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Abstract

Multilingual Fine-tuning of Large Language
Models (LLMs) has achieved great advance-
ments in machine translation. However, ex-
isting research only focuses on a single-round
fine-tuning process with fixed training data, of-
ten lacking adaptability, where introducing new
languages will influence the performance of
existing ones. In this study, we propose a mod-
ular fine-tuning pipeline that enables dynamic
language support for LLMs. Instead of directly
fine-tuning on all languages, our approach first
trains English-centric LoRA adapters for each
input and output language separately, and then
merges the corresponding adapters’ parameters
without any extra training during inference. Ex-
periments on 12 translation directions involv-
ing four low-resource and less-supported lan-
guages show that modular fine-tuning achieves
up to 86% performance of traditional multi-
parallel full-parameter fine-tuning, while train-
ing only 0.1% parameters and relying solely on
English-centric data. Furthermore, we perform
a comprehensive analysis about the merging
ratio, when to merge, and the rationale for us-
ing English as a bridge language via Bayesian
Optimization and logit lens.!

1 Introduction

Recent advances in Multilingual Neural Machine
Translation (MNMT) (Xu et al., 2024a,b; Alves
et al., 2024) have significantly reduced the per-
formance gap between Large Language Models
(LLMs) and conventional translation models (Team
et al., 2022). However, existing research mainly
focuses on the traditional fine-tuning settings with
fixed training data, where all languages share the
same trainable parameters. This often leads to neg-
ative language interference (Duh et al., 2012; Chen
et al., 2023a; Huang et al., 2023) and also limits

!Codes are available at https://anonymous.4open.
science/r/MMT-4353/.
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Figure 1: Example of our proposed modular fine-tuning
pipeline on three languages: German (de), French (fr),
Portuguese (pt). We first train English-centric adapters
(x — eng or eng — x) for input and output languages
separately. Then directly merge the parameters of corre-
sponding input and out adapters from the module pool
during a specific translation direction, e.g., translating
from German to French.

the model’s scalability to new languages. The dy-
namic language adaptation for LLMs remains an
underexplored problem.

To alleviate the interference and enable more
flexible language adaptation, there is an increasing
tendency in current research to leverage the modu-
lar nature of language models (Xiao et al., 2024) to
isolate different languages into separate language-
specific modules, e.g., extracting sub-networks (He
et al., 2023; Tan et al., 2024) for different languages
from the original model, or introducing language-
specific adapters (Pfeiffer et al., 2022; Pires et al.,
2023; Cao et al., 2024; Xu et al., 2025). Despite
their effectiveness, these language-specific mod-
ules are still shared across different language di-
rections and interfere with each other during cross-
lingual training. We argue that these approaches do
not achieve complete modularity, as the training of
these modules is not fully independent. As a result,
the model still cannot dynamically adapt to new
languages, given that retraining is necessary for all
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existing language modules.

Therefore, in this work, we dive deep into
MNMT under a Completely Modular Fine-tuning
setting, where language-specific adapters share no
parameters and do not influence each other during
training. More specifically, we propose a Com-
peletely Modular Fine-tuning pipeline, which first
trains English-centric adapters for input and output
languages separately, and then directly merges the
corresponding adapter parameters without any fur-
ther training during translation. As shown in Figure
1, since all adapters are trained in a single direction,
i.e., translating from or to English, each language
adapter can be trained independently. This enables
the dynamic language support, as introducing a new
language only requires training the corresponding
English-centric adapters without any influence on
existing ones. For example, to enable German sup-
port, we only need to train the German-to-English
input adapter and the English-to-German output
adapter. By combining them with other existing
adapters, the model can then translate in all direc-
tions involving German.

We conduct experiments on 12 language direc-
tions of 4 low-resource and less-supported lan-
guages from the FLORES+ (NLLB Team et al.,
2024) dataset and compare the performance with
traditional multi-parallel full-parameter fine-tuning
settings. Results show that our method can achieve
up to 86% performance of full-parameter fine-
tuning on Llama3-8B-Instruct while only using
0.1% trainable parameters and also reducing the
training time as we rely solely on English-centric
data. Furthermore, we conduct a comprehensive
analysis about the merging ratio, when to merge,
and the rationale for using English as the bridge
language via Bayesian optimization and logit lens.

2 Backgrounds

Multilingual Machine Translation Given a set
of n languages L. = {l1, 12, - , [, }, multilingual
machine translation aims to translate an input sen-
tence x in the source language in € I into an
output sentence y in the target language out € L.
With an MNMT dataset including N sentence pairs
D = {(x;,y;) : i € 1--- N}, the training loss is
defined as:

J
Lunur =— Y Y log pa(ysly<j @) (1)

xz,yeb j=1

where * = x1, 29, -+ , 2y is a input sentence with
length I and y = y1,y2, - - -,y is the correspond-
ing output sentence with length J.

Low Rank Adaptation (LoRA) LoRA (Huetal.,
2022) is widely used in Parameter-efficient Fine-
tuning (PEFT) for Large Language Models where
fine-tuning is re-parameterized in a low-rank in-
trinsic subspace. Given a weight matrix in a pre-
trained model W € R%**, LoRA forward pass can
be calculated as:

h =Wz +BAz )

where B € R%*" and A € R™**. During training,
W will be frozen and the trainable parameters, i.e.,
A and B, will be reduced from d x k to d xr+r X k,
where r < min(d, k). We choose LoRA as the
architecture of language adapters in this research,
thanks to its parameter efficiency and flexibility.

3 MNMT from a Modular Perspective

3.1 Completely Modular Fine-tuning

We assess the degree of modularity in an MNMT
system based on two factors: whether different lan-
guages share any trainable parameters, and whether
language-specific adapters influence each other dur-
ing training. If there is no parameter sharing across
languages and the training processes are entirely
independent, we refer to the setup as Completely
Modular Fine-tuning.

We want to emphasize that although some previ-
ous work (Pires et al., 2023; Cao et al., 2024) also
avoids parameter sharing across languages by sep-
arating them into input and output adapters, these
adapters still influence each other during multilin-
gual training. Consider a translation from an input
language [;,, to an output language [,,;, the corre-
sponding adapters for /;, and [,,; are loaded simul-
taneously during training. As a result, the training
of these adapters is still not independent, hindering
the scalability of the model to new languages.

To enable Completely Modular Fine-tuning, we
decompose the MNMT task into input and output
language modules, and propose a modular fine-
tuning pipeline. As illustrated in Figure 1, we
first train English-centric modules and then directly
merge the corresponding ones to translate between
any languages.

3.2 English-centric Module Training

We use LoRA as the architecture of our language
module adapter. For each language [; € L, we



build an input adapter LoRAi-’ﬁ and an output
adapter LoRAlg'ut, resulting in a module pool with
2n adapters. As shown in Figure 1, all adapters
are trained separately in an English-centric setting,
where LoRAiin is only trained on the direction from
I; to English, and LoRA" ,
direction from English to ;.

We choose English as the bridge language based
on the intuition that English often serves as the
latent language in current LLMs (Wendler et al.,
2024; Kargaran et al., 2025). We expect that us-
ing English as the bridge language can maximize
the cross-lingual transfer during training. Another
advantage of this design is the improved data effi-
ciency, since it requires only English-centric trans-
lation data. Non-English directions often lack
sufficient parallel data, especially for those low-
resource languages (Goyal et al., 2022).

is only trained on the

3.3 Merging

As mentioned in Section 2, we use LoRA as the
adapter architecture. Each language module is com-
posed of two matrices, denoted as A and B. When
translating from an input language /;;, to an out-
put language [,,;, only the corresponding input
and output adapters LoRAiZL and LoRAlo"gtt are ac-
tivated. During translation, we directly merge the
parameters of A and B separately with Equation 3
without any training. We adopt a weighted merg-
ing strategy, following the implementation in the
PEFT libmry,2 where wi, +woy: = 1 and are shared
across all language directions.

Bmerge = (\/ melll;Ll + MBZ&%)

_ (3)
Amerge = (\/ wznAll;;L + V wOutAloniﬁ)

lzn lout l?'n lout
where B, B, A, Ay are the low-rank

matrices of the activated LoRAlij? and LoRAl;g;.
Then, the forward pass during inference can be

calculated as:
y=Wzx+ BmergeAmergexy “4)

where W is a given weight matrix in the original
model.

Our approach satisfies the requirements of Com-
pletely Modular Fine-tuning, given that all adapters
are trained independently and merged without any
additional training.

https://huggingface.co/docs/peft/index

4 Experimental Setup

Dataset FLORES+ (NLLB Team et al., 2024)
is a high-quality multi-parallel dataset supporting
translation between over 200 languages. All sen-
tences are divided into three splits: dev (997 sen-
tences), devtest (1,012 sentences), and test (992
sentences). Since the test set is not publicly avail-
able, we use the dev set for training and devtest set
for evaluation.

Backbone Model and Metric We first adopt
Qwen2.5-0.5B-Instruct (Qwen et al., 2025) as the
backbone model, thanks to Qwen’s strong multilin-
gual support. We further extend our experiments
to larger models, including Qwen2.5-7B-Instruct
and Llama3.1-8B-Instruct (Grattafiori et al., 2024),
to verify the scalability of our method. We choose
chrF++ (Popovié, 2017) as our evaluation metric
in the following experiments. Although neural-
based evaluation metrics, such as COMET (Rei
etal., 2020, 2022; Guerreiro et al., 2024) are widely
used given their higher agreement with human
judgments, this research mainly focuses on low-
resource languages which LLMs perform poor, and
such metrics are often unreliable in low-resource
settings. Similarly, BLEU score (Papineni et al.,
2002) is also sensitive to tokenization (Post, 2018;
Goyal et al., 2022), leading to inconsistent eval-
uation for low-resource languages that lack stan-
dardized tokenizers. Therefore, we use chrF++,
as it performs well on typologically diverse lan-
guages. We use greedy decoding during evaluation
for higher efficiency.

Language Selection While prior work often
groups languages by resource level, we argue that
the resource level cannot accurately reflect an
LLM’s ability for a language. On the one hand,
an LLM’s performance on a given language of-
ten correlates with its training data, and some
low-resource languages may perform well due
to targeted training. On the other hand, some
low-resource languages, e.g., Occitan, may also
achieve strong performance due to their high simi-
larity with certain high-resource languages (Team
et al., 2022; Cao et al., 2024). To fairly compare
the performance of modular fine-tuning on well-
supported and less-supported languages, we begin
by evaluating the English-centric performance of
Qwen2.5-0.5B-Instruct on 179 languages in the
FLORES+ dataset, excluding those without a dev
or devtest set. As shown in Figure 2, we report
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Figure 2: English-centric chrF++ scores of Qwen2.5-
0.5B-Instruct on 179 languages in the FLORES+ dataset.
Each point represents a language, with the x-axis show-
ing performance for translation from the language into
English, and the y-axis showing translation from En-
glish into the language. The color indicates the average
of the two directions, which we use to estimate the
model’s ability on each language.

the English-centric chrF++ scores on the Qwen2.5-
0.5B-Instruct model and divide all languages into
three groups based on their average scores s trans-
lating from and to English: high-performance
(> 40), medium-performance (20 < s < 40), and
low-performance (< 40). We randomly choose
four languages from each group for experiments.
More details about the selected languages are pro-
vided in Appendix A.

Baseline For the four languages in each group,
we evaluate translation performance on all 12 di-
rections. We choose traditional full-parameter fine-
tuning with multi-parallel data of all 12 directions
as a strong baseline.

Training Details All experiments of Qwen?2.5-
0.5B-Instruct are conducted on a single NVIDIA
A100 40GB GPU. For Qwen2.5-7B-Instruct and
Llama3.1-8B-Instruct, we train LoORA modules on
a single NVIDIA H200 GPU. Full-parameter fine-
tuning is performed using DeepSpeed ZeRO-3 (Ra-
jbhandari et al., 2020), and all experiments use
bfloat16 (bf16) precision. For full-parameter fine-
tuning, we report the best score across all epochs
as our baseline. For LoRA modules, we choose
the best checkpoint based on the English-centric
performance for merging. We apply LoRA to the
weight matrices of both the attention (q, k, v) and
the MLP (fcl, fc2) across all layers. We use super-
vised fine-tuning (SFT) and calculate the loss of
output sentences during training. More details are
provided in Appendix B.

5 Main Results

Table 1 shows the chrF++ scores of four low-
performance languages on Qwen2.5-0.5B-Instruct:
Moroccan Tamazight (zgh), Tamasheq (taq),
Acehnese (ace), Minangkabau (min). We evaluate
all 12 translation directions and report the average
score of the three directions when translating to
(= 1) or from (I —) a specific language /.

We first conduct experiments on Qwen2.5-0.5B-
Instruct using different LORA ranks r and merg-
ing ratios, denoted as w;, : Wyy. We use green
to highlight scores that exceed 75% of traditional
full-parameter fine-tuning performance, and under-
line scores where merging outperforms using only
LoRA;, or LoRA,,;. As shown in Table 1, per-
formance consistently improves with increasing
rank. Merge (1:9,r=64) achieves 79% of the full-
parameter baseline performance while using only
8% of the trainable parameters. Notably, compared
to the traditional multi-parallel baseline, modu-
lar fine-tuning is almost zero-shot, given these
adapters are trained using only a single direction,
translating from or to English, and all 12 evaluated
directions are never seen during training.

Although only using LoRA;;,, performs poorly
due to being trained exclusively on to-English di-
rection, we surprisingly find that a simple merge of
LoRA;, and LoRA,,; yields consistent improve-
ments in almost all directions. Furthermore, the
results also indicate that the output language plays
a much more important role than the input lan-
guage in machine translation. A merging ratio of
Wip @ Weyur = 1 : 9 is the only setting that consis-
tently brings improvements across all ranks, while
further increasing the weight of the input language
hurts performance. We believe this is because, for
language models, language understanding is much
easier than language generation (Li et al., 2024).
Therefore, the model does not require much input
language information to perform well.

We further extend our experiments to two
larger models: Qwen2.5-7B-Instruct (Table 2) and
LLaMA3.1-8B-Instruct (Table 3). With just 0.1%
trainable parameters, our method reaches 86% of
the full-parameter performance on Llama3.1-8B-
Instruct and 68% on Qwen2.5-7B-Instruct. Consis-
tent with previous experiments, merging LoRA;,
and LoRA ,,; brings improvements on almost all di-
rections. Additionally, our method can be naturally
extended to new languages without influencing ex-
isting ones, and it requires only English-centric



Language Directions
Methods ace— min— taq— zgh— —ace —min —taq —zgh | AVG
Pre-train 0.94 1.00 0.75 0.89 0.95 0.51 1.06 1.07 0.90
Full-parameter 17.73 1685 14.83 1524 1422 1647 16.82 17.14 | 16.16
Only LoRA;, (r=8) 1.17 1.40 0.92 1.05 1.00 0.80 1.46 1.27 1.13
Only LoRA ;.,:(r=8) 9.99 7.56 6.48 6.46 8.71 9.91 4.14 7.71 7.62
Merge(1:9,r=8) 1222 1271 8.19 8.49 11.76  12.24 8.21 9.39 10.40
Merge(3:7,r=8) 11.10 11.57  8.18 7.03 12.47 11.96 5.08 8.38 9.47
Merge(5:5,r=8) 8.08 6.79 5.14 243 6.97 9.71 1.73 4.03 5.61
Merge(7:3,r=8) 3.83 1.72 1.47 1.19 1.74 4.20 1.30 0.97 2.05
Merge(9:1,r=8) 1.06 1.34 0.93 1.08 0.99 0.82 1.46 1.13 1.10
Only LoRA;, (r=16) 1.21 1.48 0.96 1.11 1.05 0.82 1.52 1.37 1.19
Only LoRA,,:(r=16) | 10.11 6.32 5.56 7.91 9.31 10.35 7.24 3.01 7.47
Merge(1:9,r=16) 12.19  12.19  9.30 8.43 10.06  11.52 9.39 11.14 | 10.53
Merge(3:7,r=16) 1098  11.17  7.17 6.59 8.79 10.91 6.52 9.69 8.98
Merge(5:5,r=16) 7.74 5.96 4.52 4.69 5.45 9.14 2.18 6.14 5.73
Merge(7:3,r=16) 3.03 1.34 1.76 1.11 0.97 3.36 1.43 1.48 1.81
Merge(9:1,r=16) 1.24 1.58 1.02 1.13 1.09 0.85 1.54 1.49 1.24
Only LoRA ;;, (r=32) 1.33 1.49 0.99 1.17 1.07 0.83 1.58 1.50 1.25
Only LoRA,.+(r=32) | 13.83  9.05 8.70 9.35 10.00  11.18 9.77 9.97 10.23
Merge(1:9,r=32) 13.29 13.23 1030 10.28 1099 13.61 1026 12.23 | 11.77
Merge(3:7,r=32) 12.02 12.80 8.83 7.99 11.16 1335 6.78 10.35 | 10.41
Merge(5:5,r=32) 7.91 7.11 6.72 6.27 7.99 11.65 1.66 6.71 7.00
Merge(7:3,r=32) 2.95 1.59 4.33 1.38 1.83 5.27 1.59 1.57 2.56
Merge(9:1,r=32) 1.35 1.55 1.11 1.23 1.17 0.84 1.62 1.61 1.31
Only LoRA;;, (r=64) 1.34 1.51 1.04 1.14 1.12 0.83 1.56 1.53 1.26
Only LoRA ,,;(r=64) | 14.41 12.04 942 10.13 1041 12.09 1064 12.86 | 11.50
Merge(1:9,r=64) 14.40 14.57 11.11 11.80 10.47 14.37  12.63 14.40 | 12.97
Merge(3:7,r=64) 1276 ~ 1391 8.79 9.49 11.12 1347 947 10.88 | 11.24
Merge(5:5,r=64) 8.75 7.67 6.74 7.99 9.10 10.90 4.98 6.19 7.79
Merge(7:3,r=064) 2.79 2.30 541 5.76 591 7.07 1.56 1.71 4.06
Merge(9:1,r=64) 1.43 1.63 1.20 1.22 1.25 0.98 1.61 1.63 1.37

Table 1: The chrF++ scores for four low-performance languages on Qwen2.5-0.5B-Instruct. We evaluate all 12
directions and report the average score translating to (— [) or from (I —) a specific language . We also explore
different merging ratios and LoRA ranks r, denoted as Merge(w;,:wWout, 7). Scores where merging outperforms
using only LoRA;,, or LoRA ,,; are underlined, and those achieving more than 75% of the full-parameter fine-tuning

performance are highlighted in green.

data, demonstrating the potential of modular fine-
tuning. We also notice that Llama3.1 performs
better than Qwen2.5. We attribute this to Llama’s
stronger English-centric nature compared to Qwen,
which allows it to benefit more when we use En-
glish as the bridge language. We provide further
analysis in Section 6.3.

6 Analysis and Discussion

6.1 Is There an Optimal Merging Ratio?

In previous experiments, we tested several merging
ratios intuitively. This naturally leads to the follow-
ing question: Is there an optimal merging weight
setting? To answer this question, we perform a
case study on translating from Acehnese (ace) to
Minangkabau (min), where we apply Bayesian Op-

timization (Gardner et al., 2014; Nogueira, 2014)
to search for the optimal merging weights.

Given a layer index ¢, we can denote the weight
of LoRA,; at that layer as w! ,. The weight of
LoRA;, at that layer can be calculated as:

wZn =1- wi)ut' (5)
To reduce the hyperparameter search space, we
assume that the w,,,; for each layer follows a linear
relationship with respect to the layer index ¢:
wh = ai + b,

(6)

given specific values of a and b, all w}, and w},

can be computed directly. During Bayesian Opti-
mization, we set the LoRA ,,; weights for the first

layer w/"s" and the last layer w!es! as the only two



Language Directions
Methods ace— min— taqg— zgh— —ace —min —taq —zgh | AVG
Pre-train 2.76 2.02 1.18 1.03 1.92 243 1.21 1.43 1.75
Full-parameter 1944 1887 17.11 1733 1731 1940 1795 18.09 | 18.19
Only LoRA,, (r=8) 1.60 1.96 1.11 1.18 1.57 1.11 1.73 1.45 1.46
Only LoRA,;(r=8) | 13.94 11.88 11.06 11.83 1245 1391 1259 9.75 12.18
Merge(1:9,r=8) 1448 1446 1130 12.06 13.05 1459 11.88 12.76 | 13.07
Merge(3:7,r=8) 12.82 1256 1080 11.07 13.05 14.51 8.97 10.71 | 11.81
Merge(5:5,r=8) 9.29 7.76 9.56 9.18 1154 1324 437 6.65 8.95
Merge(7:3,r=8) 4.88 4.68 4.84 4.68 6.90 9.09 1.46 1.62 4.77
Merge(9:1,r=8) 242 2.16 1.15 3.09 3.17 2.87 1.58 1.21 221

Table 2: The chrF++ scores for four low-performance languages on Qwen2.5-7B-Instruct. The merging ratio and
the LoRA rank are denoted as w;,, 1w, and r respectively. Scores where merging outperforms using only LoRA;,,

and LoRA ,,; are underlined.

Language Directions
Methods ace— min— taqg— zgh— —ace —min —taq —zgh | AVG
Pre-train 1.54 1.48 1.35 1.44 1.26 1.19 1.66 1.69 1.45
Full-parameter 19.70 1915 17.00 1735 17.64 1945 1820 1791 | 18.30
Only LoRA,, (r=8) 1.28 1.36 1.17 1.27 1.24 0.90 1.52 1.41 1.27
Only LoRA,;(r=8) | 17.70  16.62 11.59 1199 11.81 13.10 16.86 16.13 | 14.47
Merge(1:9,r=8) 18.26 1743 1279 13.67 1341 1498 16.86 16.90 | 15.54
Merge(3:7,r=8) 18.16 1741 1373 1472 15.68 16.62 1533 16.38 | 16.00
Merge(5:5,r=8) 1731 1596 12.70 12.61 15.58 1695 11.79 14.27 | 14.65
Merge(7:3,r=8) 15.62 1298  8.03 9.34 12.52 1534 8.07 10.03 | 11.49
Merge(9:1,r=8) 5.68 3.09 1.19 1.31 1.43 1.47 2.72 5.63 2.81

Table 3: The chrF++ scores for four low-performance languages on Llama3.1-8B-Instruct. The merging ratio and
the LoRA rank are denoted as w;, 1w+ and r respectively. Scores where merging outperforms using only LoRA;,

and LoRA ,,; are underlined.

hyperparameters to be searched. Given w/"" and
w!?s! | the linear coefficients a and b can be com-

puted as:

almost impossible to find an optimal setting that
works well for all languages. As shown in the re-
sults, while hyperparameter search can improve the
performance for a specific language, it inevitably

b= wf;it (7)  degrades performance for others. The 1:9 ratio pro-
last _ , Jirst vides a relatively good trade-off. This is in line

a = Wout Wout (8) . . .
=T st with our earlier conclusion that LoRA,,; plays a

We choose the setting of Qwen2.5-0.5B-Instruct,
Merge(1:9, r=8) as our baseline, where the score
for translating from Acehnese to Minangkabau
(ace—min) is 17.05. After 50 iterations of
Bayesian Optimization, we obtain a higher score of
17.54, with w/"™" ~ 0.99, w!ss! ~ 0.91. We then
extend this setting to all other directions. However,
as shown in Table 4, this setting (Bayesian (r=8))
fails to achieve a higher overall score. Considering
the inherently multi-objective nature of MNMT,
i.e., improving performance for some languages
may come at the expense of others (Duh et al.,
2012; Huang et al., 2023; Chen et al., 2023b), it’s

much more important role during translation.

6.2 Results on High- and
Medium-performance languages

Previous experiments focused on four low-
performance languages. In this section, we shift our
attention to another four high-performance (French,
Portuguese, Spanish, German) and four medium-
performance languages (Czech, Asturian, Japanese,
Ukrainian).

As shown in Appendix C, compared to low-
performance languages, medium-performance lan-
guages (Table 7) can achieve comparable results to
the full-parameter fine-tuning baseline using only



Language Directions
Methods ace— min— tag— zgh— —ace —min —taq —zgh | AVG
Pre-train 0.94 1.00 0.75 0.89 0.95 0.51 1.06 1.07 0.90
Full-parameter 1773 1685 14.83 1524 1422 1647 16.82 17.14 | 16.16
Only InputLoRA(r=8) 1.17 1.40 0.92 1.05 1.00 0.80 1.46 1.27 1.13
Only OutputLoRA(r=8) | 9.99 7.56 6.48 6.46 8.71 9.91 4.14 7.71 7.62
Merge(1:9,r=8) 1222 1271 8.19 849 11.76 1224  8.21 9.39 | 1040
Bayesian(r=_8) 1241 1241 8.78 7.95 1092 1207 8.06 10.50 | 10.39

Table 4: The chrF++ scores on Qwen2.5-0.5B-Instruct using the merging ratio after Bayesian Optimization
(Bayesian(r=8)). We compared it with the previous best ratio (Merge(1:9, r=8)). Scores where merging outperforms

using only LoRA;,, and LoRA,,; are underlined.

the LoRA,,; module with a smaller rank (Only
LoRA . (r=4)). In the case of high-performance
languages (Table 6), results are even better than
the full-parameter fine-tuning baseline. Merg-
ing with LoRA;, provides almost no additional
gain. We attribute this to the model having already
acquired sufficient knowledge for these strong-
performance languages, making the LoRA;, un-
necessary. Therefore, for these languages, using
only the LoRA,,; is enough for effective modular
fine-tuning.

6.3 Uncovering the Latent Language in
Machine Translation

In previous experiments, we intuitively adopted
English as the bridge language for English-centric
modular training. In this section, we take a closer
look at the rationale for this choice. Inspired by
Wendler et al. (2024); Zhong et al. (2025), we con-
duct further analysis by visualizing the latent lan-
guage during translation. We focus on the follow-
ing two questions: (1) What is the latent language
used by current LLMs during translation? (2) Will
large-scale multilingual fine-tuning change the la-
tent language of LLMs?

Specifically, we follow the experimental setup
from Wendler et al. (2024), analyzing the models’
latent language via Single Word Translation. We
use a 4-shot prompt template:

Template for Single Word Translation

Deutsch: “mutter” - Frangais: “mere”
Deutsch: “ozean” - Francais: “océan”
Deutsch: “herz” - Francais: “cceur”
Deutsch: “wort” - Frangais: “mot”
Deutsch: “berg” - Frangais: “

We do experiments on five languages: German

(de), English (en), Russian (ru), Chinese (zh), and
French (fr). Given the 4-shot prompt, the model
will translate the fifth German word. We then apply
the logit lens (Nostalgebraist, 2020) by feeding
the hidden states from all layers into the language
modeling head, and extract the probabilities for
all the tokens corresponding to the given word in
these five languages. This allows us to obtain the
language probability at each layer.

To answer question (1), we conduct this analysis
on Llama3.1-8B-Instruct and Qwen2.5-7B-Instruct.
Figure 3 shows the language probability and en-
tropy at each layer when translating from German
(de) to French (fr). We find that the input language
rarely serves as the latent language. Instead, the
given word is first transformed into English and
Chinese in the middle layers, and then translated
into the output languages in the final layers. Both
Llama and Qwen rely on English and Chinese as
latent languages. Llama uses them in nearly equal
proportions, with a slight preference for English,
while Qwen shows a clear dominance of Chinese.
This difference helps explain why Qwen performs
worse than Llama in previous English-centric mod-
ular fine-tuning. It also suggests that we should
consider the model’s latent language preferences
when choosing the bridge language. We report the
analysis results for other directions in Appendix D.

For the second question, we compare the la-
tent language between Llama2-13B (Touvron et al.,
2023) and Alma-13B (Xu et al., 2024a). Alma is
fine-tuned from Llama2 with billions of multilin-
gual tokens. We choose Alma because it is one
of the few LLMs that has undergone large-scale
multilingual fine-tuning from a backbone LLM.
This comparison allows us to investigate the im-
pact of multilingual fine-tuning on the LLM’s latent
language. The results in Appendix D show that
even after multilingual fine-tuning with billions
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Figure 3: The language probabilities when translating
from German to French using Llama3.1-8B-Instruct and
Qwen2.5-7B-Instruct. We show the probabilities on five
languages at each layer: German (de), English (en),
Russian (ru), Chinese (zh), French (fr). We also report
the entropy on the top of the probabilities.

of tokens, the model’s latent language tendencies
remain largely unchanged. This indicates the tra-
ditional multilingual fine-tuning also aligns with
the model’s latent language preference, which is
consistent with the idea of modular fine-tuning.

7 Related Work

LLM-based Machine Translation Current
LLM-based machine translation research mainly
focuses on improving performance by optimizing
the training data and pipeline (Xu et al., 2024a;
Alves et al., 2024), or by introducing reinforcement
learning techniques (Xu et al., 2024b; Wu et al.,
2024) to narrow the gap between LLMs and
conventional translation-dedicated models (Fan
et al., 2020; NLLB Team et al., 2024). However,
they still focus on the traditional full-parameter
fine-tuning setting with fixed training data, which
introduces language interference and makes
it difficult to extend to new languages. The
dynamic language adaptation of LLMs remains
underexplored.

Language-specific Learning There is also a se-
ries of studies that try to leverage the modular
nature of language models for machine transla-

tion. Introducing language-specific structures is
a common strategy in this kind of research. Sachan
and Neubig (2018); Escolano et al. (2021); Pires
et al. (2023) built language-specific encoder and
decoder layers, and Cao et al. (2024) used LoRA
as language-specific adapters to further reduce the
trainable parameters. Another line of work (Lin
et al., 2021; Wang and Zhang, 2022; He et al., 2023;
Tan et al., 2024) tried to extract language-specific
sub-networks from the language model. However,
these studies only focus on alleviating language
interference. The language-specific structures still
influence each other during multilingual training,
limiting the support of dynamic language adapta-
tion.

Model Merging Model merging has recently
emerged as a significant trend in the research of
LLMs. Liu et al. (2025) merged intermediate
checkpoints during pre-training to improve model
performance, whereas our work targets the fine-
tuning stage. Another line of work (Yu et al., 2024;
Wan et al., 2024; Gupta and Gupta, 2024; Ban-
darkar et al., 2025) more closely related to ours
aims to merge multiple expert models to enhance
performance on a specific task. While they mainly
focused on mathematics and coding, conducting
model merging in multilingual settings receives
little attention.

8 Conclusion

In this research, we studied the Completely Mod-
ular Fine-tuning setting for Multilingual Neural
Machine Translation. We propose a modular fine-
tuning pipeline that first trains English-centric
LoRA adapters for each input and output language
independently. Instead of traditional end-to-end
training, we then merge the corresponding LoRA ;;,
and LoRA,,; to achieve the translation between
any languages. We conduct experiments on 12
languages with different performance levels. We
try varying merging ratios and find that LoRA ;,;
plays a much more important role than LoRA ;,, dur-
ing translation. For those languages which LLM
performs poorly, merging can improve the perfor-
mance across all directions, highlighting the po-
tential of modular fine-tuning. We also notice that
Llama performs better than Qwen in modular fine-
tuning and attribute this to the stronger English-
centric nature of Llama after analyzing the latent
language. We hope our findings will encourage
further research on modular training of LLMs.



Limitation

Despite the insights gained from our work, our
research still has some limitations.

Firstly, we adopt a simple weighted-sum merg-
ing strategy for combining language-specific mod-
ules. While this approach is straightforward and
effective, it may not fully exploit the potential of
modular training. Exploring more sophisticated
merging methods, or designing techniques that ex-
tract language-specific structures to reduce parame-
ter overlap across modules, warrants further inves-
tigation.

Secondly, our experiments are conducted on rel-
atively small-scale training data. There is always
a trade-off between the amount of available data
and language diversity. We believe that relying not
only on parallel data but also incorporating other
forms of data, such as monolingual corpora, may
yield more insightful findings in future studies.
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Performance Level Language Code —en en—
French fra 56.20 46.46
High Porll{guese por 5835 4751
Spanish spa 50.19 4191
German deu 5233  37.70
Czech ces 38.45 2094
Medium Asturian ast 3726 18.97
Japanese jpn 38.54 15.65
Ukrainian ukr 3636 17.49
Moroccan Tamazight zgh 9.04 0.89
Low Tamasheq taq 9.56 1.04
Acehnese ace 13.69 0.70
Minangkabau min 13.94 0.74

Table 5: The selected 12 languages from FLORES+.
We divide them into three performance levels (High,
Medium, Low) based on their English-centric transla-
tion ability, measured by the average chrF++ scores
when translating to English (— en) and from English
(en —).

A Dataset Setting

We report chrF++ scores translating from (en —)
and to (— en) of the 12 selected languages in Table
5. The 12 languages are grouped into three perfor-
mance levels based on the average score s of these
two directions: high-performance (> 40), medium-
performance (20 < s < 40), low-performance
(< 20). As shown in the results, for all languages,
translating into English consistently yields higher
chrF++ scores than translating from English. This
also aligns with the general intuition that language
understanding is much easier than language gener-
ation for LLMs.

B Training Details

For Qwen2.5-0.5B-Instruct, we use a learning rate
of 2e-5 and train for 5 epochs, reporting the best
chrF++ score as the full-parameter fine-tuning base-
line. For English-centric LoRA training, we use
the same learning rate, set the LoRA scaling factor
a = 4r, and train for 10 epochs.

For Qwen2.5-7B-Instruct, we use a learning rate
of 1e-6 and train 10 epochs for the full-parameter
fine-tuning baseline. We use a learning rate of 2e-5,
set the LoRA scaling factor « = r and train 20
epochs for LoRA training.

For Llama3.1-8B-Instruct, we use a learning rate
of le-6, train 10 epochs for the full-parameter fine-
tuning baseline. For LoRA training, we notify that
Llama needs a larger learning rate than Qwen dur-
ing experiments; we use a learning rate of le-4,
set the LoRA scaling factor a = r, and train 20
epochs.

Consider the differing learning dynamics across

12

languages, to avoid complex, language-specific hy-
perparameter searching, we adopt a small learning
rate for all languages and extend training epochs.
We then select the checkpoint that achieves the best
performance on English-centric directions, ensur-
ing that the appropriate LORA module is selected
for each language.

C Results on High- and
Medium-performance Languages

We further extend our experiments to four high-
performance languages (French, German, Por-
tuguese, Spanish) and four medium-performance
languages (Czech, Asturian, Japanese, Ukrainian),
as shown in Table 6 and 7. For medium-
performance languages, modular fine-tuning
achieves performance comparable to traditional
full-parameter fine-tuning, while using only
LoRA;, yields very limited improvement. For
high-performance languages, we observe that mod-
ular fine-tuning even out-performs traditional full-
parameter fine-tuning. We believe that this is be-
cause these languages are easier to overfit during
training, leading to performance degradation. Addi-
tionally, incorporating LoRA ;;,, provides no benefit
in this setting. These findings suggest that for high-
and medium-performance languages, the model
has already acquired sufficient knowledge during
pre-training, making the use of LoRA;; unneces-
sary.

D The Latent Language of
Qwen2.5-7B-Instruct and
Llama3.1-8B-Instruct

Following Wendler et al. (2024), we visualize the
latent probabilities of five languages using the logit
lens: German (de), French (fr), Chinese (zh), En-
glish (en), and Russian (ru). As shown in Fig-
ure 4 and 5, we present the language probabilities
across 12 translation directions using Llama3.1-
8B-Insturct and Qwen2.5-7B-Instruct. Both Qwen
and Llama exhibit a similar tendency that the in-
put word is first transformed into Chinese and En-
glish in the middle layers and then converted into
the target language in the final layers. For direc-
tions that do not involve Chinese, Llama shows
a slightly stronger preference for English, while
Chinese plays a dominant role in Qwen.



Language Directions

Methods deu— fra— por— spa— —deu —fra —por —spa | AVG
Pre-train 3590 3842 3882 3720 3351 3949 38,55 38.79 | 37.58
Full-parameter 38.11 3954 3951 3780 33.77 40.75 41.16 39.28 | 38.74

Only InputLoRA(r=4) 33.07 40.07 40.11 3795 3255 39.70 39.77 39.20 | 37.80
Only OutputLoRA(r=4) | 39.63 42.83 4343 4129 3575 4443 4511 4191 | 41.80

Merge(1:9,r=4) 39.51 42,50 43.14 4126 3552 4423 4527 41.38 | 41.60
Merge(3:7,r=4) 39.50 4237 4294 40.83 3527 44.03 45.03 41.30 | 41.41
Merge(5:5,r=4) 39.27 42,19 4240 40.16 34.60 43.61 4479 41.02 | 41.00
Merge(7:3,r=4) 35.57 41.66 4123 3942 3388 41.89 43.57 38.53 | 39.47
Merge(9:1,r=4) 30.19 40.15 3932 3799 3256 3872 3994 3643 | 3691

Only InputLoRA(r=8) 2931 39.80 39.61 3643 3224 37.06 37.74 38.12 | 36.29
Only OutputLoRA(=8) | 39.71 4279 4327 4130 3573 4432 4519 41.82 | 41.77

Merge(1:9,r=8) 39.36 4257 43.18 4121 35.63 4425 4512 4133 | 41.58
Merge(3:7,r=8) 39.32 4237 43.01 40.64 35.11 44.00 45.00 41.23 | 41.33
Merge(5:5,r=8) 38.80 42.16 42.68 39.89 3438 4351 44.69 40.95 | 40.88
Merge(7:3,r=8) 32.64 4142 40.66 38.67 32.82 40.10 4341 37.04 | 38.34
Merge(9:1,r=8) 25.68 39.69 38.12 36.16 31.19 3550 38.61 34.35 | 3491

Table 6: The chrF++ scores for four high-performance languages on Qwen2.5-0.5B-Instruct. The merging ratio and
the LoRA rank are denoted as w;,,:w,,; and r respectively. Scores where merging outperforms using only LoRA;,,
and LoRA ,,; are underlined.

E The Latent Language of Llama2-13B
and Alma-13B

We present the language probabilities across 12
translation directions using Llama2-13B and Alma-
13B in Figure 6 and 7. Alma is fine-tuned from
Llama?2 with billions of multilingual tokens. We
find that there is no big difference between Llama
and Alma, indicating that the multilingual fine-
tuning will not influence the latent language of
LLM:s.
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Language Directions

Methods ast— ces— jpn— ukr— —ast —ces —jpn —ukr | AVG
Pre-train 11.08 9.81 1422 13.08 16.75 16.85 5.39 9.20 | 12.05
Full-parameter-94 1833 21.04 2185 20.29 27.82 2036 12.09 21.25 | 20.38

Only InputLoRA(r=4) 1477 1446 1292 1421 17.27 1688 932 1290 | 14.09
Only OutputLoRA(r=4) | 16.42 19.75 20.54 1993 26.78 1958 11.63 18.65 | 19.16

Merge(1:9,r=4) 16.73 19.94 20.14 1998 26.88 19.72 11.46 18.73 | 19.20
Merge(3:7,r=4) 17.11  20.15 1999 1997 27.36 1953 11.76 1858 | 19.31
Merge(5:5,r=4) 16.76 1999 19.60 20.01 27.88 1934 11.09 18.05 | 19.09
Merge(7:3,r=4) 1621 1935 1721 1894 27.00 18.62 10.06 16.02 | 17.93
Merge(9:1,r=4) 1480 17.63 1338 16.20 23.37 17.10 827 13.26 | 15.50

Only InputLoRA(r=8) 15.08 13.88 1248 13.06 1699 1648 854 1249 | 13.63
Only OutputLoRA(r=8) | 16.77 1998 20.64 19.86 2646 1983 11.59 19.37 | 19.31

Merge(1:9,r=8) 17.03 20.07 20.22 20.03 2649 20.03 1149 1934 | 19.34
Merge(3:7,r=8) 17.27 20.56 20.20 20.14 27.38 1992 11.79 19.09 | 19.54
Merge(5:5,r=8) 17.10 20.22 19.67 1972 27.82 1942 1130 18.18 | 19.18
Merge(7:3,r=8) 16.54 18.54 1643 18.15 26.88 18.17 9.89 1472 | 1742
Merge(9:1,r=8) 1498 16.60 1229 15.12 23.16 1649 7.67 11.67 | 14.75

Table 7: The chrF++ scores for four medium-performance languages on Qwen2.5-0.5B-Instruct. The merging ratio
and the LoRA rank are denoted as w;,,:w,,; and r respectively. Scores where merging outperforms using only
LoRA,,, and LoRA,,; are underlined.
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Figure 4: The language probabilities of 12 translation directions using Llama3.1-8B-Instruct. We show the
probabilities on five languages at each layer: German (de), English (en), Russian (ru), Chinese (zh), French (fr). We
also report the entropy on the top of the probabilities.
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Figure 6: The language probabilities of 12 translation directions using Llama2-13B. We show the probabilities on
five languages at each layer: German (de), English (en), Russian (ru), Chinese (zh), French (fr). We also report the
entropy on the top of the probabilities.
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Figure 7: The language probabilities of 12 translation directions using Alma-13B. We show the probabilities on
five languages at each layer: German (de), English (en), Russian (ru), Chinese (zh), French (fr). We also report the
entropy on the top of the probabilities.
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