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ABSTRACT

Deep neural networks have achieved notable success; however, they still encounter
significant challenges compared to humans, particularly in areas such as shortcut
learning, texture bias, susceptibility to noise, and catastrophic forgetting, all of
which hinder their ability to generalize and adapt. Humans excel in learning high-
level abstractions, attributed to various mechanisms in the brain, including reason-
ing, explanation, and the ability to share concepts verbally—largely facilitated by
natural language as a tool for abstraction and systematic generalization. Inspired
by this, we investigate how language can be leveraged to guide representation
learning. To this end, we explore two approaches to language guidance: Explicit
Language Guidance, which introduces direct and verbalizable insights into the
model, and Implicit Language Guidance, which provides more intuitive and indi-
rect cues. Our extensive empirical analysis shows that, despite being trained ex-
clusively on text, these methods provide supervision to vision encoders, resulting
in improvements in generalization, robustness, and task adaptability in continual
learning. These findings underscore the potential of language-guided learning to
develop AI systems that can benefit from abstract, high-level concepts, similar to
human cognitive abilities.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated significant advancements in visual perception
tasks and have surpassed test accuracy on many benchmark datasets. Despite their notable suc-
cesses, there remains a considerable divide between the capabilities of DNNs and human intelli-
gence. DNNs often struggle with out-of-distribution (OOD) data, rely on shortcut learning, exhibit
texture bias, and are highly vulnerable to adversarial perturbations. Additionally, they face chal-
lenges when adapting to new data while maintaining previously learned knowledge in dynamic,
non-stationary environments. In contrast, systematic generalization (Bahdanau et al., 2018),—the
ability to compose and infer new meanings from previously learned concepts—is one of the as-
pects of human cognition that is still a challenge for neural networks and hampers their ability to
generalize beyond the training distribution.

A common issue in DNNs is shortcut learning (Geirhos et al., 2020; Jo & Bengio, 2017), where
models rely on spurious correlations or superficial features in the data rather than learning the true
underlying causal patterns. For instance, a model trained to recognize birds might associate spe-
cific backgrounds, such as the sky or trees, with bird species, rather than focusing on the salient
features of the bird itself. Similarly, neural networks often exhibit texture bias, focusing on local
textures (Geirhos et al.), rather than semantic features. These reliances lead to poor generalization,
particularly when the model encounters new, unseen data where these shortcuts or textures do not
apply. Moreover, DNNs lack robustness in the face of adversarial perturbations—small, often im-
perceptible changes to input data that can drastically alter a model’s predictions. While humans are
largely unaffected by such minor variations, these perturbations remain a significant vulnerability
for DNNs, highlighting a huge limitation in safety-critical applications.

In addition to these, DNNs face significant challenges in the context of continual learning (Parisi
et al., 2019). Many real-world applications involve non-static, sequential data, where models are
exposed to a potentially endless stream of tasks, requiring them to learn incrementally over time.
Unlike humans, who can relatively learn new tasks while retaining previously acquired knowledge
to a better extent, DNNs suffer from catastrophic forgetting. When trained on new tasks sequentially,
DNNs often overwrite earlier representations, causing a dramatic decline in performance on previ-
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"An airplane is a sleek, metallic body with swept-back wings,
an engine and can fly with passengers or cargo inside"

Figure 1: Feature similarity between images of different domains and between image and language.
Even in challenging domains, text modality provides shared semantic concepts that can enhance
model generalization.

ously learned tasks. This issue is particularly challenging in dynamic environments where models
must continuously adapt to new information. The inability of DNNs to balance the incorporation
of new knowledge while preserving prior learning hinders their development for lifelong learning.
Addressing these limitations is crucial for developing neural networks capable of functioning effec-
tively in real-world environments, that are dynamic and continuously evolving.

2 INDUCTIVE BIAS

To bridge the gap between neural networks and the cognitive competence displayed by humans,
we revisit the concept of inductive biases. According to the no-free-lunch theorem for machine
learning (Wolpert et al., 1995) achieving generalization requires a set of preferences or assump-
tions over the space of all possible functions. Inductive bias refers to these underlying assumptions
that guide a learning algorithm toward specific types of solutions, enabling it to generalize beyond
the finite set of training data. In the case of DNNs, inductive biases can manifest as structural or
high-level priors, or even as auxiliary knowledge. Humans learn high-level abstractions and this
ability is attributed to various mechanisms in the brain and is often facilitated by language, which
allows these abstractions to be verbalized (Goyal & Bengio, 2022). These abstractions, grounded in
language, aid in systematic generalization by allowing them to reason, imagine, and explain at an
explicit, language-driven level. This ability to infer abstract concepts—such as causal relationships
and object interactions—plays a critical role in their ability to generalize across different contexts.
Incorporating similar priors into DNNs could improve their capacity for abstraction, and generaliza-
tion across diverse and novel scenarios.

An additional intriguing aspect is how these high-level representations are shared and integrated in
the brain. Cognitive theories provide insights into this, particularly the distinction between System
1 (Implicit) and System 2 (Explicit) processing (Kahneman, 2011). There is explicit (verbalizable)
knowledge and explicit processing in system2, and implicit (intuitive) knowledge in system1 (Goyal
& Bengio, 2022). Explicit knowledge is consciously accessible and can be reasoned and shared
through language. Implicit knowledge refers to intuitive understandings that are difficult to artic-
ulate. Another relevant theory is the Global Workspace Theory (GWT (Baars, 1993; Dehaene &
Naccache, 2001), which offers a framework for understanding how specialized modules in the brain
communicate through a shared cognitive workspace (Juliani et al., 2022). This workspace allows
information to be broadcast across different regions, enabling alignment and collaboration among
various processes. The GWT posits that this shared communication framework facilitates the inte-
gration of semantic knowledge across modalities, allowing for the formation of more abstract and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

high-level representations. This can result in semantic knowledge that is not tied to a specific modal-
ity and is more generic and rich in high-level abstract concepts.

3 ROLE OF LANGUAGE

Inspired by these insights, exploring natural language and the ways it can be integrated effectively
into vision-based learning, becomes a compelling avenue for research. We hypothesize that lan-
guage can add guidance to vision-based training to create richer, more semantically meaningful
representations of visual data. This approach allows the model to leverage linguistic knowledge to
fill in gaps in visual information, leading to more accurate and contextually relevant outputs.

The integration of language into visual representation learning taps into the shared semantic space
that both modalities occupy. An example is highlighted in Figure 1, where we take an image of
the same object (an airplane) in varying domains, some more challenging than others. The first
heatmap shows the Central Kernel Alignment (CKA) similarity between images from different do-
mains. Darker shades indicate higher similarity between the features. The second heatmap measures
the CKA similarity between the visual representations of images and the generic text description (of
what an airplane looks like). As shown in the similaity matrix, challenging image types, like in-
fographs and paintings, are more difficult to adapt to, when using visual features alone. However,
they seem to map more closely in text-based representations, as the semantic content carries more
information than purely visual features. This emphasizes how language models provide an abstract,
conceptual understanding that transcends surface-level visual similarities and aids in learning shared
representations for improved generalization across different visual domains.

4 LANGUAGE GUIDANCE IN REPRESENTATIONAL LEARNING

In this work, we seek to explore how language can be used as a tool to guide representation learning.
We hypothesize that utilizing both visual features (textural and low-level information), alongside
high-level abstractions derived from language, can help produce semantically rich representations,
that can aid in different forms of generalization. Our work investigates several key questions:

• Can language be used to guide representational learning?

• How can we leverage pre-trained language models to produce rich representations in the
visual domain?

• Can language models, only having seen language, generalize to visual perception tasks?

We aim to utilize pre-trained language models in various ways to offer guidance and improve the
training process in conventional vision-based supervised learning. Foundation models, also known
as pre-trained models, constitute a pivotal aspect of contemporary AI research. These models are
trained on vast amounts of data, enabling them to generalize effectively across a wide range of
downstream tasks. Sentence Transformers (Reimers & Gurevych, 2019) and models like LLAMA
(Large Language Model Meta AI) (Touvron et al., 2023) are a few powerful language models trained
on extensive text corpora, designed to produce high-quality semantic representations. While these
models have been used across a variety of NLP tasks, they also present opportunities for application
in the visual domain. We investigate how frozen language models—without further fine-tuning or
additional training—can be used to guide the training of vision encoders.

In contrast to Vision-Language Models (VLMs) (Desai & Johnson, 2021; Radford et al., 2021;
Alayrac et al., 2022), which jointly train encoders on vision and text data for tasks like Visual Ques-
tion Answering (VQA) (Antol et al., 2015) and image captioning, our exploration takes a different
direction. VLMs typically align visual and textual information within a shared embedding space,
requiring multi-modal datasets and the joint training of both vision and language encoders. Rather
than delving into the domain of training multiple encoders, using multi-modal data, fine-tuning, or
employing prompt-based learning, we aim to investigate a more fundamental question of how the
knowledge embedded in the language model can be leveraged to influence vision encoder training.
We aim to examine whether this simple transfer of knowledge from language to vision offers any
advantages.
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Figure 2: (a) Explicit Language Guidance: Learning visual representations with explicit supervision
from language descriptions. (b) Implicit Language Guidance: Learning visual representations via
an embedded frozen language block for implicit supervision.

Building on the Explicit-Implicit theory, we investigate two key approaches for incorporating lan-
guage into visual learning: (1) Explicit Language Guidance, where language descriptions play a
direct explicit role in shaping the learning process, and (2) Implicit Language Guidance, where
pre-trained language model indirectly supports the learning.

4.1 EXPLICIT GUIDANCE: LEARNING VISUAL REPRESENTATIONS WITH EXPLICIT
KNOWLEDGE ALIGNMENT FROM LANGUAGE

In Explicit Language Guidance (ExLG), we utilize explicit information such as language descrip-
tions of the objects to guide the training process. The approach uses a typical vision encoder to
process image data and a classifier for decision-making. The high-level semantic descriptions of
the objects are introduced via a pre-trained language model. This model provides rich language-
based embeddings from descriptions, generated either manually or using models like GPT (Achiam
et al., 2023). While the language encoder remains frozen during training (i.e., its parameters are not
updated), its embeddings are used to guide the vision encoder (Figure 2).

To leverage both visual and textual information, we align the representations from the vision and
language encoders. A similarity-preserving loss (Tung & Mori, 2019) guides the vision encoder
by ensuring that input pairs with similar activations in the language model also produce similar
activations in the vision model. Specifically, the similarity-preserving loss works by computing
pairwise similarity matrices from the activation maps of both the vision and language models. The
loss function penalizes differences between these similarity matrices, encouraging the vision model
to learn representations that are aligned with the semantic knowledge embedded in the language
descriptions.

The overall loss function is defined as:

L = Lcls + λLalign (1)

where Lcls is the classification loss, Lalign is the alignment loss, and λ controls the influence of the
alignment term. The alignment loss is defined as:

To guide the vision encoder towards the activation correlations induced in the language encoder, we
define a similarity-preserving distillation loss :

Lalign =
1

N2
∥Sv − Sl∥2 (2)

Sv =
fv · f⊤

v

∥fv∥ · ∥fv∥
, Sl =

fl · f⊤
l

∥fl∥ · ∥fl∥
(3)

fv and fl are the feature matrices for vision and language encoders at the chosen layer. The goal of
the similarity-preserving loss is to align the similarity structure in the vision embedding space with
that of the language embedding space.
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4.2 IMPLICIT GUIDANCE: LEARNING VISUAL REPRESENTATIONS VIA AN EMBEDDED
LANGUAGE ENCODER

The implicit approach involves integrating a pre-trained Large Language Model (LLM) directly
within the vision encoder, with the goal of getting indirect supervision, without requiring any other
data (Figure 2). This approach is inspired by recent works investigating the potential for language
models (LMs) to generalize beyond linguistic tasks. Research has shown that text transformers,
even when trained exclusively on text data, can develop multi-modal neurons—neurons that respond
similarly to both image and text embeddings with semantically related meanings (Schwettmann
et al., 2023). Additionally, studies (Pang et al., 2023) have shown the versatility of using LLM
blocks for vision encoders and their ability to act as a filter, amplifying relevant features and distilling
important information from visual inputs. Building on these insights, our goal is to explore whether
LLMs can enhance generalization, robustness, and continual learning in vision tasks. Specifically,
we seek to determine if LLMs can act as a source of implicit textual knowledge, directing attention
toward more informative visual features and mitigating challenges like catastrophic forgetting.

In our study, we implement this approach by adding a frozen language encoder block after the vision
encoder. To ensure dimensional compatibility, we introduce linear layers to map the vision encoder’s
features to the input dimensions required by the language model block. Classification is performed
on these transformed features without incorporating any additional loss functions or regularization.

5 EMPIRICAL STUDY

In this section, we comprehensively evaluate the performance of language-guided models across a
range of scenarios, using multiple datasets. We begin by exploring IID generalization, followed by
an analysis of OOD performance. Further, we evaluate scenarios involving shortcut learning and
texture bias. We also test the robustness of models against adversarial attacks. To further assess
the applicability of language guidance, we extend our evaluation to continual learning benchmarks,
aiming to understand its effectiveness in mitigating catastrophic forgetting. For our experiments,
we use a ResNet-18 (He et al., 2016) architecture as the vision encoder and a Sentence Transformer
(Reimers & Gurevych, 2019) as the language encoder. Our analysis spans several datasets, including
CIFAR10, CIFAR100, TinyImageNet, and various forms of ImageNet for OOD. Additionally, we
incorporate Tinted-CIFAR and Skewed-CelebA to examine shortcut learning scenarios, and standard
continual learning datasets for evaluating continual learning performance. Detailed experimental
setups and additional architectures are provided in the Appendix.

5.1 IID AND OOD GENERALIZATION

In supervised learning, Independent and Identically Distributed (IID) generalization refers to the
model’s ability to maintain performance on test data that follows the same distribution as the training
data. In contrast, Out-of-Distribution (OOD) generalization evaluates how well a model performs
when presented with data that deviates from the training distribution, an essential criterion for robust
machine learning models deployed in real-world scenarios.We benchmark three models: the Base-
line model, a conventional classification model comprising a vision encoder network paired with a
classifier, trained on an image dataset using supervised learning with a cross-entropy loss. Along-
side this, we evaluate two variants that incorporate language guidance—ExLG (Explicit Language
Guidance) and ImLG (Implicit Language Guidance).

We test these models on standard datasets such as CIFAR-10, CIFAR-100, and TinyImageNet. Addi-
tionally, we explore the sample efficiency of each model by gradually reducing the training data and
examining how well the models retain performance with less data, simulating low-data regimes. For
the OOD evaluation, we assess the models’ robustness on challenging benchmarks derived from the
ImageNet dataset, namely ImageNet-O (which contains outlier data points that lie outside the train-
ing classes), ImageNet-R (comprising artistic renditions of objects), and ImageNet-A (which con-
tains adversarially filtered images known to challenge standard models) (Hendrycks et al., 2021a;b).

Table 1 shows that ExLG model consistently performs better in IID settings across all datasets. It
also shows superior results in low-data scenarios, further highlighting the benefit of explicit su-
pervision from language models. Notably, ExLG outperforms ImLG in these settings, indicating
that direct language supervision provides more utility in in-distribution testing. The ImLG model
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Table 1: IID and OOD generalization across various datasets, with sample efficiency evaluated
on limited CIFAR10 data. ExLG excels overall, while ImLG shows strong performance in OOD
scenarios.

Method CIFAR-10 Sample Efficiency

2% 5% 10% 20% 50%

Baseline 94.84±0.14 45.71±1.52 55.42±1.08 67.04±2.19 79.62±2.60 90.08±1.80

ExLG 95.12±0.05 47.88±0.53 57.24±1.95 69.97±1.87 84.75±0.61 92.26±0.06
ImLG 93.41±0.46 45.03±2.06 55.53±2.06 67.82±1.42 79.03±0.57 89.40±0.37

Method CIFAR-100 TinyImageNet ImageNet100 OOD Generalization

ImageNet-O ImageNet-R ImageNet-A

Baseline 76.98±0.39 58.73±0.35 71.46 41.73±1.45 10.59±0.41 1.92±0.53

ExLG 77.59±0.08 65.63±0.26 79.42 46.70±1.02 14.95±0.07 2.94±0.33
ImLG 74.10±0.91 60.02±0.16 72.37 42.20±0.81 12.10±0.17 2.37±0.27

Table 2: Shortcut learning on Tinted-CIFAR10 and Skewed-CelebA dataset. Language-guided mod-
els are less vulnerable to the spurious features added to the dataset.

Method Tinted-CIFAR10 Skewed-CelebA

Final NonBlonde-M Blonde-F Blond-M NonBlonde-F

Baseline 16.45±1.81 61.28±1.21 94.71±0.08 92.21±1.02 56.38±0.39 27.74±2.29

ExLG 18.24±0.60 72.11±1.28 96.29±0.30 95.18±0.31 68.33±0.98 47.67±2.31
ImLG 18.51±1.04 75.90±1.79 97.85±0.65 96.81±0.11 69.77±1.03 53.84±3.38

performs better than the baseline in OOD settings, particularly on ImageNet-O, ImageNet-R, and
ImageNet-A. The frozen language model used in ImLG helps the vision encoder by filtering and am-
plifying important visual features, allowing the model to focus on relevant regions, thus improving
generalization to other distributions.

5.2 SHORTCUT LEARNING

Shortcut learning is a common problem in neural networks, where models rely on superficial patterns
or spurious correlations present in the training data to make predictions, rather than learning mean-
ingful representations (Geirhos et al., 2020). This behavior leads to poor generalization, especially
when models are evaluated on data that differs from their training distribution. To test the extent of
shortcut learning, we employ two specially curated datasets: Tinted-CIFAR10 and Skewed-CelebA.
Tinted-CIFAR10: In this variant of CIFAR10, a unique color tint is added to each class. This dataset
tests whether the models use the color tint as a spurious cue for classification. Skewed-CelebA: In
this skewed version of the CelebA (Liu et al., 2015) dataset, the training data is heavily biased. It
consists primarily of blonde women and non-blonde men. During evaluation, however, the models
are tested on non-blonde women and blonde men—categories they have never seen during training.

As seems in Table 2, the baseline model performs poorly across both datasets. Language guidance
improves performance over the baseline, particularly on Skewed-CelebA. With explicit language
guidance, the model significantly improves its performance. In particular, ExLG shows a 22%
improvement for blonde males and a 70% improvement for non-blonde females, the categories never
seen in training distribution. The improvement is even higher in the implicit language-guided model,
boosting overall accuracy from 61.28 to 75.90, and a massive 94% improvement in the non-blonde
female category. To further get insights into this behavior, we use Grad-CAM (Selvaraju et al., 2017)
to generate activation maps on the Skewed-CelebA dataset. These maps, shown in Figure 3, reveal
how the models focus on different parts of the image. The baseline model predominantly focuses
on superficial cues like hair color or background. In contrast, the ExLG and ImLG models, trained
with language guidance, focus on more salient facial features to make decisions.

ImLG, in particular, outperforms ExLG because it leverages the frozen language model’s ability to
act as a conceptual filter. This filter enhances the model’s focus on high-level, task-relevant infor-
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Figure 3: Activations maps of the models on the Skewed-CelebA dataset. Language-guided models
focus on the salient features, while conventional methods focus on spurious cues (hair color).

Figure 4: Analysis on Stylized TinyImageNet across three levels of stylization. Language-guided
models demonstrate better generalization, reducing texture bias.

mation while disregarding superficial patterns, such as textures or spurious correlations. The results
suggest that incorporating language into the models enables them to develop a deeper semantic un-
derstanding of the underlying concepts in the images, allowing for stronger performance even in
challenging test scenarios.

5.3 TEXTURE BIAS

Deep neural networks often rely heavily on texture information when making predictions (Geirhos
et al.). This reliance on texture can lead to a bias, and limit the model’s ability to generalize to more
diverse or out-of-distribution data. To evaluate texture bias and investigate the extent to which mod-
els rely on texture cues, we perform style transfer (Huang & Belongie, 2017) on the TinyImageNet
dataset. By applying style transfer, we generate stylized images with various texture patterns, while
keeping the underlying object shapes intact. The stylization alpha determines the extent to which
the original image’s texture is replaced with the style features from a reference image. We use three
different levels to progressively increase the degree of texture variation in the images.

Figure 4 shows some sample images and also the performance graph. The baseline model, which
relies more heavily on local texture information, experiences a significant drop in accuracy as the
stylization increases. In contrast, both language-guided (LG) models, ExLG and ImLG, perform
better across all stylization levels compared to the baseline model. The LG models’ superior perfor-
mance suggests that these models are able to learn more abstract and global representations of the
data, allowing them to better generalize in the presence of significant texture changes.
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Figure 5: Robustness analysis to PGD-10 adversarial attack on varying strengths (ϵ) on CIFAR10
dataset.

Table 3: Effect of language guidance to class-incremental learning on multiple datasets with varying
buffer sizes.

Buffer Method Seq-CIFAR10 Seq-TinyImageNet DN4IL

- SGD 19.62±0.05 7.92±0.26 20.83±0.24

- Joint 92.20±0.15 59.99±0.19 59.93±1.07

200
ER 44.79±1.86 18.38±0.16 24.15±0.34

ExLG 54.84±0.97 20.39±0.15 27.71±0.64

ImLG 47.57±0.20 19.86±0.24 24.22±0.12

500
ER 57.74±0.27 19.85±0.39 30.96±0.62

ExLG 67.03±0.21 21.68±0.20 31.67±0.32
ImLG 62.49±0.99 19.57±0.45 29.98±0.85

5.4 ROBUSTNESS

DNNs, though highly effective at learning patterns in data, are notably vulnerable to adversarial
attacks (Szegedy, 2013). Adversarial attacks are small, imperceptible perturbations to the input that
can cause significant changes in the model’s output. In comparison to humans, who are generally
resistant to such subtle manipulations in images, DNNs can be easily fooled, making them suscep-
tible to real-world attacks. In this section, we evaluate the adversarial robustness of the models
using Projected Gradient Descent (PGD) attacks (Madry, 2017) on the CIFAR-10 dataset. PGD is
a powerful iterative attack method that perturbs the input image in small steps to fool the model by
progressively maximizing the model’s loss. To test the robustness of our models, we apply attacks
with increasing strengths, measured by the perturbation magnitude ϵ, and assess the models’ ability
to maintain performance in the face of these adversarial examples.

As shown in Figure 5, the LG-Ex model consistently surpasses the baseline model (Base-Cls) across
all levels of attack strength, demonstrating stronger adversarial robustness. The interesting observa-
tion, however, comes from the behavior of the ImLG model. While its performance is lower than
both ExLG and Baseline at lower attack strengths, it becomes significantly more robust as the at-
tack strength increases. For higher attack magnitudes, ImLG outperforms both ExLG and Baseline,
showcasing superior resilience to stronger attacks. Jo & Bengio (2017) hypothesize that if models
are truly learning high-level abstractions, they should be resilient to perturbations in the data. There-
fore, the integration of language guidance not only enhances task performance but also facilitates
the development of more robust representations.
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Figure 6: Task-wise performance of class-incremental learning setting on Seq-CIFAR10 dataset
with 200 buffer size.

5.5 CONTINUAL LEARNING

Continual Learning (CL) (Parisi et al., 2019) focuses on the challenge of learning new tasks sequen-
tially without forgetting previously learned tasks, a phenomenon known as catastrophic forgetting.
Within CL, class-incremental learning (Class-IL) is particularly difficult, as new classes are intro-
duced over time, and the model must not only adapt to these new classes but also retain its knowledge
of earlier classes. Another paradigm is domain-incremental learning (Domain-IL), where the same
classes are presented across different domains, adding the challenge of domain shifts. Both settings
test the model’s ability to generalize and prevent forgetting (Van de Ven & Tolias, 2019).

In our experiments, we employ the standard replay method, Experience Replay (ER) as the base-
line, which mitigates forgetting by replaying samples from a fixed buffer (Buzzega et al., 2020). In
Table 3, we present results in the Class-IL setting across two datasets: Seq-CIFAR-10 and Seq-
TinyImageNet. In the 200-buffer setting, ExLG outperforms the baseline on both buffer sizes.

Figure 7: Plasticity-stability trade-off
analysis on Seq-CIFAR10 dataset with
200 buffer size.

Figure 6 shows the task-wise performance after each task.
The last row specifically shows the accuracy on all the
tasks after the model finishes learning the final task. For
example, the accuracy on Task 1 drops from 98.7 to 18.5
by the time the model finishes learning Task 5. The
ExLG and ImLG models demonstrate better performance
across all the tasks. The performance drop in old tasks
is much lower compared to the baseline. This demon-
strates that supervision to vision model is more effective
at mitigating catastrophic forgetting, preserving more of
the knowledge from earlier tasks as it learns new ones.
The use of language guidance helps the model learn se-
mantic shared concepts that can be present in many tasks,
thereby achieving better long-term retention and domain
adaptation throughout the incremental learning process.

Plasticity-Stability Trade-off refers to the balance be-
tween a model’s ability to learn new tasks (plasticity) and
its ability to retain knowledge from previous tasks (stability). In continual learning settings, models
often struggle to maintain this balance. In Figure 7, the Base model shows high plasticity, mean-
ing it excels at learning new tasks. However, this comes at the cost of low stability, as seen in the
stability metric, indicating that it forgets much of the old information when learning new tasks. In
contrast, the language-guided models (ExLG and ImLG) exhibit much higher stability. This sug-
gests that these models are better at retaining previously learned information, while still adapting to
new tasks.
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Table 4: Analysis of the effect of different language modules on the implicit language-guided model:
Classification performance on CIFAR10 with ViT-Tiny as the vision encoder.

Vision Only + Implicit Language Guidance

LLAMA-8B CLIP Sentence Transformer

CIFAR10 93.38 94.19 94.03 93.12

6 ARCHITECTURE ANALYSIS

In this section, we analyze how different architectures impact the performance of language guid-
ance. In our earlier ExLG experiments, we replaced the Sentence Transformer with a CLIP text
encoder (Radford et al., 2021), observing comparable performance across both models. Unlike
the explicit approach, the implicit method integrates a transformer block directly into the vision
encoder, implicitly providing supervision through its attention mechanisms. To further explore
how attention operates when both the vision and language components are transformer-based, we
replaced the traditional CNN vision encoder with a transformer-based architecture, specifically
ViT-Tiny. Moreover, we scaled our investigation by integrating larger language models, includ-
ing LLAMA (Dubey et al., 2024) and CLIP, with the latter being pretrained on multimodal data.

Figure 8: Activation maps after each block of implicit
language-guided training.

As shown in Table 4, the IID perfor-
mance remains comparable to the base-
line, though LLAMA shows the high-
est performance among the LM mod-
els. In Figure 8, we illustrate the impact
of the language block through activation
maps. Despite using a transformer-based
vision encoder, the LM block still effec-
tively guides the model to focus on more
salient and semantically relevant regions
of the image. The Baseline model (left)
shows limited focus, often missing key re-
gions in the images. In contrast, the Im-
plicit method (right) integrates a frozen
LM, which helps the vision encoder con-
centrate on task-relevant visual features.
Overall, these results reinforce the idea
that frozen LMs can enhance vision mod-
els by embedding abstract, transferable
concepts, even when trained solely on textual data.

7 CONCLUSION

We investigate how language can be leveraged for representational learning in vision models. We
explore different strategies for leveraging the rich information embedded in pre-trained language
models to create more semantic and robust representations. The explicit approach integrates lan-
guage directly into the training process by aligning visual and textual representations while the
implicit approach offers indirect guidance from language. The explicit approach performs better
overall in various generalization tasks and continual learning. On the other hand, the implicit ap-
proach shows better performance in challenging scenarios, particularly in shortcut learning, texture
bias analysis, and under severe adversarial attacks. The same advantages of the implicit approach do
not fully translate to test accuracy (in-distribution performance), likely due to the lack of alignment
between the vision and language encoders, highlighting the potential for further exploration and op-
timization of the implicit method. Overall, this work underscores the potential of language-guided
learning to build more robust, adaptable, and semantically rich representations in vision tasks, offer-
ing promising pathways for improving generalization and resilience in AI models.

10
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A EXPERIMENTATION SETTING

The summary of all the extensive analysis in the paper along with the corresponding datasets is
shown in Table 5.

Table 5: Summary of all analyses and datasets in this study
Vision Enc ResNet18 ResNet50 VIT

Language Enc Sentence Transformer variants CLIP CodeBERT LLAMA

Analysis Datasets

IID CIFAR10 CIFAR100 TinyImageNet ImageNet100

OOD ImageNet-O ImageNet-R ImageNet-A

Shortcut Learning Tinted-CIFAR10 Skewed-CelebA

Texture Bias Stylized TinyImageNet

Adversarial Robustness CIFAR10

Continual Learning Seq-CIFAR10 Seq-TinyImageNet DN4IL

A.1 IID AND OOD GENERALIZATION

For the IID (Independent and Identically Distributed) setting, we evaluate on CIFAR-10, CIFAR-
100, and TinyImageNet, which are standard datasets used in classification tasks. To explore shortcut
learning, we employ Tinted-CIFAR10 and Skewed-CelebA datasets, which introduce biases and
distribution shifts designed to test the model’s ability to avoid learning spurious correlations.

We conduct out-of-distribution (OOD) tests by training the model on TinyImageNet and testing
it on three challenging OOD datasets: ImageNet-A, ImageNet-O, and ImageNet-R. ImageNet-A
(Adversarial) (Hendrycks et al., 2021b) consists of naturally occurring adversarial examples that are
misclassified by models trained on ImageNet, making it an ideal dataset for evaluating a model’s
adversarial robustness. ImageNet-O (Outliers) (Hendrycks et al., 2021b) contains outlier images
that do not belong to any of the ImageNet classes, allowing us to test the model’s ability to handle
inputs outside of its training distribution. Lastly, ImageNet-R (Renditions) (Hendrycks et al., 2021a)
includes artistic renditions of ImageNet classes, such as paintings, cartoons, and sculptures, which
introduce significant style variations and help in evaluating the model’s capacity for generalization
across different visual domains.

A.2 CONTINUAL LEARNING

In the continual learning setting, we explore Class-Incremental Learning (Class-IL) and Domain-
Incremental Learning (Domain-IL), both of which are common benchmarks for evaluating continual
learning models. In Class-IL, each task introduces new classes, and the model is required to learn
these new classes while retaining knowledge of previously learned classes without forgetting. In
contrast, Domain-IL involves tasks where the class labels remain the same across tasks, but the
input data distribution shifts with each new task. For Domain-IL, we focus on the DN4IL dataset.

The DN4IL (DomainNet for Domain-IL) dataset (Gowda et al., 2023) is a curated subset of the
DomainNet dataset (Peng et al., 2019), originally used for domain adaptation tasks. It has common
objects across six diverse domains: real, clipart, infograph, painting, quickdraw, and sketch DN4IL
offers a more succinct, balanced, and computationally efficient version of DomainNet, making it
well-suited for benchmarking continual learning methods while preserving the challenging distribu-
tion shifts between domains.

Plasticity measures the model’s capability to learn new tasks. It is calculated as the average accuracy
of each task when it is first learned. For example, this is the accuracy of the network trained on task
T2, evaluated on the test set of T2. Stability measures the model’s ability to retain knowledge from
previously learned tasks. It is computed as the average accuracy of all tasks from 1 to T − 1 after
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Table 6: Hyperparameters: All models are trained for 100 epochs using the SGD optimizer, except
for implicit methods, which employ the AdamW optimizer due to the inclusion of a transformer
block.

Method CIFAR10, CIFAR100, Tinted-CIFAR10 Skewed-CelebA TinyImageNet

ExLG lr = 0.1
λ = 15.0

lr = 0.03
λ = 15.0

lr = 0.03
λ = 100.0

ImLG lr = 0.003 lr = 0.0001 lr = 0.003

learning the final task T . Trade-off - To assess the balance between plasticity and stability, we use
the following metric:

Trade-off =
2× Plasticity × Stability

Plasticity + Stability

A.3 HYPER-PARAMETERS

For all the baseline experiments, we adopt standard classification settings. For CIFAR-10, CIFAR-
100, Tinted-CIFAR10, and Skewed-CelebA, we use a learning rate of 0.1 with SGD as the optimizer,
training for 100 epochs. For TinyImageNet, we use a learning rate of 0.03 while keeping the same
number of epochs and optimizer settings.

There is only hyper-parameter for ExLG (λ) and no additional parameters for ImLG. The hyper-
parameters for Explicit and Implicit methods are provided in The Tables 6 and 7. In the case of
Implicit Language Guidance, we extract only the last block in every language model. We use the
Adam optimizer with a weight decay of 5e− 4.

B CKA

Centered Kernel Alignment (CKA) is a widely used method for measuring the similarity between
two representations in neural networks. It quantifies how well these representations align, allowing
us to compare features learned by different layers or models. CKA is computed using dot products of
representations in the form of Gram matrices, which capture pairwise similarities between examples
in each representation. By comparing these Gram matrices, CKA evaluates the structural alignment
between two sets of representations, making it particularly useful for understanding the alignment
between the activations of a vision encoder and a language model.

The CKA similarity between two feature matrices, X ∈ Rn×d1 and Y ∈ Rn×d2 , where n is the
number of samples and d1 and d2 are the dimensions of the features, is calculated as follows. First,
we compute the centered Gram matrices K and L for X and Y , respectively:

CKA(X,Y ) =
HSIC(K,L)√

HSIC(K,K) · HSIC(L,L)
(4)

Here, HSIC (Hilbert-Schmidt Independence Criterion) measures the similarity between the two
Gram matrices:

CKA is invariant to orthogonal transformations and isotropic scaling of the representations, making
it a robust tool for comparing representations between models. By using CKA, we can effectively
evaluate how well representations learned by a vision encoder align with those of a language model,
providing deeper insights into cross-modal learning and feature alignment.

C SIMILARITY PRESERVING LOSS FUNCTION

Our alignment of vision and language representations follows a distinct approach. Unlike contrastive
losses commonly used in VLMs that rely on large datasets for effective convergence, we adopt a
knowledge distillation-inspired method using a similarity-preserving loss (Tung & Mori, 2019) to
guide the image encoder with insights from the language model. Originally developed for a student-
teacher framework, this loss builds on the principle that semantically similar inputs elicit similar
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Table 7: Hyperparameters for continual learning analyses: All tasks are trained for 50 epochs with
SGD optimizer for ExLG method and AdamW for ImLG.

Method Seq-CIFAR10 Seq-TinyImageNet DN4IL

ExLG lr = 0.05
λ = 50.0

lr = 0.05
λ = 100.0

lr = 0.03
λ = 100.0

ImLG lr = 0.001 lr = 0.0001 lr = 0.0001

activation patterns in trained neural networks. In a knowledge distillation setting, the goal is for the
trained teacher network to provide additional supervision to train a student network effectively.

In our framework, this loss (in Equation 2) ensures that inputs with similar semantic meanings in
the language model induce correspondingly similar activations in the vision encoder, thereby foster-
ing a shared representation space. By leveraging pre-trained language embeddings as a reference,
the similarity-preserving loss enables the vision encoder to learn high-level, semantically rich fea-
tures that transcend superficial correlations. Specifically, this loss supervises the vision encoder by
comparing pairwise activation similarities within each batch and penalizing discrepancies in their
similarity matrices. This approach bridges the textual and visual domains, enabling robust cross-
modal learning with minimal additional training complexity.

D RELATED WORKS

Multi-modal Learning

Vision-Language Models (VLMs) focus on learning joint vision-and-language representations for
tasks like visual question answering, visual reasoning, captioning and retrieval. CLIP (Radford
et al., 2021) aligns vision and language embeddings through contrastive learning on large-scale
multimodal data. BLIP (Li et al., 2022) fuses vision and language data during training, effectively
integrating modalities to perform multi-modal tasks such as captioning and visual reasoning. LLaVA
(Liu et al., 2024) expands these capabilities by instruction tuning large models to create multimodal
chat assistants. Many vision-language models, such as CLIP, rely on contrastive losses to align
embeddings by training dual encoders for images and text. These encoders are trained on large
multimodal datasets, matching vector representations across large batches to compute similarity
effectively. Classification tasks in such models are formulated as retrieval problems, where during
inference, the class name with the closest match in the embedding space is retrieved. These models
also often face challenges in generalizing to images outside their pre-training datasets, requiring
additional fine-tuning techniques or adaptations to handle diverse data distributions effectively.

Our approach diverges from these paradigms by focusing on a setup of vision encoder, classifier
doing supervised learning with cross-entropy loss, without contrastive loss or retrieval-based pre-
diction. We focus on learning visual representations from scratch for visual tasks by leveraging
pre-trained language models as guidance in different ways, eliminating the need for large-scale
multi-modal datasets or computationally expensive joint training. We venture beyond the current
paradigms of joint vision-and-language pre-training or parameter-efficient fine-tuning (PEFT). In-
stead, our work uniquely uses language guidance as a modular component to enhance visual learn-
ing, evaluated across fundamental tasks requiring robustness, generalization, and adaptability.

Language Guidance Recent studies have explored leveraging language-vision alignments to im-
prove representation learning. One line of research investigates using encoded image captions as
semantic signals to enhance contrastive learning. For instance,(El Banani et al., 2023) propose a
sampling method that identifies linguistically similar image pairs using caption embeddings. So in
this method demonstrates they leverage language to identify similar images in the batch over tradi-
tional augmentation-based approaches. In Sariyildiz et al. (2020) the goal is to have many different
proxy tasks conditioned on vision and language that such that solving these tasks will help learn bet-
ter representations. The first involves predicting image tags from captions, and the second employs
the image-conditioned masked language modeling task. The framework involves multiple passes,
requires high-quality, paired image-caption datasets additional annotations for proxy tasks. (Stroud
et al., 2020) encodes video metadata using a BERT-based text encoder and trains a video model
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Table 8: Results with a bigger CNN backbone- ResNet50
CIFAR10 CelebA

Base ExLG ImLG Base ExLG ImLG

ResNet50 94.38 97.21 95.86 63.88 74.45 76.58

to predict these embeddings. The approach assumes that metadata (e.g., titles, descriptions) pro-
vides weak supervision for learning semantic video representations, and this approach is primarily
designed for pre-training video models.

Further, (Merullo et al., 2022) investigate whether simple linear transformations can map image
features to text space effectively. Their method involves training a linear projection from vision
encoder outputs to a shared text embedding space, achieving notable results in cross-domain retrieval
tasks. Other works (Tsimpoukelli et al., 2021) use image-text pairs to pre-train vision encoders
through a captioning task, freezing the language encoder and using gradients only to update the
vision encoder. Despite its innovative approach, Frozen’s performance is limited, as noted in the
paper, and does not achieve higher results consistently across tasks. There are studies that try to
establish pre-training based on image-captioning task. However, all often neglect a deeper analysis
of the vision backbone’s properties in isolation.

A few works provided insights that also guided our design. The Platonic Representation Hypothesis
(Huh et al., 2024) posits that representations learned by neural networks across different modalities,
objectives, or architectures tend to converge toward shared high-level abstractions. Studies such as
(Maniparambil et al., 2024) investigate the extent to which vision and language models encode sim-
ilar concepts, which is critical for cross-modal learning and alignment. Research by (Schwettmann
et al., 2023) further shows that text transformers, even when trained exclusively on text data, de-
velop multi-modal neurons—neurons that respond similarly to semantically related image and text
embeddings. Additionally, (Pang et al., 2023) highlight the versatility of incorporating vision en-
codings into a language encoder. They posit that the language blocks act as a filter, amplifying
relevant features and distilling essential information from visual inputs, showcasing their potential
for enhancing cross-modal learning.

Our aim was to investigate the properties of vision encoders under the influence of language supervi-
sion. Specifically, we sought to understand when and how language guidance impacts the learning of
image representations and to explore distinct strategies for integrating semantic information through
Explicit Language Guidance (ExLG) and Implicit Language Guidance (ImLG). We enable the vi-
sion encoders to learn better semantic concepts and produce more robust representations and we
test it on several key challenges, including shortcut learning, adversarial robustness, texture bias,
out-of-distribution (OOD) generalization, and continual learning. Unlike prior works, which do not
focus on these vision-based challenges, our framework aims to offer a different perspective on how
language can guide visual representations to tackle these challenges.

E ADDITIONAL RESULTS

E.1 DIFFERENT IMAGE ENCODERS

In this section, we present additional results, starting with an evaluation of different vision encoders
across various datasets. Table 8 provides results for both the ExLG and ImLG methods using the
ResNet50 vision encoder. Additionally, we evaluate performance on a larger dataset (ImageNet100)
using both CNN- and transformer-based vision encoder architectures, as shown in Table 9. As
the dataset complexity and vision model size scale up, we observe more significant improvements,
demonstrating the scalability of our methods.

E.2 LANGUAGE DESCRIPTIONS

We conduct ablation studies with different types of descriptions used in ExLG. Note that the de-
scriptions are class-specific, not image-specific, thus we need descriptions as the number of classes
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Table 9: Results with a bigger dataset- ImageNet100
ImageNet100

Base ExLG ImLG

ResNet18 71.46 79.42 72.37
VIT 54.77 56.16 55.06

Table 10: Samples of few descriptions of classes of CIFAR10 dataset.

Class Language Descriptions

Used in ExLG Simple Random

”bird”:
”A small, feathered vertebrate
with two wings for flight,
a beak, and typically two legs”

”This is a bird” ”The photo of an object or entity”

”cat”
”A small, agile mammal
with a slender body, sharp claws,
whiskers, and a long tail”

”This is a cat” ”The photo of an object or entity”

”cargo ship”
”A large vessel/boat with a flat deck,
towering cranes, and stacked containers
in sea and harbor.”

”This is a cargo ship” ”The photo of an object or entity”

and not images. Table 10 compares various types of descriptions, with detailed results in Table
11.Our findings show that detailed descriptions with rich semantic context lead to the highest gains.
Simpler descriptions also provide improvements over the baseline, albeit to a lesser extent, while
random descriptions offer minimal benefit.

E.3 DIFFERENT LANGUAGE MODELS

In this section, we evaluate the impact of different language models (LMs) on our framework. In the
experiments presented in the main paper, we utilize the LM - Sentence Transformer (all-MiniLM-
L6-v2) (Reimers & Gurevych, 2019), an efficient model with only 22.7M parameters, which adds
minimal computational overhead. To further investigate, we conduct experiments using a (1) Larger
LM - ”all-distilroberta-v1” with 82.1M parameters. Additionally, we examine two alternative setups:
(2) LM-Rand - a Sentence Transformer model with random weight permutation (all-MiniLM-L6-
v2) (3) LM-Code - a CodeBERT (Feng et al., 2020) model trained on programming languages
(CodeLM)

While larger models yield improved performance, efficient models like all-MiniLM-L6-v2 are suf-
ficient, provided that the descriptions are semantically rich. Models with random weights or trained
on unrelated domains (e.g., CodeLM) act as mild regularizers but perform significantly worse than
semantically trained language models. The only scenario where they surpass the baseline is in

Table 11: Results with different language descriptions using ExLG method
Classification Continual Learning

CIFAR10 DN4IL

Base 94.84 24.15

ExLG 95.12 27.71
Language

Descriptions
Simple desc 94.92 24.74
Random Desc 92.47 18.86
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Table 12: Results with different language models using ExLG method.
Cls Shortcut OOD CL

CIFAR10 TinyImg CelebA ImgNet-O ImgNet-R ImgNet-A DN4IL

Base 94.84 58.73 61.28 41.73 10.59 1.92 24.15

ExLG

LM 95.12 65.63 72.11 46.70 14.95 2.94 27.71
Larger LM 95.01 65.89 72.93 47.51 14.65 2.92 26.84

LM-Rand 92.17 58.02 67.24 40.65 9.62 2.03 22.08

LM-Code 93.69 58.93 67.14 38.50 9.40 2.50 21.76

Table 13: Results with different language models using ImLG method.
Cls Shortcut OOD CL

CIFAR10 TinyImg CelebA ImgNet-O ImgNet-R ImgNet-A DN4IL

Base 94.84 58.73 61.28 41.73 10.59 1.92 24.15

ImLG

LM 93.41 60.02 75.90 42.20 12.10 2.37 24.22

Larger LM 93.78 61.16 77.55 42.12 12.71 2.45 24.51
LM-Rand 92.50 57.98 67.41 28.45 6.55 1.50 19.85

LM-Code 92.00 47.83 68.82 30.62 6.67 1.89 20.54

the CelebA dataset (shortcut learning). In the case of CelebA, which is highly sensitive with only
two classes, random weights or CodeLM provide some regularization benefits. However, their per-
formance does not match that of language models trained on natural language, underscoring the
importance of semantic context.
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Figure 9: Adversarial Robustness - PGD10 attack on CIFAR10 using larger language model

Figure 10: Adversarial Robustness - PGD10 attack on CIFAR10 using random and codeLM lan-
guage model

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 11: Texture Bias - results on Stylized TinyImageNet using larger language model

Figure 12: Texture Bias - results on Stylized TinyImageNet using random and CodeLM language
model
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