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Abstract

Distributional shifts in photometry and texture have been extensively studied for
unsupervised domain adaptation, but their counterparts in optical distortion have
been largely neglected. In this work, we tackle the task of unsupervised domain
adaptation for semantic image segmentation where unknown optical distortion ex-
ists between source and target images. To this end, we propose a distortion-aware
domain adaptation (DaDA) framework that boosts the unsupervised segmenta-
tion performance. We first present a relative distortion learning (RDL) approach
that is capable of modeling domain shifts in fine-grained geometric deformation
based on diffeomorphic transformation. Then, we demonstrate that applying addi-
tional global affine transformations to the diffeomorphically transformed source
images can further improve the segmentation adaptation. Besides, we find that our
distortion-aware adaptation method helps to enhance self-supervised learning by
providing higher-quality initial models and pseudo labels. To evaluate, we propose
new distortion adaptation benchmarks, where rectilinear source images and fisheye
target images are used for unsupervised domain adaptation. Extensive experimental
results highlight the effectiveness of our approach over state-of-the-art methods
under unknown relative distortion across domains. Datasets and more information
are available at https://sait-fdd.github.io/.

1 Introduction

Recent years have witnessed dramatic improvements in semantic segmentation performance based
on a massive amount of pixel-level annotations. However, applying a segmentation model learned
from the training dataset (source domain) directly to unseen test scenarios (target domain) often
leads to significant performance degradation, which is caused by the divergence of data distribution
between source and target domains. In addition, manually annotating target domain images with
pixel-wise labels is extremely expensive and taxing. To address such issues, many studies have
proposed unsupervised domain adaptation methods to transfer the knowledge learned from the labeled
source domain to the unlabeled target domain (e.g., [33, 34, 27, 26, 40]).

Existing works on unsupervised segmentation adaptation methods have predominantly investigated
domain shift problems mainly due to photometric and textural discrepancies between rectilinear
image domains (e.g., adapting synthetically generated images [29, 30] to real-world imagery [8];
or adapting images from/to different cities [7]). In contrast, domain shifts in geometric and optical
distortion have not been well explored, despite commonly appearing in many practical applications.
For example, wide-angle cameras (e.g., fisheye cameras) have been extensively used for complex
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(a) Distortion-aware domain adaptation (DaDA) framework. (b) Class-activation visualizations [31].

Figure 1: Overview of DaDA framework and qualitative results. (a) We depict the relative distor-
tion learning (blue) and the segmentation adaptation (red) with related loss functions. Deformation
field generator G produces a flow field u(φ(0)) to transform source data (IS) to a new image (IS→T )
replicating the distortion style of the target image (IT ). (b) Our framework shows stronger and finer
boundary of class-wise activation visualizations under unknown radial distortion across domains
(more illustrations are shown in Appendix C).

vision systems like autonomous vehicles [38] and surveillance [4] to obtain more information about
the surrounding environment. Fisheye images (e.g., target image IT in Fig.1) have quite different
geometric deformations (e.g., radial distortion) compared to regular rectilinear images (e.g., source
image IS in Fig.1). Such distortion variants pose even more challenging domain adaptation tasks.
For example, a state-of-the-art semantic segmentation model [6] only trained on rectilinear images
fails to correctly predict pixels of vehicles and roads under optical distortion and its overall prediction
accuracy drops from 67.02% (trained on fisheye images) to 32.39% (trained only on rectilinear images,
see Tab.1). To alleviate this, we may rectify distortion at test time. However, such a workaround
inevitably leads to reduced field-of-view (e.g., over 30% loss for fisheye images [38]), resampling
distortion artifacts at the image periphery, calibration errors in practice, and additional computing
resources for the rectification step at test time [19], which is against the original purpose of using
wide-angle cameras. This urges us to use native fisheye images without needing rectification. Another
motivation for our work is the scarcity and difficulty of constructing annotations for distorted fisheye
images (e.g., Woodscape [38]), while we already have larger amounts of annotations for rectilinear
images (e.g., Cityscapes [8], GTAV [29]). Remarkably, we have relatively fewer public datasets
providing large-scale and finely annotated fisheye images. Woodscape [38] is currently the only
real-world public dataset with segmentation annotations. Such a lack of annotations for distorted
images necessitates introducing optical distortion into unsupervised domain adaptation.

With these insights, we first formulate an important but challenging unsupervised domain adaptation
task for semantic segmentation where unknown optical distortion exists between the source and
target domains. To this end, we propose a novel distortion-aware domain adaptation (DaDA)
framework, which provides a new perspective to minimizing domain gaps in geometric and optical
distortion. We first present relative distortion learning (RDL), which is capable of modeling relative
deformation between the source and target domain. In particular, we build a deformation field
generator to transform the source image to a new image sharing similar distortion features of the
target image. To enable such challenging unsupervised and unpaired distortion learning, we exploit
the properties of diffeomorphism, that is differentiable and has a differentiable inverse. We directly
integrate such properties into our distortion-aware losses to enforce the semantic quality of relative
deformation fields at the image- and the prediction level. We also observe that applying additional
global affine transformations (e.g., rotation, shearing) to the diffeomorphically transformed source
images can further improve the segmentation adaptation performance in most cases. Owing to
fine-grained diffeomorphic and global affine transformations, our framework provides distortion-
aware segmentation adaptation models and reliable pseudo labels, and thus ultimately improves the
performance of self-supervised learning methods.

To validate, we propose new domain adaptation benchmarks, where a segmentation model trained on
rectilinear images (Cityscapes [8] or GTAV [29]) is transferred to fisheye images (Woodscape [38] or
our in-house fisheye driving scene dataset (FDD)). With mean Intersection-over-Union (mIoU) as the
evaluation metric, our framework achieves significantly improved prediction performance compared
to existing segmentation adaptation methods.
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In essence, our key contributions can be summarized as: (1) a distortion-aware domain adapta-
tion framework for boosting unsupervised semantic segmentation performance in the presence of
unknown relative distortion; (2) distortion-aware losses that effectively enforce the unpaired and
unsupervised relative distortion learning to transfer distortion style from target to source domain; (3)
new unsupervised domain adaptation benchmarks posing challenging tasks, where source and target
images have additional domain gaps in optical distortion.

2 Related Work

2.1 Domain Adaptive Semantic Segmentation

Recent advances in image-to-image translation and style transfer [42] have promoted the translation of
source-domain images to mimic texture and appearance of the target-domain images. CyCADA [24]
applied CycleGAN [42] to preserve semantic consistency before and after image-level adaptation.
BDL [22] proposed a bidirectional learning method where image-to-image translation and segmen-
tation adaptation is learned alternatively. Similar methods have been proposed to adapt source
images [35, 17] or to reconstruct the source image from the output-level representation [36]. Deviated
from these adversarial approaches, FDA [37] proposed a method to align the low-level frequencies of
source images and their counterparts in target images. Ma et al. [25] applied a photometric alignment
method to minimize domain shifts in image- and category-level feature distributions.

More recently, self-supervised learning (SSL) approach has emerged in domain adaption tasks to
further improve the segmentation adaptation performance. SSL approaches try to rectify noisy pseudo
labels with respect to uncertainties or confidence scores [22, 17, 28, 27, 26, 13, 41, 40]. These
methods inherently require good initial models, that are commonly trained on source or adapted on
target beforehand. To obviate the need of multi-stage and adversarial training, Araslanov and Roth [2]
introduced a photometric augmentation method to SSL.

However, none of the prior works directly considers distortion-oriented domain shifts in the unsuper-
vised segmentation adaptation tasks. Moreover, it remains unknown how well existing adaptation
methods address unknown relative distortion between domains. As a pioneering work, we first aim to
evaluate prior arts on the adaption task in the presence of unknown optical distortion across domains.
For this, we noted that many of current state-of-the-art methods rely on SSL (e.g., [17, 27, 26, 41, 40])
and have adopted AdaptSeg [33] or AdvEnt [34] as for their based segmentation adaptation. Thus,
we take these adversarial adaptation approaches as our baseline methods and further evaluate SSL
approaches [26, 27, 40] in the presence of optical distortion shifts across domains. To evaluate,
we newly formulate segmentation adaptation benchmarks, i.e., transferring from real or synthetic
rectilinear images to real fisheye images.

2.2 Diffeomorphic Deformation Networks

Spatial transformation networks (STN [15]) have been used in various contexts since it is capable
of learning differentiable deformation field. STN primarily allows simple linear transformations
(e.g., affine, translations, scaling, and rotations) and can be extended to more flexible mappings such
as thin plate spline transformations [23]. However, optical distortion involves complex nonlinear
transformation and STNs are limited to support such transformations. Instead Detlefsen et al. [12]
proposed to exploit diffeomorphisms in spatial transformation, which can model complex nonlinear
deformation and address optimization divergence issues in learning spatial transformation. A dif-
feomorphism is a globally one-to-one continuous and smooth mapping, which has a differentiable
inverse. Diffeomorphic transformations have been largely used for image registration [16, 10, 32]
and shape analysis [39]. However, traditional diffeomorphic deformation methods demand high
computational costs and difficult to implement; and thus make it difficult to be incorporated into deep
neural networks. To address such issue, Dalca et al. [11] proposed a probabilistic generative model to
generate diffeomorphic deformation field for medical image registration task. However, their work
depends on a paired set of 3D brain images depicting the same contexts. Inspired by [11], we propose
a new relative distortion generator, which takes a set of unpaired source- and target-domain image, to
transform the source image to a new image sharing similar distortion style of the target image.
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2.3 Radial Distortion Rectification

Traditional distortion rectification approaches require images captured with specific camera calibration
parameters [20] and thus are not flexible. The other work exploits the principle that a straight line
should be projected into a straight line in a calibrated image [1], but such method mainly depends on
the accuracy of line detection. More recently, deep neural networks have been used for robust and
efficient rectification performance [5, 21]. However, these works primarily aim to rectify distorted
images and do not support distortion style transfer for unpaired and unsupervised domain adaptation
tasks. In contrast, we propose to transfer distortion style between unpaired source and target images.

3 Method

Let S be the source-domain data with segmentation labels YS and T be the target-domain data with
no labels. We aim to train a scene segmentation network M performing satisfactory pixel-wise
prediction on T by minimizing domain gaps between S and T . Here we formulate more challenging
adaptation tasks where distributional shifts include not only visual domain gaps (e.g., texture, lighting,
contrast) but also geometric and optical distortions (e.g., radial distortion). Such domain gaps make
M difficult to learn transferable knowledge in both visual and geometric domains.

3.1 Relative Distortion Learning

To minimize the discrepancy between source and target domain, prior works proposed pixel-level
image translation methods based on cycle-consistency [14, 17, 35, 42] or photometric alignment [2,
25]. However, these methods do not consider domain gaps in geometric distortion and thus fail to
transfer distortion style from IT to IS (see Fig.4). To address this, we propose a relative distortion
learning (RDL) method, which predicts a relative deformation field to transfer the distortion style
between domains. Given a source-domain image IS and a target-domain image IT , we aim to
transform IS to a new image IS→T based on a relative deformation field ΦS→T , where IS→T shares
a similar distortion style of IT . We achieve this transformation through a grid-based sampling
operation IS ◦ ΦS→T = IS→T . Ultimately, the transformed source image IS→T aim to mitigate the
domain shift in optical distortion at a fine-grained level. However, it is not trivial to predict relative
deformation fields since input images are not paired (i.e., dissimilar image contents); and the relative
distortion involves nonlinear geometric deformation, which is hard to be parameterized without
knowing optical features (e.g., lens distortion model, focal length). To learn such a challenging
geometric relationship, we exploit diffeomorphic transformation in the unpaired and unsupervised
distortion translation task.

Diffeomorphic Transformation. Let u ∈ R2×w×h be a flow field which is constant over time. Then,
we describe a differential equation of evolution of deformation φ(t) by

∂φ(t)

∂t
= u(φ(t)), (1)

where t is time and φ(0) the identity transformation. By integrating u(φ(t)) over t ∈ [0, 1], we
get a diffeomorphic deformation field Φ := φ(1), which maps the coordinates from one image to
another image. For fast and differentiable integration, we use an exponentiated integration technique,
so-called scaling-and-squaring [3]. This integration method starts from φ(1/2

T ) = φ(0) + u/2T

and iteratively computes deformation fields of next time steps via φ(1/2
t−1) = φ(1/2

t) ◦ φ(1/2t) over
T times, where ◦ indicates a grid-based resampling operation. Then, we obtain an approximate
deformation field Φ. The inverse deformation field Φ− can be achieved by integrating the negative
field φ(1/2

T ) = φ(0) − u/2T via the same integration method.

To generate a field of ΦS→T , which defines relative distortion between IS and IT , we propose a
deformation field generator G, which takes both IS and IT ; and their first-order gradient (i.e., Sobel
filter) ∇IS and ∇IT as input. Here we use the image gradients to provide rich geometric features
inspired by the distortion rectification method [1]. Then, G generates deformation field ΦS→T and
its inverse field ΦT→S . For example, in Fig.2, G generates a flow field u to construct a ΦS→T

(red-colored grid in (e)) from a pair of IT (a) and IS (b). Finally, a new transformed image IS→T

(e) is generated via IS ◦ ΦS→T . Similarly, negative integration of the flow field u yields an inverse
deformation field ΦT→S , which generate a reconstructed image (d) via I ′S = IS→T ◦ ΦT→S .
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To supervise the generator G for learning the relative distortion in unpaired and unsupervised settings,
we exploit the properties of diffeomorphic transformations: topology preserving, invertible, and
differentiable. Such diffeomorphic constraints are directly built into relative distortion learning
to enforce desirable deformation field outputs. In particular, we propose distortion-aware losses:
distortion reconstruction loss and semantic distortion-consistent loss. These losses evaluate the cycle-
consistency of the relative deformation field at the image- and the prediction-level, while enforcing
the semantic quality of the relative deformation field. Distortion reconstruction loss (Lrecon) ensures
that G generates convincing flow fields to reconstruct the source image IS from the transformed
image IS→T by the inverse deformation field ΦT→S , and vice versa:

Lrecon = ‖IS − I ′S‖1 + ‖IT − I ′T ‖1, where I ′S = IS→T ◦ ΦT→S , I
′
T = IT→S ◦ ΦS→T (2)

Semantic distortion-consistent loss (Lsem) enforces semantic consistency between the source image
IS and its transformed pair IS→T at the pixel-wise prediction level. The same constraint can be
applied to between IT and IT→S . That is, an ideal deformation field generator G should be able to
generate ΦS→T and ΦT→S , that reconstruct structural information from the pixel-wise prediction
outputs of the distorted input images. With these semantic constraints, the relative distortion learning
can be further improved by the segmentation model M ; and also the segmentation adaptation can
benefit from the improved quality of relative deformation fields. The loss function can be written as:

Lsem = ‖M(IS) ◦ ΦS→T −M(IS→T )‖1 + ‖M(IT ) ◦ ΦT→S −M(IT→S)‖1. (3)

To minimize domain gaps in optical distortion between the transformed source images IS→T and
the target-domain images IT , we introduce a distortion-aware discriminator DG, which aims to
discriminate distortion style between IT and IS→T . Similar to G, we again use the first-order image
gradient, ∇IT and ∇IS→T , as input to DG along with the images. The loss function is defined as:

LDG
= EIS∼S,IT∼T [1−DG(IS ◦ ΦS→T ,∇(IS ◦ ΦS→T ))] + EIT∼T [DG(IT ,∇IT )]. (4)

We also calculate the adversarial loss using DG:

Ladv_G = EIS∼S,IT∼T [DG(IS ◦ ΦS→T ,∇(IS ◦ ΦS→T ))], (5)

where the deformation generator G tries to produce the relative deformation field to fool the discrimi-
nator DG in distinguishing distortion style.

Therefore, the total loss function for the relative distortion learning is defined as:

Lrdl = β1Lrecon + β2Lsem + β3Ladv_G, (6)

where β1, β2, and β3 are constants controlling the effect of corresponding losses.

3.2 Distortion-aware Adversarial Adaptation

Relative distortion learning aims to adapt optical distortion shifts at both pixel- and feature-level.
Based on the adapted representations, we further apply adversarial segmentation adaptation. As our
baseline adaptation methods, we take AdaptSeg [33] and AdvEnt [34], that have been extensively
used in many prior work [26–28, 40] as for their based segmentation adaptation. Typically, the seg-
mentation loss uses the cross-entropy for the transformed source image IS→T and its corresponding
label YS→T :

Lseg = −
∑
h,w

∑
c∈C

Y
(h,w,c)
S→T log(M(IS→T )(h,w,c)), (7)

where YS→T is obtained by transforming ground-truth annotations from the source domain by
YS ◦ ΦS→T . Entropy minimization loss is further introduced by AdvEnt [34]:

Lent =
−1

log(C)

∑
h,w

∑
c∈C

M(IT )(h,w,c) logM(IT )(h,w,c), (8)

which tries to directly minimize pixel-wise entropies to enhance prediction certainty in the target
domain. As a common practice, a domain discriminator DM is used to minimize the difference
between the transformed source and target prediction probabilities:

LDM
= EIS∼S,IT∼T [1−DM (M(IS ◦ ΦS→T ))] + EIT∼T [DM (M(IT ))]. (9)
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The adversarial loss function for segmentation adaptation can be written as:

Ladv_M = EIT∼T [DM (1−M(IT ))], (10)

where the segmentation model M is trained to fool the discriminator DM .

Equipped with the relative distortion learning and the adversarial adaptation, we train the adaptive
segmentation network with the following total loss:

Lall = Lrdl + Ladv_M + Lseg + γLent, (11)

where γ is 0 for AdaptSeg [33] and 1 for AdvEnt [34].

4 Experimental Results

We present extensive experimental results to validate our distortion-aware domain adaptation (DaDA)
framework for semantic segmentation in the presence of both visual and geometric domain shifts. For
this, we formulate new domain adaptive segmentation benchmarks, i.e., transferring from real-world
or synthetic rectilinear images to real fisheye images.

4.1 Datasets

In the experiments, we first show evaluations of the model trained on real-world rectilinear images
from the Cityscapes [8] and test the adapted model on real fisheye images from Woodscape [38]
or our in-house fisheye driving dataset (FDD). Then, we introduce a more challenging adaptation
task, where the model trained on synthetic dataset GTAV [29] is transferred to real fisheye images
(Woodscape or FDD) without annotations. The Cityscapes dataset contains 2, 975 training images of
high-quality driving scene with the resolution of 2048× 1024. The GTAV dataset contains 24, 966
synthesized images with the resolution of 1914× 1052. The Woodscape dataset consists of 8, 234
fisheye images with the resolution of 1280× 966, where the images are captured by fisheye cameras
(190◦ F.O.V) looking at four different directions of the vehicle. We use front and rear camera scenes
containing 4, 023 images in our experiments. The images are randomly split into a training set with
3, 023 images and a validation set with 1, 000 images. We report the results on 17 classes aligning
mismatched classes between Cityscapes and GTAV; and Woodscape. Our in-house fisheye driving
dataset (FDD) includes 3, 897 of fully annotated images with the resolution of 1920× 1080 captured
by fisheye cameras (200◦ F.O.V) at front- and rear-side of the vehicle. We randomly pulled 974 of
validation images and remaining 2, 923 images are used for the training. For FDD, we use 12 classes,
where incompatible classes in Cityscapes and GTAV are merged or excluded similar to Woodscape
(see Appendix B.4 for detailed class information of Woodscape and FDD).

4.2 Experimental Details

Diffeomorphic and Affine Transformation

Figure 2: An example of diffeomorphic and
affine transformations of training images.

Fig.2 depicts an example of diffeomorphic and
affine transformations applied to a source- and a
target-domain image. First, both original target
and source images are randomly cropped and re-
sized to (a) and (b) followed by randomized hor-
izontal flipping and photometric jittering. For
the fine-grained diffeomorphic transformation,
both target (IT in (a)) and source image (IS in
(b)) are used to generate a transformed image
IS→T in (e) via the relative deformation field
generator G. Additional global affine transfor-
mation is applied to IS→T to generate an image
in (f), which includes both fine-grained diffeo-
morphic and global affine deformations. For
the affine transformation, we adopted RandAug-
ment (RA) [9] excluding preceded photometric
jittering. RA is one of the immediately probable
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Table 1: Comparisons with the baseline adaptation methods. All the methods are based on
DeepLab-V2 with ResNet-101 as the backbone for a fair comparison. Oracle performance (trained
on target) for Woodscape is 67.02% and for FDD is 61.59%.

Cityscapes
→ Woodscape

GTAV
→ Woodscape

Cityscapes
→ FDD

GTAV
→ FDD

Method mIoU(%) gain mIoU(%) gain mIoU(%) gain mIoU(%) gain
SourceOnly 32.39 29.32 34.76 32.13
AdaptSeg [33] 46.33 35.94 39.07 36.90
AdaptSeg+RA 50.44 +4.11 36.88 +0.94 39.42 +0.35 37.22 +0.32
AdaptSeg+RDL 50.88 +4.55 37.36 +1.42 41.35 +2.28 39.29 +2.39
AdaptSeg+RA+RDL 52.59 +6.26 37.73 +1.78 41.07 +2.00 39.64 +2.74
AdvEnt [34] 45.26 34.70 38.87 37.25
AdvEnt+RA 50.60 +5.34 36.64 +1.94 41.58 +2.71 38.75 +1.50
AdvEnt+RDL 50.94 +5.68 36.39 +1.69 42.43 +3.56 39.93 +2.68
AdvEnt+RA+RDL 52.64 +7.38 37.62 +2.92 42.32 +3.45 40.87 +3.62

Figure 3: Qualitative examples. DaDA rectifies erroneous predictions, especially in the image
periphery where severe optical distortions appear compared to the based adaptation methods.

and applicable augmentation methods including a series of affine transformations (i.e., rotation,
shear-x, shear-y, trans-x, and trans-y with 0.5 probability of application). For example, a rotation
transformation is applied to the source image IS in (c). In our experiments, we tested transformed
images generated by either one of affine-only (c), diffeomorphic-only (e), or both transformations (f).

Implementation Details. We trained all networks with the Adam [18] solver with a batch size of 4.
The learning rate is 0.2× 10−5 for M and DM and 0.1× 10−6 for G and DG. We set the weight
factors of losses in Eq.(6) as: β1 = 100.0, β2 = 10.0, β3 = 10.0 for Cityscapes→Woodscape (or
FDD); and β1 = 100.0, β2 = 1.0, β3 = 100.0 for GTAV→Woodscape (or FDD). Further details on
the implementation as well as our hyperparameter selections are provided in Appendix A and B.

4.3 Comparisons with State-of-the-Art Methods

We first evaluate the effect of our distortion-aware adaptation framework when applied to the based
adaptation methods: AdaptSeg [33] and AdvEnt [34]. We use DeepLab-V2 [6] with ResNet-
101 backbone as the base semantic segmentation architecture M . We test the different spatial
transformations (+RDL: applying a diffeomorphic transformation learned by RDL, +RA: applying
an affine transformation via RandAugment [9], +RA+RDL: applying both diffeomorphic and affine
transformations) on source images in the adaptation tasks.

Woodscape as target domain (Tab.1). Compared to the based adaptation methods, applying either
one of fine-grained diffeomorphic (+RDL) or global affine transformations (+RA) achieves clear
improvements on the all adaptation tasks. Remarkably, applying both fine-grained diffeomorphic
and global affine transformations (+RA+RDL) achieves significant improvements of +7.38% and
+2.92% on Cityscapes→Woodscape and GTAV→Woodscape tasks, respectively. Note that the
performance improvement of the distortion-aware adaptation comes from object classes such as
person (+20.07%), car (+14.49%), bus (+14.61%), and truck (+12.61%) as well as background
such as sidewalk (+13.09%) (see class-wise iou(%) in Appendix B.4). Optical distortion gradually
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Table 2: Effect of DaDA on Self-Supervised Learning (SSL).
Cityscapes

→ Woodscape
GTAV

→ Woodscape
Cityscapes
→ FDD

GTAV
→ FDD

SSL Method +DaDA mIoU(%) gain mIoU(%) gain mIoU(%) gain mIoU(%) gain

IAST [26] 47.00 38.83 39.60 37.47
X 53.82 +6.82 40.75 +1.92 44.46 +4.86 40.06 +2.59

IntraDA [27] 48.92 36.10 40.36 38.61
X 53.24 +4.32 39.85 +3.75 45.28 +4.92 42.10 +3.49

ProDA [40] 50.69 34.44 39.72 35.97
X 54.83 +4.14 35.75 +1.31 42.14 +2.42 37.09 +1.12

Figure 4: Comparisons of relative distortion learning (RDL) with an image-to-image transla-
tion method [42] (Top row: GTAV→Woodscape, Bottom row: Cityscapes→Woodscape).

increases when objects and backgrounds appear closer to the image periphery. We hypothesize that
our distortion adaptation method rectifies erroneous predictions in such distorted regions. These
improvements are also confirmed in Fig.1-(b), Fig.3, and Fig.5 (See Section 4.4).

FDD as target domain (Tab.1). Here, the results are consistent with the previous adaptation
tasks. Again, +RA+RDL clearly shows superior prediction performance to the based methods
by up to +3.45% and +3.62% on Cityscapes→FDD and GTAV→FDD, respectively. Notably,
+RDL contributes up to 3.56% (AdvEnt+RDL on Cityscapes→ FDD) of improvements, which also
consistently achieves higher performance gain than +RA (+2.71%). Such results are also echoed
in the Cityscapes → CityscapesFishEye task in Appendix B.2. Note that +RDL always leads to
improvements in segmentation adaptation, regardless of domain shift, throughout our experiments
(e.g., based methods vs. +RDL, and +RA vs. +RA+RDL) as presented in Tab.1 and Tab.7 in Appendix
B.2. In contrast, the randomized affine augmentation (RA) leads to degraded segmentation adaptation
results upon the geometric distributional shifts between source and target domains (e.g., +RDL vs.
+RDL+RA in Cityscapes→ CityscapesFisheye and Cityscapes→ FDD). Thus, we may conclude that
our learnable diffeomorphic transformation (RDL) plays an important role in aligning the domain
gap of geometric deformation.

Relationship to SSL (Tab.2). We evaluate the effect of our distortion-aware domain adaptation
(DaDA), as a “warm-up” phase, for state-of-the-art adaptation methods using self-supervised learning:
IAST [26], IntraDA [27], and ProDA [40]. In particular, we train the initial segmentation model
with +RA+RDL distortion adaptation; and use AdaptSeg-based adaptation models for IAST [26] and
ProDA [40]; and AdvEnt-based models for IntraDA [27]. Tab.2 shows the effectiveness of DaDA,
where it further improves the self-supervised learning by providing higher-quality initial models and
pseudo labels. DaDA attains up to +6.82% improvement against the baseline SSL methods. This
implies that satisfactory distortion-aware adaptation cannot be achieved only by relying on SSL.

Comparisons with Image-to-Image Translation. We compare our relative distortion learning
(RDL) with an existing image-to-image translation method CycleGAN [42]. Unpaired rectilinear
source images (Cityscapes and GTAV) and fisheye target images (Woodscape) are given to both RDL
and CycleGAN. The input images are randomly cropped and resized to 512× 512. Fig.4 shows that
CycleGAN fails to generate transformed images from source images mimicking the distortion style of
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Table 3: Ablation results on the distortion-aware losses.

Base Method +Ladv_G +Lsem +Lrecon Cityscapes → Woodscape GTAV → Woodscape

AdaptSeg [33]

46.33 35.94
X 49.61 36.45
X X 50.29 36.75
X X 49.97 37.17
X X X 50.88 37.36

AdvEnt [34]

45.26 34.70
X 47.77 35.36
X X 49.22 35.77
X X 50.32 36.11
X X X 50.94 36.39

target images. This is obvious to observe since CycleGAN-like existing translation approaches do not
have devices (e.g., diffeomorphic transformer) to geometrically transform source images. In contrast,
RDL enables modeling relative distortion across domains and generates transformed source images
alike the distortion style of target images. In Fig.4, buildings and vehicles are distorted replicating
counterparts in target images via RDL, while CycleGAN focuses on translating texture and color
of images. Fig.4 also demonstrates that RDL is able to reconstruct source images (IS) from the
distortion-translated images (IS→T ) via an inverse relative deformation field ΦT→S . Overall, these
results imply that our distortion-aware losses (Lrecon, Lsem) are effective in guiding the generator G
to produce convincing relative deformation fields.

4.4 Ablation Studies

To better understand the effect of our distortion-aware adaptation approach, we conduct ablation
studies on the distortion-aware losses and the competence in predicting distorted image regions.

Effect of Distortion-aware Losses (Tab.3). We evaluate the effect of the distortion-aware losses on
segmentation performance. Tab.3 depicts the improvement of prediction performance compared to
the based methods, by adding individual or all of the proposed distortion-aware losses in Eq.(11).
Only adding the adversarial loss (+Ladv_G) contributes to the adaptation performance up to +3.28%
of improvements. Progressive introduction of the distortion-aware losses consistently improves
prediction accuracy (+Lsem, +Lrecon). Ultimately, utilizing all losses together with segmentation
adaptation achieves +5.68% and +1.69% of improvements for Cityscapes → Woodscape and
GTAV→ Woodscape, respectively. Here we observe a relatively smaller improvement in GTAV
→Woodscape task, which exhibits both severe visual and geometric distributional misalignment.
We believe that introducing additional texture-aware translation methods along with our distortion
adaptation approach might lead to further improvement in such a synthetic-to-real adaptation task.
Overall, the relative distortion learning supervised by the distortion-aware losses effectively reduces
domain shifts in optical distortion, and thus improves the prediction performance.

Figure 5: Distortion-aware mIoU.

Distortion-aware mIoU. To quantita-
tively demonstrate the effectiveness of
DaDA on predicting distorted image
areas, we propose a distortion-aware
mIoU(%) metric. The image coordi-
nates are normalized to [-1.0,1.0] and we
gradually mask label where

√
i2 + j2 of

pixel at (i, j) is smaller than a certain dis-
tance threshold (dist). In Fig.5 (bottom
row), dist = 0.0 shows that the original
label is used for mIoU(%) calculation,
while dist = 0.8 indicates that large ar-
eas of undistorted regions are masked out
in the label so that we evaluate the mod-
els on distorted regions. Plots in Fig.5 (top row) show that the performance gain (∆mIoU) achieved
by adding DaDA increases as dist increases. This indicates that DaDA effectively addresses domain
shifts in distortion and improves the prediction performance for the distorted image regions.
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5 Discussion and Conclusion

In this paper, we proposed a novel distortion-aware domain adaptation (DaDA) framework that is
capable of modeling domain shifts in geometric deformation based on a relative distortion learning
(RDL) method. Besides, we demonstrated that our distortion adaptation approach further improves
self-supervised learning by providing higher-quality initial models and pseudo labels. Extensive
experimental results proved that our method minimizes domain shifts in optical distortion, and thus
significantly improves the segmentation adaptation performance under unknown relative distortion
across domains. In the future, we will investigate the interplay between the texture-oriented and the
distortion-oriented domain shifts to further improve the unsupervised domain adaptation. While we
first tackle adapting existing semantic segmentation models trained on rectilinear images to unlabeled
fisheye images, various set-ups of domain adaptation tasks among distorted and rectilinear images
can be further considered. For example, we may use distorted images as source and rectilinear images
as a target, or both source and target domains include distorted images. Applying relative distortion
learning to such extended adaptation tasks could be another interesting direction for future work. We
hope our work provides a solid baseline and new perspectives on distortion-aware domain adaptation.
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