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Abstract

Machine learning models often predict the outcome resulting from a human de-
cision. For example, if a doctor tests a patient for disease, will the patient test
positive? A challenge is that the human decision censors the outcome data: we only
observe test outcomes for patients doctors historically tested. Untested patients, for
whom outcomes are unobserved, may differ from tested patients along observed
and unobserved dimensions. We describe a Bayesian model to capture this setting
whose purpose is to estimate risk for both tested and untested patients. To aid
model estimation, we propose two domain-specific constraints which are plausible
in health settings: a prevalence constraint, where the overall disease prevalence
is known, and an expertise constraint, where the human decision-maker deviates
from purely risk-based decision-making only along a constrained feature set. We
show theoretically and on synthetic data that the constraints can improve parameter
inference. We apply our model to a case study of cancer risk prediction, showing
that the model can identify suboptimalities in test allocation and that the prevalence
constraint increases the plausibility of inferences.

1 Introduction

Machine learning models often predict outcomes in settings where a human makes a high-stakes
decision. In healthcare, a doctor decides whether to test a patient for disease, and machine learning
models predict whether the patient will test positive [1–3]. A fundamental challenge in all these
settings is that the human decision censors the data the model can learn from: e.g., test outcomes are
only observed for patients doctors have historically tested. This is problematic because the model
must make accurate predictions for the entire population, not just the historically tested population.

Overall, there is a challenging distribution shift between the tested and untested populations: they may
differ along observables recorded in the data and unobservables known to the human decision-maker
but unrecorded in the data. For example, tested patients may have more symptoms recorded—but
they may also differ on unobservables, like how much pain they are in or how sick they look, which
are known to the doctor but are not available for the model. This setting, referred to as the selective
labels setting [4], occurs in high-stakes settings including medical testing, hiring, and lending and
has been the subject of wide academic interest (related work in Appendix A).

Without further constraints, there are a wide range of possibilities for the untested patients. However,
we often can limit these possibilities: e.g., in medicine, information about overall disease prevalence
constrains the proportion of untested patients who can have the disease. Motivated by this, we make
the following contributions. First, we describe a Bayesian model which captures this setting and
nests as special cases classic models from econometrics. Second, we propose two domain constraints
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informed by the medical domain: a prevalence constraint and an expertise constraint. We show
theoretically and on synthetic data that the constraints improve inference. Finally, we apply our model
to estimate breast cancer risk. We show the model can identify suboptimalities in test allocation and
that the prevalence constraint increases the plausibility of inferences. While our feature vector is
low-dimensional, our approach extends to supervised learning tasks with more complex inputs: e.g.,
medical images or embeddings from foundation models [5–7].

2 Model

We now describe our Bayesian model. Following previous work [3], our underlying assumption is
that whether a patient is tested for a disease should be determined primarily by their risk of disease.
Thus, the purpose of the model is (i) to accurately estimate risk for both the tested and untested
patients and (ii) to quantify deviations from purely risk-based test allocation.

Consider a set of people indexed by i. For each person, we see observed features Xi ∈ RD

(e.g., demographics and symptoms in an electronic health record). We observe a testing decision
Ti ∈ {0, 1}, where Ti = 1 indicates that the ith person was tested. If the person was tested (Ti = 1),
we further observe an outcome Yi. Yi might be a binary indicator (e.g. Yi = 1 means that the person
tests positive), or Yi might be a numeric outcome of a medical test (e.g. T cell count or oxygen
saturation levels). Throughout, we generally refer to Yi as a binary indicator, but our framework
extends to non-binary Yi, and we derive our theoretical results in this setting with a continuous Yi. If
Ti = 0 we do not observe Yi.

Formally, our data generating process is

Unobservables: Zi ∼ f(·|σ2)

Risk score: ri = XT
i βY + Zi

Test outcome: Yi ∼ hY (·|ri)
Testing decision: Ti ∼ hT (·|αri +XT

i β∆) .

(1)

In words, Zi ∈ R represents unobservables [8, 9], that affect both Ti and Yi, but are not in the dataset
– e.g., whether the doctor observes that the person is in pain. Zi is drawn from a distribution f with
scale parameter σ2, capturing the importance of unobservables.

ri ∈ R represents a person’s risk score, which captures their risk of having a disease. ri is modeled
as a linear function of observed features (with unknown coefficients βY ∈ RD) and the unobserved
Zi. Yi is drawn from a distribution hY parameterized by ri – e.g., Yi ∼ Bernoulli(sigmoid(ri)).

Whether a person is tested (Ti = 1) is drawn from a distribution hT parameterized by αri +XT
i β∆.

This function captures that testing decisions depend not only on ri but also on human and policy
factors: for example, screening policies or socioeconomic disparities (captured by β∆ ∈ RD).
Putting things together, the model parameters are θ ≜ (α, σ2,β∆,βY ).

Medical domain knowledge: Besides the observed data, in medical settings we often have con-
straints to aid model estimation. We propose two constraints.

Prevalence constraint: We assume disease prevalence across the entire population (not just the
tested population), E[Y ], is known, as is true in many health settings: for example, cancer [10],
COVID-19 [11], and heart disease [12]. In some cases, the prevalence is only approximately
known [13–15]; our Bayesian formulation can incorporate such soft constraints as well.

Expertise constraint: Because doctors and patients are informed decision-makers, we can assume
that tests are allocated mostly based on disease risk. Specifically, we assume that there are some
features which do not affect a patient’s probability of receiving a test when controlling for their risk:
i.e., that β∆d = 0, for at least one dimension d. However, we note that we still estimate βY d for the
features on which we assume expertise.
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3 Theoretical Analysis

We summarize our proofs here and provide details in Appendix B. We prove why our proposed
constraints improve parameter inference by analyzing a special case of our general model in eq. (1).
We show that this case is equivalent to the Heckman model [16, 17], used to correct bias from non-
randomly selected samples (Proposition B.1). It is known that placing constraints on the Heckman
model improves the precision of parameter inference [18], suggesting that our proposed constraints
can do so as well. We show that our constraints never worsen the precision of parameter inference
(Proposition B.2) and provide conditions under which they strictly improve it (Proposition B.4).

3.1 Empirical extension beyond the Heckman special case

In our experiments, we validate that our theoretical results hold beyond the Heckman setting. Specifi-
cally, we conduct experiments using the following Bernoulli-sigmoid model:

Zi ∼ Uniform(0, σ2)

ri = XT
i βY + Zi

Yi ∼ Bernoulli(sigmoid(ri))

Ti ∼ Bernoulli(sigmoid(αri +XT
i β∆)) .

(2)

We draw Z from a uniform distribution and fix α because this allows us to marginalize out Z, accel-
erating model-fitting (see Appendix C). However, our approach is applicable to other distributions of
unobservables: in Appendix D.3 and Appendix E.3 we show similar results for a normal distribution.

3.2 Synthetic experiments

In Appendix D, we validate our approach on synthetic data. We find that our theory agrees with
our experimental results on both the Heckman and Bernoulli-sigmoid model. The constraints
produce narrower posterior confidence intervals (improving precision). The constraints also produce
posterior means which lie closer to the true parameter values (improving accuracy). The code for
these experiments is here: https://github.com/sidhikabalachandar/domain_constraints.
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Figure 1: Estimated βY (top) capture known can-
cer risk factors. Estimated β∆ (bottom) capture
the underuse of genetic information (left) and
known age-based testing policies (right). Points
indicate posterior means and vertical lines indicate
95% confidence intervals. Gray asterisks indicate
coefficients set by the expertise constraint.

4 Real-world case study:
Breast cancer testing

In the following sections, we describe our ex-
perimental set up and the model we fit (§4.1),
we conduct four validations on the fitted model
(§4.2), we use the model to assess historical test-
ing decisions (§4.3), and we compare to a model
fit without a prevalence constraint (§4.4).

4.1 Experimental setup

We apply our model to a breast cancer dataset of
54,746 people from the UK Biobank [19] (see
Appendix F for details). Our Xi consist of 7
features predictive of breast cancer; Ti ∈ {0, 1}
denotes whether the person receives a mammo-
gram (the most common breast cancer test) in
the 10 years following the measurement of fea-
tures; and Yi ∈ {0, 1} denotes whether the per-
son is diagnosed with breast cancer in the 10
year period. We analyze a younger female pop-
ulation (age ≤ 45) because it creates a challeng-
ing distribution shift: younger people are gener-
ally not tested for cancer [20], so the tested and
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untested populations differ. We include a prevalence constraint E[Y ] = 0.02, based on incidence
statistics in the UK [10]. We include an expertise constraint by allowing β∆ to deviate from 0 only
for (i) racial/socioeconomic features, due to disparities in healthcare access [21–23]; (ii) genetic
features, since genetic information may be underused [24]; and (iii) age, due to age-based testing
policies [20]. In Appendix E.3, we run robustness experiments.

In Figure 1, we plot the inferred coefficients for the fitted model. The model infers a large σ2 = 5.1
(95% CI, 3.7-6.8), highlighting the importance of unobservables. In Appendix E.2 Figure S8, we also
compare our model’s performance to a suite of additional baselines. This includes (i) baselines trained
solely on the tested population, (ii) baselines which treat the untested population as negative, and
(iii) additional baselines commonly used in selective labels settings. Collectively, these baselines all
suffer from various issues our model does not, including learning implausible age trends inconsistent
with prior literature or worsening predictive performance.

4.2 Validating the model

Validating models in selective labels settings is difficult because outcomes are not observed for
the untested. Still, we conduct a suite of validations. Below we show the first validation: the
model’s inferred risks predict cancer diagnoses. In Appendix E.1 we present three more valida-
tions. First, we show that the inferred unobservables correlate with a true unobservable—family
history of breast cancer. This is an unobservable because it influences both T and Y but is not
included in the data given to the model. Second, we show the estimated βY coefficients cap-
ture known cancer risk factors: genetic risk, previous biopsy, age at first period, and age [25, 26].
Third, we show the inferred age-based testing policy correlates with known public health policies.
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Figure 2: Without the prevalence constraint, the
model learns that cancer risk first increases and
then decreases with age (left, orange), contradict-
ing prior literature. This incorrect inference occurs
because the tested population has the same mislead-
ing age trend (right). In contrast, the prevalence
constraint encodes that the (younger) untested pop-
ulation has lower risk, allowing the model to learn
a more accurate age trend (left, blue).

Inferred risk predicts breast cancer diag-
noses: Verifying that inferred risk predicts
cancer diagnoses among the tested population
is straightforward. Since Y is observed for
the tested population, we check (on a test
set) whether people with higher inferred risk
(p(Yi = 1|Xi)) are more likely to be diagnosed
with cancer (Yi = 1). People in the highest
inferred risk quintile1 have 3.3× higher true
risk of cancer than people in the lowest quin-
tile (6.0% vs 1.8%). Verifying that inferred risk
predicts diagnoses among the untested popula-
tion is less straightforward because Y is not
observed. We leverage that a subset have a
follow-up visit (i.e., an observation after the ini-
tial 10-year study period) to show that inferred
risk predicts cancer diagnosis at the follow-up.
For the subset of untested population who attend
a follow-up visit, people in the highest inferred
risk quintile have 2.5× higher true risk of cancer
during the follow-up period than people in the
lowest quintile (4.1% vs 1.6%).2

4.3 Assessing historical testing decisions

Non-zero components of β∆ indicate features that affect a person’s probability of being tested
even when controlling for their disease risk. The bottom left plot in Figure 1 plots the inferred
β∆, revealing that genetic information is underused. While genetic risk is strongly predictive of Y ,

1Reporting outcome rates by inferred risk quintile or decile is a common metric in health risk prediction
settings [3, 27, 28].

2We also note that the AUC amongst the tested population is 0.63 and amongst the untested population that
attended a followup visit is 0.63. These AUCs are similar to past predictions which use similar feature sets[29].
For instance, the Tyrer-Cuzick [30] and Gail [31] models achieved AUCs of 0.62 and 0.59.
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its negative β∆ indicates that people at high genetic risk are tested less than expected given their
risk. This is plausible, given that their genetic information may not have been available to guide
decision-making. The model also infers negative point estimates for β∆ for Black and Asian women,
consistent with known racial disparities in breast cancer testing [32]. However, both confidence
intervals overlap zero (due to the small size of these groups in our dataset).

4.4 Comparison to model without prevalence constraint

The prevalence constraint also guides the model to more plausible inferences. We compare the
model fit with and without a prevalence constraint. As shown in the left plot in Figure 2, without
the prevalence constraint, the model learns that cancer risk first increases with age and then falls,
contradicting prior epidemiological and physiological evidence [10, 33–35]. This is because, due to
the age-based testing policy in the UK [20], being tested for breast cancer before age 50 is unusual, so
patients under the age of 50 are tested only if they are of very high risk for breast cancer. Therefore,
in our setting the tested population under age 50 is non-representative because their risk is much
higher than the corresponding untested population. Thus, the prevalence constraint guides the model
to more plausible inferences by preventing the model from predicting that a large fraction of the
untested (younger) population has the disease.

5 Discussion

We describe a Bayesian model to infer risk and assess historical human decision-making in selective
labels settings, which commonly occur in healthcare and other domains. Such models are challenging
to estimate because the untested population may differ from the tested population. To overcome this,
we propose two domain constraints—a prevalence constraint and an expertise constraint—which we
show both theoretically and empirically improve parameter inference. We apply our model to cancer
risk prediction, validate its inferences, show it can identify suboptimalities in test allocation, and
show the prevalence constraint prevents misleading inferences.
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A Related work

Selective labels problems occur in many high-stakes domains, including hiring, insurance, government
inspections, tax auditing, recommender systems, lending, healthcare, education, welfare services,
wildlife protection, and criminal justice [1–4, 22, 36–60]. As such, there are related literatures
in machine learning and causal inference [4, 37, 51, 52, 61–67], econometrics [3, 9, 16, 68–72],
statistics and Bayesian models [73–76], and epidemiology [77, 78]. We extend this literature by
providing constraints which both theoretically and empirically improve parameter inference. We now
describe the three lines of work most closely related to our modeling approach.

Generalized linear mixed models (GLMMs): Our model is closely related to GLMMs [79–81],
which model observations as a function of both observed features X and unobserved “random effects”
Z. We extend this literature by (i) proposing and analyzing a novel model to capture our selective
labels setting; (ii) incorporating the uniform distribution of unobservables, as opposed to the normal
distribution typically used in GLMMs, to yield more tractable inference; and most importantly (iii)
incorporating healthcare domain constraints into GLMMs to improve model estimation.

Improving robustness to distribution shift using domain information: The selective labels
setting represents a specific type of distribution shift from the tested to untested population. Previous
work on distribution shift shows that generic methods often fail to perform well across all types of
distribution shifts [61–63, 82, 83] and that incorporating domain information can improve perfor-
mance. For example, [84] proposes targeted augmentations, which augment the data by randomizing
known spurious features while preserving robust ones. [85] presents an example of this strategy in
the context of histopathology slide analysis. [63] shows that modeling the data generating process is
necessary for generalizing across distribution shifts. [86] proposes a framework for selection bias that
can place high-probability bounds on values from the target distribution using constraints in the form
of functions whose expectations are known under the target distribution. Motivated by this line of
work, we propose a data generating process suitable for selective labels settings and show that using
domain information improves performance.

Breast cancer risk estimation: There are many related works on estimating breast cancer
risk [29, 60, 87–89]. Our work complements this literature by proposing a Bayesian model
which captures the selective labels setting and incorporating domain constraints to improve
model estimation. While a linear model suffices for the low-dimensional features used in
our case study, our approach naturally extends to more complex inputs (e.g., medical im-
ages) and deep learning models sometimes used in breast cancer risk prediction [29, 87, 88].
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Figure S1: Effect of α and Xβ∆: α
controls how steeply testing probabil-
ity p(T ) increases in disease risk p(Y ),
while Xβ∆ captures factors which af-
fect p(T ) when controlling for p(Y ).

B Proofs

We start by restating the general model:

Unobservables: Zi ∼ f(·|σ2)

Risk score: ri = XT
i βY + Zi

Test outcome: Yi ∼ hY (·|ri)
Testing decision: Ti ∼ hT (·|αri +XT

i β∆) .

(1)

Unobservable Zi is drawn from a distribution f with scale
parameter σ2, which captures the relative importance of
the unobserved versus observed features. The disease risk
score ri ∈ R is modeled as a linear function of observed
features (with unknown coefficients βY ∈ RD) and the
unobserved Zi. Yi is drawn from a distribution hY pa-
rameterized by ri – e.g., Yi ∼ Bernoulli(sigmoid(ri)).
Analogously, the testing decision Ti is drawn from a dis-
tribution hT parameterized by a linear function of the true
disease risk score and other factors, with unknown coefficients α ∈ R and β∆ ∈ RD. Because Ti

depends on ri, and ri is a function of Zi, Ti depends on Zi. Figure S1 illustrates the effect of α and
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β∆. A larger α indicates that testing probability increases more steeply in risk. β∆ captures human
or policy factors which affect a patient’s probability of being tested beyond their disease risk. In other
words, β∆ captures deviations from purely risk-based test allocation. Putting things together, the
model parameters are θ ≜ (α, σ2,β∆,βY ).

Proof outline: In this section, we provide three proofs to show why domain constraints improve
parameter inference. We start by showing that the well-studied Heckman correction model [16, 17] is
a special case of the general model in eq. (1) (Proposition B.1). It is known that placing constraints
on the Heckman model can improve parameter inference [18]. We show that our proposed prevalence
and expertise constraints have a similar effect by proving that our proposed constraints never worsen
the precision of parameter inference (Proposition B.2). We then provide conditions under which our
constraints strictly improve precision (Proposition B.4).

Notation and assumptions: Below, we use Φ to denote the normal CDF, ϕ the normal PDF, and
βT = αβY + β∆. Let X be the matrix of observable features. We assume that the first column of
X corresponds to the intercept; X is zero mean for all columns except the intercept; and the standard
identifiability condition that our data matrix is full rank, i.e., XTX is invertible. We also assume that
α > 0.

We start by defining the Heckman correction model.

Definition 1 (Heckman correction model). The Heckman model can be written in the following
form [90]:

Ti = 1[XT
i β̃T + ui > 0]

Yi = XT
i β̃Y + Zi[

ui

Zi

]
∼ Normal

([
0
0

]
,

[
1 ρ̃
ρ̃ σ̃2

])
.

(3)

In other words, Ti = 1 if a linear function of Xi plus some unit normal noise ui exceeds zero. Yi is
a linear function of Xi plus normal noise Zi with variance σ̃2. Importantly, the noise terms Zi and
ui are correlated, with covariance ρ̃. The model parameters are θ̃ ≜ (ρ̃, σ̃2, β̃T , β̃Y ). We use tildes
over the Heckman model parameters to distinguish them from the parameters in our original model
in eq. (1). We now prove Proposition B.1.

Proposition B.1. The Heckman model (Definition 1) is equivalent to the following special case of
the general model in eq. (1):

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi = ri

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) .

(4)

Proof. If we substitute in the value of ri, the equation for Yi is equivalent to that in the Heckman
model. So it remains only to show that Ti in eq. (4) can be rewritten in the form in eq. (3). We first
rewrite eq. (4) in slightly more convenient form:

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) →

Ti ∼ Bernoulli(Φ(α(XT
i βY + Zi) +XT

i β∆)) →
Ti ∼ Bernoulli(Φ(XT

i (αβY + β∆) + αZi)) →
Ti ∼ Bernoulli(Φ(XT

i βT + αZi)) .

We then apply the latent variable formulation of the probit link:

Ti ∼ Bernoulli(Φ(XT
i βT + αZi)) →

Ti = 1[XT
i βT + αZi + ϵi > 0], ϵi ∼ N (0, 1) ,
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where αZi + ϵi is a normal random variable with standard deviation
√
α2σ2 + 1. We divide through

by this factor to rewrite the equation for Ti:

Ti = 1[XT
i β̃T + ui > 0] ,

which is equivalent to eq. (3). Here, β̃T = βT√
α2σ2+1

and ui = αZi+ϵi√
α2σ2+1

is a unit-scale normal
random variable whose covariance with Zi is

cov
(

αZi + ϵi√
α2σ2 + 1

, Zi

)
= E

(
αZi + ϵi√
α2σ2 + 1

· Zi

)
− E

(
αZi + ϵi√
α2σ2 + 1

)
E (Zi)

=
αE

(
Z2
i

)
√
α2σ2 + 1

=
ασ2

√
α2σ2 + 1

.

Thus, the special case of our model in eq. (4) is equivalent to the Heckman model, where the mapping
between the parameters is:

β̃Y = βY

σ̃2 = σ2

β̃T =
βT√

α2σ2 + 1

ρ̃ =
ασ2

√
α2σ2 + 1

.

(5)

As described in [18], the Heckman correction model is identified without any further assumptions.
It then follows that the special case of our model in eq. (4) is identified without further constraints.
One can simply estimate the Heckman model, which by the mapping in eq. (5) immediately yields
estimates of βY and σ2. Then, the equation for ρ̃ can be solved for α, yielding a unique value since
α > 0. Similarly the equation for β̃T yields the estimate for βT (and thus β∆).

While the Heckman model is identified without further constraints, this identification is known to
be very weak, relying on functional form assumptions [18]. To mitigate this problem, when the
Heckman model is used in the econometrics literature it is typically estimated with constraints on the
parameters. In particular, a frequently used constraint is an exclusion restriction: there must be at
least one feature with a non-zero coefficient in the equation for T but not Y . While this constraint
differs from the ones we propose, one might expect our proposed prevalence and expertise constraints
to have a similar effect and improve the precision of parameter inference. We make this precise
through Proposition B.2.

Throughout the results below, we analyze the posterior distribution of model parameters given the
observed data: g(θ) ≜ p(θ|X,T, Y ). We show that constraining the value of any one parameter
(through the prevalence or expertise constraint) will not worsen the posterior variance of the other
parameters. In particular, constraining a parameter θcon to a value drawn from its posterior distribution
will not in expectation increase the posterior variance of any other unconstrained parameters θunc. To
formalize this, we define the expected conditional variance:
Definition 2 (Expected conditional variance). Let the distribution over model parameters g(θ) ≜
p(θ|X,T, Y ) be the posterior distribution of the parameter θ given the observed data {X,T, Y }.
We define the expected conditional variance of an unconstrained parameter θunc, conditioned on the
value of a constrained parameter θcon, to be E[Var(θunc|θcon)] ≜ Eθ∗

con∼g[Var(θunc|θcon = θ∗con)].

Proposition B.2. In expectation, constraining the parameter θcon does not increase the variance of
any other parameter θunc. In other words, E[Var(θunc|θcon)] ≤ Var(θunc). Moreover, the inequality is
strict as long as E[θunc|θcon] is non-constant in θcon (i.e., Var(E[θunc|θcon]) > 0).

Proof. The proof follows from applying the law of total variance to the posterior distribution g. The
law of total variance states that:

Var(θunc) = E[Var(θunc|θcon)] + Var(E[θunc|θcon]) .
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Figure S2: Results using synthetic data from the Heckman model. The prevalence and expertise
constraints each produce more precise and accurate inferences on this synthetic data. We plot the
median across 200 synthetic datasets. Errorbars denote the bootstrapped 95% confidence interval on
the median.

Since Var(E[θunc|θcon]) is non-negative,

E[Var(θunc|θcon)] ≤ Var(θunc) .

Additionally, if E[θunc|θcon] is non-constant in θcon then Var(E[θunc|θcon]) is strictly positive. Thus the
strict inequality follows.

We now discuss how Proposition B.2 applies to our proposed constraints and the Heckman model.
Both the prevalence and expertise constraints fix the value of at least one parameter. For the Heckman
model, the prevalence constraint fixes the value of the intercept βY 0 (assuming the standard condition
that columns of X are zero-mean except for an intercept column of ones). The expertise constraint
fixes the value of β∆d for some d. Thus by Proposition B.2, we know that the prevalence and
expertise constraints will not increase the variance of any model parameters, and will strictly reduce
them as long as the posterior expectations of the unconstrained parameters are non-constant in the
constrained parameters.

We now show that when β̃T is known, the prevalence constraint strictly reduces variance. The setting
where β̃T is known is a natural one because β̃T can be immediately estimated from the observed
data X and T , and previous work in both econometrics and statistics thus have also considered this
setting [16, 73]. With additional assumptions, we also show that the expertise constraint strictly
reduces variance. We derive these results in the setting with flat priors for algebraic simplicity.
However, analogous results also hold under other natural choices of prior (e.g., standard conjugate
priors for Bayesian linear regression [91]). In the results below, we analyze the conditional mean of
Y conditioned on T = 1. Thus, we start by defining this value.
Lemma B.3 (Conditional mean of Y conditioned on T = 1). Past work has shown that the expected
value of Yi when Ti = 1 is [90]:

E[Yi|Ti = 1] = E[Yi|XT
i β̃T + u > 0]

= Xiβ̃Y + ρ̃σ̃
ϕ(Xiβ̃T )

Φ(Xiβ̃T )
,

where Φ denotes the normal CDF, ϕ the normal PDF, and ϕ(Xβ̃T )

Φ(Xβ̃T )
the inverse Mills ratio. This can

be more succinctly represented in matrix notation as

E[Yi|Ti = 1] = Mθ ,

where M = [XT=1;
ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×(d+1), θ = [β̃Y , ρ̃σ̃] ∈ Rd+1, XT=1 denotes the rows

of X corresponding to T = 1, and NT=1 is the number of rows of X for which T = 1.

Proposition B.4. Assume β̃T is fixed and flat priors on all parameters. Additionally, assume the

standard identifiability condition that the matrix M = [XT=1;
ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] is full rank. Then, in

expectation, constraining a component of β̃Y in the Heckman correction model strictly reduces the
posterior variance of the other model parameters. The prevalence constraint does this without any
further assumptions, and the expertise constraint does this if ρ̃ and σ̃2 are fixed.
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Figure S3: Results using synthetic data from the Bernoulli-sigmoid model with uniform unobservables.
The prevalence and expertise constraints each produce more precise and accurate inferences on this
synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote the bootstrapped
95% confidence interval on the median.

Proof. We will start by showing that when β̃T is fixed, constraining a component of β̃Y strictly
reduces the variance of the other model parameters. From the definition of the conditional mean of Y
conditioned on T = 1 (Lemma B.3), we get

E[Yi|Ti = 1] = Mθ .

Under flat priors on all parameters, the posterior expectation of the model parameters given the
observed data {X,T, Y } is simply the standard ordinary least squares solution given by the normal
equation [91]:

E[θ|X,T, Y ] = (MTM)−1MTY .

By assumption, M is full rank, so MTM is invertible.

When β̃Y d
is constrained to β̃

∗
Y d

for some component d, the equation instead becomes:

E[θ−d|β̃Y d
= β̃

∗
Y d

, X, T, Y ] = (MT
−dM−d)

−1MT
−d(Y −XT=1d β̃

∗
Y d

) .

We use the subscript −d notation to indicate that we no longer estimate the component d. Here,
M−d = [XT=1−d

; ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×d and θ−d = [β̃Y −d

, ρ̃σ̃] ∈ Rd. Since XT=1d is nonzero

and M is full rank, it follows that E[θ−d|β̃Y d
= β̃

∗
Y d

, X, T, Y ] is not constant in β̃
∗
Y d

. Thus by
Proposition B.2, constraining β̃Y d

reduces the variance of the parameters in θ−d (β̃Y ′
d

for d′ ̸= d

and ρ̃σ̃).

We will now show that both the prevalence and expertise constraints constrain a component of β̃Y .
Assuming the standard condition that columns of X are zero-mean except for an intercept column of
ones, the prevalance constraint fixes

EY [Y ] = EY [EX [EZ [Y |X,Z]]]

= EX [EZ [X
TβY + Z]]

= βY 0 ,

where βY 0 is the 0th index (intercept term) of βY . The expertise constraint also fixes a component
of β̃Y if ρ̃ and σ̃2 are fixed. This can be shown by algebraically rearranging eq. (5) to yield

β̃Y = β̃T

σ̃2

ρ̃
− β∆

σ̃
√
σ̃2 − ρ̃2

ρ̃
.

While we derive our theoretical results for the Heckman correction model, in both our synthetic
experiments (Appendix D) and our real-world case study (§4) we validate that our constraints improve
parameter inference beyond the special Heckman case.
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Figure S4: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed σ2. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

C Derivation of the closed-form uniform unobservables model

Conducting sampling for our general model described by eq. (1) is faster if the distribution of
unobservables f and link functions hY and hT allow one to marginalize out Zi through closed-form
integrals, since otherwise Zi must be sampled for each datapoint i, producing a high-dimensional
latent variable which slows computation and convergence. Many distributions do not produce closed-
form integrals when combined with a sigmoid or probit link function, which are two of the most
commonly used links with binary variables.3 However, we can derive closed forms for the special
uniform unobservables case described by eq. (2).

Below, we leave the i subscript implicit to keep the notation concise. When computing the log
likelihood of the data, to marginalize out Z, we must be able to derive closed forms for the following
three integrals:

p(Y = 1, T = 1|X) =

∫
Z

p(Y = 1, T = 1|X,Z)f(Z)dZ

p(Y = 0, T = 1|X) =

∫
Z

p(Y = 0, T = 1|X,Z)f(Z)dZ

p(T = 0|X) =

∫
Z

p(T = 0|X,Z)f(Z)dZ ,

since the three possibilities for an individual datapoint are {Y = 1, T = 1}, {Y = 0, T = 1},
{T = 0}. To implement the prevalence constraint (which fixes the E[Y ]), we also need a closed form
for the following integral:

p(Y = 1|X) =

∫
Z

p(Y = 1|X,Z)f(Z)dZ .

For the uniform unobservables model with α = 1, the four integrals have the following closed forms,
where below we define A = eX

TβT and B = eX
TβY :

3Specifically, we search over the distributions in [92], combined with logit or probit links, and find that most
combinations do not yield closed forms.
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Figure S5: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed α. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

p(Y = 1, T = 1|X) =
1

σ (A−B)

(
σ (A−B)−A log

(
(B + 1)A−1

)
+A log

(
(Beσ + 1)A−1e−σ

)
+B log

(
(A+ 1)A−1

)
−B log

(
(Aeσ + 1)A−1e−σ

))
p(Y = 0, T = 1|X) =

1

σ (A−B)

((
− log

(
(A+ 1)A−1

)
+ log

(
(B + 1)A−1

)
+ log

(
(Aeσ + 1)A−1e−σ

)
− log

(
(Beσ + 1)A−1e−σ

))
A

)
p(T = 0|X) =

log
(
1 +A−1

)
− log

(
A−1e−σ + 1

)
σ

p(Y = 1|X) =
σ − log

(
1 +B−1

)
+ log

(
B−1e−σ + 1

)
σ

.

The integrals also have closed forms for other integer values of α (e.g., α = 2) allowing one to
perform robustness checks with alternate model specifications (see Figure S10).

D Synthetic experiments

We validate our approach on synthetic data. Our theoretical results imply that our proposed constraints
should reduce the variance of parameter posteriors (improving precision). We verify that this is the
case. We also show empirically that the proposed constraints produce posterior mean estimates which
lie closer to the true parameter values (improving accuracy).

For all experiments, we use the Bayesian inference package Stan [93], which uses the Hamiltonian
Monte Carlo algorithm [94]. We first validate that the prevalence and expertise constraints improve
the precision and accuracy of parameter inference for the Heckman model described in eq. (3). We
then extend beyond this special case and examine various Bernoulli-sigmoid instantiations of our
general model in eq. (1), which assume a binary outcome variable Y . With a binary outcome, models
are known to be more challenging to fit: for example, one cannot simultaneously estimate both α and
σ2 (so we must fix either α or σ2), and models fit without constraints may fail to recover the correct
parameters [95–97]. We assess whether our proposed constraints improve model estimation even in
this more challenging case. Specifically, we extend beyond the Heckman model to three different
data generating settings: (i) uniform unobservables and fixed α, (ii) normal unobservables and fixed
σ2; and (iii) normal unobservables and fixed α. For the uniform model, we conduct experiments only
with fixed α (not fixed σ2) because, as discussed above, this allows us to marginalize out Z.

We report results across 200 trials. For each trial, we generate a new dataset from the data generating
process the model assumes; fit the model to that dataset; and evaluate model fit using two metrics:
precision (width of the 95% confidence interval) and accuracy (difference between the posterior
mean and the true parameter value).
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Figure S6: The prevalence and expertise constraints still improve parameter inference when qua-
drupling the number of features relative to Figure S3. Results are shown using synthetic data from
the Bernoulli-sigmoid model with uniform unobservables. Both constraints produce more precise
and accurate inferences on this synthetic data. We plot the median across 200 synthetic datasets.
Errorbars denote the bootstrapped 95% confidence interval on the median.

We wish to assess the effect of the constraints on model inferences. Thus, we compare inferences
from models with: (i) no constraints (unconstrained); (ii) a prevalence constraint; and (iii) an expertise
constraint on a subset of the features. In all models, to incorporate the prevalence constraint into the
model, we add a quadratic penalty to the model penalizing it for inferences that produce an inferred
E[Y ] that deviates from the true E[Y ]. To incorporate the expertise constraint into the model, we set
the model parameters β∆d

to be equal to 0 for all dimensions d to which the expertise constraint
applies.

D.1 Heckman model

We first conduct synthetic experiments using the Heckman model defined in eq. (3). This model is
identifiable without any further constraints, thus we estimate parameters θ ≜ (ρ̃, σ̃2, β̃T , β̃Y ).

In the simulation, we use 5000 datapoints; 5 features (including the intercept column of 1s); X ,
βY , and βT drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept
terms βY0

∼ N (−2, 0.1) and βT0
∼ N (2, 0.1). We assume the expertise constraint applies to

β∆2
= β∆3

= β∆4
= 0. Thus, by rearranging (5), we fix β̃Y = β̃T

σ̃2

ρ̃ . When calculating the

results for β̃T and β̃Y , we do not include the dimensions along which we assume expertise since
these dimensions are assumed to be fixed for the model with the expertise constraint.

We show results in Figure S2. Both constraints generally produce more precise and accurate inferences
for all parameters relative to the unconstrained model. The only exception is β̃T , for which both
models produce equivalently accurate and precise inferences. This is consistent with our theoretical
results, which do not imply that the precision of inference for β̃T should improve.

D.2 Uniform unobservables model

We now discuss our synthetic experiments using the Bernoulli-sigmoid model with uniform un-
observables and α = 1 in eq. (2). Our simulation parameters are similar to the Heckman model
experiments. We use 5000 datapoints; 5 features (including the intercept column of 1s); X , βY ,
and β∆ drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept terms
βY0

∼ N (−2, 0.1) and β∆0
∼ N (2, 0.1) to approximately match p(Y ) and p(T ) in realistic medical

settings, where disease prevalence is relatively low, but a large fraction of the population is tested
because false negatives are more costly than false positives. We assume the expertise constraint
applies to β∆2

= β∆3
= β∆4

= 0. When calculating the results for β∆, we do not include the
dimensions along which we assume expertise since these dimensions are assumed to be fixed for the
model with the expertise constraint.

We show results in Figure S3. Both constraints generally produce more precise and accurate
inferences for all parameters relative to the unconstrained model. The one exception is that the
expertise constraint does not improve accuracy for σ2.
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Figure S7: The prevalence and expertise constraints still improve parameter inference even when
using pairwise nonlinear interactions between features (rather than only linear terms, as shown in
Figure S3). Results are shown using synthetic data from the Bernoulli-sigmoid model with uniform
unobservables. Both constraints generally produce more precise and accurate inferences on this
synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote the bootstrapped
95% confidence interval on the median.

D.3 Normal unobservables model

We also conduct synthetic experiments using the following Bernoulli-sigmoid model with normal
unobservables:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi ∼ Bernoulli(sigmoid(ri))

Ti ∼ Bernoulli(sigmoid(αri +XT
i β∆)) .

(6)

We show results for two cases: when σ2 is fixed and when α is fixed. Because this distribution of
unobservables does not allow us to marginalize out Z, it converges more slowly than the uniform
unobservables model and we must use a smaller sample size for computational tractability.

Fixed σ2: We use the same simulation parameters as the uniform model. We fix σ2 = 2 and we
draw α ∼ N(1, 0.1). We show results in Figure S4. Both the prevalence and expertise constraints
produce more precise and accurate inferences for all parameters relative to the unconstrained model.

Fixed α: We use the same simulation parameters as the uniform model, except we reduce the
number of datapoints to 200. We fix α = 1 and we draw σ2 ∼ N(2, 0.1). We show results in Figure
S5. Both the prevalence and expertise constraints produce more precise and accurate inferences for
all parameters relative to the unconstrained model.

D.4 More complex models

To show our constraints are useful with more complex models, we ran two additional synthetic
experiments on the Bernoulli-sigmoid model with uniform unobservables. First, we demonstrated
applicability to higher-dimensional features. We show results in Figure S6. Even after quadrupling the
number of features (which increases the runtime by a factor of three), both constraints still improve
precision and accuracy. Secondly, we evaluate a more complex model with pairwise nonlinear
interactions between features. We show results in Figure S7. Again both constraints generally
improve precision and accuracy. We note our implementation relies on MCMC which is known to be
less scalable than approaches like variational inference [98]. Thus in order for these more complex
models to converge, we reduce the prevalence constraint penalty weight to 10,000. Otherwise, we
use the same simulation parameters as our standard uniform model experiments.4

4We set the expertise constraint to apply to a random subset of 60% of the features to match the standard
uniform model experiments where expertise is assumed for 3 out of the 5 features.
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E Additional experiments on cancer data

Here we provide additional sets of experiments. We provide additional model validations (Appendix
E.1), a comparison to various baseline models (Appendix E.2), and robustness experiments (Appendix
E.3).

E.1 Validating the model

In §4.2, we show that the model’s inferred risks predict cancer diagnoses. Here we present three
more validations.

Inferred unobservables correlate with known unobservables: For each person, our model infers
a posterior over unobservables p(Zi|Xi, Ti, Yi). We confirm that the inferred posterior mean of
unobservables correlates with a true unobservable—whether the person has a family history of
breast cancer. This is an unobservable because it influences both T and Y but is not included
in the data given to the model.5 People in the highest inferred unobservables quintile are 2.2×
likelier to have a family history of cancer than people in the lowest quintile (15.9% vs 7.4%).
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Figure S8: We run three sets of baseline mod-
els: (i) models trained solely on the tested pop-
ulation, estimating p(Y = 1|T = 1, X); (ii)
models which treat the untested group as nega-
tive, estimating p(T = 1, Y = 1|X); and (iii)
other selective labels baselines (IPW and hard
pseudo labels). Both IPW and the model estimat-
ing p(Y = 1|T = 1, X) learn that cancer risk
first increases and then decreases with age, contra-
dicting prior literature. This implausible inference
occurs because the tested population has the same
misleading age trend (right plot). In contrast, our
Bayesian model learns a more plausible age trend
(left plot, blue line). Hard pseudo labels and the
model estimating p(T = 1, Y = 1|X) also learn
plausible age trends, but they underperform our
Bayesian model in predictive performance.

βY captures known cancer risk factors: βY

measures each feature’s contribution to risk. The
top left plot in Figure 1 shows that the inferred
βY captures known cancer risk factors. Cancer
risk is strongly correlated with genetic risk, and
is also correlated with previous breast biopsy,
age, and younger age at first period [25, 26].

β∆ captures known public health policies:
In the UK, all women aged 50-70 are invited
for breast cancer testing every 3 years [20].
Our study period spans 10 years, so we expect
women who are 40 or older at the start of the
study period (50 or older at the end) to have
an increased probability of testing when con-
trolling for true cancer risk. The bottom right
plot in Figure 1 shows this is the case, since the
β∆ indicator for ages 40-45 is greater than the
indicators for ages <35 and 35-39.

E.2 Comparison to baseline models

We provide comparisons to three different types
of baseline models: (i) a model trained solely
on the tested population, (ii) a model which as-
sumes the untested group is negative, and (iii)
other selective labels baselines.

Comparison to models trained solely on the
tested population: The first baseline that we
consider is a model which estimates p(Yi = 1|Ti = 1, Xi) without unobservables: i.e., a model which
predicts outcomes using only the tested population.6 This is a widely used approach in medicine and
other selective labels settings. In medicine, it has been used to predict COVID-19 test results among

5Although UKBB has family history data, we do not include it as a feature both so we can use it as validation
and because we do not have information on when family members are diagnosed. So we cannot be sure that the
measurement of family history precedes the measurement of T and Y , as is desirable for features in X .

6We estimate this using a logistic regression model, which is linear in the features. To confirm that non-linear
methods yield similar results, we also fit random forest and gradient boosting classifiers. These methods achieve
similar predictive performance to the linear model and they also predict an implausible age trend.
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people who were tested [1, 2]; to predict hypertrophic cardiomyopathy among people who received
gold-standard imaging tests [57]; and to predict discharge outcomes among people deemed ready for
ICU discharge [42]. It has also been used in the settings of policing [4], government inspections [41],
and lending [38].

As shown in Figure S8, we find that all three models trained solely on the tested population learn
that cancer risk first increases with age and then falls sharply, contradicting prior epidemiological
and physiological evidence [10, 33–35]. We see this same trend for a model fit without a prevalence
constraint in §4.4. This indicates that these models do not predict plausible inferences consistent with
prior work.

Comparison to a model which treats the untested group as negative: We also consider a baseline
model which treats the untested group as negative; this is equivalent to predicting p(T = 1, Y = 1|X),
an approach used in prior selective labels work [89, 99, 100]. We find that, though this baseline no
longer learns an implausible age trend, it underperforms our model both in terms of AUC (AUC is
0.60 on the tested population vs. 0.63 for our model; AUC is 0.60 on the untested population vs. 0.63
for our model) and quintile ratio (quintile ratio on the tested population is 2.4 vs. 3.3 for our model;
quintile ratio for both models is 2.5 on the untested population). We note that this baseline is a special
case of our model with the prevalence constraint set such that p(Y = 1|T = 0) = 0, an implausibly
low prevalence constraint. In light of this, it makes sense that this baseline learns a more plausible
age trend, but underperforms our model overall.

Comparison to other selective labels baselines: We also consider two other common selective
labels baselines [100]. First, we predict hard pseudo labels for the untested population [101]: i.e.,
we train a classifier on the tested population and use its outputs as pseudo labels for the untested
population. Due to the low prevalence of breast cancer in our dataset, the pseudo labels are all Y = 0,
so this model is equivalent to treating the untested group as negative and similarly underperforms
our model in predictive performance. Second, we use inverse propensity weighting (IPW) [65]: i.e.,
we train a classifier on the tested population but reweight each sample by the inverse propensity
weight 1

p(T=1|X) .7 As shown in Figure S8, this baseline also learns the implausible age trend that
cancer risk first increases and then decreases with age: this is because merely reweighting the sample,
without encoding that the untested patients are less likely to have cancer via a prevalence constraint,
is insufficient to correct the misleading age trend.

E.3 Robustness checks for the breast cancer case study

Our primary breast cancer results (§4) are computed using the Bernoulli-sigmoid model in eq.
(2). In this model, unobservables are drawn from a uniform distribution, α is set to 1, and the
prevalence constraint is set to p(Y = 1) = 0.02 based on previously reported breast cancer incidence
statistics [10]. In order to assess the robustness of our results, we show that they remain consistent
when altering all three of these aspects to plausible alternative specifications.

Consistency across different distributions of unobservables: We compare the uniform unob-
servables model (eq. (2)) to the normal unobservables model (eq. (6)). As described in Appendix
D, the normal unobservables model does not allow us to marginalize out unobservables Z and thus
converges more slowly. Hence, for computational tractability, we run the model on a random subset
of 1

8 of the breast cancer dataset. In Figure S9a, we compare the βY and β∆ coefficients from both
models. The estimated coefficients remain similar for both models, with similar trends in the point
estimates and overlapping confidence intervals. Figure S9b shows that the inferred values of p(Yi|Xi)
and p(Ti|Xi) for each data point also remain highly correlated across both models, indicating that
the models infer similar testing probabilities and disease risks for each person.

Consistency across different α: We compare the uniform unobservables model with α = 1 to a
uniform unobservables model with α = 2. In Figure S10a, we compare the βY and β∆ coefficients
from both models. The inferred βY and β∆ coefficients are generally very similar, with similar
trends in the point estimates and overlapping confidence intervals. The only exception is the estimate
of β∆ for the genetic risk score. While both the α = 1 and α = 2 models find a negative coefficient

7We clip p(T = 1|X) to be between [0.05, 0.95], consistent with previous work.
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Figure S9: We compare the results from the uniform unobservable model in eq. (2) (black) and the
normal unobservable model in eq. (6) (blue). Figure S9a: The estimated βY and β∆ coefficients
remain similar for both models, with similar trends in the point estimates and overlapping confidence
intervals. Figure S9b: Both models predict highly correlated values for p(Yi|Xi) and p(Ti|Xi).
Perfect correlation is represented by the dashed line.
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Figure S10: We compare the results from the uniform unobservable model with α = 1 (black) and
α = 2 (blue). Figure S10a: The inferred βY and β∆ coefficients are generally very similar, with
similar trends in the point estimates and overlapping confidence intervals. The only exception is the
estimate of β∆ for genetic risk, which is explained by the fact that the prediction of β∆ depends on
the value of α. Figure S10b: Both models predict highly correlated values for p(Yi|Xi) and p(Ti|Xi).
Perfect correlation is represented by the dashed line.
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Figure S11: We compare the results from the uniform unobservables model with the standard
prevalence constraint of E[Y ] = 0.02 informed by the UK’s breast cancer incidence statistics [10]
(black), a prevalence constraint which corresponds to 50% less of the untested population having the
disease (blue), and a prevalence constraint which corresponds to 50% more of the untested population
having the disease (orange). Figure S11a: The predictions for all three models are similar as seen by
the similar trends in the point estimates and overlapping confidence intervals. Figure S11b: All three
models predict highly correlated values for p(Yi|Xi) and p(Ti|Xi). Perfect correlation is represented
by the dashed line.

for β∆ on the genetic risk score, indicating genetic information is underused, the coefficient is less
negative when α = 1. These different coefficients occur because altering α changes the assumed
parametric relationship between the risk score and the testing probability under purely risk-based
allocation, and thus changes the estimated deviations from this relationship (which β∆ captures). Past
work also makes assumptions about the parametric relationship between risk and human decision-
making [22, 53, 54, 102]. We can restrict the plausible values of α, and thus of β∆, using any of the
following approaches: (i) restricting α to a range of reasonable values based on domain knowledge;
(ii) setting α to the value predicted by a model with σ2 pinned; or (iii) fitting both α and σ2 in a model
with non-binary Y outcomes (e.g. tumor size or stage) when both parameters can be simultaneously
identified.

To systematically confirm model consistency, we again compare the inferred values of p(Yi|Xi) and
p(Ti|Xi) for each data point. As shown in Figure S10b, we confirm that these estimates remain highly
correlated across both models, indicating that the models infer very similar testing probabilities and
disease risks for each person.

Consistency across different prevalence constraints: The prevalence constraint fixes the model’s
estimate of p(Y = 1). Because the proportion of tested individuals who have the disease, p(Y =
1|T = 1), is known from the observed data, fixing p(Y = 1) is equivalent to fixing the proportion of
untested individuals with the disease, p(Y = 1|T = 0). For the model in §4, we set the prevalence
constraint to 0.02 based on previously reported breast cancer incidence statistics in the UK for the
relevant age groups [10]. However, in general, disease prevalence may not be exactly known [13–15].
Hence, in order to check the robustness of our results to plausible variations in the value of the
prevalence constraint, we compare our original results to those with two other prevalence constraints
that correspond to 50% lower and 50% higher values of p(Y = 1|T = 0). This yields overall
prevalence constraints of E[Y ] ≈ 0.018 and 0.022, respectively. In Figure S11a, we compare the
βY and β∆ coefficients for these three different prevalence constraints. Across all three models,
the estimated coefficients remain similar, with similar trends in the point estimates and overlapping
confidence intervals. In particular, the age trends also remain similar in all three models, in contrast
to the model fit without a prevalence constraint (§4.4). In Figure S11b, we compare the inferred

24



values of p(Yi|Xi) and p(Ti|Xi) for each data point and confirm that these estimates remain highly
correlated across all three models, indicating that the models infer very similar testing probabilities
and disease risks for each person.

F UK Biobank data

Label processing: In the UK Biobank (UKBB), each person’s data is collected at their baseline
visit. The time period we study is the 10 years preceding each person’s baseline visit. Ti ∈ {0, 1}
denotes whether the person receives a mammogram in the 10 year period. Yi ∈ {0, 1} denotes
whether the person receives a breast cancer diagnosis in the 10 year period. We verify that very
few people in the dataset have Ti = 0 and Yi = 1 (i.e., are diagnosed with no record of a test):
p(Y = 1|T = 0) = 0.0005. We group these people with the untested T = 0 population, since they
did not receive a breast cancer test.

Feature processing: We include features which satisfy two desiderata. First, we use features that
previous work has found to be predictive of breast cancer [25, 26, 33]. Second, since features are
designed to be used in predicting T and Y , they must be measured prior to T and Y (i.e., at the
beginning of the 10 year study period). Since the start of our 10 year study period occurs before
the date of data collection, we choose features that are either largely time invariant (e.g. polygenic
risk score) or that can be recalculated at different points in time (e.g. age). The full list of features
that we include is: breast cancer polygenic risk score, previous biopsy procedure (based on OPCS4
operation codes), age at first period (menarche), height, Townsend deprivation index8, race (White,
Black/mixed Black, and Asian/mixed Asian), and age at the beginning of the study period (<35,
35-39, and 40-45). We normalize all features to have mean 0 and standard deviation 1.

Sample filtering: We filtered our sample based on four conditions. (i) We removed everyone
without data on whether or not they received breast cancer testing, which automatically removed all
men because UKBB does not have any recorded data on breast cancer tests for men. (ii) We removed
everyone missing data for any included features (e.g. responded “do not know”). (iii) We removed
everyone who did not self report being of White, Black/mixed Black, or Asian/mixed Asian race.
(iv) We remove patients who were diagnosed with breast cancer before the start of our 10 year study
period, as is standard in previous work [104]. (v) We removed everyone above the age of 45 at the
beginning of the observation period, since the purpose of our case study is to assess how the model
performs in the presence of the distribution shift induced by the fact that young women tested for
breast cancer are non-representative.9

Model fitting: We divide the data into train and test sets with a 70-30 split. We use the train set to
fit our model. We use the test set to validate our risk predictions on the tested population (T = 1).
We validate our risk predictions for the T = 1 population on a test set because the model is provided
both Y and X for the train set, so using a test set replicates standard machine learning practice.
We do not run the other validations (predicting risk among the T = 0 population and inference of
unobservables) on a test set because in all these cases the target variable is unseen by the model
during training. Overfitting concerns are minimal because we use a large dataset and few features.

Inferred risk predicts breast cancer diagnoses among the untested population: When verifying
that inferred risk predicts future cancer diagnoses for the people who were untested (T = 0) at the
baseline, we use data from the three UKBB follow-up visits. We only consider the subset of people

8The Townsend deprivation index is a measure of material deprivation that incorporates unemployment,
non-car ownership, non-home ownership, and household overcrowding [103].

9To confirm that our predictive performance remains good when looking at patients of all ages, we conduct
an additional analysis fitting our model on a dataset without the age filter, but keeping the other filters. (For
computational tractability, we downsample this dataset to approximately match the size of the original age-
filtered dataset.) We fit this dataset using the same model as that used in our main analyses, but add features to
capture the additional age categories (the full list of age categories are: <35, 35-39, 40-44, 45-49, 50-54, ≥55).
We find that if anything, predictive performance when using the full cohort is better than when using only the
younger cohort from our main analyses in §4.2. Specifically, the model’s quintile ratio is 4.6 among the tested
population (T = 1) and 7.0 among the untested population (T = 0) that attended a follow-up visit.
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who attended at least one of the follow-up visits. We mark a person as having a future breast cancer
diagnosis if they report receiving a breast cancer diagnosis at a date after their baseline visit.

Inferred unobservables correlate with known unobservables: We verify that across people, our
inferred posterior mean of unobservables correlates with a true unobservable—whether the person
has a family history of breast cancer. We define a family history of breast cancer as either the person’s
mother or sisters having breast cancer. We do not include this data as a feature because we cannot be
sure that the measurement of family history precedes the measurement of T and Y . This allows us to
hold out this feature as a validation.

IRB: Our institution’s IRB determined that our research did not meet the regulatory definition of
human subjects research. Therefore, no IRB approval or exemption was required.
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