 0.0680 / 0.1947 0.0321 / 0.1395 0.0664 / 0.1926 0.0298 / 0.1363 0.0662 / 0.1919

bumps, but, lacking context awareness, its forecasts still drift off the true slow trend over longer207

horizons. Conversely, the Ctx-only model preserves the overall trajectory and prevents drift, but208

fails to capture transient spikes and oscillations. Only the full two-stream approach combines both209

strengths, faithfully tracking global trends while adjusting to every local fluctuation.210

C.2 The improvement in forecasting using our proposed approach with FMs211

We evaluated our approach in conjunction with the pre-trained Chronos-Bolt, TimesFM, and TTM212

foundation models. As shown in Figure 2, integrating our method with these pre-trained models leads213

to significant improvements in forecasting performance.214

C.3 Effect of context window size215

We evaluated our approach using various context window sizes to assess their impact on forecasting216

performance. For this experiment, we fixed the input query size at 96 and the forecasting horizon at217

192, while varying the context window size across 96, 192, 336, and 720. The results, illustrated in218

Figure 3, show that forecasting performance declines when the context window is either smaller or219

much larger than the forecasting horizon. Notably, our model achieves optimal performance when220

the context window size is approximately equal to the forecasting horizon, as the extracted context221

segment most closely aligns with the prediction interval in this scenario.222

D Computational complexity223

In this section, we compare the computational complexity of our adapter layers with computational224

complexities of original TSFM models. We follow common practices and measure the number of225

floating point operations (FLOPs) in multiply-accumulate operations (MACs) using batch size of226

1 in forward pass. We use ptflops [14] utility that estimates FLOPs and number of parameters of227

PyTorch models. Results of comparison are shown in table 8. For family of Chronos models, the228

number of parameters in our adapters is only 5.52% of the parameters of the original tiny model,229

2.56% of the mini model, 1.27% of the small model and 0.36% of the base model. FLOPs vary from230

0.69% for the tiny model to only 0.04% for the base model.231

Table 8: Comparison of computation complexity (FLOPs measured in multiply-accumulate opera-
tions) of our adaptor layers with original TSFM models. FLOPs and parameters are in millions (M).

Model Original Model MLP adaptors As percents of original models
parameters (M) FLOPs (M) parameters (M) FLOPs (M) parameters (%) FLOPS (%)

chronos-bolt-tiny 8.65 137.83 0.48 0.95 5.52 0.69
chronos-bolt-mini 21.24 348.08 0.54 1.08 2.56 0.31
chronos-bolt-small 47.72 794.38 0.61 1.21 1.27 0.15
chronos-bolt-base 205.29 3473.93 0.74 1.48 0.36 0.04
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