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Abstract

Large pretrained language models (PLMs) typ-001
ically tokenize the input string into contigu-002
ous subwords before any pretraining or infer-003
ence. However, previous studies have claimed004
that this form of subword tokenization is in-005
adequate for processing morphologically-rich006
languages (MRLs). We revisit this hypothe-007
sis by pretraining a BERT-style masked lan-008
guage model over character sequences in-009
stead of word-pieces. We compare the re-010
sulting model, dubbed TavBERT, against con-011
temporary PLMs based on subwords for three012
highly complex and ambiguous MRLs (He-013
brew, Turkish, and Arabic), testing them014
on both morphological and semantic tasks.015
Our results show, for all tested languages,016
that while TavBERT obtains mild improve-017
ments on surface-level tasks à la POS tag-018
ging and full morphological disambiguation,019
subword-based PLMs achieve significantly020
higher performance on semantic tasks, such as021
named entity recognition and extractive ques-022
tion answering. These results showcase and023
(re)confirm the potential of subword tokeniza-024
tion as a reasonable modeling assumption for025
many languages, including MRLs.026

1 Introduction027

Large pretrained language models (PLMs) typi-028

cally operate over contiguous subword tokens (aka029

word-pieces), which are created by shallow sta-030

tistical methods (Sennrich et al., 2016; Kudo and031

Richardson, 2018), and do not necessarily reflect032

the morphological structure of words. This is par-033

ticularly true when dealing with languages that ex-034

hibit non-concatenative morphology, such as root035

and pattern morphology (as in Arabic and Hebrew)036

or vowel harmony (e.g. Turkish). Hence, it has037

been hypothesized that such subword tokenization038

methods may undermine the performance of PLMs039

on morphologically-rich languages (MRLs) (Klein040

and Tsarfaty, 2020; Tsarfaty et al., 2020), with a041

Figure 1: We pretrain TavBERT by recovering ran-
domly masked spans in the original character sequence.
In this Turkish example, the tokens in asterisk are the
masked characters. Whitespaces are equivalent to any
other character.

significant body of MRL literature advocating for 042

linguistically-informed methods, such as explicitly 043

injecting morphological lattices into models (More 044

et al., 2018; Seker and Tsarfaty, 2020). 045

In this work, we revisit the hypothesis that shal- 046

low subword tokenization is inadequate for MRLs 047

by comparing it to a more flexible, character-aware 048

alternative. To that end, we train a masked lan- 049

guage model (MLM) based on character tokeniza- 050

tion, TavBERT.1 During pretraining, we mask ran- 051

dom spans of characters that the model then needs 052

to predict, in a similar fashion to SpanBERT (Joshi 053

et al., 2020). By operating over characters rather 054

than subwords, TavBERT has the potential to learn 055

intricate morphological patterns that are prevalent 056

in MRLs. 057

We compare TavBERT to contemporary BERT- 058

style models trained over subword tokens (Antoun 059

et al., 2020; Schweter, 2020; Chriqui and Yahav, 060

2021; Seker et al., 2021), in three MRLs known 061

to be morphologically rich and complex: Hebrew 062

(he), Turkish (tr), and Arabic (ar), on a variety of 063

morpho-syntactic and semantic tasks. Experiments 064

show that TavBERT performs on par with subword- 065

based PLMs on part-of-speech tagging and gains 066

only a slight advantage on full morphological dis- 067

1The word tav refers to the word ,תו! meaning character,
and to the last letter in the Hebrew alphabet .(ת!)
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ambiguation. This indicates that subword tokeniza-068

tion does not severely undermine the ability of pre-069

trained language models to acquire morphological070

information, even though it obfuscates the original071

character sequence. Conversely, we find that PLMs072

based on subword tokens signficantly outperform073

our character-based method on the more seman-074

tic tasks in our set, named entity recognition and075

question answering, across all tested languages, as-076

serting the semantic capabilities of subword-based077

PLMs. Overall, our results provide evidence that,078

contrary to previous claims, pretraining over sub-079

word tokens constitutes a sensible inductive bias080

for the development of PLMs for MRLs.081

2 Model082

We aim to learn the meaningful character represen-083

tations and patterns from raw text during pretrain-084

ing. To that end, we train a masked language model085

(MLM) (Devlin et al., 2019) based on the trans-086

former encoder architecture (Vaswani et al., 2017).087

We follow SpanBERT (Joshi et al., 2020) and mask088

random spans of characters for the model to predict.089

We hypothesize that masking spans of characters090

incentivizes the model to contextualize over longer091

character sequences, and to detect useful patterns.092

Specifically, we sample a random starting position093

uniformly from the given sequence, and then sam-094

ple the length of the masked span from a Poisson095

distribution with a parameter λ. Each character in096

the span is replaced by a special [MASK] token.097

This process is repeated until 15% of the given098

sequence is masked. Finally, the model predicts099

a distribution for each [MASK] token, which is100

used to compute the cross-entropy loss. We train101

using the MLM objective alone, without the next102

sentence prediction (NSP) loss. Figure 1 illustrates103

the pretraining process.104

3 Experiments105

In order to test the efficacy of the character-based106

architecture we proposed and contrast it with stan-107

dard subword-based language models for MRLs,108

we experiment with two morpho-syntactic tasks,109

POS tagging and full morphological disambigua-110

tion, and two semantic tasks, named entity recogni-111

tion (NER) and extractive question answering.112

3.1 Setup113

Baselines For all languages (he/tr/ar), we test114

multilingual BERT (mBERT) (Devlin et al., 2019),115

Language File Size Words

he 9.8G 1.0B
tr 27G 3.3B
ar 32G 3.1B

Table 1: Data statistics for the pretraining set. The
statistics refer to the deduplicated version of the OS-
CAR corpus (Ortiz Suárez et al., 2020).

as well as several recently-released monolin- 116

gual BERT models in their respective languages: 117

HeBERT (Chriqui and Yahav, 2021) and Aleph- 118

BERT (Seker et al., 2021) for Hebrew, BERTurk 119

(Schweter, 2020) for Turkish, and AraBERT (v0.1) 120

(Antoun et al., 2020) for Arabic.2 All baseline mod- 121

els use BPE tokens as their underlying subwords. 122

Corpora We use the freely available OSCAR 123

corpus (Ortiz Suárez et al., 2020), for pretraining 124

(separate) TavBERT models on unlabeled text in 125

Hebrew, Turkish, and Arabic. Table 1 details the 126

size of the pretraining corpora for each language. 127

Vocabulary TavBERT’s vocabulary is set to con- 128

tain the top-k frequent characters whose cumulative 129

frequency accounts for about 99.93% of the corpus. 130

Appendix A lists the distributions of various scripts 131

within each language’s vocabulary, and a compari- 132

son of vocabulary sizes for all tested models. 133

Hyperparameters We use Fairseq’s (Ott et al., 134

2019) implementation of RoBERTa (Liu et al., 135

2019) for pretraining TavBERT models, following 136

the base model architecture (12 transformer en- 137

coder layers).3 Appendix B details the fine-tuning 138

hyperparameters. 139

3.2 Input/Output Formats 140

While TavBERT is pretrained to produce a predic- 141

tion for each character, standard POS tagging and 142

morphological disambiguation datasets, such as 143

Universal Dependencies (UD) (Nivre et al., 2020), 144

provide labeled data over morphemes,4 linguistic 145

units smaller than words. This introduces mis- 146

matches in both fine-tuning and evaluation. 147

We consider two mappings between morphemes 148

and characters during fine-tuning: multitags, and 149

2As opposed to other variants of AraBERT, v0.1 does not
require a segmentation step of the raw input text.

3We set λ = 5 in our experiments to simulate the average
length of BPE tokens. We do not finetune this hyperparameter.

4In UD terms, these are called syntactic words. In previous
literature on Hebrew and Arabic, these are sometimes called
morphological segments or simply segments.
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segments. In the multitag variant, we simply collect150

all labels for the characters in each raw, space-151

delimited token, and assign each character of the152

raw token the resulting multi-set. In the segments153

variant, we assign each character the label of its154

encompassing morpheme. Appendix C details and155

illustrates each of these mapping procedures.156

At inference time, we experiment with three157

heuristics for converting every model’s output (i.e.158

character-level tags) to word-level multitags.159

First The label of the first token of each word160

determines that of the entire word. This heuris-161

tic is commonly used by subword models (Devlin162

et al., 2019) through the canonical implementation163

in HuggingFace Transformers (Wolf et al., 2020).164

Majority The label is determined by a vote165

among the characters’ labels, which is particularly166

suitable for aggregating character-level multitags.167

Spans Given a word’s character-level labels, we168

mark the maximal spans that start and end with169

the same label, ignoring labels in the middle of170

the span, and take the union of all the maximal171

spans’ labels to produce the word’s multitag. For172

example, given the sequence (DET, NN, NN,173

VB, NN), we extract two maximal spans, DET174

(the first token) and NN (the second to fifth token),175

and aggregate them to produce DET+NN.176

3.3 Morpho-Syntactic Tasks177

To test the morphological capabilities of the mod-178

els, we evaluate them on POS tagging and mor-179

phological disambiguation benchmarks. Labeled180

data for both tasks is available through the Hebrew181

(he_htb), Turkish (tr_imst), and Arabic (ar_padt)182

treebanks of the Universal Dependencies v2.2183

dataset from the CoNLL-18 UD Shared task (Sade184

et al., 2018).185

POS Tagging We fine-tune a token-classification186

head on top of the final encoder layer of each model187

to predict parts of speech (Devlin et al., 2019). Per-188

formance is measured using the aligned multiset189

metric (mset-F1) proposed by Seker and Tsarfaty190

(2020), which compares the predicted word-level191

multitag with the ground truth’s. Table 2 shows that192

BPE-based BERT models do well on POS tagging193

in all three languages, reaching almost the same194

performance as TavBERT’s. These results indicate195

that both character- and subword-based MLMs can196

learn enough morphology from raw text to infer197

parts of speech at the morpheme level.198

Lang Model Fine-tuning Inference F1

he

mBERT Multitag First 95.25
HeBERT Multitag First 96.86
AlephBERT Multitag First 96.94

TavBERT Multitag Majority 96.93
Segments Spans 97.15

tr

mBERT Multitag First 94.55
BERTurk Multitag First 96.41

TavBERT Multitag Majority 96.50
Segments Spans 96.61

ar

mBERT Multitag First 96.35
AraBERT Multitag First 96.27

TavBERT Multitag Majority 96.59
Segments Spans 96.81

Table 2: POS tagging results on the UD corpus in He-
brew, Turkish, and Arabic. Performance is measured
by comparing word-level multitag sets (mset-F1).

An error analysis for Hebrew TavBERT, per- 199

formed on 50 randomly-sampled erroneous predic- 200

tions from the development set, reveals that annota- 201

tion inconsistencies and truly ambiguous cases ac- 202

count for the majority of our model’s errors. Along 203

with our main results, these findings strongly sug- 204

gest that TavBERT and other BERT-style models 205

can reach similar agreement levels as expert human 206

annotators, effectively solving these datasets. 207

Morphological Disambiguation We also fine- 208

tune the models to predict morphological features 209

(gender, number, person, etc.) available in each of 210

the three languages. In this setting, we introduce a 211

separate token-classification head for each feature, 212

as well as an additional head for POS tagging. All 213

classification heads are trained jointly during fine- 214

tuning by summing over the cross-entropy losses. 215

For Hebrew, in addition to UD, we fine-tune on the 216

Hebrew section of the SPMRL shared task (Seddah 217

et al., 2013). Performance is once again measured 218

by comparing multitags via the aligned multiset F1 219

metric, and reported separately for POS tags and 220

morphological features (Seker et al., 2021). 221

Tables 3 and 4 show the results. We observe that 222

overall, TavBERT’s performance is on par with the 223

subword-based models, with a marginal advantage 224

in Arabic and Hebrew. In terms of error reduction, 225

TavBERT outperforms mBERT by 25% on SPMRL 226

and by 39% on UD. It also surpasses the monolin- 227

gual subword-based BERT models, though by a 228

much smaller margin, namely by 10% and 18% er- 229

ror reduction relative to AlephBERT and HeBERT, 230

respectively. 231
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Lang Model Fine-tuning Inference UD

tr

mBERT Multitag First 94.98
BERTurk Multitag First 96.95

TavBERT Segments Spans 96.81
TavBERT Multitag Majority 96.92

ar

mBERT Multitag First 95.09
AraBERT Multitag First 96.07

TavBERT Segments Spans 96.42
TavBERT Multitag Majority 97.30

Table 3: Aligned MultiSet (mset-F1) results for mor-
phological features on the UD corpus in Turkish and
Arabic.

Model Fine-tuning Inference UD SPMRL

mBERT Multitag First 94.42 93.72
HeBERT Multitag First 95.73 94.66
AlephBERT Multitag First 95.86 94.82

TavBERT Segments Spans 96.40 95.33
TavBERT Multitag Majority 96.61 95.30

Table 4: Aligned MultiSet (mset-F1) results for mor-
phological features on the Hebrew sections of the
SPMRL and UD Corpus.

3.4 Semantic Tasks232

We compare TavBERT with subword-based PLMs233

on extractive question answering (QA), and on234

named-entity recognition (NER), a task sensitive235

to both morphological and semantic information.236

NER We use the NEMO dataset (Bareket and237

Tsarfaty, 2021) for Hebrew, the TWNERTC238

dataset5 (Sahin et al., 2017) for Turkish, and the239

ANERCorp corpus6 (Benajiba et al., 2007) for Ara-240

bic. All three datasets provide labeled sentences at241

the word level.7 Performance is measured by com-242

puting the word-level F1 scores on the detected243

entity mentions.244

QA For Hebrew, we use the ParaShoot dataset245

(Keren and Levy, 2021), which contains annotated246

questions and answers on paragraphs curated from247

Hebrew Wikipedia. For Arabic, we evaluate on all248

the examples in Arabic from the multilingual TyDi249

QA secondary Gold Passage (GoldP) task dataset250

(Clark et al., 2020). For Turkish, we the TQuAD251

dataset8, which contains data on Turkish and Is-252

5With the splits from Rahimi et al. (2019)
6With the splits from Obeid et al. (2020)
7Bareket and Tsarfaty (2021) additionally propose a more

granular morpheme-based alternative.
8https://tquad.github.io/

turkish-nlp-qa-dataset/

Lang Model QA NER
F1 / EM F1

he

mBERT 56.1 / 32.0 79.07
HeBERT 36.7 / 18.2 81.48
AlephBERT 49.6 / 26.0 84.91

TavBERT 48.7 / 29.1 81.54

tr
mBERT 76.6 / 56.8 93.53
BERTurk 78.2 / 61.1 93.57

TavBERT 61.7 / 46.7 91.19

ar
mBERT 81.5 / 67.1 77.70
AraBERT 83.5 / 71.1 83.48

TavBERT 60.0 / 45.9 79.45

Table 5: Results for semantic tasks. Baseline perfor-
mance of NER for Hebrew is as reported by Seker et al.
(2021). QA results are reported on the respective de-
velopment sets, except for Hebrew, where they are re-
ported on the test set.

lamic science history. We compare the models’ 253

predictions to the annotated answer using token- 254

wise F1 score and exact match (EM), as defined by 255

Rajpurkar et al. (2016). 256

Results Table 5 shows the evaluation results on 257

the semantic tasks. We observe that the perfor- 258

mance gap in favor of subword models increases 259

with the level of semantic understanding a task 260

requires. Indeed, this gap is most pronounced in 261

QA, where we observe a significant degradation 262

in TavBERT’s performance compared to subword 263

models in all three languages. 264

4 Conclusion 265

This work re-examines the efficacy of subword tok- 266

enization, commonly used by pretrained languages 267

models, in morphologically rich languages. For 268

this purpose, we introduce TavBERT, a masked 269

language model pretrained over character spans, 270

and compare its performance on morpho-syntactic 271

and semantic tasks to that of contemporary BERT- 272

style models that use BPE tokenization. Our ex- 273

periments on POS tagging and morphological dis- 274

ambiguation for three MRLs indicate that both 275

subword- and character-based models perform on 276

par on morphology. TavBERT’s relatively poor per- 277

formance on named entity recognition and question 278

answering in particular, across all tested languages, 279

suggests that models pretrained over subword to- 280

kens enjoy decent semantic capabilities, thereby 281

serving as an appropriate modeling assumption for 282

MRLs. 283
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A TavBERT’s Vocabulary Statistics474

Language Model Vocab Size

he
HeBERT 30K
AlephBERT 52K

TavBERT 345

tr
BERTurk 32K
TavBERT 250

ar
AraBERT (v0.1) 64K
TavBERT 302

Table 6: Models’ vocabulary sizes.

Language Script Percentage

he

Latin 22%
Cyrillic 20%
Hebrew 11%
Arabic 7%

tr
Latin 49%
Cyrillic 8%

ar
Arabic 31%
Latin 26%
Cyrillic 7%

Table 7: TavBERT vocabulary character distribution
for the most common scripts, calculated out of the non-
void characters.

B Hyperparameters475

B.1 Pretraining476

Hyperparameter Value

Model dimensions 768
Hidden dimensions 3072
Attention heads per layer 12
Maximal sequence length 2048
Batch size 768
Training steps 125000
Peak learning rate 3e−4
Warmup steps 5000

Table 8: Hyperparamerter settings for pretraining.

B.2 POS tagging and Morphological Analysis477

For all three languages, we select the best478

model by validation-set performance over the479

following hyperparameter grid: learning rate ∈480

{3e−5, 5e−5, 1e−4}, batch size ∈ {16, 32, 64},481

and number of epochs ∈ {5, 6}.482

B.3 Named Entity Recognition483

For Hebrew, we follow the fine-tuning setting as484

in Seker et al. (2021). For Turkish, we run with485

learning rate 5e−5, batch size 16, for 10 epochs. 486

For Arabic, we select the best model by validation 487

set performance over the following hyperparam- 488

eter grid: learning rate ∈ {3e−5, 5e−5, 1e−4}, 489

batch size ∈ {16, 32, 64}, and number of epochs 490

∈ {5, 6}, with a maximal sequence length of 320 491

for mBERT and AraBERT, and 2048 for TavBERT. 492

B.4 Question Answering 493

For Hebrew, we select the best model by validation 494

set performance over the following hyperparam- 495

eter grid: learning rate ∈ {3e−5, 5e−5, 1e−4}, 496

batch size ∈ {16, 32, 64}, and update steps ∈ 497

{512, 800, 1024}. 498

For Turkish, we run a sweep over the fol- 499

lowing hyperparameter grid: learning rate ∈ 500

{3e−5, 5e−5, 1e−4}, batch size ∈ {16, 32, 64}, 501

and number of epochs ∈ {5, 6}. 502

For Arabic, we run with learning rate 3e−5, 503

batch size 24, maximal sequence length 384 (1536 504

for TavBERT), for 2 epochs. 505
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C Morpheme to Character Mappings506

We consider two mappings from morphemes to507

characters: multitags, and segments. Table 9 illus-508

trates each mapping on the Hebrew example 509בבית

!Nהלב (in the White House).510

Multitag This mapping assigns a single label for511

each word: the set of its constituent morphemes’512

tags. For example, the word !Nהלב comprises two513

explicit morphemes, !Nלב+ ,ה! where ה! (the) is a de-514

terminer and !Nלב (white) is an adjective. With mul-515

titags, the entire word will be labeled as DET+ADJ,516

which is treated as a single class. We then copy this517

label across each character in the word.518

Segments For a higher-resolution mapping, we519

assign each character the label of its encompass-520

ing morpheme. Due to phonemic mergers, some521

characters take part in more than one morpheme,522

resulting in character-level multitags. For exam-523

ple, the word בבית! is composed of the morphemes524

+בית! +ה! ב! (in+the+house), where the middle mor-525

pheme (ה!) is covert, thus its POS tag is appended526

to that of the previous overt morpheme 527.ב!
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Raw Input Tokenized Input Morphemes POS (Morphemes) POS (Segments) POS (Multitags)

ב!
ב! ADP

ADP+DET ADP+DET+NN
ה! DET

ב! NN ADP+DET+NN

י! בית! NN NN ADP+DET+NN

!Nהלב בבית
ת! NN ADP+DET+NN

_ VOID VOID

ה! ה! DET DET DET+ADJ

ל! ADJ DET+ADJ

ב! !Nלב ADJ ADJ DET+ADJ

!N ADJ DET+ADJ

Table 9: Input and output formats for fine-tuning. Whitespaces are assigned with the VOID tag.
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