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Abstract

Traditional approaches to adapting multi-modal
large language models (MLLMs) to new tasks
have relied heavily on fine-tuning. This paper
introduces Efficient Multi-Modal Long Context
Learning (EMLoC), a novel training-free alter-
native that embeds demonstration examples di-
rectly into the model input. EMLoC offers a more
efficient, flexible, and scalable solution for task
adaptation. Because extremely lengthy inputs in-
troduce prohibitive computational and memory
overhead, EMLoC contributes a chunk-wise com-
pression mechanism combined with layer-wise
adaptive pruning. It condenses long-context mul-
timodal inputs into compact, task-specific mem-
ory representations. By adaptively pruning to-
kens at each layer under a Jensen-Shannon diver-
gence constraint, our method achieves a dramatic
reduction in inference complexity without sac-
rificing performance. This approach is the first
to seamlessly integrate compression and pruning
techniques for multi-modal long-context learn-
ing, offering a scalable and efficient solution for
real-world applications. Extensive experiments
on diverse vision-language benchmarks demon-
strate that EMLoC achieves performance on par
with or superior to naive long-context approaches.
Our results highlight the potential of EMLoC as
a groundbreaking framework for efficient and
flexible adaptation of multi-modal models in
resource-constrained environments. Codes are
publicly available at https://github.com/Zehong-
Ma/EMLoC.
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Figure 1. The comparison between EMLoC and MLoC on Ima-
geNet100 with varying numbers of demonstration examples. With
200 examples, EMLoC achieves 4.4× context compression over
vanilla MLoC without performance loss. It significantly outper-
forms MLoC with 50 examples using a similar context length.

1. Introduction
In recent years, multi-modal large models (MLLMs) (Liu
et al., 2024; Zhu et al., 2024; Bai et al., 2023) have achieved
significant advancements, demonstrating remarkable suc-
cess across a wide range of multi-modal tasks. Tradition-
ally, transferring these models to downstream tasks relies
on supervised fine-tuning, including full fine-tuning and
parameter-efficient methods (Hu et al., 2022). However,
these techniques require updating model parameters and of-
ten incur substantial computational costs. Recently, MLLMs
have evolved from processing single-image inputs (Liu et al.,
2024) to handling multi-image and video data (Wang et al.,
2024b; Hu et al., 2024; Chen et al., 2024c), while also sup-
porting increasingly long context lengths.

A key observation, as illustrated in Figure 1, is that provid-
ing task-specific demonstration examples during inference
significantly enhances model performance. We refer to this
approach as Multi-modal Long Context learning (MLoC).
However, directly feeding multiple multi-modal examples
into the model often results in excessively long contexts,
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leading to prohibitively high inference costs.

To address these challenges, we introduce Efficient Multi-
modal Long Context Learning for training-free adaptation
(EMLoC), a training-free adaptation method. EMLoC lever-
ages the benefits of multi-modal long context learning while
mitigating its computational drawbacks through a chunk-
wise compression mechanism combined with layer-wise
adaptive pruning. This approach compresses extensive
multi-modal contexts into compact, task-specific memory
representations, significantly reducing computational over-
head without compromising task performance.

The chunk-wise compression mechanism partitions a long
context into smaller, manageable chunks, enabling a divide-
and-conquer approach. This strategy reduces reliance on
large-memory devices and significantly lowers computa-
tional overhead. Within each chunk, we employ a layer-
wise adaptive pruning strategy, progressing from the top
layer to the bottom layer. Using a greedy search algorithm,
we determine the minimum number of tokens required per
layer to ensure the Jensen–Shannon (JS) divergence be-
tween the original and pruned outputs remains below a
predefined threshold. This approach avoids noticeable per-
formance degradation while maximizing token reduction.
Unlike static methods (Xiao et al., 2024; Li et al., 2024; Cai
et al., 2024), which reserve a fixed number of tokens per
layer, our adaptive strategy dynamically prunes tokens based
on layer-specific importance, ensuring optimal efficiency
without sacrificing accuracy.

The EMLoC framework operates without modifying model
weights and requires only a few forward passes to gen-
erate task-specific compressed memory. This makes it a
lightweight, plug-and-play solution that maintains task per-
formance while drastically reducing inference costs. The
contributions of this work are threefold:

• Efficient Multi-modal Long Context Learning: We in-
troduce chunk-wise compression and layer-wise adap-
tive pruning to reduce computational costs and memory
usage in long-context scenarios.

• Adaptive Layer Importance Analysis: We dynamically
analyze the importance of different layers in a layer-
wise manner, offering new insights into token pruning
strategies.

• We establish a linear upper bound for the information
loss and demonstrate the effectiveness of our method
across diverse tasks with extensive experiments.

2. Related Work
This work is related to multi-modal large language models,
long context learning, and training-free context compression.

We briefly review recent advances in these areas and discuss
our contributions and differences with them.

2.1. Multi-modal Large Language Models

The progress in LLMs has propelled the advancement
of MLLMs. Flamingo(Alayrac et al., 2022) pioneered
the integration of a pre-trained visual encoder with the
Chinchilla 70B(Hoffmann et al., 2022) LLM, demonstrat-
ing strong zero-shot and few-shot performance on vision-
language tasks. Since then, numerous open-source models
have emerged, including Kosmos-1(Huang et al., 2024b),
MiniGPT-4(Zhu et al., 2023), and LLaVA (Liu et al., 2024).
Subsequent research has expanded MLLMs’ functional ca-
pabilities and improved their visual perception. Models
like Kosmos-2(Peng et al., 2023), CogVLM(Wang et al.,
2023), Shikra(Chen et al., 2023), Pink(Xuan et al., 2024),
and LocLLM(Wang et al., 2024a) incorporate localization
through the pix2seq paradigm or connections with detection
and segmentation models. Others, such as Qwen-VL(Bai
et al., 2023), Yi-VL(Young et al., 2024), DeepSeek-VL(Lu
et al., 2024), InternVL(Chen et al., 2024c), and Intern-
XComposer(Dong et al., 2024), enhance capabilities with
high-resolution inputs and larger training datasets. Recently,
models such as Intern-XComposer-2.5 (Zhang et al., 2024a),
InternVL-2 (Chen et al., 2024c), MiniCPM-V-2.6 (Hu et al.,
2024), and Qwen2-VL (Wang et al., 2024b) have advanced
to support multi-image understanding, video comprehen-
sion, and multi-modal in-context learning. These recent
studies have made it possible to explore MLLMs’ multi-
modal long-context learning.

2.2. Long Context Learning

In-context learning (ICL) is a good adaptation method to
improve the performance of downstream tasks. We focus
on multi-modal long context learning for training-free adap-
tation with many in-context examples.

Scaling ICL. The foundational study by (Brown et al., 2020)
demonstrates that increasing the number of in-context ex-
amples improves the performance of LLMs. More recent
works begin to explore the effects of scaling in-context ex-
amples beyond 1000, with (Li et al., 2023), (Agarwal et al.,
2024), and (Bertsch et al., 2024) showing consistent perfor-
mance improvements in multiple text-based tasks. However,
these studies are limited to text-only benchmarks and lack
exploration in multi-modal tasks.

Multi-modal ICL. Despite significant advancements in
MLLMs, research on multi-modal in-context learning (ICL)
remains in its early stages. Flamingo (Alayrac et al.,
2022) pioneered the exploration of in-context capabilities
in MLLMs, demonstrating few-shot learning across various
vision-language tasks. Recent studies have evaluated the
generalization abilities of models like GPT-4V and Gemini,
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highlighting that in-context learning enhances performance
on out-of-domain and out-of-distribution tasks (Zhang et al.,
2024b; Han et al., 2023b). However, these works have not
fully explored the potential of leveraging extended context
windows to incorporate more demonstration examples and
long-context inputs. A recent study by (Jiang et al., 2024) in-
vestigated many-shot in-context learning in MLLMs, reveal-
ing that open-source MLLMs struggle with complex long
contexts, while closed-source models perform significantly
better. This paper focuses on addressing the challenges of
multi-modal long-context learning in open-source MLLMs,
presenting an initial exploration of this domain. Our work
aims to bridge the gap by enabling efficient and scalable
long-context adaptation for open-source models.

2.3. Training-free Context Compression

Training-free context compression techniques have ad-
vanced significantly to address the challenges of handling
extended sequences in LLMs. StreamingLLM (Xiao et al.,
2024) retains Key-Value (KV) pairs from initial and recent
tokens, leveraging attention concentration to reduce mem-
ory usage. SnapKV (Li et al., 2024) dynamically identifies
critical KV pairs based on attention patterns, minimizing
cache size while preserving performance. H2O (Zhang et al.,
2023) prioritizes recent and high-attention tokens with a dy-
namic cache strategy, optimizing memory efficiency. Pyra-
midKV (Cai et al., 2024) adjusts KV cache size hierarchi-
cally, allocating more memory to lower layers for efficient
compression. Recent studies, such as LLaVolta (Chen et al.,
2024a) and FastV (Chen et al., 2024b), have focused on
compressing visual contexts to enhance the inference accu-
racy of multi-modal large language models. Despite these
advancements in text-only and image-only context compres-
sion, multi-modal context compression remains relatively
underexplored. In this work, we aim to adaptively compress
multi-modal long contexts into an efficient compact memory
without sacrificing performance.

3. Method
This section introduces our EMLoC for training-free adapta-
tion. We begin with an overview of the approach, followed
by the introduction of chunk-wise compression and layer-
wise adaptive pruning. Finally, we present a theoretical
analysis that establishes a linear upper bound on the infor-
mation loss introduced by our compression strategy.

3.1. Overview

Given a downstream multi-modal task and its demonstration
examples, our goal is to adapt a pre-trained MLLM with-
out any training or parameter fine-tuning. To achieve this,
we construct a long context C as the input of MLLM by
concatenating N task-specific demonstration examples D.

Representing each example as ⟨Ii, Qi, Ai⟩ consisting of an
image Ii, a question Qi and a corresponding answer Ai, the
generation of C can be denoted as,

C =

N⊕
i=1

⟨Ii, Qi, Ai⟩. (1)

Conditioning on the multi-modal long context C and multi-
modal test queries X , MLLM can generate more accurate
answers Y as follows:

Y = MLLM(C, X). (2)

Increasing the number of examples N provides more infor-
mative contexts and enhances performance, but significantly
increases the inference cost and memory usage.

We thus propose to reduce the long context C into a compact
task-specific memory M through chunk-wise compression
with layer-wise adaptive pruning. Using M to denote the
key-value (KV) cache of context C, we aim to extract a
more compact memory M from M.

This can be achieved by dividing the C into multiple chunks
and adaptively spotting and reserving important tokens
across chunks and layers to minimize the change of out-
put probabilities distribution. The target of M extraction
from a chunk can be conceptually formulated as

M = arg min
M⊂M

|M |,

s.t. DJS(P (Y |M, X), P (Y |M,X)) ≤ ∆, (3)

where DJS(·) denotes the Jensen-Shannon divergence,
which measures the difference between two probability dis-
tributions. ∆ is a configurable upper bound regulating the
trade-off between information loss and the length of M .

The overall framework of EMLoC is illustrated in Fig-
ure 2(a). EMLoC implements the objective in Eq. (3) in
two stages. It first partitions C into smaller chunks to en-
able processing on resource-constrained devices. As shown
in Figure 2(b), we partition N demonstration examples into
K chunks, each containing N

K examples. We denote each
chunk as Ck, i.e.,

{Ck}k=1:K = C. (4)

Let Dk denote the individual demonstrations in chunk Ck

before concatenation. We iteratively compress each chunk
to form the compressed memory:

Mk = LAP(Mk−1,Ck, Dk), (5)

where LAP(·) is our layer-wise adaptive pruning, and Mk−1

is the compressed memory from the previous chunks. It-
erating this process from k = 1 to k = K yields a final
compressed memory MK , i.e., M .
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Figure 2. (a) The overall framewrk of efficient multi-modal long-context learning. (b) Chunk-wise compression with layer-adaptive
pruning, where pruning steps iteratively update output probabilities and are validated using a JS divergence check. Gray squares indicate
pruned tokens, with red and green arrows representing failed and successful pruning steps, respectively.

EMLoC proceeds to prune the KV cache of each chunk in a
layer-wise manner under a Jensen–Shannon (JS) divergence
constraint, retaining only the most relevant tokens for the
downstream task. It is difficult to set a global upper bound
∆. An effective implementation to ∆ is achieved by setting
a local constraint δ. The details of layer-wise compression
and implementation to ∆ are presented in following parts.

3.2. Layer-wise Adaptive Pruning

Different tasks require varying levels of knowledge, result-
ing in different degrees of token redundancy. Recent stud-
ies (Xiao et al., 2024; Cai et al., 2024) show that earlier
layers in large language models are more crucial than later
ones. Instead of a fixed pruning strategy (Li et al., 2024;
Cai et al., 2024) that retains a constant number of tokens
per layer, we propose a layer-wise adaptive pruning strategy
that dynamically adjusts the token number per layer while
preserving performance. The optimal number of tokens per
layer is the minimum required to keep the Jensen-Shannon
divergence between the probability distributions conditioned
on the original and compressed memory below a predefined
threshold δ. Detailed pseudocode is provided in Appendix A.
The procedure proceeds as follows:

Forward Demonstrations: Given the context Ck of k-th
chunk, the KV cache Mk of this chunk is firstly extracted,
conditioned on the previously compressed memory Mk−1:

Mk = ExtractKV(Mk−1,Ck). (6)

A forward pass is performed through the MLLM with

the concatenated memory Mk−1 ⊕Mk and the individual
demonstration examples Dk ∈ RN

K ×T in chunk C. The out-
put includes the original output probabilities pori of answer
tokens, attention weights α ∈ RL×(N

K ×T )×S , and hidden
states H ∈ RL×N

K ×T :

(pori, α,H) = MLLM(Mk−1 ⊕Mk, Dk), (7)

where L is the number of layers, T denotes the length of
each demonstration example, and S represents the sequence
length of the current chunk. Then, for each layer, we cal-
culate the importance score of each token in Mk using the
accumulated attention weights from answer tokens. The
answer tokens serve as an observation window to estimate
the importance of each token in chunk C. The importance
score of j-th token in l-th layer can be formulated as:

βl
j =

∑
i∈ans index

αl
ij , (8)

where ans index is the index of answer tokens.

Pruning-Checking Step: Tokens with higher importance
are retained, while less important ones are pruned iteratively
from the top layer down. This top-down approach improves
efficiency by avoiding forward passes through unpruned
layers. At each step, pruning is applied to a single layer
using a candidate ratio r, greedily selected in ascending
order from the retention ratio set R. Once the top layers
above the l-th layer are pruned, the pruning of the l-th layer
is formulated as selecting the top r × S tokens based on
importance scores:

M̂l
k = Ml

k(Topk(βl, r × S)). (9)
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As illustrated in Figure 2 (b), we can get the output proba-
bilities piter of all answer tokens in one pruning step:

piter = MLLM(M≥l
k−1 ⊕ M̂≥l

k , H l), (10)

where M≥l
k−1 denotes the compressed memory from layer

l onward for the previous k-1 chunks, M̂≥l
k denotes the

compressed memory from layer l onward for the current
k-th chunk, hidden states H l is the input embeddings of l-th
layer. Leveraging hidden states H l extracted in Equation (7)
can reduce redundant computation in pruning steps.

After each pruning step, we perform the JS divergence check
between the output distributions pori and piter to measure the
information loss. If the divergence is below the threshold δ,
the pruning process for the current layer is successful and
continues to prune the next bottom layer otherwise select
a larger r from rentention ratio set R to prune this layer
again. As shown in Figure 2(b), a step marked by red arrows
fails the check, while a subsequent step with green arrows
retains more tokens and successfully passes the check. This
pruning-checking step ensures that the compressed memory
retains the essential information for task performance while
minimizing inference costs.

After successfully pruning all layer for k-th chunk, we can
get the compressed memory Mk of k chunks by concatenat-
ing Mk−1 and M̂k.

3.3. Theoretical Analysis of Information Loss

It is difficult to set a global upper bound ∆ for JS diver-
gence when sequentially processing multiple chunks. An
effective implementation to ∆ is achieved by setting a local
constraint δ at each pruning-checking step. In this part, we
theoretically analyze how the local constraint δ contributes
to the global JS divergence ∆ between the full memory M
and its compressed counterpart M .

We assume that the N demonstration examples D follow the
same data distribution as the test set. Thus, during inference
with the memory M , the probability distribution PM of test
set equals to that of demonstration examples D:

PM = P (Y |M,X) = P (πA(D)|M,πI,Q(D)) = PD
M ,
(11)

where πI,Q denotes extracting the images and questions as
multi-modal questions and πA denotes getting the corre-
sponding answers in the demonstration set.

Local JS Distance Constraint:With the individual demon-
strations Dk of the k-th chunk, the JS distance between
the probability distributions under Mk−1 ⊕Mk and Mk is
bounded by a divergence distance threshold

√
δ:

DJS

(
PDk

Mk−1⊕Mk
, PDk

Mk

)
≤
√
δ, (12)

where DJS(·, ·) denotes JS distance, the arithmetic square
root of JS divergence.

Bounding the Global JS Distance: To extend the local
constraint to the global upper bound, we use the triangle
inequality for the JS distance:

DJS

(
PD
M , PD

Mk

)
≤DJS

(
PD
M , PD

Mk−1⊕Mk

)
+

DJS

(
PD
Mk−1⊕Mk

, PD
Mk

)
(13)

The memory Mk−1 is a subset of Mk−1 ⊕Mk, which, in
turn, is a subset of M. Thus, Mk−1 ⊕ Mk more closely
resembles the original full memory M. Consequently, the
probability distribution PD

Mk−1⊕Mk
, conditioned on Mk−1⊕

Mk, is more similar to PD
M than to PD

Mk−1
:

DJS

(
PD
M , PD

Mk−1⊕Mk

)
≤ DJS

(
PD
M , PD

Mk−1

)
. (14)

In other words, adding more chunks from the full memory
reduces the divergence with PD

M . Moreover, because the
demonstrations Dk are most closely related to the context
in the k-th chunk itself, we empirically assume:

DJS

(
PD
Mk−1⊕Mk

, PD
Mk

)
≤ DJS

(
PDk

Mk−1⊕Mk
, PDk

Mk

)
(15)

Theoretical Upper Bound: Combining the Equations (12)
to (15), we can derive the following global upper bound of
the information loss:

DJS

(
PD
M , PD

MK

)
≤ (K − 1)

√
δ + ϵ, (16)

where the ϵ is the JS distance between the probability distri-
bution of full context C and that of the first uncompressed
chunk C1. Hence, by applying the local constraint at each
chunk-compression step, the global JS distance

√
∆ be-

tween the compressed memory and the full memory is con-
trolled by δ and chunk number K. More proof and analysis
are depicted in Appendix D.

4. Experiments
4.1. Experimental Setting

Evaluation Dataset. We evaluate our EMLoC on six chal-
lenging benchmarks: ImageNet100, a subset of ImageNet-
1k (Deng et al., 2009) with the first 100 classes for recogni-
tion, ScreenSpot for cross-platform GUI grounding, MME-
RW for real-world multimodal tasks, IllusionVQA for illu-
sion understanding, OK-VQA for knowledge-based QA, and
YouCook2 for video understanding. For datasets without
predefined validation splits, we randomly sample 100 test
examples for evaluation.
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Table 1. Results of efficient multi-modal long context learning (EMLoC) in various downstream tasks. The value in the gray cell is the
context length. † denotes using 50 examples. ‡ represents utilizing 200 examples.

Method Example
Number ImageNet100 ScreenSpot MME-RW IllusionVQA OK-VQA YouCook2

Llava1.5 (7B)

0

12.3 9.7 28.2 24.1 53.6 -
InternVL2 (8B) 12.5 2.7 33.9 28.0 47.1 88.0

Llama3.2-V (11B) 47.6 8.1 14.6 33.0 - -
MiniCPM-V2.6 (8B) 31.0 0.3 37.2 34.6 48.3 3.3

Qwen2-VL (7B) 28.0 14.2 36.6 35.3 52.1 25.4

MLoC
(Qwen2-VL)

5 43.2 † 14.7 39.4 38.8 58.4 86.9
4109 1996 1924 1826 1401 5907

20 62.6‡ 18.2 41.1 40.9 58.6 108.8
16264 7905 7393 7271 5730 23464

EMLoC
(Qwen2-VL) 20 63.6 ‡ 18.3 42.2 40.9 58.7 102.0

3643 1415 1510 1878 934 6218

Implementation Details. Experiments are conducted on
NVIDIA L20 GPUs with 48GB of memory. Inference time
is measured with a batch size of 1 on one GPU. The default
JS divergence threshold δ is set to 0.005, and the chunk
size is 1.6k. The retention ratio set R is [0.1, 0.2, 0.5, 1.0].
We use Qwen2-VL as the base model due to its support for
32k multi-modal long contexts in any format and a vision
encoder that processes images at any resolution without
tiling. For the ImageNet100 dataset, the image resolution is
224×224, while other benchmarks use 448×448. The evalu-
ation of other MLLMs uses their default image resolution.

4.2. Experimental Results

Performance of EMLoC on multiple tasks. As shown
in Table 1, multi-modal long-context learning significantly
enhances Qwen2-VL’s performance across all downstream
tasks, whether using 5 or 20 demonstration examples. In
tasks like ImageNet100 and YouCook2, leveraging an ex-
tremely long context yields substantial performance gains.

These results underscore the importance of efficient multi-
modal long context learning for practical applications, par-
ticularly in ImageNet100 and YouCook2. When utilizing
20 examples, our EMLoC dramatically reduces the aver-
age context length from 11338 to 2600, a remarkable 77%
reduction, without sacrificing performance. Notably, our
EMLoC outperforms MLoC with 5 demonstration examples
and 3530 average context length by a wide margin, even
with a shorter context length. Furthermore, when utilizing
20 examples, EMLoC surpasses MLoC with full memory
in most benchmarks. This improvement is likely due to
the removal of irrelevant background noise or distractions
during compression. As a result, the compressed memory is
more precise, leading to better performance.

Meanwhile, inference costs have been significantly reduced.
On ImageNet100 with 200 examples, EMLoC reduces infer-
ence FLOPs from 1.76T to 1.35T and total inference time
from 1866s to 1107s compared to MLoC.

Table 2. Multi-modal long context learning with varying numbers
of examples on ImageNet 100. The value in the gray cell is the
context length.

Method Number of Examples
0 25 50 200 300

MLoC 28.0 39.9 43.2 62.6 62.9
0 2053 4109 16264 24468

EMLoC 28.0 39.4 46.2 63.7 62.6
0 565 946 3643 5365

Results with varying numbers of examples. Table 2
shows how the performance of MLoC and EMLoC changes
as the number of examples increases on the ImageNet100
dataset. Both MLoC and EMLoC show steady improvement
with more examples, demonstrating strong long-context
learning capabilities. However, this improvement comes
with a sharp rise in context length, which inflates computa-
tional overhead. In contrast, EMLoC compresses the context
by nearly a quarter while maintaining or even surpassing
MLoC’s accuracy (e.g., 63.7 vs. 62.6 with 200 examples).
This significant reduction in context length substantially
decreases inference time while preserving performance.

Comparison with other multi-modal ICL methods. We
have compared EMLoC with two other multi-modal in-
context learning methods, RICES (Alayrac et al., 2022) in
Flamingo and MTV (Huang et al., 2024a), on ImageNet100,
MME-RW, and OK-VQA in Table 4.2. RICES retrieves the
top 25% most relevant in-context samples from all samples.
MTV extracts the mean activation of in-context examples as
task vectors and finds the optimal replacement position of
these task vectors. During inference, MTV replaces these
task vectors at the optimal position of the test sample, which
fails to facilitate these tasks. Our EMLoC achieves better av-
erage performance across the three benchmarks. It’s worth
noting that RICES is an online retrieval-augmented method,
so it needs to forward the retrieved long context during each
inference step. RICES takes 5 hours inference time and
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Table 3. Comparison with other multi-modal in-context learning
(ICL) methods.

Method ImageNet100 MME-RW OK-VQA
MTV 32.7 27.8 -

RICES 64.5 40.5 58.5

EMLoC 63.7 42.2 58.7

Table 4. Comparison with fine-tuning methods on ImageNet100
with 200 examples, MME-RW with 20 examples, and OK-VQA
with 20 examples.

Method ImageNet100 MME-RW OK-VQA Average

M2PT 65.2 31.6 15.6 37.5
VPT 43.6 38.7 54.5 45.6
E2PT 48.6 39.0 55.8 47.8

Full Fine-tuning 64.7 42.7 49.7 52.4
LoRA 61.1 42.1 60.9 54.7

EMLoC 63.7 42.2 58.7 54.9

43G memory cost on ImageNet100, while our EMLoC re-
quires only 18 minutes with 18G memory, showing clear
advantages in efficiency.

Comparison with fine-tuning methods. EMLoC is a
training-free adaptation method that does not update any
parameters of the MLLM. With less adaptation time (144s),
EMLoC is comparable to LoRA (234s) (Hu et al., 2022)
and full fine-tuning (820s). Our EMLoC also surpasses
other PEFT methods, such as M2PT (Wang et al., 2024c),
VPT (Jia et al., 2022), and E2PT (Han et al., 2023a). The
training details of these PEFT methods and full fine-tuning
are depicted in Appendix E.1.

4.3. Ablation Studies

Comparison with other pruning strategies.

The layer-adaptive pruning strategy employs JS divergence
analysis to dynamically evaluate token importance across
layers. Unlike fixed pruning approaches, EMLoC maintains
superior performance through selective token preservation.
As evidenced in Table 5, at 22.4% compression on Ima-
geNet100, EMLoC sustains 63.7 while competitors suffer
significant degradation. This demonstrates our method’s ef-
fectiveness in identifying and retaining critical tokens. The
performance boundary emerges at extreme compression
(15.7%, δ=0.02), where EMLoC’s accuracy drops to 57.7,
indicating essential token removal, while conventional meth-
ods show paradoxical stability (47.3-48.2). This suggests
competing approaches fail to properly distinguish crucial
tokens even at moderate compression (22.4%), as their per-
formance collapses before reaching critical pruning thresh-
olds. A more comprehensive comparison with additional
pruning strategies across various metrics can be found in

Table 5. Comparison with other pruning strategies under the differ-
ent compression ratios on ImageNet100 with 200 demonstrations
and MME-RW with 20 demonstrations

Method ImageNet100 MME-RW
Ratio Acc Ratio Acc

MLCL 100% 62.6 100% 41.1
SnapKV/H2O 22.4% 47.6 20.4% 39.6
PyramidKV 22.4% 49.3 20.4% 39.8

EMLoC(Ours) 22.4% 63.7 20.4% 42.2
SnapKV/H2O 15.7% 47.3 14.1% 40.2
PyramidKV 15.7% 48.2 14.1% 39.4

EMLoC(Ours) 15.7% 57.7 14.1% 40.6

Figure 3. Performance and context length trends of EMLoC on
ImageNet100 with 200 examples across different δ values

Appendix C.1.

Results of different δ. Figure 3 presents the effect of vary-
ing the Jensen-Shannon divergence threshold. A higher
threshold results in greater compression but also leads to
increased information loss. As the threshold increases, both
accuracy and context length decrease. It demonstrates that
δ can effectively control the global upper bound ∆. The
default threshold of 0.005 is selected as a balance between
compression efficiency and performance preservation.

Results in various chunk lengths. Table 6 examines chunk
length impacts on computational efficiency and compres-
sion effectiveness. Longer chunks linearly increase mem-
ory demands and compression ratios while maintaining sta-
ble adaptation times (150s) and accuracy (62.4-63.7). Our
chunk-wise compression enables memory-efficient process-
ing without performance degradation - notably supporting
consumer GPUs (NVIDIA 4090) at 0.8k chunks with merely
1.3 accuracy drop. The default 1.6k configuration balances
memory usage (38G) and compression effectiveness (22.4
ratio), while extreme 3.2k lengths cause OOM errors.
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Table 6. Results in various chunk lengths and chunk numbers on
ImageNet100 with 200 demonstrations.

Chunk
Length

Chunk
Number

Adaptation
Time Acc Peak

Memory Ratio

0.8k 20 150s 62.4 24G 20.4
1.6k 10 144s 63.7 38G 22.4
2.4k 7 149s 63.4 44G 24.7
2.8k 6 142s 62.5 48G 26.3
3.2k 5 - - OOM -

Table 7. Results under different retention ratios.
Retention

Ratios
Context
Length Ratio Acc

0.1, 0.2, 0.5, 1.0 3643 22.4% 63.7
0.2, 0.5, 1.0 4952 30.4% 61.6

0.05, 0.1, 0.2, 0.5, 1.0 3421 21.0% 58.6
0.1, 0.2, 0.5, 0.8, 1.0 3728 22.9% 62.2

Results with different retention ratios. The retention ratio
r is selected greedily from an ascending predefined reten-
tion ratios set R, progressing to larger ratios until satisfying
the JS divergence constraint or reaching 1.0. Two distinct
patterns emerge based on the minimum ratio setting: When
significantly below optimal compression levels (e.g., 0.05
vs 22.4% optimal), δ becomes the dominant control factor.
As shown in Table 6 and Figure 3, this configuration en-
ables adaptive balancing - excessive layer compression is
offset by others retaining more tokens to meet JS constraints,
maintaining comparable overall ratios (21.0% vs 22.4%).
Near-optimal minimum ratios (e.g., 0.2) directly determine
final compression outcomes (30.4%). Based on empirical
observations, we recommend setting the minimum ratio to
approximately half of the optimal compression ratio. If the
minimum ratio is too small, the overall compression ratio
may not be sufficiently reduced, while simultaneously dis-
carding both important and redundant tokens at some layers.
The final retention ratios R are set to [0.1, 0.2, 0.5, 1.0].

Abalation studies observation window. For each token in
the multi-modal long context, we use the answer tokens as
the observation window to compute its importance score.
The answer tokens are the most critical elements in the
Image-Question-Answer pair, as they encapsulate the key
semantic information of the example. In Table 8, we com-
pare different observation windows. The results show that
answer tokens serve as an effective observation window,
while the question tokens and image tokens often include a
significant amount of irrelevant or noisy data. Furthermore,
as highlighted in the last row of Table 8, retaining answer
tokens yields better performance, further confirming that
answer tokens are crucial in multi-modal contexts.

Table 8. Abalation studies observation window. ∗ indicates pre-
serving all answer tokens in the memory.

Observation
Window

Context
Length Ratio Acc

Answer 3643 22.4% 61.9
Question+Answer 5304 32.6% 58.3

Image+Question+Answer 8796 54.0% 55.4
Answer∗ 3643 22.4% 63.7
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Figure 4. Remaining token number of EMLoC and PyramidKV
in ImageNet100 with 200 demonstrations and MME-RW with 20
demonstrations. The corresponding JS divergence after pruning is
also illustrated to demonstrate the advantage of EMLoC.

4.4. Visualization of Compression

Remaining token number across layers Previous stud-
ies (Xiao et al., 2024; Cai et al., 2024) suggest that ear-
lier layers in large language models (LLMs) are more im-
portant than later ones, advocating for a pyramid-shaped
pruning strategy. However, our layer-wise adaptive prun-
ing approach challenges this assumption, arguing that layer
importance should be determined dynamically based on
task-specific demonstrations rather than a fixed heuristic.

As shown in Figure 4, experiments on ImageNet100 and
MME-RW reveal that layer importance does not strictly
follow a pyramid structure. Instead, certain early layers
are particularly critical, as indicated by the spikes in Fig-
ure 4(a) and (c). Pruning tokens in these key layers causes
significant shifts in the model’s output distribution. For in-
stance, in Figure 4(b) and (d), applying PyramidKV pruning
to these layers leads to a sharp increase in JS divergence,
significantly degrading performance. The corresponding
performance metrics are provided in Table 5. Our findings
highlight that layers 4, 8, and 14 of Qwen2-VL are crucial
in both ImageNet100 and MME-RW, as they retain signifi-
cantly more tokens than adjacent layers.
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Figure 5. Distribution of pruned and reserved tokens.

Distribution of Pruned and Reserved Tokens. This study
serves as an initial exploration of multi-modal context com-
pression. As shown in Figure 5(a) and (c), image tokens
make up the majority of pruned tokens, suggesting that the
visual modality contains more redundancy than the textual
modality. Besides, Figure 5(b) and (d) indicate that fewer
image tokens are retained compared to text tokens, demon-
strating effective pruning of redundant visual information.
Additionally, variations in tasks may lead to differences in
their compression rates.

5. Conclusion
This paper presents EMLoC, a training-free method com-
bining chunk-wise compression with layer-wise adaptive
pruning to build a compact, task-specific memory for down-
stream tasks. Experiment results show EMLoC reduces
inference overhead while preserving strong performance in
multiple vision-language tasks, providing a scalable solution
for efficient multi-modal long context learning.
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A. Pseudo Code of Layer-wise Adaptive Pruning

Algorithm 1: Layer-wise Adaptive Pruning

Input: Ck ∈ RS : concatenated context of k-th chunk, where S = N
K × T ;

Dk ∈ RN
K ×T : demonstration examples of k-th chunk in a batch;

Mk−1: KV cache of previous k − 1 chunks;
Output: Mk: Compressed memory of k chunks.
Mk ← ExtractKV(Mk−1,Ck);
pori, α,H ← MLLM(Mk−1 ⊕Mk, Dk);
M̂k ←Mk;
for l← L to 1 do

βl ←
{∑

i∈ans index α
l
ij

}S

j=1
;

for r ∈ R ; // R is retention ratio set in ascending order
do

M̂l
k ←Ml

k

(
Topk(βl, r × S)

)
;

; // S is chunk length

piter ← MLLM(M≥l
k−1 ⊕ M̂≥l

k , H l);
ℓ← JS(pori, piter);
if ℓ ≤ δ then

break;
; // δ: JS divergence threshold

Mk ←Mk−1 ⊕ M̂k;

B. Prompt Template
In ImageNet100, 200 multi-modal examples are evenly divided into 10 chunks. Each image (224×224) is encoded into
approximately 64 tokens (may vary slightly due to dynamic aspect ratios), and the corresponding question-answer pair adds
around 20 tokens, resulting in about 80 tokens per example. Each chunk contains 20 examples (roughly 1.6k tokens). The
system prompt appears only at the start of the first chunk. Below is an example structure:

# Start of 1st chunk
<|im start|> system\n You are a helpful assistant.<|im end|>
## sample 1
<|im start|> user\n <|vision start|> <Image1.jpg> <|vision end|> What category
does the image belong to? <|im end|>
<|im start|> assistant\n <class 1>. <|im end|> ...
# Start of 2nd chunk
## sample 21
<|im start|> user\n <|vision start|> <Image21.jpg> <|vision end|> What category
does the image belong to? <|im end|>
<|im start|> assistant\n <class 11>. <|im end|> ...

For other image benchmarks, each image is encoded into 256 tokens (448×448 resolution). Each chunk has 4 examples,
resulting in a chunk size of 1.1k–1.6k tokens. For the YouCook2 video benchmark, each video with 8 frames is encoded
into 1024 tokens, with 4 videos per chunk, yielding a 4.7k chunk size. If sample lengths vary significantly, we use a greedy
algorithm to progressively fill each chunk up to a maximum size.
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Table 9. Comparison with other context compression methods on ImageNet100. EMLoC* increase the chunk number from 10 to 20 and
utilize a group-wise strategy to save adaptation memory and time.

Method Retention Ratio Adapt Time Adapt Memory Infer Time Infer Memory Acc

MLoC 100% 28s 62G 31m 19G 62.6
PyramidKV 22.4% 54s 34G 19m 17G 49.3

FastGen 36.0% 45s 38G 37m 21G 49.3
PyramidInfer 24.6% 41s 42G 21m 17G 55.6

EMLoC 22.4% 144s 38G 18m 17G 63.7
EMLoC* 27.6% 85s 24G 19m 17G 60.9

Table 10. Comparison with LongVA and MLoC on VideoMME w/o subtitles with 384 frames.

Method Context
Length

LLM
FLOPs

LLM
Time

Peak
Memory

Overall
ACC

LongVA 55.5k 1715.5T 22h 41G 51.8
MLoC 27.9k 554.8T 7h 38G 60.3

EMLoC 2.3k 272.0T 5h 24G 60.1

C. More Experiments
C.1. Comparison with other Pruning Strategies

In Section 4.3 and Table 5 of the original paper, we compared our adaptive EMLoC with two static KV-cache algorithms.
Table 9 extends this comparison (Table 5) by including PyramidInfer (Yang et al., 2024) and FastGen (Ge et al., 2023). Most
KV-cache methods focus on uni-modal text compression, but fail to maintain original performance with a high compression
ratio. EMLoC retains only 22.4% of tokens while achieving 63.7% accuracy, outperforming FastGen (49.3% accuracy
with 36% tokens) and PyramidInfer (55.6% accuracy with 24.6% tokens). Unlike existing KV-cache methods, EMLoC
effectively maintains the full-context performance while significantly reducing the context length, thus improving efficiency.

To optimize the trade-off between adaptation cost and inference performance, we explore increasing the chunk number
from 10 to 20 and a group-wise strategy (every two layers share the same retention ratio). This variant, EMLoC*, reduces
adaptation time from 144s to 85s and memory from 38G to 24G, at the cost of a slight accuracy degradation(63.7→60.9)
and a higher retention ratio (22.4% → 27.6). This allows for a flexible implementation in computation constrained scenarios.
The adaptation cost is significantly smaller compared with its gains in inference efficiency.

C.2. Experiment on Long-Video Benchmark.

In LongVA, each frame consists of 144 tokens, whereas in Qwen2-VL, 144 tokens represent every two frames through
temporal pooling. Compared to our baseline MLoC, EMLoC significantly reduces computational overhead while maintaining
nearly the same accuracy. Specifically, EMLoC reduces the average context length from 27.9k to just 2.3k tokens, LLM
FLOPs from 554.8T to 272.0T, inference time from 7 hours to 5 hours, and peak GPU memory from 38G to 24G, while
preserving a consistent accuracy (60.1 vs. 60.3).

To achieve this efficiency, we set δ = 0.04 and configure the retention ratio to: [0.02, 0.1, 0.5, 1.0]. Instead of optimizing the
retention ratio for each layer individually (layer-wise), we adopt a group-wise strategy, where every 14 layers are treated as
a single group and share the same retention ratio. This allows for a more stable and efficient selection process during online
inference. Under an identical setup (384 frames at the same resolution), both MLoC and EMLoC outperform LongVA while
requiring significantly fewer computations. EMLoC also enables real-time long-video understanding on consumer-grade
GPUs such as the NVIDIA 3090, making it a more practical solution for real-world applications.

C.3. Robustness of Hyper-parameters

Those parameters have clear meanings and are easy to adjust. For a high compression ratio, we can set a smaller retention
ratio and a higher JS threshold δ, and the optimal pruning strategy will be identified heuristically. Our method avoids
manually adjusting numerous parameters like FastGen (Ge et al., 2023) or PyramidInfer (Yang et al., 2024). Our experiments
also show that the default hyperparameters are stable across different tasks, as depicted in Table 11 and Table 12.
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Table 11. Robustness of JS Threshold δ. We show the performance under different δ values across tasks
δ ImageNet100 MME-RW OK-VQA

0.002 63.7 42.2 58.6
0.005 63.7 42.2 58.7
0.02 57.7 41.0 57.0

Table 12. Robustness of retention ratios across different tasks. We provide the performance under different retention ratios across tasks to
demonstrate the robustness.

Retention Ratios ImageNet100 MME-RW OK-VQA

[0.05, 0.1, 0.2, 0.5, 1] 58.6 41.6 58.3
[0.1, 0.2, 0.5, 1] 63.7 42.2 58.7

[0.2, 0.5, 1] 61.6 41.7 58.6

C.4. Impact of task disparity on EMLoC

The impact measurement follows the method in (Han et al., 2024), with some modifications. Given that Qwen2VL(MLLM)
is pretrained on millions of image-text pairs covering lots of vision-language tasks, we use zero-shot accuracy as an indicator
of the task disparity between downstream datasets and the pretraining datasets.

MLLMs perform well on OK-VQA (52.1%), suggesting that the data and task of OK-VQA are highly similar to those
seen during pretraining. Meanwhile, ImageNet100 achieves 28% accuracy, indicating moderate similarity. In contrast,
MedXpertQA only reaches 21.5% accuracy—near random chance in a five-choice QA—indicating significant dissimilarity.

Based on Table 13 and Table 14, the impact of task disparity can be summarized as follows:

• Low task disparity (OK-VQA, ImageNet100): When task disparity is low(highly or moderately similar to pretrained
data), our EMLoC adapts well to the downstream tasks. It outperforms full fine-tuning on OK-VQA when data is
limited, and achieves a average accuracy 48.2%, which is comparable to LoRA’s 47.8%.

• High task disparity & scarce data (MedXpertQA): All methods struggle. Adapting to truly novel tasks typically
demands extensive continued pretraining or finetuning (Lu et al., 2025).

• Larger downstream datasets(ImageNet100 with 200 examples): Full fine-tuning slightly outperforms both LoRA and
EMLoC, echoing (Han et al., 2024)’s finding that “full fine-tuning gradually closes the performance gap as dataset size
grows.”

• Other tasks with low disparity(see Table 1): EMLoC also facilitates on tasks with small task disparity, such as MME-RW
(OCR, remote sensing, driving), IllusionVQA (optical illusions), and YouCook2 (video captioning/activity recognition).

Table 13. Task disparity between downstream datasets and pretrained datasets.

Dataset Zero-Shot
Accuracy Task Similarity to

Pretrained Dataset
Task

Disparity
OK-VQA 52.1 common-sense QA Highly similar Low

ImageNet100 28.0 image classification Moderately similar Low
MedXpertQA 21.5 (near random) medical QA (medical image) Dissimilar High

D. Analysis of ∆
Our theoretical analysis establishes a linear relationship between the global JS distance

√
∆ and the chunk count K under

worst-case assumptions (Equation (16)). However, empirical observations reveal more nuanced behavior. As shown in
Figure 6(a), ∆ exhibits a strong positive correlation with the local constraint δ, aligning with our theoretical prediction that√
∆ ∝

√
δ. This confirms that δ effectively governs the global information loss, enabling practitioners to reliably control

compression quality through this single parameter.
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Table 14. Impact of task disparity on different adaptation methods.
Method OK-VQA ImageNet100 MedXpertQA Average

Baseline (Qwen2-VL) 52.1 28.0 21.5 33.9
LoRA 60.9 61.1 21.5 47.8

Full Fine-tuning 49.7 64.7 22.0 45.5
EMLoC 58.7 63.7 22.2 48.2
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Figure 6. Trend of ∆ on various δ and K.

Notably, Figure 6(b) demonstrates that ∆ remains stable within a narrow range across varying K values when δ is fixed.
This diverges from the theoretical upper bound’s linear dependence on K, suggesting our worst-case analysis accommodates
challenging scenarios where chunk dependencies might compound errors. In practice, however, the weak inter-chunk
dependencies in real-world datasets prevent error accumulation across compression steps. Consequently, the effective upper
bound simplifies to ∆ ≤ γδ, where γ is a small constant (typically γ ≤ 2 in our experiments), rather than scaling with K.

This phenomenon has important practical implications:

• Hyperparameter tuning focuses primarily on δ, substantially reducing configuration complexity

• Users can freely increase K to minimize memory usage without compromising information integrity

Our method thus achieves an optimal balance between theoretical rigor and practical usability - while the theoretical bound
guarantees robustness, the empirical independence between chunks enables memory-efficient compression through large K
values. This dual advantage makes our approach particularly suitable for long-context applications where GPU memory
constraints are critical.

E. More Implementation Details
E.1. Training Details

In Table 4, we compare EMLoC with some fine-tuning methods, such as LoRA (Hu et al., 2022), fine-tuning, M2PT (Wang
et al., 2024c), VPT (Jia et al., 2022), and E2PT (Han et al., 2023a).

In LoRA adaptation, we apply LoRA adapters to all linear modules of the LLM, including qkv proj, out proj, up proj, and
down proj, while keeping the vision encoder and multi-modal projector frozen. The rank and alpha are set to 16 and 32,
respectively. In full fine-tuning, only the LLM is fine-tuned with DeepSpeed ZeRO-3, leaving other parameters frozen.
Other unspecified settings follow the default configurations in LLaMAFactory. The detailed hyperparameters are reported in
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Table 15 and Table 16.

Table 15. Hyperparameters for LoRA training

Hyperparameter Value

Optimizer AdamW
learning rate 3e-5

batch size 8
warmup ratio 0.1

epochs 5
clip norm 1.0

Table 16. Hyperparameters for full fine-tuning

Hyperparameter Value

Optimizer AdamW
learning rate 1e-5

batch size 8
warmup ratio 0.1

epochs 1
clip norm 1.0

For other PEFT methods, following the default configuration in M²PT (Wang et al., 2024c), the number of visual prompts
and textual prompts is 20 and 10, respectively. The learning rate is set to 7e-4. The number of KV prompt token is 5. For
Imagenet100, we optimize 5 epochs with 125 steps. For MME-RW and OK-VQA, we just fine-tune 25 steps.

E.2. Dataset Details

We evaluate our method on ImageNet100, a subset of ImageNet-1k (Deng et al., 2009) with the first 100 classes for
inference efficiency. Demonstration examples are uniformly sampled from the training set, ensuring even distribution
per class. For instance, in the 200-example setting, each class contributes two examples. Evaluation is conducted on the
full validation set with 5000 images. Additionally, we evaluate on several other benchmarks: ScreenSpot(Cheng et al.,
2024) for GUI grounding across diverse platforms, MME-RW(Zhang et al., 2024c) for real-world tasks such as OCR,
remote sensing, and autonomous driving, IllusionvQA(Shahgir et al., 2024) for evaluating optical-illusion understanding,
OK-VQA(Marino et al., 2019) for open-ended question answering using external knowledge, and YouCook2 (Zhou et al.,
2018) for cooking-video-related tasks, e.g., captioning or activity recognition.
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