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Abstract

Integrating large language models (LLMs) into
embodied Al models is becoming increasingly
prevalent. However, existing zero-shot LLM-
based Vision-and-Language Navigation (VLN)
agents either encode images as textual scene
descriptions, potentially oversimplifying visual
details, or process raw image inputs, which can
fail to capture abstract semantics required for
high-level reasoning. In this paper, we improve
the navigation agent’s contextual understanding
by incorporating textual descriptions that facil-
itate analogical reasoning across images from
multiple perspectives. By leveraging text-based
analogical reasoning, the agent enhances its
global scene understanding and spatial reason-
ing, leading to more accurate action decisions.
We evaluate our approach on the R2R dataset,
where our experiments demonstrate significant
improvements in navigation performance.

1 Introduction

With the LLMs being applied across diverse do-
mains, their integration into VLN agents has
emerged as a promising development. Zero-shot
LLM-based VLN agents represent a significant
shift from traditional navigation agents that rely
on extensive task-specific training, demonstrating
greater adaptability and generalizability to a wide
range of environments (Zhang et al., 2024b).
Early approaches for zero-shot LLM-based VLN
agents interpret the visual environment by utilizing
offline Vision-Language Models (VLMs) (Li et al.,
2023; Liu et al., 2023; Wang et al., 2022) to con-
vert visual images into the corresponding textual
descriptions (Zhou et al., 2024b; Long et al., 2024a;
Qiao et al., 2023). However, as shown in Fig. 1,
these textual descriptions often provide very similar
information when candidate images contain over-
lapping views, even if they are captured from dif-
ferent angles. More recently, MapGPT (Chen et al.,
2024) processes multiple images simultaneously,
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directly feeding them into LLMs as input. This ap-
proach reduces redundancy in textual descriptions
by leveraging visual differences, but it remains lim-
ited when handling highly similar images—such
as when both images depict “a kitchen” in Fig. 1.
Motivated by these challenges, we hypothesize that
incorporating additional reasoning processes is nec-
essary to help the agent distinguish key features
within the visually similar images while leverag-
ing spatial information to discern their positional
differences (e.g., “slightly left”).

To address the aforementioned challenges, we
propose enhancing the navigation agent’s contex-
tual understanding by generating textual descrip-
tions of the visual observations, focusing on both
scene understanding from images and spatial rea-
soning within the environment. Our approach fos-
ters the agent’s analogical reasoning and utilizes the
power of language to describe differences between
images, capturing higher-level scene understanding
and spatial relationships. Specifically, instead of
treating candidate images as isolated inputs and
prompting LL.Ms to generate independent visual
descriptions, we leverage VLMs to compare multi-
ple images and generate contextualized scene de-
scriptions that highlight each image’s distinctive
features. Furthermore, to strengthen the agent’s
spatial reasoning, we encourage it to systematically
organize and interpret the spatial relationships be-



tween images, enabling it to distinguish subtle spa-
tial concepts, such as “slightly left” versus “further
left”. To achieve this, we generate a detailed de-
scriptive paragraph that explicitly captures the spa-
tial relationships among the images based on raw
spatial attributes, including rotation angles and dis-
tances. In summary, our proposed method bridges
the agent’s perception and reasoning, enhancing its
ability to make more accurate action decisions.
We evaluate our method on the VLN mainstream
benchmark Room-to-Room (R2R) (Anderson et al.,
2018). Experimental results demonstrate that in-
corporating our proposed analogical reasoning and
spatial descriptions significantly improve naviga-
tion performance compared to using raw text or im-
ages alone. Furthermore, combining images with
our proposed textual descriptions yields the best
performance, highlighting the effectiveness of our
descriptions in enhancing the agent’s reasoning.

2 Related Works

Vision-and-Language Navigation (VLN) isa
challenging embodied Al task that requires an
agent to navigate in a photo-realistic environment
by following natural language instructions (Ander-
son et al., 2018; Ku et al., 2020; Qi et al., 2020).
With the rise of foundation models, most VLN
agents focus on integrating pre-trained models and
generating large-scale datasets to enhance multi-
modal representations (Li et al., 2020, 2019; Chen
etal., 2021; Qiao et al., 2022; Tan et al., 2019; Li
et al., 2022; Wang et al., 2023, 2024; Guhur et al.,
2021; Li and Bansal, 2024). Recently, incorpo-
rating contemporary LL.Ms and VLMs into VLN
offers a promising solution to mitigate domain-
specific training constraints, particularly for zero-
shot VLN agents (Zhou et al., 2024b,a; Chen et al.,
2024; Long et al., 2024b; Zhang et al., 2024a;
Zheng et al., 2024; Qiao et al., 2024). However,
current LLM-based VLN agents struggle with dis-
tinguishing visually similar scenes and exhibit lim-
ited spatial understanding. Our goal is to improve
these agents by addressing both challenges.

Analogical Reasoning is a cognitive process that
involves comparing different entities to identify
underlying structural similarities, particularly in
visual domains (Lovett et al., 2009; Lovett and
Forbus, 2017; Huang et al., 2021). Rather than re-
lying on surface-level features, it captures spatial
and semantic relationships between objects across
images, facilitating deeper understanding, abstrac-

tion, and generalization. Recent advancements in
deep learning have leveraged analogical reason-
ing to align images with textual descriptions, such
as CLIP (Radford et al., 2021) and ALIGN (Jia
et al., 2021), to establish robust semantic mappings.
Building on this foundation, our work extends ana-
logical reasoning to VLN tasks, enabling agents to
compare discrete images, discern similarities and
differences, and develop a global understanding of
the environment.

3 Methods

In this section, we introduce our method, which
builds upon MapGPT. Our approach incorporates
novel prompting strategies to refine visual observa-
tions and integrates additional spatial descriptions
of the environment. The model architecture has
been shown in Fig 2.

3.1 Task Formulation

In the VLN task, an agent receives a natural lan-
guage instruction, denoted as /. At each navigation
step, the agent perceives visual observations con-
sisting of n discrete images and selects one of these
images as its action. The objective is to generate a
trajectory (a sequence of images) that follows the
given instruction. To achieve this, the LLM-based
VLN agent takes multiple sources of information
as input, including instruction I, history H;, topo-
logical map M;, observation O, and action space
Ay. The agent’s decision-making process at step ¢
is formulated as:

at :LLM(I7Ht7Mt7Ot7At)7 (1)

where a; € A;. As shown in Fig. 2, the history
includes previous step actions, capturing the se-
quence of movements. The map shows the connec-
tivity graph between places (images). The action
space is defined as a combination of direction and
image (place), where the direction is determined
based on both heading and elevation, including: go
forward, turn left/right/around, and go up/down.

3.2 Scene Descriptions for Images

For different LLM-based VLN agents, one of the
primary differences lies in how observations O are
represented. For instance, NavGPT (Zhou et al.,
2024b) and DiscussNav (Long et al., 2024a) utilize
VLMs (e.g. BLIP-2 (Li et al., 2023)) to convert vi-
sual images into corresponding textual descriptions.
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While this approach enables language-driven navi-
gation, it has a critical limitation: these textual de-
scriptions treat each discrete image independently,
disregarding contextual information across frames.
However, a robust VLN agent should not only gen-
erate textual descriptions but also ensure that these
descriptions encode contextual and relational dif-
ferences across observations. To achieve this, we
propose prompting LLMs to generate detailed vi-
sual descriptions while explicitly emphasizing the
distinguishing features between different observa-
tions, which is formally denoted as follows:
,0n)),
(@3]
where Prompt is instructions designed to guide the
LLMs in generating an analogical analysis of the
input. OT; represents the textual description of the
corresponding image O;.

We illustrate our approach with an example in
Fig. 2, where the prompts are demonstrated along-
side the corresponding textual descriptions gen-
erated for the given images. Our method strategi-
cally prompts LLMs to identify distinguishing land-
marks that differentiate each image from the others.
As a result, the opening sentence of each visual
description explicitly highlights these unique fea-
tures, ensuring a clear comparative distinction. For
instance, in Image 1, the description emphasizes a
hallway featuring a wooden door, whereas in Im-
age 2, the focus shifts to a hallway with paintings,
leading to a room and a kitchen counter. Mean-

OTy,0Tx,...,0T, = LLM(Prompt(O1, O2, . ...

“turn left 5 degrees’

while, Image 3 directs attention to a kitchen area
centered around a large island. By emphasizing
analogical attributes rather than describing each im-
age in isolation, our approach enhances contextual
understanding and strengthens the model’s ability
to discern subtle yet critical differences between
visually similar scenes.

3.3 Spatial Descriptions within Environment

A key challenge for the LLM-based VLN agent is
effectively representing the spatial structure of its
visual environment. In MapGPT, the action space
is highly discretized, allowing only a generic “furn
left” action without differentiating between sub-
tle and significant turns, such as turning 5 degrees
versus 30 degrees. This coarse granularity poses
a significant limitation when processing instruc-
tions like “turn slightly left” as the agent lacks
the ability to interpret the environment with suffi-
cient details to execute the command precisely. A
straightforward approach to addressing this limita-
tion is to directly provide raw heading and elevation
values. For example, rather than the ambiguous in-
struction “furn left” the action space could specify
". However, our experiments (Ap-
pendix A.3) reveal that the agent struggles to effec-
tively comprehend and integrate this fine-grained
spatial information, suggesting that merely provid-
ing numerical orientation values is insufficient for
enhancing its spatial reasoning.

To address this challenge, we draw inspiration



Methods NE| SRT SPL?T
NavGPT (with GPT-4) 6.46 34 29
MapGPT (with GPT-4) 6.29 38.8 25.8

MapGPT (with GPT-4V) 5.63 43.7 34.8
MapGPT (with GPT-40) 5.31 43.8 36.5
Ours (with GPT-40) 4.79 49.5 425

Table 1: Results on the validation unseen set of the
R2R dataset. We implement our method solely on GPT-
40 (OpenAl, 2024), as GPT-4V has been deprecated.

from the approach of obtaining analogical scene
descriptions from images and extend it to spatial un-
derstanding. Our approach focuses on constructing
a structured contextual representation that captures
spatial relationships across discrete images. Fig. 2
illustrates our designed prompts for describing spa-
tial relationships. We begin by computing the spa-
tial relation, including the relative rotational angle
(e.g., “left by 20 degrees”) and the relative distance
(e.g., “0.21 meters”; note that MapGPT ignores
distance). These computed attributes are then in-
corporated into a structured prompt that guides the
LLMs to generate a detailed paragraph analyzing
the spatial relationships. The generated description
explicitly considers directional comparisons, eleva-
tion differences, and distance variations, ensuring
a comprehensive understanding of the spatial con-
text. We provide full prompts in the Appendix A.4.
We denote the generated spatial description as .5,
and our enhanced LLM agent’s decision-making
process is finally defined as follows:

as = LLM(I, Hy, My, {Oy, OT}, St, Ar), (3)

where {O;, OT;} indicates that our agent can flexi-
bly take either the image, its corresponding scene
description, or both as input.

4 Experiments

Datasets and Evaluation Metrics. We evaluate
our method on the R2R dataset (Anderson et al.,
2018), a standard benchmark for VLN. Our pri-
mary evaluation metrics include Success Rate (SR),
Success weighted by Path Length (SPL), and Nav-
igation Error (NE). We follow MapGPT conduct-
ing evaluations on a sampled subset of the R2R
dataset, consisting of 72 scenarios and 216 exam-
ples. We also report our results on the R2R unseen
dataset (~ 2000 examples). We provide details
of evaluation metrics and implementation in the
Appendix A.1.

Results Table 1 shows the final performance re-
sults on the R2R unseen dataset, demonstrating that

Methods # Image Text GPT SRt SPL?T
NavGPT 1 - BLIP2 GPT35 167 13.0
2 - BLIP2 GPT4 12 254
3 - BLIP-2 GPT-4o 385  26.9
4 - GPT-40 GPT4o 456 36.2
MapGPT =, . GPT-4v 477 381
6 v GPT-40-05-13 412  35.1
7TV - GPT4o 477 387
8 - GPT-40(SD) GPT4o 482 36.2
Ours 9 -  GPT-40(S+SP)  GPT4o  50.0 36.4
10 ¢  GPT4o(SHSP)  GPT4o  50.0 40.2

Table 2: Results on 72 diverse scenes from the R2R
dataset. All GPT-40 versions are from the 08-06 release,
except GPT-40-05-13, which is from the 05-13. SI:
scene descriptions for images; SP: spatial descriptions.

our method significantly enhances the baselines,
achieving around 6% improvement in both SR and
SPL. Table 2 presents our results on 72 diverse
scenes. We compare our approach against other
LLM-based agents, varying the image input, text
input, and GPT backbones. Our findings highlight
the importance of using a more advanced captioner
for scene descriptions, as BLIP-2 (#3) significantly
underperforms compared to GPT-4o (#4). Addi-
tionally, the latest GPT-40 (#7) demonstrates a no-
table improvement over its previous version (#6).
Rows 8 to 10 show our method’s results. Compar-
ing #4 and #8, we observe that our scene descrip-
tions enhance navigation performance, particularly
in SR, with an improvement of nearly 3%. Row 9
shows that incorporating spatial descriptions fur-
ther boosts SR by an additional 2%. Notably, our
results using only text input surpass the baseline
results that take image as input (#7). Finally, in
#10, we integrate both analogical scene and spa-
tial descriptions while also including the image as
input, resulting in an around 4% improvement in
SPL. This result indicates that our analogical rea-
soning descriptions also enhance reasoning over
images, suggesting that while images inherently
contain all necessary information, our text-based
analogical descriptions compensate for the lack of
high-level reasoning in visual understanding.

5 Conclusion

In this paper, we propose enhancing the contextual
understanding of LLM-based VLN agents by gen-
erating analogical scene and spatial descriptions.
We encourage the agent to compare images from
different perspectives and help the agent construct
a structured spatial understanding of the environ-
ment. We evaluate our method on the R2R dataset
and demonstrate that our approach significantly
improves navigation performance.



6 Limitation

Despite the significant improvement in navigation
performance achieved by our analogical reasoning
descriptions, several limitations remain. First, the
quality of the generated descriptions heavily de-
pends on the underlying language model, which
may introduce biases or hallucinations that could
impact decision-making. Second, the process of
generating analogical descriptions adds an addi-
tional computational step, potentially increasing
processing costs compared to direct image-based
navigation.
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A Appendix

A.1 Experiments

Evaluation Metrics Three main metrics are used
to evaluate navigation performance: (1) Navigation
Error (NE): the mean of the shortest path distance
between the agent’s final position and the goal des-
tination. (2) Success Rate (SR): the percentage
of the predicted final position being within 3 me-
ters from the goal destination. (3) Success Rate
Weighted Path Length (SPL): normalizes success
rate by trajectory length.

Implementation Details. We utilize GPT-40-08-
06 as the backbone for our LLM-based agent, given
that GPT-4V has been deprecated. In this work,
we employ GPT-40-08-06 as the backbone for
our LLM-based agent, as GPT-4V has been depre-
cated. MapGPT reports its results using GPT-4o-
05-03, but our implementation with GPT-40-08-06
achieves better performance (around 6% on suc-
cess rate). To ensure deterministic outputs, we set
the temperature to 0. Additionally, we constrain
the agent’s decision-making process by limiting the
maximum number of generated actions to 15 and
the maximum token output from GPT to 2000.

A.2 Qualitative Examples

Fig. 3 and Fig. 4 present two qualitative examples
illustrating the effectiveness of the proposed ana-
logical scene and spatial descriptions. In Fig. 3,
the scene descriptions generated by BLIP-2 and
GPT-40 are highly similar despite the visual differ-
ences between the scenes. Even for GPT-40, across
three images, the descriptions primarily focus on
the general scene, referring to an “ornate chapel in-
terior” without providing distinguishing details. In
contrast, our method emphasizes different aspects
of each image: for example, Image 1 highlights
“the confessional booth”, Image 2 focuses on “the
benches”, and Image 3 emphasizes “the grand al-
tar”. These distinct descriptions enable the agent
to accurately select Image 2, which aligns with
the given instruction. Furthermore, in Fig 4, We
present an example demonstrating the effectiveness
of spatial descriptions. In this case, both Image 4
and Image 5 contain an entranceway. However, our
approach encourages the agent to infer that less
left/right rotation corresponds to a direction closer
to forward. As a result, the agent correctly reasons
that Image 5 is better aligned with the instruction
“walk to”.

A.3 Different Strategies for Spatial Reasoning

We conduct experiments to examine how different
spatial reasoning strategies impact navigation per-
formance. Intuitively, enabling an agent to under-
stand nuanced spatial concepts can be achieved by
explicitly incorporating varying degrees of rotation
into its action space. For example, the agent’s ac-
tion space is more precisely defined, such as “turn
5 degrees left”. However, our results reveal that
introducing fine-grained rotational actions leads
to a slight decline in navigation performance (row
#2 in Table. 3). This suggests that VLN agents
struggle to effectively structure spatial information
when relying solely on numerical rotations degrees.
To address this, we propose generating descrip-
tive paragraphs that systematically capture spatial
relationships between images. Empirical results
demonstrate that our approach enhances navigation
performance compared to directly using numerical
values into the action space (#3 in Table. 3).

A.4 Prompts for Spatial Descriptions

Generate a paragraph to analyze the spatial relation-
ships between discrete images in an environment, con-
sidering the comparision of their directions, elevations
and distance. The input consists of images with spe-
cific angles and distances relative to a central point.
Here are some rules to follow: Angles between 120
to 240 degree to the left or right indicate behind or
around. Angles equals 180 degrees indicate direct be-
hind. Less angles rotation degrees to the left or right
indicate closer to the forward direction. For exam-
ple, Given places along with their spatial information:
Place0 is to my right 180.0 degrees and up 30.0 de-
grees, positioned 0.21 meters away, Place 2 is to my
right 60.0 degrees and up 30.0 degrees, positioned
0.21 meters away Place 3 is to my right 90.0 degrees
and up 30.0 degrees, positioned 0.18 meters away.
Place 4 is to my right 90.0 degrees, positioned 0.05
meters away. Please generate a descriptive paragraph
explaining the spatial relationships and navigation
steps to these images. For example: “To navigate
to Image0, Image2, and Image3, you need to move
upward. As you turn right, you will encounter Im-
age?2 first, followed by Image3, and finally Image0,
which is directly behind you. Image4 is in the same
direction as Image3, but Image3 requires looking up
while Image4 does not. Additionally, Image4 is very
close to you.” Output the response in JSON format
with the key ’environmental analysis.” "

Methods SRT
1 MapGPT 47.7  38.7
2 +spatial attributes ~ 46.8  37.9
3 +spatial descriptions  49.1  39.3

SPLt

Table 3: Different strategies for spatial reasoning.



Instructions: Walk forward to the padded benches.

Image2

Imagez1: In the scene, there is an ornate wooden room with a red curtain. The room also features two

Scene chandeliers hanging from the ceiling, adding a touch of elegance to the space.
Descriptions Image2: In the scene, there is an ornate wooden altar with a chandelier hanging above it. The altar is
(BLIP-2) adorned with intricate carvings and decorations, giving it a sense of grandeur and elegance.

Image3: In the scene, there is an ornate wooden altar with intricate carvings. The altar is adorned with
two red chairs placed in front of it, creating a cozy and inviting atmosphere.

Image1: The image depicts an interior space with a classic, ornate design, featuring wooden paneling and red

Scene drapery. The room showcases a red velvet bench and curtains, with intricate wooden carvings.
Descriptions Image2: The image depicts an ornate, traditional chapel interior with rich red and wooden tones. Red velvet
(GPT-40) curtains and cushioned kneelers contrast with the intricately carved wooden altar and paneling.

Image3: The image depicts an ornate chapel interior with a richly decorated altar and wooden paneling.
The altar features intricate carvings and religious icons.

Image1: The scene depicts an ornate interior space with a focus on a wooden confessional booth. The booth
features intricate woodwork and is partially enclosed by a red curtain.

Analogical Image2: This image showcases a richly decorated interior with a series of red velvet benches facing a wooden
Scene. . altar. The altar is intricately carved, featuring religious iconography. Above, chandeliers hang from the ceiling,
Descriptions  ,4ding elegance to the space. The walls are lined with red curtains.

(GPT-40)

Image3: The focus here is on a grand altar set against a backdrop of detailed wood carvings depicting religious
figures. The altar is flanked by red velvet benches, and the ceiling is adorned with ornate chandeliers.

Figure 3: A qualitative example demonstrating the effectiveness of analogical scene descriptions. We collect scene
descriptions from both BLIP-2 and GPT-40. Bold text highlights similar descriptions across images, while text in
green boxes represents our generated analogical scene descriptions, each emphasizing different aspects.

Instructions: Walk to the end of the entrance way. Continue straight until you
reach the dining room.
Image1

Image4 Images

L

Left 210 degree Left 180 degree Left 150 degree Left 9o degree Right 30 degree

MapGPT: The instruction is walk to the end of the entrance way. Image 4 shows a hallway that seems to
lead further into the building, which aligns with the instruction to walk to the end of the entrance way. I
should go to Place 4.

Environmental Analysis: To navigate through the environment, begin by turning to your right to
encounter image 5. As you turn left, you will encounter image 4, image 3, image 2, and image 1. Image 2
is directly behind you. Image 5 is closer to the forward direction.

Ours: The instruction suggests that I need to walk through an entrance way, and eventually reach a
dining room. The images provided do not directly depict a dining room or a kitchen area, but they do
show hallways and rooms with seating areas. Based on the environmental analysis, Image 5 are the
most straightforward to access, and correspond to the same hallway description. I should go to Place 5.

Figure 4: A qualitative example illustrating the effectiveness of our spatial descriptions. The agent successfully
identified Place5 based on its relative position, as it is closer to the forward direction than other images and better
aligned with the instruction “walk to” compared to Place4, which requires a significant left turn.
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