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ABSTRACT

Despite their proficiency in general tasks, Multi-modal Large Language Models
(MLLMs) struggle with automatic Geometry Problem Solving (GPS), which de-
mands understanding diagrams, interpreting symbols, and performing complex
reasoning. This limitation arises from their pre-training on natural images and
texts, along with the lack of automated verification in the problem-solving process.
Besides, current geometric specialists are limited by their task-specific designs,
making them less effective for broader geometric problems. To this end, we present
GeoX, a multi-modal large model focusing on geometric understanding and rea-
soning tasks. Given the significant differences between geometric diagram-symbol
and natural image-text, we introduce unimodal pre-training to develop a diagram
encoder and symbol decoder, enhancing the understanding of geometric images and
corpora. Furthermore, we introduce geometry-language alignment, an effective
pre-training paradigm that bridges the modality gap between unimodal geometric
experts. We propose a Generator-And-Sampler Transformer (GS-Former) to
generate discriminative queries and eliminate uninformative representations from
unevenly distributed geometric signals. Finally, GeoX benefits from visual in-
struction tuning, empowering it to take geometric images and questions as input
and generate verifiable solutions. Experiments show that GeoX outperforms both
generalists and geometric specialists on publicly recognized benchmarks, such as
GeoQA, UniGeo, Geometry3K, and PGPS9k. Our data and code will be released
soon to accelerate future research on automatic GPS.

1 INTRODUCTION

Large Language Models (LLMs) (Touvron et al., 2023a; Ouyang et al., 2022) and their multi-modal
extensions (MLLMs) (Liu et al., 2024; Chen et al., 2024b; OpenAI, 2023; Anthropic, 2024) have
demonstrated exceptional abilities to effectively handle a wide range of general domain tasks, such as
cross-modal retrieval (Caffagni et al., 2024; Zhang et al., 2023a; Wang et al.; Xia et al., 2024), visual
question answering (Wu & Xie, 2024; Chen et al., 2024a), and summarization (Bianco et al., 2023;
Rotstein et al., 2023). With the increasing focus on Artificial General Intelligence (AGI), both LLMs
and MLLMs are making inroads into specialized domains such as mathematics reasoning (Imani
et al., 2023; Wang et al., 2024a), demonstrating promising performance improvements.

Plane geometry is a pivotal and unique branch of mathematics that requires the integration of multi-
modal data as well as knowledge from different scientific fields, such as theorem proving (Trinh et al.,
2024) and algebraic computation (Faulstich & Oster, 2024). However, developing AI systems to
automatically solve geometry problems is challenging due to the inherent complexity of both visual
and language modalities. Previous works (Peng et al., 2023; Wu et al., 2024) rely on additional
detection models and make decisions based on manually crafted rules, but are often criticized for
their complexity (Zhang et al., 2023b). On the other hand, NGS (Chen et al., 2021), Geoformer (Chen
et al., 2022), and PGPSNet (Zhang et al., 2023c) focus on predicting program sequences, yet they
often suffer from poor adaptability due to their task-specialized model designs and limited ability in
modeling complex geometric diagrams and problems.

Although MLLMs (Shi et al., 2024; Lu et al.) have made significant progress in multi-modal
mathematical reasoning, their performance still lags behind that of specialized geometry models.
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Two Examples Comparing our GeoX and GPT-4VTwo Examples Comparing our GeoX and GPT-4V

If angle D is 50°, since the line from O to D would create an 
isosceles triangle with OC and OD being equal radii of the circle, 
angle ∠COD would correspond to the central angle subtending arc 
CD. Therefore, inscribed angle ∠CAD would be half the measure 
of the central angle ∠COD because an inscribed angle is half the 
measure of the corresponding central angle. Given ∠D is 50°, this 
means ∠CAD would be 25°. So, angle A (∠CAD) is 25.0°.The 
correct answer from the choices given is 20.0.

g_minus C_3 C_2,
g_minus V_0 N_0,
g_half V_1

20

Question：O is the center of the 
circle, and AOBD is four-point 
collinear, C is the point of tangency. 
If angle D is 50°, then the measure 
of angle A is ?  Choices: 20.0, 30.0, 
40.0, 50.0

Answer: 20

GPT-4V:

Our GeoX:

Geometric 
Solver

Using the fact that the opposite angles in a quadrilateral 
inscribed in a circle sum up to 180 degrees. Therefore, as angle 
ACB is also 60° and AB = AC. Relationship among radius 'r'  length 
is 's' and height is 'h': h = (√3/2) * s. Since the triangle is 
equilateral, 's' equals 5. Therefore, r = h = (√3/2) * 5. A_circle = 
πr²  = π( (√3/2) * 5 )²  = (75/4)π. Area_triangle = ( √3/4 ) * s²  = ( 
√3/4 ) * 5²  = (25√3/4). Area_region = (75/4)π-(25√3/4)

Gsin N_0 V_0 N_1,
Circle_D_Area V_0 V_1,
Gtan N_0 V_2 N_1,
Tria_BH_Area V_2 N_0 V_3,
Sum V_3 V_4 V_1 Get V_4

56.89

Question：AB=5, Angle C=30°, find 
the area of the shaded region.

Answer: 56.889

GPT-4V:

Our GeoX:

Geometric 
Solver

Case 1：

Case 2：
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Pineline of Our GeoX for Geometric Problem SolvingPineline of Our GeoX for Geometric Problem Solving

Formal vs. Natural Language for Geometry-Language AlignmentFormal vs. Natural Language for Geometry-Language AlignmentFormal vs. Natural Language for Geometry-Language Alignment

Caption 1:
No, point Y does not lie on the line segment 
IW. The given information only indicates 
that point Y lies on the line segments IY, IZ, 
YW, and ZX.

Caption 2:
Based on the given information, it is not 
explicitly stated that point C lies on the line 
segment YZ. The provided details focus on 
the positioning of points Y, W, and X on the 
line segment YZ.

Natural Language-aligned:Image：

Formal Language-aligned:

Line I W X Y Z C          (Collinear)
\\odot W lieson I Y     (Concyclic)
\\odot Z lieson X C      (Concyclic)

token : wrong response in solution           token : correct final answer          token : meaningless tokens in natural language      

Geometric 
Image

Question
Text

Our
GeoX

Geometric 
Solver

Multi-modal 
Input

Reasoning
Steps

(Formal
Language)

Final
Answer

Interpretable 
Output

Geometric 
Image

Question
Text

Our
GeoX

Geometric 
Solver

Multi-modal 
Input

Reasoning
Steps

(Formal
Language)

Final
Answer

Interpretable 
Output

Pretrained
VLM

Automatic 
Verification

Figure 1: Highlights of GeoX: 1) Comparison between GPT-4V (OpenAI, 2023) and GeoX: GPT-4V
often fails to provide the expected results or solving approaches. Besides, verifying GPT-4V’s
solutions is labor-intensive, requiring expert knowledge and step-by-step analysis. 2) Comparison
between formal and natural (informal) language: Unlike existing works (Gao et al., 2023; Zhang
et al., 2024) that use natural language, we advocate for formal language due to its effectiveness and
verifiability, making it more suitable for geometric tasks. 3) GeoX solves geometric tasks in a unified
format by taking geometric images and questions as input, generating verifiable program sequences,
and performing solving with a solver.

Notably, they sometimes exhibit an interesting phenomenon where they generate a correct answer
accompanied by an incorrect solution process or solving approach, as shown in Fig. 1. Besides, we
observe that using natural language to describe geometric diagrams introduces a significant amount
of redundant information. In contrast, formal descriptions are more concise and clear, providing
necessary information about symbols, shapes, numbers, and their relationships, making them better
suited for geometric multimodal pre-training. To this end, we argue that effectively leveraging
multimodal information from both visual and textual sources through formalized pre-training is
meaningful in mitigating the challenges that MLLMs face when solving geometric problems.

However, combining visual and symbolic information for pre-training to boost the ability of GPS is
challenging, due to the following two reasons: 1) Large Domain Gap for Geometric Understanding.
Prior works (Gao et al., 2023; Shi et al., 2024) adopt a frozen CLIP ViT (Radford et al., 2021) as the
diagram encoder, which is trained on natural images rich in colors and textures. However, geometric
diagrams are usually monochrome, composed of elements like lines, shapes, and symbols, exhibiting
a significant domain discrepancy. 2) Uninformative Representations for Geometric Reasoning.
In geometric images, useful information is concentrated in specific areas, while other regions are
uninformative and considered noise. The inability to handle this uneven distribution of geometric
information leads to suboptimal performance.

To address these challenges, we propose GeoX, a geometry-centric large model that can comprehend
geometric problems and solve geometry tasks in a unified formulation. To this end, we propose a
formalized training scheme that consists of three progressive stages: unimodal pre-training, formalized
geometry-language alignment, and visual instruction tuning. In the first stage, as introduced in
Sec. 3.2, we focus on integrating a visual encoder with prior knowledge of geometry by masked auto-
encoding. At the same time, we train a geometric decoder in an auto-regressive manner to enhance
its comprehension of the geometry language, which is interleaved with numbers, symbols, and words.
Furthermore, solving geometric problems often requires not just recognizing shapes or symbols
but also reasoning their interactions and implications. Thus, as described in Sec. 3.3, we introduce
geometry-language alignment, which utilizes formalized descriptions instead of natural language
captions, offering a new perspective to effectively align geometry-semantic features. We present a
Generator-and-Sampler Transformer (GS-Former), capable of generating geometry content-aware
queries and removing uninformative representations under the guidance of semantic learning. In
Sec. 3.4, to enable GeoX to generate solutions based on the input geometric problem and image, we
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adopt end-to-end visual instruction tuning to obtain the ultimate model. Furthermore, in Appendix A,
we theoretically explain why the proposed formalized pre-training is more effective in GPS tasks.

In Sec. 4, we conduct extensive experiments on four widely recognized benchmarks to evaluate
GeoX’s ability in reasoning complex and diverse geometric problems, where our approach achieves
state-of-the-art results. Insightful analyses and ablation experiments are performed to further validate
the effectiveness of our method.

Our contributions can be summarized as follows:

• Our study reveals the large potential of formalized visual-language pre-training in enhancing
geometric problem-solving abilities. To enable the formalized pre-training, we propose
GeoX, aiming to build geometric generalist models by modeling geometric tasks into a
unified formulation.

• We analyze the unique challenges in the field of geometry problem solving and propose
GS-Former, which effectively bridges the modality gap between geometric diagrams and
formalized language.

• Compared with previous generalist and specialized models, our GeoX achieves competitive
performance on GeoQA, UniGeo, Geometry3K, and PGPS9K, further demonstrating GeoX
as a strong baseline model for solving geometric problems and motivating future research.

2 RELATED WORKS

Multi-modal Large Language Models. The past year has witnessed the notable success of Large
Language Models (LLMs) families (Ouyang et al., 2022; Touvron et al., 2023a;b; Team, 2023),
showcasing near-human performance across diverse tasks. Concurrently, researchers have made
significant efforts to extend the abilities of LLMs in handling visual-related tasks, contributing
to the flourishing of Multimodal Large Language Models (MLLMs) (Bai et al., 2023; Achiam
et al., 2023; Reid et al., 2024). MLLMs typically adopt a cross-modal projector as the bridge to
reconcile the modality gap between visual encoder and LLM, such as Q-former (Li et al., 2023b)
or linear layers (Liu et al., 2024). Although MLLMs have demonstrated impressive performance
in conventional vision-language tasks (Han et al., 2024; Xia et al., 2023; Li et al., 2023c), they
yield unsatisfactory results when addressing multimodal mathematical problems involving geometric
diagrams and symbols. Recent G-LLaVA (Gao et al., 2023) and MAVIS (Zhang et al., 2024) train
LLM on the constructed geometry datasets with descriptions in natural language form. However,
as illustrated in Fig. 1, these works face two issues: 1) unable to provide the answer as required,
and 2) incorrect solving steps that still result in correct answers. Furthermore, verifying the solving
process of MLLMs is extremely costly since it requires human experts from geometric knowledge
and a step-by-step examination. To this end, we propose GeoX, which solves geometric tasks in a
unified formulation and predicts verifiable solutions.

Geometry Problem Solving (GPS) is a long-standing yet challenging task in mathematics, requiring
models with the ability to understand geometric elements and reason with logic. Existing automatic
systems for GPS fall into two categories: rule-based approaches and neural approaches. Rule-based
approaches (Seo et al., 2015; Sachan & Xing, 2017; Lu et al., 2021; Peng et al., 2023; Wu et al., 2024)
rely on external tools like OCR to parse diagrams into texts, which are then used for logical reasoning
based on path search and condition matching. Although these methods have shown satisfactory
performance in GPS, they are heavily dependent on manually crafted rules, making them difficult
to generalize to diverse geometry scenarios. Neural approaches use networks to predict solving
steps via program sequences, which are then executed by the solver. For example, NGS (Chen et al.,
2021) and Geoformer (Chen et al., 2022) introduce auxiliary self-supervised tasks to refine diagram
representations, with experiments on GeoQA (Chen et al., 2021) and UniGeo (Chen et al., 2022)
demonstrating the effectiveness of their methods. Other methods, such as PGPSNet (Zhang et al.,
2023c) and LANS (Zhang et al., 2023b), integrate structural and semantic clauses into solving process
and utilize specially designed decoders to achieve better performance on both Geometry3K (Lu
et al., 2021) and PGPS9K (Zhang et al., 2023c). While these geometry specialists have shown
impressive performance, their uniquely designed models for specialized datasets limit their ability to
solve broader geometric tasks. In contrast, we introduce the unified formalized vision-language pre-
training for general geometric tasks, achieving superior results across diverse benchmarks compared
to previous methods on GPS.

3
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Stage One: Geometry Vision and Language Pre-trainingStage One: Geometry Vision and Language Pre-training
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Decoder
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Geo-
Decoder

Original Image Masked Image Recovered Image

Pre-training on 120k geometry images for Geo-ViT

Geo-
ViT

Geo-
Decoder

Original Image Masked Image Recovered Image

Pre-training on 120k geometry images for Geo-ViT

Geo-LLM-7B

Pre-training on 100M-token GPS corpus for Geo-LLM-7B

Geo-LLM-7B

Pre-training on 100M-token GPS corpus for Geo-LLM-7B

{"problem_text": "\\triangle R S 
T \\cong \\triangle X Y Z. Find 
y.",
"annotat_text": "$\\triangle 
RST \\cong \\triangle XYZ$. Find 
$y$.",
……
}

{"problem_text_en": "Triangle RST 
is congruent to triangle XYZ, 
TR=x+21, ZX=2x-1,TRS=4y-10\
Find the value of y.", 
"construction_cdl":["Shape(RS,ST,
TR)","Shape(XY,YZ,ZX)"],
"text_cdl": [    
"CongruentBetweenTriangle(RST,X
YZ)",     
}...

{"subject": "In △ABC, ∠A=80°, 
∠B=60°, DE∥BC, ∠CED is ?",
"formal_point": ["opposite vertex 
angle", "sum of interior angles of 
triangle", ...],
"answer":"∵∠A+∠B+∠C=180°∴∠C=…=1
40°."
},
……
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Figure 2: Overview of GeoX for training. We present a versatile method for automatic geometric
problem solving through unified formalized vision-language pre-training, which comprises three
progressive stages.

3 FORMALIZED VISION-LANGUAGE PRE-TRAINING

3.1 METHOD OVERVIEW

To tackle complicated plane geometry problems, we introduce GeoX, adopting a formalized pre-
training scheme consisting of three progressive stages, as illustrated in Fig. 2.

Unimodal Pre-training. Vanilla generalist models (OpenAI, 2023; Anthropic, 2024; Team et al.,
2023; Bai et al., 2023; Chen et al., 2024b) have poor representation capacity in the geometric domain,
due to the significant gaps between non-formalized data (e.g., informal text descriptions and natural
images) and formalized data (e.g., formal geometric symbols and scientific images). As a result,
we propose unimodal pre-training in Sec. 3.2, aiming to enhance the GeoX’s ability to understand
geometric diagrams and symbols.

Geometry-Language Alignment. To facilitate the aforementioned pre-trained unimodal models for
performing cross-modal alignment, we propose an effective Generator-and-Sampler Transformer
(GS-Former), which is trained using pairs of geometric diagrams and formal language descriptions,
as detailed in Sec. 3.3.

End-to-end Instruction Tuning. After geometry-language alignment, the ultimate model is required
to generate solutions based on the given geometric problems and images. To this end, we tune GeoX
in an end-to-end visual instruction tuning manner (as introduced in Sec. 3.4), boosting its capacity to
comprehend geometric problems and generate formal solution programs.

During the inference phase, the solution generated by GeoX is fed into the symbolic solver (Chen
et al., 2021; Zhang et al., 2023c), which performs step-by-step operations to predict the final answer.

3.2 UNIMODAL PRE-TRAINING

Geometry Encoder. To mitigate the deficiencies of the existing visual encoders in comprehending
geometric images, we collect more than 120K diagrams from the web and electronic textbooks to
equip ViT with prior knowledge of geometry, abbreviated as Geo-ViT. Similar to He et al. (2022), we
tune the vision encoder-decoder using the masked auto-encoding scheme, where some patches are
masked and the remaining subset is fed into the visual encoder, with the original image subsequently
reconstructed by a lightweight decoder. In the next stages, we only utilize the pre-trained encoder to
represent geometric diagrams.
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Symbol Decoder. Considering the capability of LLMs to follow users’ instructions and handle
different tasks, we utilize the decoder-only LLM as our symbol decoder to generate solutions.
However, LLMs (Brown, 2020; Touvron et al., 2023b) are typically trained on general text, which
lacks the specialized learning for geometry. To this end, we build a 100M-token geometric corpus
based on the existing datasets (Chen et al., 2021; Lu et al., 2021; Gao et al., 2023; Zhang et al., 2023c;
Chen et al., 2022; Cao & Xiao, 2022), containing a wide range of geometric problems, symbols,
theorems, and so on. More details can be found in Appendix E. We choose LLEMMA-7B (Azerbayev
et al., 2023) as the base model, an open-source language model for mathematics pre-trained on Proof-
Pile-2 (Azerbayev et al., 2023), and further fine-tune it on the geometric corpus using a standard
auto-regressive language modeling objective, resulting in Geo-LLM-7B.

3.3 GEOMETRY-LANGUAGE ALIGNMENT

3.3.1 DATA ENGINE

While recent datasets (Gao et al., 2023; Zhang et al., 2024) have made strides in captioning geometric
images using natural language, they often result in redundant information, as depicted in Fig. 1. In
contrast, our approach emphasizes the use of formal descriptions to encapsulate the spatial structural
information within geometric images. This information is implicitly represented, not explicitly stated
in the problem text. Our curated dataset focuses on capturing the essence of geometric imagery
by detailing the relationships between the most fundamental elements (points) without explicitly
annotating higher-level constructs such as squares or triangles, which can either be inferred from the
relationships we describe or are directly provided in the problem text.

Our formalized diagram-caption dataset delves into the spatial relationships at a granular level, starting
with the basic building blocks of geometric images. We identify and describe the relative positions
and connections between points, ensuring that the spatial relationships are accurately represented.
These relationships are categorized into two primary types: 1) Collinear Relationship (e.g., line
A B C signifies that points A, B, and C are on the same line) and 2) Concyclic Relationship (e.g.,
\\odot O lieson A B C denotes that points A, B, and C are on the same circle with center O).
The dataset encompasses 6232 geometric images sourced from the internet, meticulously annotated
by a team of 10 experts over a period of 200 hours. Moreover, we provide concrete examples along
with comprehensive explanations of formalized diagram-caption pairs in Appendix C.

3.3.2 GENERATOR-AND-SAMPLER TRANSFORMER

With the formalized geometry-language dataset, GeoX learns a unified representation space for
geometry and formalized language through the Generator-and-Sampler Transformer (GS-Former),
which includes a Geo-aware Query Generator (GQG) and a Multi-Modal Transformer.

Geo-aware Query Generator. Both Resampler (Alayrac et al., 2022; Li et al., 2023a) and Q-
Former (Li et al., 2023b; Dai et al., 2023) extract visual features using a set of static query tokens,
which are randomly initialized and regarded as model parameters. However, these queries, which
remain the same for different diagrams, fail to capture discriminative features unique to individual
samples. Thus, we introduce the Geo-aware Query Generator (GQG), which incorporates contextual
information to dynamically generate queries.

To be specific, GQG utilizes visual features from the encoder and aggregates contextual information
through an attention-based module and pooling operation. The contextual features then are projected
and added with learnable queries (Li et al., 2023b), which builds a connection between the learnable
queries and the geometric content. Our empirical results demonstrate the effectiveness of GQG,
resulting in improved performance.

Multi-Modal Transformer comprises NL layers, each containing a self-attention block, a cross-
attention block, and a feed-forward network. Queries within each layer initially interact with paired
formal captions and are then fed into the cross-attention block to extract visual features.

To handle the uneven information distribution in geometric images as described in Sec. 1, we introduce
the Semantics-guided Geometry Sampler (SGS), which dynamically removes uninformative visual
representations guided by vision-language alignment. Specifically, SGS is tasked with predicting a
binary mask M = {mi

j | i ∈ K, j ∈ N}, with each mi
j ∈ {0, 1} determining whether to retain or

discard visual representations. Here, K represents the layer number and N denotes the number of
patches. This module receives the previous mask M i−1 and visual features as inputs, using a linear

5
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layer to obtain retention probabilities P i. To enable differentiable sampling from probabilities, we
use the reparameterization (Jang et al., 2016) with Gumbel-Softmax:

M i = M i−1 ⊙ Gumbel-Softmax(P i), (1)

where ⊙ is the Hadamard product, i and i − 1 represents the previous stage and current stage. A
notable feature of our GS-Former is its capability to progressively drop noisy and semantically
irrelevant features under the guidance of geometric language alignment. This is achieved by initially
setting all elements of the decision mask to 1, followed by inserting the SGS block at subsequent
layers. Additionally, GS-Former is initialized with weights from pre-trained BERT models (Kenton
& Toutanova, 2019), except for the SGS and cross-attention layers, which are initialized randomly.

Inspired by BLIP-2 (Li et al., 2023b), we introduce a multimodal alignment loss Lalign to optimize
GS-Former, incorporating three training objectives: Geometry-Text Contrast and Geometry-Text
Matching, both designed to align features between geometric diagrams and formal text, along with
Geometry Caption Generation, aimed at generating formal captions based on visual information. We
further impose a sparsification term Lspr into the overall optimization objective to prevent trivial
solutions where all mask values mi

j are set to 1:

Lp = Lalign + λLspr, where Lspr =
1

KN

∑
i∈K,j∈N

∥∥∥mi
j

∥∥∥
1
. (2)

3.4 END-TO-END VISUAL INSTRUCTION TUNING

To enable the model to handle geometry-centric tasks, we continue the training with end-to-end visual
instruction tuning, directing the ultimate model to generate solutions. As illustrated in Fig. 2, we
feed the diagrams into the pre-trained Geo-ViT together with GS-Former, to obtain the semantically
aligned geometry features Fg . Besides, we utilize a trainable projection head W to project Fg into the
language embedding space and obtain visual tokens Tg . Geo-LLM, serving as a decoder for various
geometry tasks, takes both visual tokens Tg and instruction tokens Tp as input, and generates solutions
in an auto-regressive manner. Our training objective is to optimize the GeoX so that the likelihood of
the target sequence S = {si,i∈[1:L]} is maximized given the visual input Tg and instruction Tp.

In practice, GeoX is trained using cross-entropy loss Lt defined as follows, which optimizes the
model to predict the l-th token sl given preceding token sequences si,i∈[1:l−1]:

Lt = −
∑
l

logP (sl|si,i∈[1:l−1];Tg;Tp). (3)

4 EXPERIMENTS

4.1 DATASETS, METRICS, AND IMPLEMENTATION DETAILS

Datasets. To assess the effectiveness of GeoX, we conduct experiments on four widely recognized
geometry benchmarks: GeoQA (Chen et al., 2021), UniGeo (Chen et al., 2022), Geometry3K (Lu
et al., 2021), and PGPS9K (Zhang et al., 2023c). GeoQA comprises 4,998 geometry problems
sourced from Chinese middle school exams, including different types of problems, such as angles,
lengths, and areas. Following Liang et al. (2023); Gao et al. (2023), we use the English version to
maintain linguistic consistency with other datasets. UniGeo features 4,998 calculation problems from
GeoQA and 9,543 proving problems from high school textbooks and online resources, providing
a comprehensive benchmark for evaluating geometry reasoning abilities. Both Geometry3K and
PGPS9K include high-quality diagrams and detailed annotations.

Metrics. We adopt the same evaluation metrics used in previous studies to ensure fair comparability.
Following Chen et al. (2021) and Chen et al. (2022), we assess the model’s performance on GeoQA
and UniGeo with top-1 and top-10 accuracies. For evaluation on Geometry3K and PGPS9K, we
apply three metrics to assess the performance of GeoX: Completion, Choice, and Top-3, as introduced
in Zhang et al. (2023c). To evaluate MLLMs in solving complex geometry problems, such as
Qwen-VL (Bai et al., 2023) and GPT-4V (OpenAI, 2023), we follow LANS (Zhang et al., 2023b) by
utilizing Completion (which requires models to provide answers directly) and Choice (which involves
selecting from given options).
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Table 1: Comparison of various methods on the GeoQA benchmark with different accuracy metrics.
Methods Metric Total Angle Length

Generalists
mPLUG-Owl2 (Ye et al., 2023)

Top-1

16.0 16.5 15.9
LLaVA-v1.5 (Liu et al., 2024) 20.7 20.9 19.8

Qwen-VL (Bai et al., 2023) 24.4 23.7 24.4
GPT-4V (OpenAI, 2023) 43.4 39.3 49.8

Specialists
LLaVA-v1.5 (Liu et al., 2024)+Solver 9.4 14.9 3.2

NGS(Chen et al., 2021) 46.3 - -
UniMath-T5(Liang et al., 2023) 49.6 - -

UniMath-Flan-T5(Liang et al., 2023) 50.0 - -
GeoX (Ours) 54.9 62.8 45.2

Methods Metric Total Angle Length
Specialists
LLaVA-v1.5 (Liu et al., 2024)+Solver

Top-10

29.2 40.5 15.9
FiLM(Perez et al., 2018) 31.7 34.0 29.7
RN(Santoro et al., 2017) 38.0 42.8 32.5
MCAN(Yu et al., 2019) 39.7 45.0 34.6

BERT (Kenton & Toutanova, 2019) 54.7 65.8 42.1
NGS(Chen et al., 2021) 56.9 69.8 39.2

Geoformer(Chen et al., 2022) 60.3 71.5 49.1
DPE-NGS(Cao & Xiao, 2022) 62.7 74.9 47.7
SCA-GPS(Ning et al., 2023) 64.1 74.9 50.1

GeoX (Ours) 69.0 78.2 58.0

Table 2: Comparison of model performance on UniGeo for geometry calculation and proof problems.
Methods Metric Calculation(%) Proving (%)

All ↑ Angle ↑ Length ↑ All ↑ Par. ↑ Tri. ↑ Qua. ↑ Con. ↑ Sim. ↑
Generalists

mPLUG-Owl2 (Ye et al., 2023)

Top-1

18.7 18.7 19.1 - - - - - -
LLaVA-v1.5 (Liu et al., 2024) 24.0 26.4 21.6 - - - - - -

Qwen-VL (Bai et al., 2023) 24.4 24.2 25.4 - - - - - -
GPT-4V (OpenAI, 2023) 47.9 45.8 51.6 - - - - - -

Specialists
LLaVA-v1.5 (Liu et al., 2024)+Solver 16.1 19.2 13.1 1.0 0.0 1.1 0.4 0.2 3.0

Geoformer (Chen et al., 2022) 46.8 57.8 35.0 51.3 13.9 63.8 20.4 56.1 64.0
UniMath-T5-base (Liang et al., 2023) - - - 82.9 - - - - -

UniMath-Flan-T5-base (Liang et al., 2023) - - - 83.0 - - - - -
GeoX (Ours) 54.4 63.1 43.1 97.8 77.8 100.0 95.4 99.5 99.2

Specialists
LLaVA-v1.5 (Liu et al., 2024)+Solver

Top-10

43.0 51.3 35.3 11.3 0.0 16.2 5.0 2.9 27.5
BERT (Kenton & Toutanova, 2019) 52.0 63.1 39.2 48.1 15.4 48.0 31.7 49.5 75.1

NGS (Chen et al., 2021) 51.9 63.6 38.8 47.4 11.2 46.9 31.3 48.3 77.6
Geoformer (Chen et al., 2022) 62.5 75.5 48.8 56.4 19.4 69.4 20.4 60.3 75.0

GeoX (Ours) 68.6 76.7 58.3 99.5 97.2 100.0 97.7 100.0 100.0

Implementation Details. We optimize the diagram encoder using MAE VIT-B (He et al., 2022)
checkpoints, training it for 800 epochs with a batch size of 256 and an initial learning rate of 6.4e-5.
We initialize the symbol decoder with LLEMMA-7B (Azerbayev et al., 2023) weights and train it
for 5 epochs with a batch size of 32 and an initial learning rate of 1e-6. For geometry-language
alignment, we train the GS-Former for 360 epochs with a batch size of 256 and an initial learning
rate of 1e-4. The number of queries in GS-Former is set to 8. Additional details regarding visual
instruction tuning can be found in Appendix F. We implement GeoX using PyTorch and conduct
experiments on more than eight A100 (80GB) GPUs. During inference, we employ a beam search
size of 10, consistent with Zhang et al. (2023c) and Chen et al. (2021). In the experiment setting of
‘LLaVA-v1.5 + Solver’, we fine-tune LLaVA model on the training set using the provided formal
language from the corresponding benchmarks. We fune-tune the model for just one epoch, and all
other training settings follow the original training setting in LLaVA.

4.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Performance Comparison with Generalist Models. As to multimodal large models, LLaVA-
v1.5 (Liu et al., 2024), mPLUG-Owl2 (Ye et al., 2023), Qwen-VL (Bai et al., 2023), and GPT-
4V (OpenAI, 2023) exhibit strong cross-modal reasoning abilities for general tasks. However, when
applied to solve geometry tasks, these models are insufficient. Our GeoX significantly outperforms
these generalists on various geometry datasets, including GeoQA (Chen et al., 2021), UniGeo (Chen
et al., 2022), Geometry3K (Lu et al., 2021), and PGPS9K (Zhang et al., 2023c). As indicated in
Tab. 1 and Tab. 2, GeoX achieves top-1 accuracies of 54.9% and 54.4%, respectively, significantly
outperforming the best generalist models. Similarly, on Geometry3K and PGPS9K in Tab. 3, GeoX
achieves 58.6% and 52.7% in Completion, respectively. In comparison, GPT-4V (OpenAI, 2023)
achieves 34.8% and 33.3%, while other models such as Qwen-VL (Bai et al., 2023) and LLaVA (Liu
et al., 2024) perform worse.

Performance Comparison with Specialist Models. Compared with geometry specialists such
as NGS (Chen et al., 2021), UniMath-T5 (Liang et al., 2023), Geoformer (Chen et al., 2022),
DPE-NGS (Cao & Xiao, 2022), and SCA-GPS (Ning et al., 2023), GeoX demonstrates superior
performance across GeoQA and UniGeo. Specifically, GeoX surpasses the best geometry specialist by
+4.9% and +7.6% on GeoQA and UniGeo-Calculation, respectively. Additionally, our model achieves
significant improvements over previous methods on UniGeo-proving by +14.8% and +43.1% in Tab. 2.
As reported in Tab. 3, our method outperforms SOTA models on Geometry3K and PGPS9K. Notably,
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Table 3: Performance comparison on Geometry3K and PGPS9K.

Methods Geometry3K PGPS9K
Completion ↑ Choice ↑ Top− 3 ↑ Completion ↑ Choice ↑ Top− 3 ↑

Generalists
mPLUG-Owl2 (Ye et al., 2023) 2.2 26.7 - 3.0 26.4 -
LLaVA-v1.5 (Liu et al., 2024) 2.9 22.9 - 1.8 21.8 -

Qwen-VL-Chat (Bai et al., 2023) 2.5 27.5 - 1.4 24.7 -
Qwen2-VL-7B (Wang et al., 2024b) 14.2 46.9 - 12.4 43.3 -
InternVL2-8B (Chen et al., 2024b) 21.1 50.6 - 19.8 46.5 -

GPT-4V (OpenAI, 2023) 34.8 58.6 - 33.3 51.0 -
Specialists
LLaVA-v1.5 (Liu et al., 2024)+Solver 19.7 47.4 31.6 21.6 38.1 35.3

GeoDRL (Peng et al., 2023) - 68.4 - - - -
NGS (Chen et al., 2021) 35.3 58.8 62.0 34.1 46.1 60.9

Geoformer (Chen et al., 2022) 36.8 59.3 62.5 35.6 47.3 62.3
InterGPS (Lu et al., 2021) 44.6 56.9 - - - -

PGPSNet (Zhang et al., 2023c) 48.1 70.1 65.7 44.4 57.6 64.8
GeoX (Ours) 58.6 72.5 69.4 52.7 63.3 65.4

Table 5: Effectiveness of geometry-language alignment.

Module Alignment Language Geometry3K PGPS9K
Completion ↑ Choice ↑ Top− 3 ↑ Completion ↑ Choice ↑ Top− 3 ↑

- × - 33.1 54.0 48.2 31.5 43.6 50.1

GS-Former
× - 48.6 65.7 63.2 42.7 54.3 56.8
✓ Natural 55.7 71.5 67.2 52.2 62.2 67.1
✓ Formal 58.6 72.5 69.4 52.7 63.3 65.4

previous works (Zhang et al., 2023c;b) require additional image annotations (Diagram GT) as input,
which is labor-consuming and contrary to experimental settings. To make a fair comparison, we
remove Diagram GT and replicate these methods under the original conditions. Particularly, we fine-
tune LLaVA (Liu et al., 2024) with formal language and adopt solvers for problem-solving, consistent
with the approach used in GeoX. Extensive results in Tabs. 1 to 3 demonstrate the effectiveness of
GeoX, achieving state-of-the-art performance across diverse scenarios.

Besides, it should be noted that G-LLaVA-7B (Gao et al., 2023) and MAVIS (Zhang et al., 2024)
achieve 64.2% and 66.7% accuracy on GeoQA. However, these models can produce correct results
despite errors in the solving process. In contrast, our method treats any process errors as incorrect
results. To this end, we introduce a comparable metric, with detailed results provided in Appendix D.

4.3 QUANTITATIVE EVALUATION ON THE GPS TASK OF MATHVISTA

We provide a quantitative comparison with the model that
performed best on the GPS task in MathVista (Lu et al.). To
this end, we extract the Geometry subset from MathVista,
referred to as MathVista-GEO. We assess these methods
using the same evaluation script as MathVista, along with the
evaluation strategy introduced in Appendix D. As reported
in Tab. 4, GeoX is more effective in solving geometry tasks.

Table 4: Accuracy scores on testmini
of MathVista-GEO.

Methods Accuracy
GPT-4V (OpenAI, 2023) 54.8
GPT-4o (OpenAI, 2024) 66.1

GeoX (Ours) 72.6

4.4 INSIGHTFUL ANALYSES

Effectiveness of Uni-modal Pre-training. We compare Geo-ViT with CLIP-ViT (Radford et al.,
2021), which has been widely used for GPS in previous studies (Gao et al., 2023). Additionally, we
evaluate the performance of different language models in solving geometric problems, including
LLAMA-2-7B, LLEMMA-7B, and our Geo-LLM-7B. As reported in Fig. 3, compared to general-
purpose models or the mathematical model, our pre-trained model demonstrates superior results
across various geometry benchmarks.

Effectiveness of Geometry-Language Alignment. As illustrated in Tab. 5, without multi-modal
feature alignment, the baseline model perform poorly, achieving only 33.1% Completion on Geome-
try3K. The introduction of GS-Former significantly boosts performance. Moreover, our results reveal
that formal language is more effective for GPS than natural language, with +2.9% improvement in
Completion on Geometry3K.
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Figure 3: Effectiveness of Uni-modal Pre-training. We compare the widely used CLIP-ViT-B and our
Geo-ViT-B, along with three LLM models: LLAMA-2-7B, LLEMMA-7B, and our Geo-LLM-7B.

Table 6: Ablation study of modules in GS-Former, assessing the contribution of GQG and SGS
modules when GS-Former is utilised for geometry-formal language alignment.

Geo-aware
Query Generator

Semantics-guided
Geometry Sampler

Geometry3K PGPS9K
Completion ↑ Choice ↑ Top− 3 ↑ Completion ↑ Choice ↑ Top− 3 ↑

× × 55.0 70.3 68.3 49.8 59.9 64.6
✓ × 57.4 71.7 68.1 50.8 62.0 64.3
✓ ✓ 58.6 72.5 69.4 52.7 63.3 65.4

Ablation of Modules in GS-Former. The results in Tab. 6 demonstrate the effectiveness of the
Geo-aware Query Generator (GQG) and Semantics-guided Geometry Sampler (SGS) within GS-
Former. Adding the GQG improves Completion by +2.4% and +1.0%, while combining both designs
yields the best performance. The quantitative results in Appendix B further demonstrate GS-Former’s
effectiveness in capturing valuable information from geometry diagrams, such as lines and symbols.

4.5 CASE STUDY

As shown in Fig. 4, we conduct a case study to analyze the capabilities of GeoX. GeoX tries to predict
formalized program sequences composed of mathematical variables, constants, and operations, such
as summation (Sum), subtraction (g_minus), perimeter calculation (PRK_Perim), the Pythagorean
theorem (gougu_minus), etc., which can be compiled and solved by the GPS-solver.

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

∠FGH = x+14, ∠NCA = x-20, 
∠EFD = x, ∠BDC = x-10, ∠KLJ = 
42, ∠LNM = 21, ∠IJG = 29, find 
the value of x .

71.0

Sum x+14 x-20 x x-10 42 21 29 360, 

Get x
71

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

∠FGH = x+14, ∠NCA = x-20, 
∠EFD = x, ∠BDC = x-10, ∠KLJ = 
42, ∠LNM = 21, ∠IJG = 29, find 
the value of x .

71.0

Sum x+14 x-20 x x-10 42 21 29 360, 

Get x
71

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

For parallelogram ABCD , FA perp FC on 
F , DE perp AB on E , CF = 9 , DA = 13 , 
BA = 9.4 , what is perimeter of ABCD?

44.8

PRK_Perim 13 9.4 V0 

Get V0
44.8

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

AP and BP are tangent to circle O at 
points A and B respectively , angle P = 
60° , point C is on the major arc AB , 
then the degree of angle C is ？

60.0

g_minus 180 60 

g_half V_0
60

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

Circle O is a circle with a radius of 1 , the distance 
from point O to line L is 3 , draw a tangent of circle 
O through any point P on the straight line L , and 
the tangent point is Q ; if PQ is taken as the edge 
to make the square PQRS , then the minimum area 
of the square PQRS is？ 

8.0

gougu_minus 1 3 

g_mul V_0 V_0
8

Figure 4: Visualization results on four datasets by our GeoX.

Furthermore, we have conducted the generalization validation of GeoX in a broader scope, including
its application to geometric problem-solving from natural images. Our GeoX has demonstrated
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Image: Question:

Answer GT:

GeoX Pred: Answer pred:

For the birthday hat made by Xiao Lan with 
colored paper, if the base radius is 5 cm and 
the slant height is 10 cm, the lateral surface 
area of the hat is?

50π 

cal_cone N_0 N_1 157.08

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

The interior of the revolving door of a hotel entrance is 
composed of three glass partitions with a width of 2 meters 
and a height of 3 meters. The three glass partitions are placed 
at the same angle. If the distance between the two columns at 
the entrance is 2 meters, then the distance from the midpoint 
of the bottom of the two columns to the bottom of the central 
shaft is ?

√{3}

g_half N_0 

gougu_minus N_2 V_0
1.73

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

A foldable square table is shown in The figure. 
Given that AO=BO=50cm, CO=DO=30cm, the 
table is now laid flat. To make the tabletop 
40cm high from the ground, the angle between 
the two legs should be ?

120

g_minus C_3 C_0 

g_minus V_0 C_0
120

Image: Question:

Answer GT:

GeoX Pred: Answer pred:

The figure shows a real picture and a schematic diagram of a bicycle. AB 
is parallel to the ground, points A, B, and D are collinear, points D, F, and 
G are collinear, and the seat C can be adjusted along the ray BE. It is 
known that ∠ABE=70°, ∠EAB=45°, the wheel radius is 30cm, and 
BE=40cm. Xiao Ming felt that it was more comfortable to ride when the 
seat C was 0.9m above the ground. At this time, the length of CE is ？

24

g_double N_2 
g_divide V_0 N_6 
g_minus V_1 N_3

24

Figure 5: Four visualized examples of geometric problem in natural images solved by our GeoX.

promising performance in these scenarios, indicating the potential for its generalization to even wider
fields. We present some visualized examples in Fig. 5.

5 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we have proposed GeoX, a novel multi-modal large model specifically designed for
automatic Geometry Problem Solving (GPS) tasks. GeoX verifies that formalized vision-language
learning is beneficial to learn informative representations for automatic GPS tasks. GeoX can produce
formalized process descriptions, which enhance the interpretability of GPS and the correctness of the
solution process. Besides, extensive experimental analyses demonstrate GeoX’s general capabilities
on multiple geometric datasets.
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APPENDIX

The appendix provides theoretical analysis on the proposed formalized vision-language pre-training
(Appendix A), more visualization results (Appendix B), examples of formalized diagram-caption
pairs (Appendix C), additional quantitative evaluations (Appendix D), data acquisition for geometric
corpus (Appendix E), implementation details (Appendix F) and further discussion (Appendix G).

Codes will be fully released. We will provide the process of the training and evaluation of GeoX,
including pre-trained model files, training logs, and example results.

A THEORETICAL ANALYSIS

In this section, we theoretically explain why the proposed formalized pre-training benefits more
than informal pre-training methods in downstream tasks of geometry problems. First, we consider
the sufficient representations for the pre-training of the Geometric Problem-Solving (GPS) models,
containing the information shared between different modalities of geometry data. The definition of
sufficient representations is borrowed and extended from the idea in Wang et al. (2022), We denote
Tf as the target formalized descriptions of samples in the pre-training dataset, while Tinf is denoted
as the informal descriptions of samples in the pre-training dataset. The representations learned from
Tf is denoted as zf , while the representations learned from Tinf is denoted as zinf . The downstream
task label is denoted as T , which is a formalized textual sequence that will be fed into the GPS-Solver
for verifiable numerical solutions.

Definition 1. (Sufficient Representations) The representations z1,suf of y1 is sufficient for another
task y2 if and only if I(z1,suf, y2) = I(y1, y2), where z1,suf is learned from y1, and y1, y2 are the
labels of two different prediction tasks that contain the shared information. I(·, ·) refers to the mutual
information between the two variables.

Definition 2. (Minimal Sufficient Representations) The representations z1,min is minimal sufficient if
and only if I(z1,min, y2) = minz1,suf I(z1,suf, y2).

Lemma 1. zf provides more information about the downstream task T than zinf . That is, I(zf , T ) ≥
I(zinf , T ).

Proof. Since both Tf and Tinf are supervised learning tasks, their learned representations zf and
zinf are both sufficient representations. However, since Tinf only contains the semantic informa-
tion without structural context that is required by the downstream tasks. Therefore, it holds that
I(zinf , T ) ≤ I(zsuf, T ),∀zf that is sufficient. That is, zinf is a minimal sufficient representation.
As for zf , it learns information from the formalized description and thus is more related to the
downstream tasks. Consequently, we have the relationship between zinf and zf as follows,

I(zf , T ) = I(zinf , T ) + [I(Tf , T |zinf )− I(Tf , T |zf )]
≥ I(zinf , T ).

(4)

The first equation indicates that the mutual information I(zf , T ) can be decomposed into the minimal
mutual information I(zinf , T ) and the information gap between I(Tf , T |zinf ) and I(Tf , T |zf ),
where I(Tf , T |zinf ) refers to the information about T that can be observed from Tf on condition of
zinf . Since Tf contains more formalized information related to T and I(zinf , Tf ) ≤ I(zf , Tf ), we
can get I(Tf , T |zinf ) ≥ I(Tf , T |zf ). Consequently, I(zf , T ) ≥ I(zinf , T ) holds.

Theorem 1. The upper bound of error rates in downstream tasks using minimal sufficient representa-
tions is higher than that using sufficient representations.

Proof. For the downstream tasks, we consider the Bayes error rate (Fukunaga, 2013) to estimate the
lowest achievable error of the classifier. According to the paper (Wang et al., 2022), for arbitrary
representations z, its Bayes error rate Pe satisfies that,

Pe ≤ 1− exp[−H(T ) + I(z, T )], (5)

where H(T ) represents the entropy of variable T . Since I(zf , T ) ≥ I(zinf , T ), it can be concluded
that the upper-bound of Pe,f is smaller than that of Pe,inf . This indicates that ideally zf is expected
to achieve better performance than zinf in downstream tasks.
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B MORE VISUALIZATIONS

Lines Rectangulars Triangular Circularss

Figure 6: Attention map of GS-Former on different types of geometric diagrams.

In Fig. 6, we present attention maps of GS-Former, which show the model’s attention distribution
across different regions. The areas with higher brightness indicate regions considered more useful
for making decisions. In contrast, darker areas are often semantically irrelevant and uninformative,
which will be removed by GS-Former. This visualization highlights our model’s ability to capture
pivotal information across complex geometric images, such as lines, rectangles, triangles, circles, etc.

C EXAMPLES OF FORMALIZED DIAGRAM-CAPTION PAIRS

Image Caption Image Caption

Line A E D
Line A O C
Line B O D
Line B A
Line B C
Line C D
Line B E
Line E O

Line B A
Line O A
Line A C
Line B O C
Line A D
Line D C
\\odot O lieson A C D B

Line A O B
Line D C
Line D B
Line O C
\\odot O lieson A D C B

Line A B
Line C D
Line E F
Line E C A
Line B D F

Table 7: Four examples of our formalized diagram-caption pairs containing two relationships among
points in geometry images.

In Table 7, we provide additional examples of descriptions that delineate the collinear and concyclic
relationships in geometric images at the granularity of points. It is noteworthy that we adhered
to strict grammatical and standardization criteria during the annotation process. Specifically, for
collinear relationships, the term Line denotes the relationship, and the order of the points is listed
from left to right. For concyclic relationships, the symbol \\odot signifies the center of the circle,
lieson indicates the points on the circumference, and the points are listed in a clockwise order.

D MORE EVALUATIONS

Inspired by the Choice metric proposed by Zhang et al. (2023c), we introduce an accuracy metric for
GeoX to ensure complete fairness when comparing with solver-free methods like G-LLaVA (Gao
et al., 2023). Specifically, we observe that even if errors occur in the solving process, solver-free
methods can still provide an answer (by randomly selecting one from four options), whereas our
solver-based approach considers any process errors as incorrect results. To this end, in comparison
with solver-free methods as shown in Tab. 8, we define GeoX’s accuracy by assuming that, when the
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solution process encounters errors, the model’s performance is equivalent to randomly selecting from
four possible options. We also evaluate our method against solver-free approaches on GeoQA (Chen
et al., 2021). As shown in Tab. 8, our method outperforms the current state-of-the-art solver-free
methods in Top-1 accuracy.

Table 8: Comparison with solver-free geometry specialists on GeoQA. We directly report results
using Top-1 accuracy.

Methods Base LLM Accuracy
Math-LLaVA (Shi et al., 2024) Vicuna-1.5-13B 48.1

G-LLaVA (Gao et al., 2023) LLaMA-2-7B 64.2
MAVIS (Zhang et al., 2024) MAmmoTH-2-7B 66.7

EAGLE (Li et al., 2024) Vicuna-1.5-7B 67.1
GeoX (Ours) Geo-LLM-7B 67.4

E DATA ACQUISITION FOR GEOMETRIC CORPUS

Data Sources. We detail the geometric corpus collections used to train Geo-LLM, sourced from a
variety of publicly available geometric datasets, including GeoQA (Chen et al., 2021), GeoQA+(Chen
et al., 2021), UniGeo(Chen et al., 2022), PGDP5K (Hao et al., 2022), PGPS9K (Zhang et al., 2023c),
Geometry3K (Lu et al., 2021), and G-LLaVA (Gao et al., 2023).

• GeoQA (Chen et al., 2021) comprises 4,998 real-world geometry problems sourced from
Chinese middle school exams, each annotated with detailed solution processes and human
performance metrics. The dataset is organized into three primary categories: angle, length,
and other geometric calculations, and is divided into training, validation, and test sets at a
ratio of 7.0:1.5:1.5.

• Geometry3K (Lu et al., 2021) provides 3,002 detailed geometry problems derived from
high school textbooks, divided into training, validation, and test sets in a 0.7:0.1:0.2 ratio.
Geometry3K expands on previous datasets (Seo et al., 2015) by including irregular quadrilat-
erals, polygons, and additional unknown variables and operator types. Moreover, less than
1% of Geometry3K problems can be solved without diagrams, making it more challenging.

• GeoQA+ (Cao & Xiao, 2022) enhances the original GeoQA (Chen et al., 2021) by adding
2,518 newly annotated geometric problems, increasing the total to 7,528 problems with
6,027 dedicated for training. This expanded dataset introduces more complex problems,
including area calculations, and raises the difficulty with 27 knowledge points and an average
of 2.61 solving steps per problem.

• UniGeo (Chen et al., 2022) introduces a comprehensive geometry dataset encompassing
both calculation and proof problems, including 9,543 proving problems sourced from
educational websites and 4,998 calculation problems from GeoQA (Chen et al., 2021). The
proof problems are categorized into five sub-tasks (parallel, triangle, quadrangle, congruent,
and similarity) with detailed reasoning and expressions. To facilitate unified problem-
solving, both proofs and solutions are reformulated into sequence formats, aligning the
proving steps with calculation protocols.

• PGDP5K (Hao et al., 2022) contains a total of 5,000 images, divided into training, valida-
tion, and test sets with a 0.7:0.1:0.2 split. It encompasses 16 geometric shapes, 5 positional
relations, 16 symbol types, and 6 text types. PGDP5K provides detailed annotations,
including geometric primitives, symbols, text types, and their relationships.

• PGPS9K (Zhang et al., 2023c) consists of 9,022 geometry problems paired with 4,000
unique diagrams, covering 30 problem types from grades 6-12 mathematics curricula. It is
split into training and test sets, with 8,433 samples for training and 589 for testing. PGPS9K
includes detailed annotations for diagrams and solution programs.

• G-LLaVA (Gao et al., 2023) is a large-scale multi-modal geometry dataset consisting
of over 110k question-answer (QA) pairs, divided into an alignment dataset to provide
foundational geometric knowledge and an instruction-tuning dataset to improve the model’s
problem-solving abilities. This dataset is created with the assistance of GPT-API (Ouyang
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et al., 2022) using various strategies, including equation solving, value scaling, and sentence
paraphrasing.

Data Collection and Filtering. To meet the demands of pre-training for Geo-LLM, we build up
a specialized filtering and pre-processing pipeline to construct the geometric corpus. Initially, we
extract the data only from the training portions from the existing geometric datasets to prevent
label leakage. Besides, we use a free Translate-API to convert Chinese data into English, ensuring
language consistency. For each data entry, we remove content unrelated to geometric problems, such
as annotation IDs, dates (Lu et al., 2021), and sources (Zhang et al., 2023c). Ultimately, we achieve a
collection of 100 million tokens of data.

F ADDITIONAL DETAILS

Prompts for MLLMs. In Tab. 9, we provide examples of how to prompt multimodal large models to
reason on geometric problems across two different evaluation modes. Each evaluation mode consists
of several components: System Prompt, Diagram, Question, and optionally, Choices. The System
Prompt specifies the type of problem the model is required to solve and the expected output format.
The Diagram corresponds to the relevant image, while the Question and Choices are presented in the
text. The key difference between the Choice and Completion modes is that Completion requires the
model to provide answers directly, while Choice only involves selecting from predefined options.

Evaluation Versions for Generalists. In Tab. 10, we present the model / API versions utilized for the
evaluation of generalists reported in Tabs. 1 to 4. These include MLLMs such as mPLUG-Owl2 (Ye
et al., 2023), Qwen-VL (Bai et al., 2023), LLaVA-v1.5 (Liu et al., 2024), GPT-4V (OpenAI, 2023),
and GPT-4o (OpenAI, 2024).

Implementation Details. After unified formal vision-language pre-training, we fine-tuned GeoX
on each dataset to achieve better performance. The hyperparameters required for end-to-end visual
instruction tuning are shown in Tab. 11.

Eval Mode Prompt

Choice System Prompt: You are an intelligent robot expert at solving geometry problems. Please ans-
wer the Question based on the image. You should provide the reasoning process, and then you
must give the correct choice in the end based on your reasoning in the following form:
The answer is (A), (B), (C) or (D).
Diagram: The Diagram is <img>image_id.png</img>
Question: As shown in the figure, in triangle A B C , it is known that angle A = 80.0 , angle B
= 60.0 , D E parallel B C , then the size of angle C E D is ().
Choices: (A) 40.0 (B) 60.0 (C) 120.0 (D) 140.0

Completion System Prompt: You are an intelligent robot expert at solving geometry problems. Please ans-
wer the Question based on the image. You should provide the reasoning process, and then you
must give the correct answer in the end based on your reasoning in the following form:
e.g., The answer is [12.1].
Diagram: The Diagram is <img>image_id.png</img>
Question: Line m is the perpendicular bisector of XZ, WZ = 14.9. Find WX.

Table 9: The prompts used for Choice and Completion modes in Multi-modal Large Language
Models (MLLMs). To guide MLLMs in reasoning on geometric tasks, we adopt two evaluation
modes like Zhang et al. (2023b): Choice and Completion.

G FURTHER DISCUSSION

Analysis of advanced MLLMs’ Ability in Formal Programs Generation. As shown in Tab. 4,
GPT-4o (OpenAI, 2024) demonstrates the highest accuracy on MathVista-GEO. In this section,
we delve deeper into the few-shot learning ability of GPT-4o’s in generating formalized program
sequences, which are then sent to the GPS solver for solving (Chen et al., 2022). Specifically, we
apply 2-shot in-context learning, providing GPT-4o (OpenAI, 2024) with two examples of formal
problem-solving, along with the complete set of operation functions. Then, GPT-4o is tasked with
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Model Name Model / API Version

mPLUG-Owl2 (Ye et al., 2023) mplug-owl2-llama2-7b

LLaVA-v1.5 (Liu et al., 2024) llava-v1.5-13b-hf

Qwen-VL (Bai et al., 2023) Qwen-VL-Chat

GPT-4V (OpenAI, 2023) gpt-4-vision-preview

GPT-4o (OpenAI, 2024) gpt-4o-2024-05-13

Table 10: Model / API versions used for evaluation across different MLLMs.

Instruction Tuning GeoQA UniGeo PGPS9K Geometry3K

Training Batch Size 64
Scheduler Cosine Annealing
Optimizer AdamW
Warmup Ratio 0.05 0.05 0.05 0.03
Epochs 100 80 45 30
Learning Rate 3e-5 3e-5 6e-5 2e-5
Evaluation Steps 200 400 200 200

Table 11: Hyperparameters for end-to-end visual instruction tuning. We finetune these models on 4
A100 (80GB) GPUs, respectively.

predicting the corresponding solving program when presented with new problems and geometric
images. As shown in Fig. 7, GPT-4o (OpenAI, 2024) is capable of predicting simple geometric
programs, but for more complex problems, it exhibits issues such as predicting only the operation
without the variable (e.g., g_equal in b), incorrect variables (e.g., gougu_minus 5.0 V_1
V_2 vs gougu_minus 5.0 V_0 in c), or wrong operations (e.g., g_equal vs g_minus in d).
In contrast, GeoX can predict the correct solution in these complex and diverse cases.

As shown in the figure, the diameter CD 
of ⊙O crosses the midpoint G of chord EF, 
∠DCF = 20.0, then ∠EOD is equal to ().

GPT-4o:           
GeoX:                
Ground Truth:

g_double 20.0
g_double 20.0
g_double 20.0

As shown in the figure, in the quadrilateral 
ABCD, ∠BAD = 120.0, ∠B = ∠D = 90.0,
 if you find a point M on BC and CD respectively, 
so that the perimeter of △AMN is the smallest, 
then the degree of ∠AMN + ∠ANM is ().

GPT-4o:
GeoX:                
Ground Truth:

g_minus C_3 120.0 g_double V_0
g_minus C_3 120.0 g_double V_0

g_equal g_add 120.0 90.0

As shown in the figure, it is known that the 
radius of ⊙O is 5.0 and the chord AB = 8.0, 
then the distance from the center O to AB is ().

GPT-4o: 
          
GeoX:
Ground Truth:

g_divide 8.0 2.0 V_1 gougu_minus 
5.0 V_1 V_2
g_half 8.0 gougu_minus 5.0 V_0
g_half 8.0 gougu_minus 5.0 V_0

As shown in the figure, the light source P is 
directly above the crossbar AB, the shadow of
AB under the light is CD, AB ∥ CD, AB = 
2.0, CD = 5.0, the distance between point
P and CD is 3.0, then the distance between AB
and CD is ().

GPT-4o:
GeoX:                
Ground Truth:

g_bili 5.0 2.0 g_divide 3.0 g_last
g_bili 2.0 5.0 3.0 g_minus 3.0 V_0
g_bili 2.0 5.0 3.0 g_minus 3.0 V_0

(a) (b)

(c) (d)

Figure 7: Comparison of GPT-4o and GeoX in predicting formalized programs for solving complex
geometric problems.

Strategies Can Also Alleviate Computational Burden. Our design inherently covers the following
two measures to enhance computational efficiency: 1) The use of a formalized language for reason-
ing reduces token count and enhances efficiency compared to natural language input, and 2) The
Semantics-guided Geometry Sampler in GS-Former module effectively filters out irrelevant regions
in geometric images, minimizing the number of visual tokens processed. These strategies focus on
reducing computational costs and improving real-world applicability.
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