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Situation awareness is a key technology in many decision systems, but its performance bottleneck 
in the third step, namely situation prediction, has not been overcome yet. This step involves 
time series prediction and commonly uses deep learning methods. However, there are significant 
performance differences among these methods, and the tuning of their hyperparameters has not 
been thoroughly investigated. To address these challenges, a novel prediction method named 
Distributed Improved Gray Wolf Optimizer-Neural Basis Expansion Analysis for Time-Series 
(DIGWO-N-BEATS) is proposed for situation prediction tasks. First, an architecture based on N-

BEATS, which is a cutting-edge paradigm, is formulated for modeling situation value time series. 
Second, a novel improved evolutionary algorithm, which can converge in parallel, is proposed to 
optimize thirteen hyperparameters and the model structures of N-BEATS. The experiment results 
demonstrate that DIGWO-N-BEATS outperforms the six most competitive baselines, reducing the 
average MAPE on two real-world situation awareness datasets and two time-series prediction 
datasets by 8.18%, 1.12%, 9.92%, and 4.98%, respectively. Furthermore, DIGWO-N-BEATS 
exhibits good convergence in hyperparameter optimization tasks and scalability.

1. Introduction

Situation Awareness (SA) is the perception and understanding of the elements in a given environment over a specific time and 
space, also involves anticipating their future status. SA plays a crucial role in risk assessment and information systems, involving three 
key levels: perception, comprehension, and projection [1]. The highest level of SA involves the ability to project future states. In this 
work, our research goal is to achieve higher performance in situation prediction. In previous practice, we have treated these projection 
tasks as time series prediction tasks, where the situation values (or states) are arranged in a time series and fragmented using the 
sliding window mechanism [2]. Recently, deep learning has gained significant attention in the realm of time-series prediction and 
has made significant improvements in situation prediction as well, especially with various recurrent neural networks (RNN) [3–6]. 
However, the RNN-based prediction models’ performance is still unsatisfactory.

N-BEATS, proposed by Oreshkin et al. [7], is a cutting-edge paradigm that has proven excellent nonlinear mapping ability on 
challenging benchmark datasets of time series prediction, and it is computationally efficient. N-BEATS has achieved State-Of-The-Art 
(SOTA) results on multiple time series prediction tasks, except for situation prediction tasks. However, despite significant progress, 
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the global optimization of hyperparameters of deep neural networks including N-BEATS remains a challenging problem in deep 
learning.

Hyperparameter optimization not only reduces human efforts but also improves the performance of deep learning networks [8]. 
For hyperparameter optimization, the majority of existing deep learning models use grid search (GS) or simple heuristic algorithms 
in time series prediction or other relevant tasks [9,10]. On the one hand, these optimization algorithms lack sufficient optimization 
capabilities and explore all potential valuable combinations of the hyperparameters, which can result in poor performance and inef-

ficiency in practice. On the other hand, these optimization algorithms cannot be directly applied to the hyperparameter optimization 
task of N-BEATS due to its unique parameters, which include both training-hyperparameters and structure-hyperparameters (such 
as block per stack, stake number, stack type, etc.). Currently, there is a lack of optimization methods to simultaneously optimize 
training-hyperparameters and structure-hyperparameters of N-BEATS.

In summary, our research motivations are concluded as follows.

• N-BEATS is a cutting-edge paradigm that has been demonstrated with significant improvements for modeling time-series data 
over RNN-based models, but its feasibility in situation prediction tasks is yet to be proven.

• N-BEATS is expected to perform well in situation prediction, however, the field lacks in-depth investigation of more advanced 
tuning techniques. No research has yet identified all the hyperparameters requiring optimization for N-BEATS.

• An enhanced time-efficient, robust, and generalizable optimization method is required for the hyperparameter optimization task 
of N-BEATS.

In this work, we propose an improved evolutionary heuristic algorithm for hyperparameters of N-BEATS to train N-BEATS with a 
better structure and performance. The proposed heuristic algorithm is termed DIGWO, standing for Distributed Improved Gray Wolf 
Optimizer, with the purpose of accelerating algorithm efficiency and improving searching ability. Moreover, we propose DIGWO-N-

BEATS by combining the two to predict future situations. Our work’s main contributions are summarized as follows:

• We used N-BEATS for the first time to achieve situation prediction in this field.

• We have identified all hyperparameters that significantly affect N-BEATS performance. This study is the first to leverage a 
heuristic algorithm to optimize all thirteen hyper-parameters that affect the performance of N-BEATS.

• We propose a novel Distributed Improved Gray Wolf Optimizer, called DIGWO, which enables us to efficiently discover the 
unknown hyper-parameter combination of N-BEATS without much prior knowledge. We have developed a new fitness function 
for N-BEATS that optimizes hyperparameters while maintaining the lightweight structure of N-BEATS.

• We verify the effectiveness and superiority of DIGWO and DIGWO-N-BEATS by extensively testing and comparing them on two 
situation prediction datasets and two real-world time series datasets.

The remainder of the paper is organized as follows. Section 2 delivers a detailed review of situation prediction research and 
N-BEATS. Section 3 introduces preliminaries of the situation prediction task and N-BEATS. Section 4 demonstrates the proposed 
DIGWO-N-BEATS and the proposed key algorithm DIGWO. Section 5 reports experimental results and analysis. Lastly, the paper 
concludes with a discussion of its limitations and recommendations for future research.

2. Related work

2.1. Situation prediction

In the process of building practical models, situation prediction, which is an important part of situation awareness, is always 
experimented by situation time series for future situations. This application of machine learning in building situation prediction 
models has led to a significant improvement in the accuracy of data mining. The reviewed works fall into two categories: the 
parametric methods and the non-parametric methods. The parametric methods include autoregressive integrated moving average 
(ARIMA), Grey model, Kalman filtering, etc. However, due to the complex, stochastic, and time-varying relationship between past 
time series and present time series of situation value, the above parametric methods cannot depict situation value time series precisely 
with the limited distributional assumptions. The non-parametric methods are mainstream methods, which consisting support vector 
regression (SVR), radial basis function neural network (RBFNN), back propagation neural network (BPNN), various RNNs, and so on. 
Table 1 provides an overview of the reviewed methods.

For Network Security Situation Awareness (NSSA), represented by long short-term memory (LSTM), various RNNs are the main-

stream prediction models. In order to improve prediction accuracy, Zhao et al. [14] proposed a fusion model with a convolutional 
neural network (CNN) and LSTM, and used particle swarm optimization (PSO) to optimize the hyperparameters of the fusion model. 
Some other works have adopted similar improvements. Wang et al. [11] proposed the hybrid hierarchy genetic algorithm (HHGA) 
to optimize RBFNN, which is used to predict network security situations. Zhang et al. [13] used sparrow search algorithm (SSA) 
to optimize the weight of BPNN and predicted future cyber security situations. Transformer is a widely used model for time series 
prediction, proposed in 2017. Yin et al. [18] proposed a new model for predicting network security situations by integrating Tem-

poral Convolutional Network (TCN) with Transformer to enhance its capability to handle nonlinearity. By leveraging the simplicity, 
autoregressive prediction, and long memory inherent in convolutional architectures for sequential data, the combined model aims 
2

to improve the Transformer’s predictive performance in network security situations. To clean the situation data, Wen et al. [19]
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Table 1

Summary of prediction methods in situation prediction.

Reference Year Field Prediction Method

[17] 2020 Mining safety situation prediction PSO+ GRU

[11] 2020 Network Security situation awareness GA+RBF

[12] 2021 Situation awareness in intersection waterways LSTM

[13] 2022 Network Security situation awareness SSA+BPNN

[14] 2022 Network Security situation awareness PSO + ABiLSTM

[4] 2022 Maritime situation awareness and safety LSTM

[15] 2022 Power system situation awareness LSTM+MLP

[16] 2022 Pipeline risk situation awareness GS+SVR

[18] 2022 Network security situation awareness TCN +Transformer

[6] 2022 CAN bus security situation awareness SDAE+BI-LSTM

[19] 2023 Network security situation awareness Gauss+GRU

additionally introduced Gauss kernel density estimation to remove redundant data. They established a gate recurrent unit (GRU) 
to effectively extract features from the network security situation data and automatically mine the hidden relationships and the 
changing trend of situations, resulting in future network security situations from an all-around perspective.

For situation awareness of other scenarios, various RNNs remain the mainstream prediction models. Ma et al. [12] proposed 
an accumulated long short-term memory to capture the complex and variable movements of individual vessels. This technique 
helps establish connections between different ship motion patterns and intentions, ultimately enhancing situation awareness in 
intersection waterways. As part of enhancing maritime situation awareness, Billiah et al. [4] used LSTM to encode sequential data in 
automated identification systems for forecasting future vessel trajectories. To model long-range dependencies between time series, 
An et al. [15] predicted the transient stability margin based on the LSTM with an attention mechanism to ensure accurate situation 
awareness of power system operators in terms of transient stability. Chen et al. [6] developed a situation awareness method called 
SDAE+Bi-LSTM for the CAN bus. They additionally used a stacked denoising auto-encoder (SDAE) to compress the noisy CAN data 
and a bidirectional LSTM to further capture the periodic features to improve the accuracy of future situation prediction. Several 
researchers have observed the performance improvements resulting from model hyperparameters. Zhong et al. [16] adopted SVR 
optimized by the grid search to predict underground pipeline risk situations. Li et al. [17] utilized a PSO-optimized GRU model to 
predict mine safety conditions and implemented the prediction model in a fog computing facility.

2.2. N-BEATS for time series prediction

N-BEATS is a cutting-edge paradigm that has demonstrated excellent nonlinear mapping ability on various time series prediction 
tasks including traffic flow prediction, battery life prediction, cryptocurrency value prediction, probabilistic and electricity load 
forecasting, etc. N-BEATS possesses three desirable properties: interpretable, applicable without modification to target domains, 
and fast training. Oreshkin et al. [7], authors of N-BEATS, demonstrated that BEATS is effective at solving the mid-term electricity 
load prediction problem [24]. To alleviate the inexplicability of macroeconomic prediction models, Wang et al. [20] proposed 
an interpretable purely data-driven approach called EcoForecast for macroeconomic forecasting based on N-BEATS. EcoForecast 
showcased strong stability and accuracy across various learning scenarios. Ma et al. [21] constructed multiple degradation features 
instead of relying on a single feature to improve fault prognosis accuracy. They used N-BEATS to predict the future evolution for 
each feature with high volatility. Su et al. [22] predicted the Solar Cycle 25 using N-BEATS, which was trained and evaluated with 
13 months of smoothed monthly total sunspot numbers. Similarly, Anwar et al. [23] utilized N-BEATS for forecasting meteorological 
solar radiation. Shaikh et al. [25] improved N-BEATS by utilizing a large dataset containing energy consumption data from 169 smart 
grid customers and incorporated covariates into N-BEATS, addressing the challenges faced by deep learning models when applied to 
large datasets with profiles of different smart grid customers. The model yielded superior predictions for daily, weekly, and monthly 
energy consumption. El Majzoub et al. [26] argue that N-BEATS, due to its characteristics, can predict cryptocurrency returns and 
perform trend and seasonality decomposition on cryptocurrency return data. Wen et al. [27] proposed a deep-learning forecasting 
model based on N-BEATS to guarantee coverage for probabilistic short-term load forecasting in the smart grid and simultaneously 
narrow the prediction interval width. In their approach, they also utilized conformal quantile regression to calibrate the constructed 
prediction interval by using the residuals in a held-out validation. Zhang et al. [8] employed N-BEATS for real-world traffic flow 
prediction. They also used a differential evolution algorithm to optimize the hyperparameters of N-BEATS, achieving an accuracy of 
at least 94% and reducing computational expenses by up to 78.90%.

2.3. Optimized N-BEATS

N-BEATS is a new deep learning model proposed in recent years, and its optimization method has not been widely researched. 
Jatin Bedi et al. [28] proposed a lightweight STOrage workload time series prediction method, which integrates N-BEATS with a 
3

multi-input–multi-output windowing strategy to better capture the historical storage variation patterns of the workload data. To 
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Table 2

Key notations (Excluding notations in Table 3).

Notations Definition Notations Definition

𝑠𝑣 Situation value 𝑆𝑉 Situation value time series

𝑆𝑉 ′ 𝑆𝑉 to be predicted 𝑆𝐿 Length of 𝑆𝑉 to be predicted

Δ𝑡 Time interval of timestamp 𝑠𝑒𝑟𝑖𝑒𝑠 Input of block

𝑥𝑠𝑒𝑟𝑖𝑒𝑠 Backcast output of block 𝑟𝑒𝑠𝑢𝑙𝑡 Forecast output of block

𝐹𝐶 Fully connected layer with Relu activation function 𝐿𝑖𝑛𝑒𝑎𝑟 Fully connected layer with Linear activation function

𝜃𝑓 , 𝜃𝑏 Expansion coefficient 𝑣𝑏, 𝑣𝑓 Forecast and backcast basis vectors

𝑔𝑏𝑠𝑒𝑟𝑖𝑒𝑠(), 𝑔
𝑓
𝑠𝑒𝑟𝑖𝑒𝑠() Function that constrains the structure of outputs 𝑦𝑚, 𝑦

′
𝑚

True value, Predicted value

𝑢𝑏𝑖, 𝑙𝑏𝑖 Lower and upper bounds 𝑁𝑝𝑜𝑝 Population size

𝑋,𝑋𝐺𝑊𝑂,𝑋𝐷𝐼𝐺𝑊𝑂 Position vector 𝐶,𝐴 Coefficient vector

𝑟1, 𝑟2, 𝑟3 Random number 𝜆 Distance control parameter

𝑀𝑎𝑥𝐼𝑡𝑒𝑟 Maximum number of iterations 𝑑 Number of variables

𝑁𝑒𝑎𝑟 Wolve’s neighbors 𝑅 Hunting radius of wolve

address low forecast accuracy due to high volatility, Zhang et al. [29] used TCN to extract high-dimensional features from time series 
data as the inputs of N-BEATS. However, the above two optimization methods have poor generalization.

Li et al. [30] proposed a short-term wind power prediction model based on a TCN to address the limitations of N-BEATS, which 
only supports univariate input and overlooks the short-term impact of meteorological factors like wind direction. The proposed 
model optimizes N-BEATS by incorporating multivariate inputs. Specifically, they designed a TCN stack composed of TCN blocks, 
which enhances the capability of the standard N-BEATS network to handle multivariate inputs. Similarly, Karamchandani et al. [31]

expanded the N-BEATS model to include both exogenous and endogenous variables for the prediction of automated guided vehicle 
deviation.

The above research did not take into account the optimization of N-BEATS hyperparameters, which could lead to notable 
performance enhancements. Zhang et al. [8] adopted differential evolution (DE) algorithm to optimize nine hyperparameters of 
N-BEATS. Similarly, Xu et al. [32] adopted SSA to optimize five hyperparameters of N-BEATS to predict the day-ahead electricity 
price more accurately. Heuristic algorithms are ideal for optimizing N-BEATS hyperparameter problems, which can be classified as 
NP-hard [33,34]. However, they did not research all the hyperparameters of N-BEATS’s structure, and the optimization ability of DE 
and SSA is poor.

3. Preliminaries

Table 2 provides a key notation table to aid readers in understanding the equations in our methodology.

3.1. Situation prediction tasks

Definition 1. (Situation value time series): A situation value time series is a set of random variables 𝑠𝑣𝑡, 𝑡 ∈ 𝑇 , which can be denoted 
as 𝑆𝑉 . 𝑠𝑣𝑡 indicates the result of the situation assessment distributed based on some univariate probability distribution function. 𝑇
indicates a set of timestamps with equidistant time intervals Δ𝑡.

Definition 2. (Situation prediction): Situation prediction is to estimate future situation values. The set of fully observed situation 
values at timestamps 𝑇 = {1, 2, ..., 𝑡} can be denoted as 𝑆𝑉 = {𝑠𝑣1, 𝑠𝑣2, ..., 𝑠𝑣𝑡}. The objective of situation prediction is to predict the 
situation value at {𝑡 +1, 𝑡 +2, ..., 𝑡 +𝑆𝐿}, denoted by 𝑆𝑉 ′ = {𝑠𝑣′

𝑡+1, 𝑠𝑣
′
𝑡+2, ..., 𝑠𝑣

′
𝑡+𝑆𝐿}. 𝑆𝐿 indicates the length of situation value time 

series to be predicted.

3.2. N-BEATS

The base architecture of N-BEATS is simple and generic, yet expressive. N-BEATS has two unique model structures, including: 
block and stack, which are depicted in Fig. 1 [7].

The 𝑖-th block accepts its respective input 𝑠𝑒𝑟𝑖𝑒𝑠 and outputs two vectors, 𝑥𝑠𝑒𝑟𝑖𝑒𝑠 and 𝑟𝑒𝑠𝑢𝑙𝑡. For the first block, its respective 
𝑠𝑒𝑟𝑖𝑒𝑠 is the input of overall N-BEATS. For the remaining blocks, their inputs 𝑠𝑒𝑟𝑖𝑒𝑠 are residual outputs of previous blocks.

The operation of a fully connected network of the 𝑖-th block can be described as

ℎ𝑠𝑒𝑟𝑖𝑒𝑠,1 = 𝐹𝐶𝑠𝑒𝑟𝑖𝑒𝑠,1(𝑥𝑠𝑒𝑟𝑖𝑒𝑠), (1)

ℎ𝑠𝑒𝑟𝑖𝑒𝑠,4 = 𝐹𝐶𝑠𝑒𝑟𝑖𝑒𝑠,4(𝐹𝐶𝑠𝑒𝑟𝑖𝑒𝑠,3(𝐹𝐶𝑠𝑒𝑟𝑖𝑒𝑠,2(ℎ𝑠𝑒𝑟𝑖𝑒𝑠,1))), (2)
4

𝜃𝑏𝑠𝑒𝑟𝑖𝑒𝑠 =𝐿𝑖𝑛𝑒𝑎𝑟
𝑏
𝑠𝑒𝑟𝑖𝑒𝑠(ℎ𝑠𝑒𝑟𝑖𝑒𝑠,4), 𝜃

𝑓
𝑠𝑒𝑟𝑖𝑒𝑠 =𝐿𝑖𝑛𝑒𝑎𝑟

𝑓
𝑠𝑒𝑟𝑖𝑒𝑠(ℎ𝑠𝑒𝑟𝑖𝑒𝑠,4). (3)
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Fig. 1. N-BEATS. It predicts basis expansion coefficients both forward 𝜃𝑓 (forecast) and backward 𝜃𝑏 (backcast). {𝐵𝑙𝑜𝑐𝑘𝑠1, 𝐵𝑙𝑜𝑐𝑘2, ..., 𝐵𝑙𝑜𝑐𝑘𝐵𝑃𝑆} are organized 
into stacks according to the principle of doubly residual stacking. {𝑆𝑡𝑎𝑐𝑘𝑠1, 𝑆𝑡𝑎𝑐𝑘2, ..., 𝑆𝑡𝑎𝑐𝑘𝑆𝑁} may have layers with shared 𝑔𝑏 and 𝑔𝑓 . Finally, the forecasts are 
hierarchically aggregated.

Then, N-BEATS maps expansion coefficients 𝜃𝑓 and 𝜃𝑏 to outputs via basis layers 𝑥𝑠𝑒𝑟𝑖𝑒𝑠 and 𝑟𝑒𝑠𝑢𝑙𝑡, which are calculated as

𝑥𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑔𝑏𝑠𝑒𝑟𝑖𝑒𝑠(𝜃
𝑏
𝑠𝑒𝑟𝑖𝑒𝑠,𝑖) =

𝑑𝑖𝑚(𝜃𝑏𝑠𝑒𝑟𝑖𝑒𝑠)∑
𝑖=1

𝜃𝑏𝑠𝑒𝑟𝑖𝑒𝑠,𝑖 ⋅ 𝑣
𝑏
𝑖 , (4)

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑔𝑓𝑠𝑒𝑟𝑖𝑒𝑠(𝜃
𝑓
𝑠𝑒𝑟𝑖𝑒𝑠,𝑖) =

𝑑𝑖𝑚(𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠)∑
𝑖=1

𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠,𝑖 ⋅ 𝑣
𝑓
𝑖 . (5)

Where, 𝑣𝑏𝑖 and 𝑣𝑓𝑖 are forecast and backcast basis vectors, 𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠,𝑖 is the 𝑖-th element of 𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠. The function 𝑔𝑏𝑠𝑒𝑟𝑖𝑒𝑠() and 𝑔𝑓𝑠𝑒𝑟𝑖𝑒𝑠()

is to provide sufficiently rich sets {𝑣𝑏𝑖 }
𝑑𝑖𝑚(𝜃𝑏𝑠𝑒𝑟𝑖𝑒𝑠)
𝑖=1 and {𝑣𝑓𝑖 }

𝑑𝑖𝑚(𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠)
𝑖=1 such that their respective outputs can be represented adequately 

via varying 𝜃𝑏𝑠𝑒𝑟𝑖𝑒𝑠 and 𝜃𝑓𝑠𝑒𝑟𝑖𝑒𝑠. Each block has three types, including generic block, trend block, and seasonality block, corresponding 
to different 𝑔𝑏𝑠𝑒𝑟𝑖𝑒𝑠() and 𝑔𝑓𝑠𝑒𝑟𝑖𝑒𝑠(). The outputs of generic block are described as Eq. (5). For the trend block and seasonality block, the 
notion of stack is necessary. So, we adopt 𝑟𝑒𝑠𝑢𝑙𝑡𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 to denote the partial forecast of 𝑠𝑒𝑟𝑖𝑒𝑠-th block within 𝑠-th stack. Trend block 
and seasonality block are described as

𝑟𝑒𝑠𝑢𝑙𝑡𝑠,𝑠𝑒𝑟𝑖𝑒𝑠 =

⎧⎪⎪⎨⎪⎪⎩

∑𝑝𝑑
𝑖=0 𝜃

𝑓
𝑠,𝑠𝑒𝑟𝑖𝑒𝑠,𝑖 ⋅ 𝑣𝑡

𝑖, 𝑠𝑒𝑟𝑖𝑒𝑠-th block is a trend block

∑⌊(𝑆𝐿∕2)−1⌋
𝑖=0 𝜃𝑓𝑠,𝑠𝑒𝑟𝑖𝑒𝑠,𝑖𝑐𝑜𝑠(2𝜋𝑖𝑡) + 𝜃

𝑓
𝑠,𝑠𝑒𝑟𝑖𝑒𝑠,𝑖+⌊𝑆𝐿∕2⌋𝑠𝑖𝑛(2𝜋𝑖𝑡)

, 𝑠𝑒𝑟𝑖𝑒𝑠-th block is a seasonality block

(6)

For the trend block, N-BEATS constrains 𝑔𝑏𝑠,𝑠𝑒𝑟𝑖𝑒𝑠() and 𝑔𝑓𝑠,𝑠𝑒𝑟𝑖𝑒𝑠() to be a polynomial of degree 𝑝𝑑. And, 𝑣𝑡 = [0, 1, ..., 𝑆𝐿 − 2, 𝑆𝐿 −
1]𝑇 ∕𝑆𝐿 indicates time vector and is defined on a discrete grid running from 0 to (𝑆𝐿 − 1)∕𝑆𝐿, predicting 𝑆𝐿 steps ahead. For the 
seasonality block, N-BEATS constrains 𝑔𝑏𝑠,𝑠𝑒𝑟𝑖𝑒𝑠() and 𝑔𝑓𝑠,𝑠𝑒𝑟𝑖𝑒𝑠() to be the class of periodic functions, i.e., 𝑟𝑒𝑠𝑢𝑙𝑡𝑡 = 𝑟𝑒𝑠𝑢𝑙𝑡𝑡−Δ, where Δ
is a seasonality period. Obviously, different datasets have different the most suitable combinations of blocks.

Oreshkin et al. introduced a new hierarchical doubly residual topology comprising two different residual branches. One branch is 
responsible for running the backcast prediction of each layer, while the other branch deals with the prediction branch of each layer. 
It can be described as

𝑥𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑥𝑠𝑒𝑟𝑖𝑒𝑠−1 − ̂𝑥𝑠𝑒𝑟𝑖𝑒𝑠−1, 𝑟𝑒𝑠𝑢𝑙𝑡 =
∑
𝑠𝑒𝑟𝑖𝑒𝑠

̂𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑒𝑟𝑖𝑒𝑠 (7)

The structure enables smoother gradient back-propagation by employing a hierarchical decomposition where each block generates 
a partial prediction. These prediction results ̂𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑒𝑟𝑖𝑒𝑠 are aggregated first at the stack-level and then at the overall model-level of 
5

N-BEATS.
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Fig. 2. Workflows of DIGWO-N-BEATS for situation prediction. Where, the complete process of DIGWO is shown in Section 4.4.

Table 3

Summary of hyperparameters that significantly affect the performance of N-BEATS.

Type Parameter Range

Model structure hyperparameters

coefficient of 𝑆𝐿: 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 𝑆𝐿 ∈ {2,3,4,5,6,7}
hidden units: 𝐻𝑈 𝐻𝑈 ∈ [10,500],𝐻𝑈 ∈ℤ+

thetas dim: 𝑇𝐷 𝑇𝐷 ∈ [1,20], 𝑇𝐷 ∈ℤ+

stake number: 𝑆𝑁 𝑆𝑁 ∈ [0,8], 𝑆𝑁 ∈ℤ+

Block type: 𝐵𝑇 𝐵𝑇 ∈ {0,1,2}
block per stack: 𝐵𝑃𝑆 𝐵𝑃𝑆 ∈ [1,10],𝐵𝑃𝑆 ∈ℤ+

whether to share all weights within the stack: 𝛼𝑠ℎ𝑎𝑟𝑒 𝛼𝑠ℎ𝑎𝑟𝑒 ∈ {0,1}

Training hyperparameters

batch size: 𝐵𝑆 𝐵𝑆 ∈ [10,512]
learning rate: 𝐿𝑅 𝐿𝑅 ∈ [0.0001,0.1]
weight decay: 𝑊𝐷 𝑊𝐷 ∈ [0,1]
exponential decay rate: 𝐸𝐷𝑅 𝐸𝐷𝑅 ∈ [0,1]
2nd learning rate decay: 𝐸𝐷𝑅′ 𝐸𝐷𝑅′ ∈ [0,1]

4. Methodology

The workflow of the proposed situation prediction method is depicted in Fig. 2. It contains a data processing module, a hyperpa-

rameter optimization module, and a situation prediction module. First, the historical results of situation awareness are time-serialized 
and divided into a training dataset and a validation dataset. Second, the DIGWO, which forms the core of this paper, was utilized 
to optimize the hyperparameters of NBEATS through the segmented training and validation datasets. This optimization process is 
parallelized by Spark. Finally, the future situation values are predicted by the N-BEATS trained with optimized hyperparameters. In 
the remaining, we will present the details about DIGWO and DIGWO-N-BEATS for situation prediction.

4.1. DIGWO of independent variable (hyperparameters of N-BEATS)

The goal of DIGWO is to find an optimal hyperparameter set that affects the performance of N-BEATS. After extensive analysis 
and experiments, we have summarized all the hyperparameters that significantly affect the performance of N-BEATS, as shown in 
Table 3.

We use Adam as an optimizer to train the N-BEATS model. A detailed description of part of the optimized hyperparameters is as 
follows:

• 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 determines the length of the 𝑆𝑉 , which is used to predict 𝑆𝑉 ′. Oreshkin et al. [7] proposed an empirical formula as 
follows.

𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑉 ) =𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∗ 𝑆𝐿,𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ∈ {2,3,4,5,6,7} (8)

• 𝐻𝑈 represents the number of hidden units in the first four FC layers (Relu activation) in the block.

• 𝑇𝐷 represents the number of hidden units in the last two FC layers (Linear activation) in the block.

• 𝑆𝑁 represents the number of additional stakes in the N-BEATS. To make the solution quality of DIGWO higher, we keep the 
default value of 𝑆𝑁 of N-BEATS [7], i.e., a N-BEATS has 𝑆𝑁 + 2 stakes.
6

• 𝐵𝑃𝑆 represents the number of blocks in the stakes of N-BEATS. Each stack has at least one block.
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• 𝐵𝑇 determines the type of blocks in the stakes of N-BEATS. To make the solution quality of DIGWO higher, we keep the default 
value of 𝐵𝑇 of N-BEATS [7]. By default, a N-BEATS has one stake with 𝐵𝑃𝑆 trend block and one stake with 𝐵𝑃𝑆 seasonality 
block. If 𝐵𝑇 = 0, a N-BEATS has one stake with 𝐵𝑃𝑆 trend block, one stake with 𝐵𝑃𝑆 seasonality block, and 𝑆𝑁 stake with 
𝐵𝑃𝑆 generic blocks; if 𝐵𝑇 = 1, a N-BEATS has 𝑆𝑁 +1 stake with 𝐵𝑃𝑆 trend blocks and one stake with 𝐵𝑃𝑆 seasonality block; 
if 𝐵𝑇 = 2, a N-BEATS has one stake with 𝐵𝑃𝑆 trend blocks and 𝑆𝑁 + 1 stake with 𝐵𝑃𝑆 seasonality block.

• 𝛼𝑠ℎ𝑎𝑟𝑒 determines whether all weights are shared within the stack. 𝛼𝑠ℎ𝑎𝑟𝑒 is a boolean.

• 𝑊𝐷 determines the decay range of learning rate 𝐿𝑅 with each epoch. The relevant formula is

𝐿𝑅𝑖+1 =𝐿𝑅𝑖 ∗
1

1 +𝑊𝐷 + 𝑒𝑝𝑜𝑐ℎ
, 𝑖 ∈ {1,2,3, ..., 𝑒𝑝𝑜𝑐ℎ} (9)

• 𝐸𝐷𝑅 represents the exponential decay rate for the 1st moment estimates.

• 𝐸𝐷𝑅′ represents the exponential decay rate for the 2nd moment estimates.

Other hyperparameters are common, so no explanation will be provided.

4.2. DIGWO of dependent variable (fitness function)

The fitness function is the basis for evaluating the solution. The fitness function we proposed consists of two parts: prediction 
error and structure lightweight, which can be defined as

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1
𝑆𝐿

𝑆𝐿∑
𝑚=1

‖ 𝑦̃𝑚 − 𝑦𝑚
𝑦𝑚

‖+ (𝑍𝑜𝑜𝑚(𝑆𝑁) +𝑍𝑜𝑜𝑚(𝐵𝑃𝑆)) (10)

We convert the multi-objective optimization problem into a new single objective optimization problem through addition. The new 
optimization problem can be classified as NP-hard. 𝑦̃ denote the forecast result of 𝑦. We examine the univariate point prediction prob-

lem in discrete time. The prediction error is quantified by MAPE, which is a widely used fitness function. The structure lightweight is 
quantified by 𝑍𝑜𝑜𝑚(𝑆𝑁) +𝑍𝑜𝑜𝑚(𝐵𝑃𝑆). 𝑍𝑜𝑜𝑚(𝑝𝑖) refers to zoom the 𝑝𝑖 to [0, 1] according to 𝑢𝑏𝑖 and 𝑙𝑏𝑖. Since the core advantage 
of N-BEATS is to use only residual links and fully-connected layers to model time series, we want to keep this lightweight structure 
as much as possible, so that 𝑆𝑁 and 𝐵𝑃𝑆 , which are the hyperparameters most affect model structure complexity are as small 
as possible without affecting performance. Obviously, 𝑆𝑁 and 𝐵𝑃𝑆 will increase n-fold, leading to a proportional increase in the 
parameter count of the entire N-BEATS.

Additionally, the number of fully connected layers in the block will directly impact the model’s lightweight. Nevertheless, the 
number was pre-determined as 4 by the authors of N-BEATS [7], and we retained the default value without optimization.

4.3. Initial solution generation of DIGWO

In general, at the beginning of the DIGWO, the initial solution needs to be randomly generated in the solution space 𝑆𝑝𝑎𝑐𝑒𝑖 =
[𝑢𝑏𝑖, 𝑙𝑏𝑖]. However, we found in the results reported in the references and our practice that the 𝑆𝑁 and 𝐵𝑃𝑆 of N-BEATS do not 
need to be too large to achieve good performance [7,8]. So, in order to generate a better initial solution, we utilize the Gaussian 
Chaotic Map (GCM), which generates random sequences from simple deterministic systems. GCM is employed to generate the initial 
solutions for 𝑆𝑁 and 𝐵𝑃𝑆 , while other parameters are generated randomly as usual. The GCM offers two distinct advantages:

• The GCM can enhance both the evenness and diversity of initial solutions generated [35].

• Compared with the commonly used generating methods of random number and Tent Chaotic Map, the GCM can generate more 
solutions for 𝑝𝑖 <

𝑢𝑏𝑖−𝑙𝑏𝑖
2 and make the initial solution better. This leads to faster convergence of the DIGWO.

The equations below define the Gaussian Chaotic Map.

𝑥𝑖+1 =

{
0 , 𝑥𝑖 = 0

1
𝑥𝑖𝑚𝑜𝑑1

= 1
𝑥𝑖

− [ 1
𝑥𝑖
] , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(11)

Fig. 3 illustrates the comparison between the initial solution of 𝐵𝑃𝑆 generated using random numbers and the GCM. The results 
of 𝑆𝑁 are similar and will not be displayed again.

4.4. Solution update strategy of DIGWO

DIGWO is a nature-inspired metaheuristic algorithm developed from the grey wolves’ internal leadership and group behavior. A 
group of grey wolves with a population size of 𝑁𝑝𝑜𝑝 are divided into a 𝛼 wolf (i.e., optimal solution), a 𝛽 wolf (i.e., second best 
solution), a 𝛾 wolf (i.e., third best solution) and 𝑁𝑝𝑜𝑝 − 3 𝜔 wolves by the internal hierarchy. In each iteration, the solution update 
process of DIGWO is guided by the 𝛼, 𝛽, and 𝛾 wolves. The hyperparameter set of N-BEATS is optimized through simulating grey 
7

wolves’ surrounding and hunting behavior.
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Fig. 3. The comparison between the 𝐵𝑃𝑆 generated based on random number and Gaussian Chaotic Map. The proportion of red dots below 𝑢𝑏𝑖−𝑙𝑏𝑖
2

= 5 is about 50%. 
The proportion of blue dots below 𝑢𝑏𝑖−𝑙𝑏𝑖

2
= 5 is about 55%.

Surrounding the prey by the grey wolves can be modeled as

𝑋(𝑡𝐺𝑊 𝑂 + 1) =𝑋𝑃 (𝑡𝐺𝑊 𝑂) −𝐴 ×𝐷, (12)

𝐷 =∣ 𝐶 ×𝑋𝑃 (𝑡𝐺𝑊 𝑂) −𝑋(𝑡𝐺𝑊 𝑂) ∣ . (13)

𝑋 is the position vector of a wolf, 𝑋𝑃 is the position vector of the surrounded prey, 𝑡𝐺𝑊𝑂 is the current iteration of DIGWO. The 
coefficient vectors 𝐶 and 𝐴 can be calculated by

𝐴 = 2𝜆 × 𝑟1 − 𝜆, (14)

𝐶 = 2𝑟2. (15)

𝜆 = 2 − 2𝑡𝐺𝑊 𝑂∕𝑀𝑎𝑥𝐼𝑡𝑒𝑟. (16)

Where 𝑟1 and 𝑟2 are random numbers, and 𝑟1, 𝑟2 ∈ [0, 1]. 𝜆 indicates the distance control parameter, which linearly decreases from 2 
to 0 throughout the iterations. 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 indicates a maximum number of iterations of DIGWO.

Hunting the prey by the grey wolves can be modeled as

𝑋1(𝑡𝐺𝑊 𝑂) =𝑋𝛼(𝑡𝐺𝑊 𝑂) −𝐴𝑡𝐺𝑊𝑂,1× ∣ 𝐶1 ×𝑋𝛼(𝑡𝐺𝑊 𝑂) −𝑋(𝑡𝐺𝑊 𝑂) ∣, (17)

𝑋2(𝑡𝐺𝑊 𝑂) =𝑋𝛽 (𝑡𝐺𝑊 𝑂) −𝐴𝑡𝐺𝑊𝑂,2× ∣ 𝐶2 ×𝑋𝛽 (𝑡𝐺𝑊 𝑂) −𝑋(𝑡𝐺𝑊 𝑂) ∣, (18)

𝑋3(𝑡𝐺𝑊 𝑂) =𝑋𝛿(𝑡𝐺𝑊 𝑂) −𝐴𝑡𝐺𝑊𝑂,3× ∣ 𝐶3 ×𝑋𝛿(𝑡𝐺𝑊 𝑂) −𝑋(𝑡𝐺𝑊 𝑂) ∣ . (19)

Where 𝑋𝛼(𝑡), 𝑋𝛽 (𝑡), 𝑋𝛿(𝑡) have better knowledge about the prey. 𝐴𝑡𝐺𝑊𝑂,1, 𝐴𝑡𝐺𝑊𝑂,2, and 𝐴𝑡𝐺𝑊𝑂,3 can be calculated by Eq. (14). 𝐶1, 
𝐶2, and 𝐶3 can be calculated by Eq. (15).

The behavior of 𝛼, 𝛽, and 𝛾 wolves leading other 𝜔 wolves can be modeled as

𝑋𝐺𝑊𝑂(𝑡𝐺𝑊 𝑂 + 1) =
𝑋1(𝑡𝐺𝑊 𝑂) +𝑋2(𝑡𝐺𝑊 𝑂) +𝑋3(𝑡𝐺𝑊 𝑂)

3
. (20)

However, using Eq. (20) alone will reduce the population diversity of DIGWO in the later search solution process. It leads to 
DIGWO being prone to falling into local optima. In the real world, grey wolves not only engage in the group search modeled by 
Eq. (20), but also engage in individual search [36,37]. To enhance population diversity in DIGWO, we simulate individuals receiving 
hunting information from their neighbors.

Each wolf will learn hunting experience from their neighbors. The position of the 𝑖-th wolf in the iteration 𝑡𝐺𝑊 𝑂 is represented 
as 𝑋𝑖(𝑡𝐺𝑊 𝑂) = {𝑋𝑖,1, 𝑋𝑖,2, ..., 𝑋𝑖,𝑑}. 𝑑 indicates the dimension of the objective function, i.e., the number of variables in the problem. 
The entire wolf group can be recorded as a matrix 𝑊 𝑜𝑙𝑣𝑒𝑠 with 𝑁𝑝𝑜𝑝 rows and 𝑑 columns.

The 𝑋𝑖(𝑡𝐺𝑊 𝑂) wolf’s neighbors denoted by 𝑁𝑒𝑎𝑟𝑖(𝑡𝐺𝑊 𝑂) can be modeled as

𝑁𝑒𝑎𝑟𝑖(𝑡𝐺𝑊 𝑂) ={𝑋𝑗 (𝑡𝐺𝑊 𝑂) ∣𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑋𝑖(𝑡𝐺𝑊 𝑂),𝑋𝑗 (𝑡𝐺𝑊 𝑂)) ≤𝑅𝑖(𝑡𝐺𝑊 𝑂),
(21)
8

𝑋𝑗 (𝑡𝐺𝑊 𝑂) ∈𝑊 𝑜𝑙𝑜𝑣𝑒𝑠, 𝑗 ∈ [1,2, ..., 𝑑]}.
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Fig. 4. Process of the solution update in DIGWO.

Where 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑋𝑖(𝑡𝐺𝑊 𝑂), 𝑋𝑗 (𝑡𝐺𝑊 𝑂)) is Euclidean Distance between 𝑋𝑖(𝑡𝐺𝑊 𝑂) and 𝑋𝑗 (𝑡𝐺𝑊 𝑂). Other distance measurement meth-

ods can be selected based on the problem, such as Cosine Similarity and Manhattan Distance. 𝑅𝑖(𝑡𝐺𝑊 𝑂) indicates the hunting radius 
of 𝑖-th wolf. 𝑅𝑖(𝑡𝐺𝑊 𝑂) can be defined as

𝑅𝑖(𝑡𝐺𝑊 𝑂) =𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑋𝑖(𝑡𝐺𝑊 𝑂),𝑋𝑖,𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1)). (22)

Where 𝑋𝑖,𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1) represents the result of the group search, which can be calculated by Eq. (20). Similarly, the Euclidean 
Distance here can be replaced. The result 𝑋𝑖,𝐷𝐼𝐺𝑊𝑂 of the individual search can be defined as

𝑋𝑖,𝐷𝐼𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1) =𝑋𝑖(𝑡𝐺𝑊 𝑂) + 𝑟3 × (𝑋𝑛(𝑡𝐺𝑊 𝑂) −𝑋𝑟(𝑡𝐺𝑊 𝑂)),

𝑋𝑛(𝑡𝐺𝑊 𝑂) ∈𝑁𝑒𝑎𝑟𝑖(𝑡𝐺𝑊 𝑂),𝑋𝑟(𝑡𝐺𝑊 𝑂) ∈𝑊 𝑜𝑙𝑜𝑣𝑒𝑠.
(23)

Where 𝑋𝑛(𝑡𝐺𝑊 𝑂) is randomly sampled from 𝑁𝑒𝑎𝑟𝑖(𝑡𝐺𝑊 𝑂) and 𝑋𝑟(𝑡𝐺𝑊 𝑂) is randomly sampled from 𝑊 𝑜𝑙𝑜𝑣𝑒𝑠. And, 𝑟3 is a random 
number, and 𝑟3 ∈ (0, 1].

Finally, 𝑋𝑖,𝐷𝐼𝐺𝑊𝑂(𝑡𝐺𝑊 𝑂 + 1) should be compared with 𝑋𝑖,𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1), i.e.,

𝑋𝑖(𝑡𝐺𝑊 𝑂 + 1) =

⎧⎪⎪⎨⎪⎪⎩
𝑋𝑖,𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1), 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝐺𝑊 𝑂) <

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝐷𝐼𝐺𝑊𝑂)
𝑋𝑖,𝐷𝐼𝐺𝑊 𝑂(𝑡𝐺𝑊 𝑂 + 1), 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝐺𝑊 𝑂) ≥

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋𝑖,𝐷𝐼𝐺𝑊𝑂).

(24)

Upon completing the individual search for all wolves, 𝑡𝐺𝑊 𝑂 increase by 1.

The process of the solution update in DIGWO is shown in Fig. 4.

4.5. Parallelization of DIGWO

While DIGWO can provide a satisfactory solution within a limited timeframe, there is room for significant improvement in terms 
of efficiency. To improve the efficiency of DIGWO, we propose a parallelized design for DIGWO based on Spark, an engine that 
executes data engineering, data science, and machine learning on clusters.

The current parallel design of heuristics algorithms involves parallelizing all essential steps, such as updating solutions (e.g., 
mutation in GA and updating wolf position in GWO) and computing the fitness function [38,39]. However, the existing design is not 
suitable for our DIGWO. We found that the majority of DIGWO’s running time is attributed to the computation time of the fitness 
9

function, since every time Eq. (10) is calculated, N-BEATS needs to be trained once. Moreover, as 𝑁𝑝𝑜𝑝 increases, the calculation 
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time of Eq. (10) becomes larger. When a parallelized algorithm is launched, the Spark cluster requires time to perform fundamental 
operations like initiating jobs, task allocation, and resource allocation. If the computation performed by the Executor in the Spark 
cluster is minimal, the parallelization performance of the cluster is adversely affected. So, we exclusively design parallel DIGWO 
solely for the fitness function, i.e., the calculation of Eq. (10). The pseudocode of parallelized DIGWO is shown in Algorithm 1.

Algorithm 1 Parallelized DIGWO.

Input: 𝑁𝑝𝑜𝑝 , 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, Spark cluster configuration parameters 𝑐𝑜𝑛𝑓 .

Output: Optimal parameter set 𝑃𝑏𝑒𝑠𝑡 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝12}
1: Create SparkContext object 𝑠𝑐 using 𝑐𝑜𝑛𝑓 //Initialization phase

2: Initialize solutions 𝑝𝑜𝑝 using 𝑁𝑝𝑜𝑝 according to Eq. (11).

3: Creat RDD data 𝑅𝐷𝐷𝑝𝑜𝑝 using 𝑝𝑜𝑝 by 𝑠𝑐.parallelize().

4: Compute the fitness of each solution in 𝑅𝐷𝐷𝑝𝑜𝑝 in parallel by 𝑅𝐷𝐷𝑝𝑜𝑝.map(getFitness()). //Computing the fitness function

5: Return the fitness value in 𝑅𝐷𝐷𝑝𝑜𝑝 to list 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 by 𝑅𝐷𝐷𝑝𝑜𝑝 .collect().

6: 𝑡𝐺𝑊 𝑂 = 0
7: while 𝑡𝐺𝑊 𝑂 ≥𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do //Updating solutions

8: Find 𝛼 wolf, 𝛽 wolf, and 𝛾 wolf according to 𝑓𝑖𝑡𝑛𝑒𝑠𝑠.
9: Update 𝑝𝑜𝑝 according to Eq. (12)-(24).

10: Create RDD data 𝑅𝐷𝐷𝑝𝑜𝑝 using 𝑝𝑜𝑝 by 𝑠𝑐.parallelize().

11: Compute the fitness of each solution in 𝑅𝐷𝐷𝑝𝑜𝑝 in parallel by 𝑅𝐷𝐷𝑝𝑜𝑝.map(getFitness()). //Computing the fitness function

12: Return the fitness value in 𝑅𝐷𝐷𝑝𝑜𝑝 to list 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 by 𝑅𝐷𝐷𝑝𝑜𝑝 .collect().

13: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 = Min(𝑓𝑖𝑡𝑛𝑒𝑠𝑠).

14: tmp = tmp + 1
15: end while

16: Decode 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑏𝑒𝑠𝑡 to get optimal parameter set 𝑃𝑏𝑒𝑠𝑡 = {𝑝1, 𝑝2, 𝑝3, ..., 𝑝13}
17: Return 𝑃𝑏𝑒𝑠𝑡 and End algorithm

The purpose of Algorithm 1 is to convert the solutions in DIGWO into Resilient Distributed Dataset (RDD) data format using the 
parallelize() function, which is a distributed memory abstraction that allows for the evaluation of the solution set in parallel by using 
the map() function to calculate solution’s fitness on large clusters. The collect() function can trigger the transformation operations, 
such as map(), which are not executed due to Spark’s lazy computing characteristics. Once 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 is reached, the DIGWO returns 
the optimal parameter set that was found. The map() function on lines 4 and 11 is the core of the DIGWO as it processes each 
element in the 𝑅𝐷𝐷𝑝𝑜𝑝 using a specified getFitness() function, resulting in a new RDD data. Algorithm 2 displays the pseudocode of 
the getFitness() function.

Algorithm 2 getFitness().

Input: Train data 𝑑𝑎𝑡𝑎𝑡 , Validation data 𝑑𝑎𝑡𝑎𝑣 , 𝑅𝐷𝐷𝑝𝑜𝑝
Output: 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 corresponding to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖

1: Decode the 𝑁𝑝𝑜𝑝 parameter sets of N-BEATS according to 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑖 in 𝑅𝐷𝐷𝑝𝑜𝑝 . Store the parameter sets in 𝑆𝑒𝑡.
2: for 𝑖 in 𝑆𝑒𝑡 do //𝑖 is a set of N-BEATS parameters {𝑝1, 𝑝2, 𝑝3, ..., 𝑝12}
3: Train N-BEATS using 𝑖 and 𝑑𝑎𝑡𝑎𝑡 .
4: Calculate error 𝑚𝑎𝑝𝑒𝑖 of N-BEATS using 𝑑𝑎𝑡𝑎𝑣 .
5: Calculate 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 using 𝑚𝑎𝑝𝑒𝑖 and 𝑖 by Eq. (10).

6: end for

7: Ruturn 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 and End algorithm

4.6. Convergence proof of DIGWO

Since DIGWO is a complex improved algorithm derived from converged GWO, we adopt the related theorems of Markov chain 
to prove the convergence of DIGWO, which are widely used for convergence analysis of heuristic algorithms. Firstly, we construct a 
Markov model for DIGWO.

Definition 3. In DIGWO, the state of the grey wolves is denoted as 𝜉. The Markov state space of the wolves is denoted as Ξ = {𝜉 ∣ 𝜉 ∈
𝑍}. Where 𝑍 is solution space of DIGWO. The state of the wolf groups is denoted as 𝜙 = (𝜉1, 𝜉2, ..., 𝜉𝑖), 𝑖 = 1, 2, ..., 𝑁𝑝𝑜𝑝. The Markov 
state space of the wolf groups is denoted as Φ = {𝜙 = (𝜉1, 𝜉2, ..., 𝜉𝑖) ∣ 𝜉𝑖 ∈ Ξ, 𝑖 = 1, 2, ..., 𝑁𝑝𝑜𝑝}.

Definition 4. In DIGWO, ∀𝜉𝑖, 𝜉𝑗 ∈ Ξ, 𝑖, 𝑗 = 1, 2, ..., 𝑁𝑝𝑜𝑝, the state transition of the wolves is denoted as 𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝜙(𝜉𝑖) = 𝜉𝑗 . ∀𝜙𝑖, 𝜙𝑗 ∈
Φ, the state transition of the wolf groups is denoted as 𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜙𝑖) = 𝜙𝑗 . The transition probability of the wolf groups is denoted 
as

𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜙𝑖) = 𝜙𝑗 ) =
𝑁𝑝𝑜𝑝∏
𝑚=1

𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝜙(𝜉𝑖𝑚) = 𝜉𝑗𝑚). (25)
10

Then, from previous research, we can see that
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Theorem 1. The Markov state sequence of wolf groups in GWO is a finite homogeneous Markov chain [40].

Theorem 2. According to the convergence criterion [40], if the Markov state sequence of the wolf groups is a finite homogeneous Markov 
chain, GWO is convergent [41].

Hence, we need to prove

Theorem 3. The Markov state sequence of wolf groups in DIGWO is a finite homogeneous Markov chain.

Next, we prove Theorem 3.

Proof. The finiteness, Markov property, and homogeneity of the state sequence of the wolf groups in DIGWO must be proved.

First, the Markov search space of any optimization algorithm is limited [40]. So, the Markov search space of solution of DIGWO 
is finite, 𝜉𝑖 is finite, and Ξ is finite. Since, Φ consists of Ξ𝑖, the number of Ξ𝑖 is finite positive integer, so Φ is finite, and then the 
Markov state sequence of the wolf groups {𝜙(𝑡𝐺𝑊 𝑂) ∣ 𝑡𝐺𝑊 𝑂 > 0}] has finiteness.

Based on Definition 4, ∀𝜙(𝑡𝐺𝑊 𝑂 − 1), 𝜙(𝑡𝐺𝑊 𝑂) ∈ Φ, the transition probability 𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜙(𝑡𝐺𝑊 𝑂 − 1)) = 𝜙(𝑡𝐺𝑊 𝑂)) of the 
Markov state sequence of the wolves {𝜙(𝑡𝐺𝑊 𝑂) ∣ 𝑡𝐺𝑊 𝑂 > 0}] is determined by the transition probability 𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜉(𝑡𝐺𝑊 𝑂 −
1)) = 𝜉(𝑡𝐺𝑊 𝑂)) of wolves in the wolf groups. According to Eq.(12-24), 𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜉(𝑡𝐺𝑊 𝑂 − 1)) = 𝜉(𝑡𝐺𝑊 𝑂)) is only related to 
Φ(𝜉(𝑡𝐺𝑊 𝑂 − 1)), 𝐷 and 𝑟3. So, 𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜙(𝑡𝐺𝑊 𝑂 − 1)) = 𝜙(𝑡𝐺𝑊 𝑂)) is only related to the state at 𝑡𝐺𝑊 𝑂 − 1. Based on the 
fundamental properties of a Markov chain, {𝜙(𝑡𝐺𝑊 𝑂) ∣ 𝑡𝐺𝑊 𝑂 > 0}] has Markov property.

A Markov chain is considered homogeneous if the one-time-step transition probability of the Markov state sequence is independent 
of the starting time [40]. 𝑃 (𝑇 𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛Φ(𝜉(𝑡𝐺𝑊 𝑂 −1)) = 𝜉(𝑡𝐺𝑊 𝑂)) is only related to the state at 𝑡𝐺𝑊 𝑂 −1 and unrelated to 𝑡𝐺𝑊 𝑂 −1. 
So, {𝜙(𝑡𝐺𝑊 𝑂) ∣ 𝑡𝐺𝑊 𝑂 > 0}] has homogeneity.

Hence, the Markov state sequence of the grey groups in the DIGWO is a finite homogeneous Markov chain.

In summary, the DIGWO is convergent.

5. Experiment

5.1. Research question

The analysis carried out in our experiments is aimed at investigating three main research questions (RQ):

RQ1 Is DIGWO the most suitable heuristic algorithm for optimizing N-BEATS hyperparameters?

RQ2 Do each improvement of the DIWO-N-BNEATS we designed achieve the expected results?

RQ3 Do DIGWO-N-BNEATS improve efficiency by using parallelization?

The following research is organized into four tasks. In the first one, we trialed the performance of multiple heuristic algorithms 
for optimizing N-BEATS hyperparameters (for RQ1). In the second one, we conducted ablation experiments on both the GCM and 
the individual search (for RQ2). In the third one, we measured the scalability of DIGWO in clusters with different configurations (for 
RQ3). In the last one, we compared DIGWO-N-BNEATS with other existing methods for situation prediction.

5.2. Data

Two real-world situation prediction datasets were collected for evaluating DIGWO-N-BEATS. Cncert dataset originates from the 
number of computer malicious program propagation times, websites tampered with, backdoor websites implanted, counterfeit web-

sites, and new information security vulnerabilities published by the National Internet Emergency Center, from July 31, 2017 to March 
14, 2021.1 The weights of the five security threats are 𝑤 = [0.3, 0.25, 0.15, 0.15, 0.15]. Covid-Situation contains COVID-19 situation 
data for a certain region, from 04 April, 2020 to 20 December, 2021, specifically the number of lab tests, the number of confirmed 
cases, and death cases.2 The weights of the three elements are 𝑤 = [0.2, 0.3, 0.5]. The situation value in Cncert and Covid-Situation 
can be calculated as

𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒 =
∑
𝑖=1

𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑖
𝑚𝑎𝑥(𝑠𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡)𝑖

⋅𝑤𝑖 (26)

Due to the small size of existing situation awareness datasets, and the applicability of DIGWO-N-BEATS to any time series predic-

tion task, we choose three real-world datasets to further evaluate the performance. Milk dataset includes monthly milk production 

1 https://www .cert .org .cn.
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2 https://github .com /TanvirJoardar /Bangladesh -Covid -Situation -Analysis -and Trackin.

https://www.cert.org.cn
https://github.com/TanvirJoardar/Bangladesh-Covid-Situation-Analysis-and
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Table 4

Dataset description.

Dataset Description Number of sample Time interval Δ𝑡 SL Epoch

Cncert the number of five security threats 190 week 5 20

Covid-Situation the number of three covid elements 626 day 5 40

Milk monthly milk production 169 month 5 20

Sunspot monthly number of sunspots 3651 day 5 50

Table 5

Results of multiple heuristic algorithms for optimizing N-BEATS.

Algorithm Cncert Covid-Situation

MAE MAPE Fitness MAE MAPE Fitness

EGA 3.13 10.20 10.23 0.81 11.07 11.32

DE 3.20 10.49 11.12 0.88 11.29 11.35

GSA 3.43 10.78 11.20 1.06 13.63 14.05

GWO 3.13 10.24 10.58 0.85 10.92 11.09

MVO 3.68 11.24 11.70 0.83 10.72 11.03

SSA 3.02 9.68 10.74 0.85 11.30 11.40

SCA 3.25 10.07 10.07 0.88 11.45 11.47

BBO 3.04 9.65 9.94 0.81 10.90 10.91

SPBO 3.18 10.47 11.03 0.92 12.30 12.69

DIGWO 2.92 9.53 9.56 0.79 10.691 10.695

from January 1962 to December 1975.3 Sunspots dataset includes monthly number of sunspots from January 1749 to December 
1983.4 Table 4 presents information on the four datasets. The ratio of training set size to test set size is 8:2.

We divide the test set into 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 sets of input and output results, 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 =𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒 ∗ 0.2 −𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑆𝐿 + 1. We 
consider MAE average and MAPE average as evaluation indicators.

𝑀𝐴𝐸 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑
𝑖=1

1
𝑆𝐿

𝑆𝐿∑
𝑚=1

||𝑦̃𝑖𝑚 − 𝑦𝑖𝑚|| (27)

𝑀𝐴𝑃𝐸 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

𝑁𝑠𝑎𝑚𝑝𝑙𝑒∑
𝑖=1

1
𝑆𝐿

𝑆𝐿∑
𝑚=1

|| 𝑦̃𝑖𝑚 − 𝑦𝑖𝑚
𝑦𝑖𝑚

|| (28)

5.3. Convergence ability experiment

The No Free Lunch (NFL) theorem [42] prevents us from directly selecting optimization algorithms for N-BEATS hyperparame-

ters. Therefore, we compare DIGWO with other heuristic algorithms to demonstrate the superiority of DIGWO in optimizing N-BEATS 
hyperparameters. The heuristic algorithms include: Genetic Algorithm with elitist strategy (EGA), Differential Evolution (DE), Grav-

itational Search Algorithm (GSA) [43], GWO, Multi-Verse Optimizer (MVO) [44], SSA [45], Sine Cosine Algorithm (SCA) [46], 
Biogeography Based Optimization (BBO) [47], and Student psychology based optimization (SPBO) [48].

𝑁𝑝𝑜𝑝 of DIGWO is set to 10. In order to balance the convergence ability of algorithms, 𝑁𝑝𝑜𝑝 of other heuristic algorithms is set 
to 20. 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 of all heuristic algorithms is set to 20, which is sufficient for convergence of these heuristic algorithms. In practical 
applications, it is advisable to maximize 𝑁𝑝𝑜𝑝 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 within time constraints to achieve the best optimization results. Other 
parameters of above heuristic algorithms include: 0.1 mutation probability of EGA; 0.5 crossing probability of EGA; 0.9 scale factor 
of DE; 0.2 crossing probability of DE; wormhole existence probability of MVO increases linearly from 0.2 to 1; shuttle distance ratio 
of MVO decreases from 0.6 to 0; decrease coefficient of SSA decreases linearly from 2 to 0; 2 control parameters of SCA; 0.1 mutation 
probability of BBO; 𝜆 of GWO and DIGWO decreases linearly from 2 to 0. The experimental results are shown in Table 5.

As shown in Table 5, the best fitness achieved by DIGWO beats the second-best fitness achieved by 1.98% in the Cncert dataset. 
Similarly, in the Covid-Situation dataset, the best fitness achieved by DIGWO beats the second-best fitness achieved by 2.01%. 
Moreover, the MAE and MAPE obtained by DIGWO are the lowest in both datasets. This indicates that DIGWO outperforms other 
algorithms in terms of convergence ability. Figs. 5 and 6 display the fitness convergence curves of the optimal outcomes from each 
heuristic algorithm.

3 https://raw .githubusercontent .com /jbrownlee /Datasets /master /monthly -sunspots .csv.
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4 https://raw .githubusercontent .com /jbrownlee /Datasets /master /monthly -sunspots .csv.

https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-sunspots.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/monthly-sunspots.csv
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Fig. 5. Optimal fitness convergence curves of heuristic algorithms on Cncert dataset. The hyperparameter set of DIGWO is 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 2, 𝐻𝑈 = 109, 𝑇𝐷 = 8, 𝑆𝑁
= 0, 𝐵𝑇 = 2, 𝐵𝑃𝑆 = 1, 𝛼𝑠ℎ𝑎𝑟𝑒 = 0, 𝐵𝑆 = 276, 𝐿𝑅 = 0.0472, 𝑊𝐷 = 0.9008, 𝐸𝐷𝑅 = 0.0662, 𝐸𝐷𝑅′ = 0.2857.

Fig. 6. Optimal fitness convergence curves of heuristic algorithms on Covid-Situation dataset. The hyperparameter set of DIGWO is 𝑁𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 5, 𝐻𝑈 = 439, 𝑇𝐷 = 
1, 𝑆𝑁 = 0, 𝐵𝑇 = 1, 𝐵𝑃𝑆 = 1, 𝛼𝑠ℎ𝑎𝑟𝑒 = 0, 𝐵𝑆 = 13, 𝐿𝑅 = 0.0702, 𝑊𝐷 = 0.7913, 𝐸𝐷𝑅 = 0.2524, 𝐸𝐷𝑅′ = 0.2801.

5.4. Ablation experiment

The purpose of the improvements-level ablation experiment is to prove the necessity of our improvements for DIGWO. These 
improvements include:

• G: Gaussian Chaotic Mapping

• I: Individual Search Strategy

𝑁𝑝𝑜𝑝 and 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 of DIGWO is set to 20. The experiment results are shown in Table 6.

The experiment results demonstrate that ‘GWO+G+I’ obtained the lowest MAE, MAPE, and fitness on both situation awareness 
datasets. Compared to the GCM, the individual search strategy has a greater impact on the performance of DIGWO, and both gaussian 
chaotic mapping and individual search strategy are crucial for optimal results.

Furthermore, it was discovered that for small datasets like Milk, the values of 𝑆𝑁 and 𝐵𝑃𝑆 in the optimal hyperparameter set 
consistently exhibit very low levels. To address this issue, we recommend increasing the weight of prediction errors within the fitness 
13

function during the implementation of DIGWO-N-BEATS on small datasets.
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Table 6

Ablation experiment results for DIGWO.

Improvement Cncert Covid-Situation

MAE MAPE Fitness MAE MAPE Fitness

GWO+G 3.01 9.6 9.61 0.83 10.78 10.79

GWO+I 2.98 9.56 9.59 0.81 10.74 10.75

GWO+G+I 2.92 9.53 9.56 0.79 10.691 10.695

Fig. 7. Time cost and speedup of DIGWO under different circumstances on Cncert dataset.

Fig. 8. Time cost and speedup of DIGWO under different circumstances on Covid-Situation dataset.

5.5. Scalability experiment

DIGWO is implemented on different configurations of clusters, including a single node (stand-alone), 2 nodes, 4 nodes, and 8 
nodes, to record the time-consuming and the speedup of the algorithm. We conducted the above experiments using Beijing ChinaHPC 
Technology Co., Ltd.’s high-performance computing cluster.

The specific parameters for Spark are executor.pyspark.memory=2G; executor.cores=1; num-executors=4; driver.cores=1; 
driver.memory=1G; and python.worker.memory=1G. These parameters are determined by server performance and do not impact 
the experiment conclusions. The experimental datasets used in the experiment are Cncert and Covid-Situation. Speedup is defined as 
follows:

𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑡𝑖𝑚𝑒1
𝑡𝑖𝑚𝑒𝑛

× 100% (29)

Where, 𝑡𝑖𝑚𝑒1 is the sequential calculation time. 𝑡𝑖𝑚𝑒𝑛 is parallel calculation time based on n nodes. Ideally, the speedup is equal to 
the number of cluster nodes. The experimental results are shown in Figs. 7 and 8.

As shown in Figs. 7 and 8, the time cost of DIGWO gradually increases with the gradual increase of the calculation. Initially, when 
the calculation is less, the speedup of DIGWO is low. This can be attributed to the low acceleration of the Spark cluster, which is 
mainly due to the basic operations involved. However, as the calculation increases gradually, the advantages of the proposed parallel 
14

design become more and more apparent. Consequently, the speedup of DIGWO gradually approaches closer to the ideal value.



Information Sciences 664 (2024) 120316H. Lin and C. Wang

Table 7

The comparison between SOTA research and our DIGWO-N-BEATS.

Dataset Metric GS+SVR LSTM+MLP Gauss+GRU TCN+TX N-BEATS ARDE-N-BEATS DIGWO-N-BEATS

cncert
MAE 3.26 4.89 4.99 4.09 5.34 3.22 2.92

MAPE 10.53 14.33 14.73 12.62 16.3 10.31 9.53

Covid
MAE 1.86 1.45 1.69 0.87 1.03 0.81 0.79

MAPE 25.77 18.79 19.33 11.04 14.05 10.81 10.69

milk
MAE 5558 5315 5427 4248 5180 4037 3623

MAPE 6.89 6.26 6.38 4.96 5.98 4.65 4.23

sunspot
MAE 301.1 289.8 293.5 221.3 243.6 228.5 203.7

MAPE 31.45 28.47 29.04 21.69 24.03 22.13 20.66

Our proposed parallelization method does not harm the training data, hence it does not diminish the performance of DIGWO. 
In addition, we found two outliers at 𝑁𝑝𝑜𝑝 = 20. This can be attributed to 𝑆𝑁 , 𝐵𝑃𝑆 , and 𝐵𝑆 significantly affecting the time 
consumption of DIGWO, while DIGWO randomly selects these parameters during the iteration process. In summary, the experiment 
results verify that DIGWO has good scalability.

5.6. Compare with the SOTA methods

To verify the performance of our proposed method, we compare it to the current state-of-the-art situation prediction methods on 
the above four datasets. These situation prediction methods consist of the following:

• GS+SVR represents a SVR optimized by grid search for hyper-parameters [16].

• LSTM+MLP represents a model consisting of a two-layer LSTM and a two-layer MLP. The attention mechanism is applied after 
the first layer of the LSTM [15].

• Gauss+GRU represents a model consisting of a two-layer GRU, replacing Softmax output with regression output. The redundant 
training data is cleaned by Gauss kernel density estimation [19].

• TCN+TX represents a model consisting of a Temporal Convolutional Network-Based input embedding module and a Trans-

former [18].

• N-BEATS represents a N-BEATS using default parameters [7].

• ARDE-N-BEATS represents a N-BEATS optimized by DE for hyper-parameters except for 𝐵𝑇 and 𝛼𝑠ℎ𝑎𝑟𝑒 [8].

We first prioritize citing the experiment results mentioned in the above literature. If these results are not available, we recreate 
their methods using the hyperparameters that we have optimized on the above four datasets. The comparison between our research 
and existing SOTA research is presented in Table 7.

Obviously, our proposed DIGWO-N-BEATS clearly outperformed on all four datasets. DIGWO-N-BEATS outperforms the four most 
competitive baselines, reducing the average MAPE on four datasets by 8.18%, 1.12%, 9.92%, and 4.98%, respectively, and reducing 
the average MAE by 10.27%, 2.53%, 11.42%, and 8.64%, respectively. DIGWO-N-BEATS, leveraging the inherent advantages of 
N-BEATS, outperforms GS+SVR, LSTM+MLP, and Gauss+GRU by a considerable margin. The superior performance of DIGWO, 
compared to ARDE, highlights the impact of the 𝐵𝑇 and 𝛼𝑠ℎ𝑎𝑟𝑒 we introduced on the performance of N-BEATS, making their 
optimization necessary. In summary, the experiment results verify that DIGWO-N-BEATS is the SOTA method for situation prediction 
tasks.

6. Conclusion

This work proposed a novel framework, DIGWO-N-BEATS, for situation prediction tasks. The main idea of this work was to utilize 
an enhanced GWO method, called DIGWO, to globally optimize the hyperparameters of N-BEATS. The DIGWO-N-BEATS algorithm’s 
superiority was confirmed through the evaluation on four datasets.

There are still some limitations to our work, including:

• We only optimized the type and number of blocks in N-BEATS without modifying its block structure. It is possible that the 
current block structure is not optimal.

• This work cannot be directly applied to N-BEATSX [49] due to its unique hyperparameters.

• In this work, the situation prediction task is modeled as a time-series prediction problem. However, various external factors, 
such as months and regions, need to be taken into account in the situation prediction task.

In future work, we aim to refine our DIGWO by investigating external factors, to optimize N-BEATSX for situation prediction 
tasks and achieve more accurate situation awareness. Furthermore, we will combine parallelization with N-BEATS to achieve more 
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efficiency.
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