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Abstract

Uplift modeling refers to the task of estimating the causal effect of a treatment on an indi-
vidual, also known as the conditional average treatment effect. Despite significant progress
in uplift methods in recent years, the uncertainty of the estimates has been largely ignored
in the literature. We explain why estimating uncertainty of the treatment effect is par-
ticularly important in many common use cases and we define epistemic uncertainty of the
uplift estimates. We then provide two practical methods for quantifying the uncertainty of
the estimates. The methods are compatible with two commonly used uplift model families,
namely double classifiers and uplift trees. We illustrate the methods on three datasets and
show how information about the uncertainty can be used in uplift modeling tasks.

1 Introduction

Uplift modeling – also known as heterogeneous treatment effect estimation – is a form of causal inference
providing answers to causal questions like "Will this medicine make you better?" (Kamath et al., 2022; Falet
et al., 2022; Alaa & Schaar, 2017), "Which students need an intervention not to drop out?" (Olaya et al.,
2020), and "Is it profitable to offer a discount to this customer?" (Haupt & Lessmann, 2022). In essence,
the goal is to estimate the effect of a potential treatment on individual observations (persons in all of the
examples above) and our interest here is in cases of binary outcomes. The magnitude of the effect is also
called the Conditional Average Treatment Effect (Rubin, 1974).

Uplift modeling has received increasing attention during the past years with advances in e.g. cost-sensitive
uplift modeling (Verbeke et al., 2022), techniques for addressing imbalance in the treatment group sizes
(Xu & Yadlowsky, 2022; Zhong et al., 2022), and handling of high class imbalance (Nyberg & Klami,
2023). Somewhat surprisingly, the question of uncertainty of the uplift estimates has remained understudied.
Outside a few isolated works, the focus has been on providing point estimates for the treatment effects with
no attention paid to their variation.

Bokelmann & Lessmann (2022) and Gutierrez & Gérardy (2017) studied the variation of uplift metrics over
the whole population but did not address the uncertainty for individual treatment effects. The need for
quantifying uncertainty of the estimates at the individual level was pointed out already by Hill (2011), but
they studied the question only in the context of continuous outcomes where Bayesian treatment of regression
is sufficient and proposed a specific method suitable only for that setting. More recently, several authors
have circled around the question of uncertainty also for discrete outcomes, but all from somewhat limited
perspective. Huang et al. (2022) noted that the uncertainties in these contexts should be estimated but
settled for quantifying the uncertainties of the two classifiers in the double classifier, rather than the uplift
itself. Alaa & Schaar (2017) demonstrated that measuring individual variation can be useful in the context
of heart transplant prioritization and quantified it based on the uncertainty of Gaussian Process classifiers
for the different treatment groups, but again they did not consider the variation in the uplift estimate itself.
Louizos et al. (2017), in turn, presents a general causal model based on variational autoencoder that is in
principle capable of quantifying uncertainty due to using approximate Bayesian inference, but their focus is
on more robust accounting for latent confounders and they do not evaluate the method from the perspective
of uncertainty. In summary, we still lack a dedicated study of the uncertainty for uplift estimates as well as
generally applicable methods. We fill this void by presenting a rigorous problem formulation and introducing
two practical methods that align with commonly used uplift model families.
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A considerable part of all uplift research has been in the context of advertising or marketing (Haupt &
Lessmann, 2022; Ke et al., 2021; Zhao et al., 2022; Gu et al., 2021; Moriwaki et al., 2021). This may
partially explain the lack of interest in quantifying the uncertainty. In such cases reliable estimates for
the average effect is usually sufficient for financial gains. However, even in these applications properly
quantifying the uncertainty of the estimates can be important. Especially in the exploration phase when
deciding whether to apply a treatment to an observation for optimal data collection, uncertainty is essential.
Accurate quantification of the uncertainty is also likely to be useful from the perspective of the marketer to
better understand the population and the models. For instance, if the uncertainty is high for all observations,
it implies that the model has not learned much from the data.

In many other uses cases, in particular in the medical domain, adequately assessing the uncertainty becomes
a necessity. Recently Falet et al. (2022) investigated the use of uplift modeling to target treatment of
a medication for multiple sclerosis (MS) showing clearly how identifying subgroups that benefit from a
medication can help save lives. However, to progress from analysis of effects towards practical medical
recommendations requires knowing also the (potentially high) uncertainty of the estimates to be used as
additional information for making the subjective decision. For instance, in a case of terminal illness a
patient may prefer a treatment with high uncertainty to have a chance of additional months or years of
life-time even when the expected effect is slightly negative. In other cases we may want to ensure that a
medication is not given to any individual that reacts negatively.

To address these needs, we define uncertainty of uplift estimates and present two methods of estimating it
in the context of two broadly used uplift modeling families. We show how the double-classifier (or T-learner
(Künzel et al., 2019)) can be modified to quantify the uncertainty by using well-calibrated probabilistic base
classifiers, here the Dirichlet-based Gaussian Process (DGP) by Milios et al. (2018). We also show how
tree-based methods can be modified to provide uncertainty estimates and extend the honest tree by Athey
& Imbens (2016) as a practical example. We demonstrate the behavior of both methods on three commonly
used benchmark datasets focusing in particular on illustrating the benefits of explicitly quantifying the
uncertainty in this scenario and characterising how it depends on the amount of available training data and
the chosen method.

2 Problem Formulation

Throughout the paper we use notational convention where scalar random variables are indicated by standard
serif fonts, e.g. u, and their realizations by italic u. Vector-valued random variables and realizations are
indicated by boldface x and x respectively. Finally, we use u(x) to denote u|x = x for conditioning the
random variable on having observed x to take value x.

In this section we formulate the problem of estimating uncertainty of uplift estimates. Uplift τ(x) for an
individual characterized by some features x is classically defined as

τ(x) = P (y = 1|x, do(w = 1)) − P (y = 1|x, do(w = 0)) (1)

where P (y = 1|x, do(w = 1)) is the conditional probability for a positive outcome y = 1 if a treatment
(denoted by w = 1) is applied, and P (y = 1|x, do(w = 0)) is the corresponding probability if a treatment
is not applied. Further, do() is the do-operator (Pearl, 2009). When the data is collected in a randomized
controlled trial, the requirements of the do-operator are satisfied and the notation simplifies to conditioning
on w. We drop the do-notation in this paper for clarity of presentation, although note that the equations
are valid also without this assumption given that the requirements are satisfied in some other way.

Sometimes the uplift τ(x) is called Conditional Average Treatment Effect (CATE) (Rubin, 1974; Gutierrez
& Gérardy, 2017) which emphasizes its characteristic properties. Here conditional refers to estimating the
effect conditionally on x (the properties of the individual) whereas average refers to the expected effect. We
seek to characterize the epistemic uncertainty of CATE. That is, we want to quantify the uncertainty of
τ(x) stemming from needing to estimate P (y = 1|x, w) from finite data. We do this by re-defining the uplift
estimate itself as a random variable

u(x) = t(x) − c(x) (2)
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where u(x) is the uplift, and t(x) and c(x) refer to the unknown probabilities for P (y = 1|x, w) for w = 1 and
w = 0, respectively. For convenience of notation that avoids explicit reference to w, we use t for "treatment"
and c for "control", following the convention where the untreated group is called the control group. The
definition naturally extends equation 1 in the sense that the expectation of equation 2 matches the classical
definition: E[u(x)] = τ(x). The support of u(x) is [−1, 1] with the end point of 1 corresponding to the
perfect treatment effect (i.e. an individual with zero probability of positive outcome without treatment is
guaranteed to have one after a treatment).

The probability density function (PDF) of u(x) is

p(u(x) = u) =
{∫ 1

u
p(t(x) = t, c(x) = t − u)dt, u ≥ 0∫ 1+u

0 p(t(x) = t, c(x)) = t − u)dt, u < 0
(3)

where the boundaries of the two integrals cover all values of t and c that have support. E.g. for u(x) = 0
the integral is from 0 to 1 as u(x) = 0 when t(x) = c(x) and both t(x) and c(x) only take values in [0, 1].
Further, the corresponding cumulative distribution function (CDF) is∫ u

−1
p(u(x) = u)du =

{∫ 1
0

∫ 1
t+u

p(t(x) = t, c(x) = c)dcdt, u ≥ 0∫ 1−u

0
∫ 1

v
p(t(x) = t, c(x) = c)dcdt, u < 0

(4)

where v = max(0, t + u). To estimate the density of u(x) we hence need to estimate the joint density
p(t(x), u(x)), but for many practical models it is reasonable to assume the two are statistically independent.
This factorizes the joint density and it is then sufficient to estimate the distributions for t(x) and c(x)
separately. Next we explain how this can be done in practice.

3 Methods

Even though the formal definition of u(x) in equation 2 is straightforward, the practical process of estimating
the density requires some care. In this work we present the details for two example models from two commonly
used uplift model families. The first case describes a general process building on the widely adopted double-
classifier or T-model (Soltys et al., 2015; Künzel et al., 2019) and presents a practical method that uses
well-calibrated Gaussian Process classifiers by Milios et al. (2018) as base classifiers, and the second case is
a novel tree-based model extending the honest tree by Athey & Imbens (2016).

For both approaches the basic idea is to represent the distribution of u(x) explicitly as the difference between
empirical estimates of the distributions of t(x) and c(x). For the tree-based model we will have a closed-form
solution as the Beta-difference distribution (Pham-Gia & Turkkan, 1993), whereas for the double classifier
we will use a Monte Carlo approximation to characterise the distribution. This allows easy visualization
of the uncertainty as well as numeric computation of e.g. expectations (matching the usual definition of
equation 1) or highest posterior density (HPD) intervals (Chen & Shao, 1999).

3.1 Double Classifier with Dirichlet-Based Gaussian Processes

The double classifier approach for classical uplift modeling estimates both P (y = 1|x, w = 1) and P (y =
1|x, w = 0) separately based on the treatment and control subsets with a suitable classifier and computes
the uplift as their difference. Despite its simplicity, this approach remains one of the more competitive
approaches; see Olaya et al. (2020) and Nyberg & Klami (2023) for recent comparisons.

The double classifier builds fundamentally on the assumption that the two probabilities are independent,
and we retain this assumption. Then this approach generalizes directly to estimating the density of u(x) as
long as the classifiers provide densities characterising t(x) and c(x). In principle any such classifier would
work, but in practice we want classifiers that provide well-calibrated estimates. A well-calibrated estimate
refers to one that accurately characterises the distribution and does not e.g. over- or underestimate the
uncertainty. We use the Dicirhlet-based Gaussian Process (DGP) model by Milios et al. (2018) that has
been demonstrated to provide well-calibrated estimates in a range of classification tasks, but e.g. other
GP-based classifiers would also be applicable.
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A DGP for a binary classification problem (either for t(x) or for c(x)) is constructed using two latent
functions f1(x) and f0(x), one for each class (y = 1 and y = 0). Both functions follow the same GP prior
with a suitably chosen kernel function and two latent functions are used to support heteroscedastic noise
required for improving the calibration over standard GP classifiers. The gist of the model is that the latent
functions parameterise the shapes of class-specific gamma distributions which can be normalized over the
classes to form a Dirichlet distribution over the class probabilities (two in this case). In practice the algorithm
is made computationally efficient by approximating the gamma distributions with lognormal-distributions
for suitably transformed shape parameters. A detailed derivation is provided by Milios et al. (2018), but
below we present the final approximation in our notation.

If we denote by αϵ a prior parameter for the assumed Dirichlet, then the model transforms the positive labels
(y = 1) into ŷ = log(1 + αϵ) − 1

2 log(1/(1 + αϵ) + 1) and the negative labels into ŷ = log αϵ − 1
2 log(1/αϵ + 1).

Given this transformation, we obtain calibrated class probabilities by combining the GP priors with the
likelihood

p(ŷ|f1) = N (f1, log(1/(1 + αϵ) + 1)) (5)

for the positive labels and
p(ŷ|f0) = N (f0, log(1/αϵ + 1)) (6)

for the negative ones. Since the likelihood is normal, we can use exact inference for computing the posterior
over the latent functions, making the approach highly robust and easy to use. We do this in the experiments
to avoid contaminating the results with potentially hard-to-interpret approximation errors, but Milios et al.
(2018) explains how the method trivially scales for larger datasets by using standard sparse variational
approximations (Titsias, 2009).

We apply DGP for estimating u(x) by learning separate DGP models for the treatment and control groups. It
is easy to sample from the DGP predictive distribution for any x by sampling from the log-normal marginals
and hence we can construct observations of u(x) by computing the difference between observations from
t(x) and u(x). An important observation is that if the estimates for t(x) and c(x) are well-calibrated then
so is the estimate for u(x), and due to linearity any possible error will at most double.

To apply the model, we need to select the kernel hyperparameters (length scale and noise level) which is
done using standard marginal likelihood maximization. This leaves αϵ as the only additional parameter
and for simplicity we use a common αϵ for both t(x) and c(x) chosen to maximize the joint training data
log-likelihood of these classifiers. Milios et al. (2018) showed that αϵ maximizing the log-likelihood of the
training data results in well-calibrated classifiers, which is exactly what is needed for calibrated estimation
of u(x).

3.2 Honest Uplift Tree

Uplift trees and uplift (random) forests are popular uplift models (Friedberg et al., 2020; Athey et al.,
2019; Oprescu et al., 2019) and hence used here as another example family. Since trees provides an explicit
partitioning Π = {ℓ1, . . . , ℓM } of the feature space into leaves ℓm, they provide a natural way of estimating
the uplift τ(x) for each leaf m based on the observations of both treatment groups falling into the leaf. We
denote by Nm,y,w the number of training data observations in the set {x ∈ ℓm, y, w}, so that e.g. Nm,y=1,w=1
counts the treated observations with positive outcome in the mth leaf. The classical uplift estimate is then
computed as

τ(x) = Nm,y=1,w=1

Nm,y=1,w=1 + Nm,y=0,w=1
− Nm,y=1,w=0

Nm,y=1,w=0 + Nm,y=0,w=1
(7)

for all x ∈ ℓm. In contrast to double classifiers, we only need a single model that is trained on all data, but
naturally the conditioning variable w needs to be accounted for in the training process to ensure that all
leaves have sufficiently many instances from both groups to obtain reliable estimates.

Next we explain how we can use any uplift tree for estimating the distribution in equation 2 of the uplift
estimates. By the nature of a tree, the probabilities P (y = 1|x, w = 1) and P (y = 1|x, w = 0) within a
leaf are assumed to be constant and hence also independent. Since all observations are binary, we make
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the natural assumption that they follow a Bernoulli distribution with unknown parameters pt and pc with
conjugate beta priors for both rates. The corresponding posterior distributions for each leaf m are then

tm(x) ∼ Beta(α0 + Nm,y=1,w=1, β0 + Nm,y=0,w=1),
cm(x) ∼ Beta(α0 + Nm,y=1,w=0, β0 + Nm,y=0,w=0),

(8)

where α0 and β0 are the parameters of the prior. We use α0 = β0 = 1 corresponding to a uniform prior
in our experiments, but additional prior information about e.g. base treatment effect rates could also be
encoded here.

Since both tm(x) and cm(x) are Beta distributions, the distribution of um(x) for each leaf follows a Beta-
difference distribution (Pham-Gia & Turkkan, 1993). Even though it is not a commonly used distribution,
there are analytic expressions for its moments and there are known algorithms for computing certain con-
ditional probabilities exactly (Raineri et al., 2014). However, for the HPD-interval that we use to evaluate
the methods, we still need numerical computation and use the same Monte Carlo approach as for the double
classifier.

Training The equations above hold for any tree (or, in fact, for any uplift model that partitions the data
into disjoint sets of samples). A tree that is good for estimating equation 7 can be trained based on several
different criteria.

Following Athey & Imbens (2016), we perform a variable transformation and create a new variable z so that
zi = 1 when yi = wi. Otherwise zi = 0. For this transformation we have E[z|x] = τ(x) and hence a tree that
accurately predicts z is considered an uplift model. We construct a standard CART tree (Breiman et al.,
1984) for this so that we have two parameters controlling the complexity of the three: the maximum number
of leaf nodes Mmax and the minimum number of observations per node Nmin. Note that even though the
tree is trained using z, the actual uplift estimates are computed based on the counts.

Reliable estimates The honest tree proposed by Athey & Imbens (2016) ensures that the estimated
uplifts are unbiased by using a separate calibration set for estimating the counts for equation 7. Instead of
using N computed from the training data, they use N̂ computed from calibration data that is disjoint from
the observations used for learning the tree. Even though needing to use a separate calibration set reduces
the data efficiency of the model, we prefer this approach as it also means that we do not have to make the
additional assumption of the the leaves producing unbiased estimates from the training data. We believe
that the advantage of increased trust in the estimates is essential. Following this idea, we use N̂ estimated
from a separate calibration set for computing equation 8. This is likely to improve the reliability of the
uncertainty estimates and in our preliminary experiments seemed to improve the overall performance.

Data imbalance Recently Nyberg & Klami (2023) showed that tree-based models perform poorly in cases
where the proportion of positive outcomes is very small and suggested the use of undersampling to mitigate
this. This issues is likely to be even more severe when attempting to model the uncertainty, and hence we
incorporate their stratified undersampling mechanism.

Stratified undersampling is done by dropping negative observations so that P ∗(y = 1|w) = k · P (y = 1|w)
where P (y = 1|w) is estimated from data and P ∗(y = 1|w) is the resulting positive rate in the data after
undersampling. This is done separately for the subsets of the data with w = 1 and w = 0 but with one
common factor k selected by cross validation (here 5-fold) to maximize the uplift performance metric AUUC
(explained in Section 4.1). Note that we only undersample the training set, not the calibration set, and
hence the estimates used for equation 8 correspond to the correct quantities. In the experiments we only
use undersampling for the datasets with high class imbalance.

4 Experiments

We demonstrate and evaluate the methods using three common uplift benchmark datasets described in
Section 4.1. We first demonstrate the new opportunities and insights revealed by explicit investigation of the
uncertainty of the estimates in Section 4.2 and then proceed to assess the methods in a more quantitative
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manner in Section 4.3. The experiments focus on characterising the behavior of the proposed methods since
there are no direct comparison methods available for this problem formulation. The code for reproducing
the experiments is provided in the Supplement and will be made available upon publication of the paper.

4.1 Data, Model Details and Metrics

Data. We work with three publicly available uplift datasets: Criteo (Diemert et al., 2018), Starbucks
(Rößler et al., 2021), and Hillstrom (Radcliffe, 2008).

Criteo is the largest publicly available data with 13,979,592 observations from an advertising context. We
use the conversion label with high class imbalance – only 0.292% of the observations have a positive outcome.
Starbucks is an e-commerce dataset with 126,184 observations. Finally, Hillstrom is a classic uplift dataset
also from the e-commerce sector. We used the Mens E-Mail as treatment (w = 1) and No E-Mail as control
(w = 0) with the visit label as outcome. With these treatment labels the dataset has 42,613 observations.

We randomized the datasets and used 25% of each as test set in all experiments. The training set sizes vary
in the experiments and are reported for each case separately.

Model details. The DGP-models were trained with the RBF-kernel. We used the implementation pro-
vided by Gardner et al. (2018) following Milios et al. (2018), using gradient-descent for learning the prior
noise and kernel length parameters to maximize the marginal likelihood. We used the Adam optimizer
(Kingma & Ba, 2014) with learning rate 0.1 and a maximum of 1,000 iterations. The αϵ was chosen based
on log-likelihood of the training data amongst the set of αϵ = 2j for j between −1 and −7 (i.e. 0.5 and
0.0078125).

For the honest tree we used half of the training to learn the tree, and the other half as the calibration set to
estimate equation 8. We initially selected Mmax, the maximum number of leaf nodes, so that each leaf would
contain on average 50 positive observations of the smaller of the two treatment groups for the full data. This
resulted in 81 leaves for Criteo, 34 for Hillstrom and 12 for Starbucks. In addition, we required that each
node contained at least Nmin = 100 observations in total. We will later study the effect of these parameters
in Section 4.3.2. We based our implementation on Pedregosa et al. (2011).

We use the following metrics in our experiments:

Area under the uplift curve (AUUC). AUUC by Jaskowski & Jaroszewicz (2012) measures the expected
increase in positive rate if targeting treatments with the model rather than randomly averaged over all
possible treatment rates, and it is the standard metric for evaluating the overall goodness of uplift models.
For a detailed explanation of the metric, see for instance Renaudin & Martin (2021). We report the results
as units of 0.001 AUUC (mAUUC) for presentational convenience always computing AUUC for the test
samples.

Credible interval. We characterise the uncertainty of the estimates via credible intervals, more specifically
in terms of Highest Posterior Density-intervals (HPD-intervals) (Chen & Shao, 1999). We estimate these
using Monte Carlo so that S = 1000 observations are drawn from t(x) and c(x) to obtain observations of
u(x) using equation 2 and then we find the narrowest window containing a chosen fraction (we use 95%) of
the observations. We call this the 95% credible interval.

Average credible interval width. We summarize the overall uncertainty of the whole data using the
average of the 95% credible intervals over all test set observations, denoting this the average credible interval
width (Average CI).

4.2 Illustration

Standard uplift models provide a narrow perspective to understanding the treatment effects. Here we demon-
strate how uncertainty of the estimates can be used to improve the understanding of the data and to improve
decisions.
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Figure 1: Uncertainty of response predictions (left) and uplift (right) of one test observation. Top:
Starbucks with DGP trained on 2000 observations. Bottom: Criteo with tree trained on 400,000 ob-
servations.

Figure 1 (top) shows the uncertainty for an single observation in the Starbucks dataset for a DGP-model
that was trained on 2000 observations. This user was chosen for having one of the highest uplifts among the
observations and has a predicted uplift of 0.064, which is considerably higher than the average treatment
effect of 0.0095. We observe that the uncertainty in estimating t(x) and c(x) is large. Consequently the
distribution of u(x) is also fairly wide: the 95% credible interval is 0.257 and the probability of the treatment
to have a negative effect is 0.168. Given access to this uncertainty, we can make rational decisions by e.g.
maximizing expected utility. Figure 1 (bottom) shows a similar example for the honest tree trained on
400, 000 observations from the Criteo dataset. When training the model on more data the estimates have
less uncertainty. However, this observation was selected for having relatively high uplift and happens to have
large uncertainty.

Explicit quantification of the variation also allows improved investigation of the overall population, not just
individuals. As an example, Figure 2 (top) provides a cross-plot of the expected uplift and the width of the
95% credible interval for the Hillstrom dataset. For this data, the variation is typically larger for the users
with the largest expected effect which implies that we are actually quite unsure of the effect specifically for
the users that would typically be targeted by the treatments. We also observe that the individual variation
differs notably for cases with the same average effect, which allows more detailed identification of ideal
candidates for the treatments. For example, for the case of τ(x) = 0.1 the 95% credible interval ranges from
approximately 0.1 to 0.25, and only the individuals with the narrowest intervals could be treated without
notable risk for negative effect. Without uncertainty estimates, this difference between the individuals would
not be available. Figure 2 (bottom) shows a similar plot for the Starbucks data and we see that the two
datasets are not alike; here the average 95% credible interval is largely independent of the average treatment
effect and the average uncertainty is large for effectively all observations. In brief, u(x) = 0 is clearly within
the 95% credible intervals for all instances and we cannot identify any individuals with reliable positive
effect.

4.3 Evaluation

Having illustrated the possible use-cases for uncertainty estimates, we now proceed to quantify the behavior
of uncertainty and the two proposed methods in more detail.

4.3.1 Amount of Data

Epistemic uncertainty should decrease when learning from larger datasets, and we start by empirically
verifying this by training the models on subsets of varying size. Since we used exact inference for DGP we
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Figure 2: Width of 95% credible intervals vs. expected uplift. Top: DGP estimates for 32K samples of
Hillstrom data. Bottom: DGP estimates for 32K samples of Starbucks data.
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Figure 3: Average 95% credible interval width (Average CI) on the testing set, as a function of the amount
of training data.

only run that for the smaller training sets (with at most 32k observations), whereas the fast tree is evaluated
also for larger sets. The results are reported in Tables 1 and 2, and additionally visualized in terms of
Average CI in Figure 3.

The main observation is that for both methods the Average CI reduces as a function of the available training
data, confirming the expected behavior. The numerical values for both methods are similar but naturally
not identical since the methods behave in rather different ways: The tree explicitly partitions the data
into distinct leaves that all have identical uplift estimates, whereas the DGP fits a nonparametric estimate.
For both methods the exact results depend on a few hyperparameters. For DGP we chose the parameter
separately for each case based on log-likelihood, but for the tree we used the same parameters for every case
since the choice involves making a trade-off between accuracy of the mean estimates and the uncertainty (as
will be shown in Section 4.3.2) and hence no obvious universal rule is available. This implies the choices for
the tree are not optimal in terms of Average CI or AUUC, but a compromise between the two. One notable
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Table 1: Results for DGP for varying testing set sizes
DATASET SIZE mAUUC AVERAGE CI

Hillstrom 2k 0.318 0.383
Hillstrom 4k -0.711 0.309
Hillstrom 8k -0.001 0.181
Hillstrom 16k 0.0862 0.141
Hillstrom 33k 1.494 0.0962
Starbucks 2k 0.683 0.0448
Starbucks 4k 1.015 0.0341
Starbucks 8k 1.526 0.0309
Starbucks 16k 2.060 0.0291
Starbucks 32k 2.533 0.0242

Table 2: Results for Honest Tree for varying testing set sizes
DATASET SIZE mAUUC AVERAGE CI

Criteo 100K 0.378 0.00431
Criteo 200K 0.173 0.00407
Criteo 400K 0.420 0.00418
Criteo 800K 0.341 0.00391
Criteo 1.6M 0.397 0.00398
Criteo 3.2M 0.369 0.00370
Criteo 6.4M 0.319 0.00266
Hillstrom 2K -0.384 0.248
Hillstrom 4K -0.874 0.255
Hillstrom 8K 3.358 0.235
Hillstrom 16K 2.226 0.167
Hillstrom 32K -0.662 0.109
Starbucks 2K -0.324 0.123
Starbucks 4K 0.0635 0.110
Starbucks 8K 0.0610 0.0624
Starbucks 16K 1.643 0.0385
Starbucks 32K 2.079 0.0231
Starbucks 64K 2.743 0.0153

difference is also that the tree model uses only half of the available data for learning the tree structure and
half for estimating the probabilities, and hence in practice has access to less data.

Another observation is that the AUUC metric is unstable. It should increase with the size of the training
data until panning out for sufficiently large data, but especially for Hillstrom the values are essentially
random. AUUC is known to be unstable for small data (Bokelmann & Lessmann, 2022) and previous
authors have also observed that reliably estimating the uplift for this data is challenging (Nyberg & Klami,
2023; Rößler et al., 2021), but our results shed additional light on the reasons. AUUC depends on the
ordering of the observations based on the mean estimates τ(x), but here the average uncertainty of these
estimates is extremely large and any ordering is unreliable, as illustrated also in Figure 2. Consequently, an
unstable AUUC is to be expected. For the other two datasets the AUUC behaves more like expected; for
both Starbucks and Criteo the values for the smallest training sets are still noisy but we get consistent
results on the larger training sets.
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4.3.2 Effect of Hyperparameters

In the previous experiment we used constant choices for the hyperparameters for the tree and selected
hyperparameters based on log-likelihood for the DGP. Here we illustrate how these choices influence the
results and provide suggestions on how they could be chosen in practice.

Figure 4 reports AUUC, Average CI, and the mean negative log-likelihood (MNLL) for u(x) averaged over
the training samples for the DGP model as a function of its sole tuning parameter αϵ. Milios et al. (2018)
suggested using the mean negative log-likelihood for selecting αϵ for classification tasks and we see here that
it is a reasonable criterion also for uplift. The choice of αϵ = 2−5 that minimizes the MNLL also produces
reasonable mAUUC, and the Average CI is in line with the metrics produced by the tree model. We chose
to use the same αϵ for both classifiers in order to avoid introducing two separate parameters, but it would
be perfectly valid to use separate ones as well.

Figure 5 reports AUUC and Average CI for the tree model as a function of its two parameters Mmax and
Nmin. With the uncertainty based on the beta-difference distribution, less leaves (i.e. more observations in
the leaves) generally leads to smaller Average CI, but increasing the number of leaves also enables the tree
to potentially reach a higher AUUC before finally overfitting. Both of these trends are clearly present in the
figure where the Average CI is narrowest when the tree size is heavily restricted by either parameter (bottom
and left side of Average CI heatmap), and where the mAUUC is lowest both when the tree size is heavily
restricted and when the three is not restricted by either parameter (top-right corner of mAUUC heatmap).
The best mAUUC is found somewhere in the middle. In principle all of these trees are correct, but finding a
good model is a trade-off between AUUC and Average CI. A practitioner should be aware of this compromise
and we do not want to make a direct recommendation on what should be used as the exact criterion for
making the choice, but note that selecting parameters that provide good AUUC would be a fairly natural
choice.

An important observation is that the Average CI for the best parameters are essentially identical for both
methods; 0.025 for DGP and 0.028 for the tree. Even though we do not have direct means of evaluating
whether they are correct, the similarity of the two estimates obtained with very different methods is promis-
ing. Finally, Figure 6 shows the uplift curves for both methods using the optimal parameters, showing that
both methods result in similar models.

5 Discussion

Despite motivating the work in part by the need of quantifying the uncertainty in the medical domain, we
only evaluated the method on e-commerce datasets due to lack of public medical data. This is understandable
due to the sensitivity of medical data, e.g. as in the case of the data used by Kuusisto et al. (2014). Another
limitation of the experiments is that we could not directly quantify the calibration of the estimates, for
instance to evaluate which of the proposed methods more accurately quantifies the uncertainty. This would
require data that provides true outcomes for the individuals with and without treatment that is never
available due to the fundamental problem of causal inference (Holland, 1986). Consequently it could be
done only on simulated data and even that would require additional assumptions and potentially a non-
trivial setup. Hence, measuring calibration directly remains an open challenge. Nevertheless, we believe
these experiments already show the models are useful and hope they encourage researchers with access to
interesting uplift tasks and data to pay attention to quantifying the uncertainty.

The proposed uplift models follow the standard principles in the field, but the detailed methods are novel.
We are not aware of double classifiers using the GP model by Milios et al. (2018) as base learners, or an
honest tree that directly incorporates class imbalance correction. The AUUC results in Tables 1 and 2 are
in line with the previous works (Nyberg & Klami, 2023) confirming that the methods work well as uplift
models. For the Hillstrom dataset we confirm the earlier finding of high variability of the AUUC metric
(Rößler et al., 2021). Previously this has been attributed to small dataset size, but our results reveal that
the prime reason may actually be high variance of the estimates; the data is simply not informative enough
of the potential effects.
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Figure 4: mAUUC, Average CI, and MNLL for DGP on Starbucks (32K) as function of αϵ. The optimal
MNLL is at αϵ = 2−5, resuting in Average CI of 0.0253 that is almost identical to the best tree model (see
Fig. 5).
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Figure 5: Average CI and AUUC for honest tree on Starbucks (32K) for different tree parameters. With
Mmax = 16 and Nmin = 128 we get highest mAUUC of 2.557 with Average CI of 0.0284.

An interesting new use-case enabled by our approach is comparison of multiple treatments in scenarios where
ua(x) and ub(x) have already been estimated for two treatments and we no longer have access to the original
data. Since we now have distributions, we can still evaluate e.g. the probability p(ua(x) > ub(x)) to identify
the preferred treatment for each individual.

6 Conclusion

We argued that quantifying uncertainty is important when estimating the individual treatment effects, both
because of limited data for estimating the effect for each individual and because the methods are often
used to make decisions that have significant effect on individuals. Despite this, there are no practical uplift
methods that would provide estimates of the uncertainty. Our main goal was to raise awareness of this and
to provide both a theoretical basis and practical methods for estimating the epistemic uncertainty of the
estimates.
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Figure 6: Uplift curve for Tree and DGP on Starbucks (32K) with optimal parameters, with the baseline
of random targeting of treatments. For the tree the piecewise linearity is due to all samples in a leaf sharing
the same estimate.

For the double classifier the estimates are well-calibrated when using well-calibrated classifiers due to the
uplift corresponding directly to their difference, and for the tree models we get the exact distribution condi-
tional on the finite sample in each leaf. Consequently, the methods presented here provide mathematically
consistent estimates conditional on the modeling assumptions. However, in practice the estimates naturally
depend on the practical details such as the hyperparameters used when training the models and the quality
of the features characterising the individuals, and both models make independence assumptions that are
likely not accurate in real scenarios. We showed that both approaches provide relatively consistent estimates
of the uncertainty, but were not able to directly measure the calibration due to lack of suitable data and the
fundamental challenge in evaluating calibration in causal problems. Numerical evaluation of the reliability
of the estimates remains as the most important future direction, but there is no reason to believe that the
results shown here would not be qualitatively accurate. In other words, the main empirical result of the
uncertainty being large is likely to hold.

We see the highest value for these tools in applications where the treatments have significant personal effects,
for instance in medical domains, personalised educational interventions, or career development support. We
feel that in such applications it is crucial that future works always explicitly address the uncertainty in some
way. However, we would also recommend practitioners in e-commerce and advertising to seriously consider
uncertainty in their tasks using it e.g. to improve ad campaign reliability. For instance, the observation that
the credible intervals for individual estimates are wide even for the large Criteo data is something every
practitioner should be aware of.

6.0.1 Broader Impact Statement

Uplift models are used to influence decisions at the level of the individual, and hence considerable care is
needed when using them in any context. The fairness and ethical aspects of uplift modeling applications is
determined by who’s interest is optimized, and their relative weighting determines who ends up carrying the
risk and who ends up receiving the benefits. In some cases, it is the interest of the individual being targeted
that is optimized, sometimes it might be the interest of the one targeting treatments. Our goal was to improve
transparency of such decision-making by providing tools that allow characterising and communicating the
reliability of the results, for instance to ensure that the potential gains and risks are rationally accounted
for instead of unintentionally making decisions that may result in unnecessary harm. We think that it is
important that this research is done in public and we also provide open source program code for reproducing
our results.
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