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Abstract001

Integrating large language models (LLMs) into002
embodied AI models is becoming increasingly003
prevalent. However, existing zero-shot LLM-004
based Vision-and-Language Navigation (VLN)005
agents either encode images as textual scene006
descriptions, potentially oversimplifying visual007
details, or process raw image inputs, which can008
fail to capture abstract semantics required for009
high-level reasoning. In this paper, we improve010
the navigation agent’s contextual understanding011
by incorporating textual descriptions that facil-012
itate analogical reasoning across images from013
multiple perspectives. By leveraging text-based014
analogical reasoning, the agent enhances its015
global scene understanding and spatial reason-016
ing, leading to more accurate action decisions.017
We evaluate our approach on the R2R dataset,018
where our experiments demonstrate significant019
improvements in navigation performance.020

1 Introduction021

With the LLMs being applied across diverse do-022

mains, their integration into VLN agents has023

emerged as a promising development. Zero-shot024

LLM-based VLN agents represent a significant025

shift from traditional navigation agents that rely026

on extensive task-specific training, demonstrating027

greater adaptability and generalizability to a wide028

range of environments (Zhang et al., 2024b).029

Early approaches for zero-shot LLM-based VLN030

agents interpret the visual environment by utilizing031

offline Vision-Language Models (VLMs) (Li et al.,032

2023; Liu et al., 2023; Wang et al., 2022) to con-033

vert visual images into the corresponding textual034

descriptions (Zhou et al., 2024b; Long et al., 2024a;035

Qiao et al., 2023). However, as shown in Fig. 1,036

these textual descriptions often provide very similar037

information when candidate images contain over-038

lapping views, even if they are captured from dif-039

ferent angles. More recently, MapGPT (Chen et al.,040

2024) processes multiple images simultaneously,041

Instruction: Turn slightly left to the kitchen.

Candidate 
Images 

Image
Textual
Descriptions

Image1: The image shows an indoor scene with two paintings hanging on the walls. One painting is 
located on the left side of the room, while the other is situated on the right side. In addition to the 
paintings, there is a wooden door that leads from the hallway into the room. 

Describe the scene in the image.

Image1 (LEFT) Image2 (LEFT)

 The image shows a 
kitchen and a dining 
room. The kitchen is 
located on the left side of 
the hallway, while the 
dining room is situated 
on the right side. 

 The image shows a 
kitchen and a dining 
room. The kitchen is 
located on the left side of 
the image, while the 
dining room is situated 
on the right side. 

VLMs (GPT4o, BLIP2, etc.)
LLM VLN 

Agent

Similar 
Descriptions and 
direction !

Similar 
Images(Both with 
kitchens)!

Figure 1: Challenges in current LLM-based VLN Agent.
The highlighted orange text shows similar descriptions.

directly feeding them into LLMs as input. This ap- 042

proach reduces redundancy in textual descriptions 043

by leveraging visual differences, but it remains lim- 044

ited when handling highly similar images—such 045

as when both images depict “a kitchen” in Fig. 1. 046

Motivated by these challenges, we hypothesize that 047

incorporating additional reasoning processes is nec- 048

essary to help the agent distinguish key features 049

within the visually similar images while leverag- 050

ing spatial information to discern their positional 051

differences (e.g., “slightly left”). 052

To address the aforementioned challenges, we 053

propose enhancing the navigation agent’s contex- 054

tual understanding by generating textual descrip- 055

tions of the visual observations, focusing on both 056

scene understanding from images and spatial rea- 057

soning within the environment. Our approach fos- 058

ters the agent’s analogical reasoning and utilizes the 059

power of language to describe differences between 060

images, capturing higher-level scene understanding 061

and spatial relationships. Specifically, instead of 062

treating candidate images as isolated inputs and 063

prompting LLMs to generate independent visual 064

descriptions, we leverage VLMs to compare multi- 065

ple images and generate contextualized scene de- 066

scriptions that highlight each image’s distinctive 067

features. Furthermore, to strengthen the agent’s 068

spatial reasoning, we encourage it to systematically 069

organize and interpret the spatial relationships be- 070
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tween images, enabling it to distinguish subtle spa-071

tial concepts, such as “slightly left” versus “further072

left". To achieve this, we generate a detailed de-073

scriptive paragraph that explicitly captures the spa-074

tial relationships among the images based on raw075

spatial attributes, including rotation angles and dis-076

tances. In summary, our proposed method bridges077

the agent’s perception and reasoning, enhancing its078

ability to make more accurate action decisions.079

We evaluate our method on the VLN mainstream080

benchmark Room-to-Room (R2R) (Anderson et al.,081

2018). Experimental results demonstrate that in-082

corporating our proposed analogical reasoning and083

spatial descriptions significantly improve naviga-084

tion performance compared to using raw text or im-085

ages alone. Furthermore, combining images with086

our proposed textual descriptions yields the best087

performance, highlighting the effectiveness of our088

descriptions in enhancing the agent’s reasoning.089

2 Related Works090

Vision-and-Language Navigation (VLN) is a091

challenging embodied AI task that requires an092

agent to navigate in a photo-realistic environment093

by following natural language instructions (Ander-094

son et al., 2018; Ku et al., 2020; Qi et al., 2020).095

With the rise of foundation models, most VLN096

agents focus on integrating pre-trained models and097

generating large-scale datasets to enhance multi-098

modal representations (Li et al., 2020, 2019; Chen099

et al., 2021; Qiao et al., 2022; Tan et al., 2019; Li100

et al., 2022; Wang et al., 2023, 2024; Guhur et al.,101

2021; Li and Bansal, 2024). Recently, incorpo-102

rating contemporary LLMs and VLMs into VLN103

offers a promising solution to mitigate domain-104

specific training constraints, particularly for zero-105

shot VLN agents (Zhou et al., 2024b,a; Chen et al.,106

2024; Long et al., 2024b; Zhang et al., 2024a;107

Zheng et al., 2024; Qiao et al., 2024). However,108

current LLM-based VLN agents struggle with dis-109

tinguishing visually similar scenes and exhibit lim-110

ited spatial understanding. Our goal is to improve111

these agents by addressing both challenges.112

Analogical Reasoning is a cognitive process that113

involves comparing different entities to identify114

underlying structural similarities, particularly in115

visual domains (Lovett et al., 2009; Lovett and116

Forbus, 2017; Huang et al., 2021). Rather than re-117

lying on surface-level features, it captures spatial118

and semantic relationships between objects across119

images, facilitating deeper understanding, abstrac-120

tion, and generalization. Recent advancements in 121

deep learning have leveraged analogical reason- 122

ing to align images with textual descriptions, such 123

as CLIP (Radford et al., 2021) and ALIGN (Jia 124

et al., 2021), to establish robust semantic mappings. 125

Building on this foundation, our work extends ana- 126

logical reasoning to VLN tasks, enabling agents to 127

compare discrete images, discern similarities and 128

differences, and develop a global understanding of 129

the environment. 130

3 Methods 131

In this section, we introduce our method, which 132

builds upon MapGPT. Our approach incorporates 133

novel prompting strategies to refine visual observa- 134

tions and integrates additional spatial descriptions 135

of the environment. The model architecture has 136

been shown in Fig 2. 137

3.1 Task Formulation 138

In the VLN task, an agent receives a natural lan- 139

guage instruction, denoted as I . At each navigation 140

step, the agent perceives visual observations con- 141

sisting of n discrete images and selects one of these 142

images as its action. The objective is to generate a 143

trajectory (a sequence of images) that follows the 144

given instruction. To achieve this, the LLM-based 145

VLN agent takes multiple sources of information 146

as input, including instruction I , history Ht, topo- 147

logical map Mt, observation Ot, and action space 148

At. The agent’s decision-making process at step t 149

is formulated as: 150

at = LLM(I,Ht,Mt, Ot, At), (1) 151

where at ∈ At. As shown in Fig. 2, the history 152

includes previous step actions, capturing the se- 153

quence of movements. The map shows the connec- 154

tivity graph between places (images). The action 155

space is defined as a combination of direction and 156

image (place), where the direction is determined 157

based on both heading and elevation, including: go 158

forward, turn left/right/around, and go up/down. 159

3.2 Scene Descriptions for Images 160

For different LLM-based VLN agents, one of the 161

primary differences lies in how observations O are 162

represented. For instance, NavGPT (Zhou et al., 163

2024b) and DiscussNav (Long et al., 2024a) utilize 164

VLMs (e.g. BLIP-2 (Li et al., 2023)) to convert vi- 165

sual images into corresponding textual descriptions. 166
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Visual 
Environment

LLM Agent

Task Description: You are an embodied robot….
Instruction: Turn slight left to kitchen.
Map: Place0 is connected with place1, place2, and 
place3.
History: Step0: go up to place0.
Action Space: [A. turn left to place1, B. turn left to 
place2, C. turn around to place3 ]

Task 
Description

Map History

Scene Descriptions

Spatial Descriptions

Action 
Space

Describe the indoor scene in each image with detailed and unique 
descriptions. For each image, provide a description that captures 
the scene comprehensively, including unique landmarks or 
features that distinguish it from others.

Image1: A hallway with a partially open wooden door, 
revealing a room with patterned flooring and a wall sconce. 
Image2: A view of a hallway with textured walls and a series 
of abstract paintings. The hallway leads to a room and a visible 
side of a kitchen counter.
Image3: A kitchen area with a large island, granite countertops, 
and multiple windows allowing natural light. 

Image1 Image2 Image3

Image3: 
Left 20 degree,  
0.21 meters 

Image2:
Left 40 degree,  
0.23 meters

Image1: 
Right 150 degree,  
0.17 meters 

Generate a paragraph to analyze the 
spatial relationships between 
discrete images in an environment, 
considering the comparison of their 
directions, elevations and distance.

Image2 and Image3 are both on your 
left. As you turn left, you will encounter 
Image3 first, followed by Image2. 
Image3  is closer to you compared to 
image2. Image1 is behind you, and you 
can rotate right to locate it.

Figure 2: LLM-based VLN Model Architecture. represents the inputs to the Map-GPT agent, while and
denote our proposed analogical scene and spatial descriptions, respectively.

While this approach enables language-driven navi-167

gation, it has a critical limitation: these textual de-168

scriptions treat each discrete image independently,169

disregarding contextual information across frames.170

However, a robust VLN agent should not only gen-171

erate textual descriptions but also ensure that these172

descriptions encode contextual and relational dif-173

ferences across observations. To achieve this, we174

propose prompting LLMs to generate detailed vi-175

sual descriptions while explicitly emphasizing the176

distinguishing features between different observa-177

tions, which is formally denoted as follows:178

OT1, OT2, . . . , OTn = LLM
(
Prompt(O1, O2, . . . , On)

)
,
(2)179

where Prompt is instructions designed to guide the180

LLMs in generating an analogical analysis of the181

input. OTi represents the textual description of the182

corresponding image Oi.183

We illustrate our approach with an example in184

Fig. 2, where the prompts are demonstrated along-185

side the corresponding textual descriptions gen-186

erated for the given images. Our method strategi-187

cally prompts LLMs to identify distinguishing land-188

marks that differentiate each image from the others.189

As a result, the opening sentence of each visual190

description explicitly highlights these unique fea-191

tures, ensuring a clear comparative distinction. For192

instance, in Image 1, the description emphasizes a193

hallway featuring a wooden door, whereas in Im-194

age 2, the focus shifts to a hallway with paintings,195

leading to a room and a kitchen counter. Mean-196

while, Image 3 directs attention to a kitchen area 197

centered around a large island. By emphasizing 198

analogical attributes rather than describing each im- 199

age in isolation, our approach enhances contextual 200

understanding and strengthens the model’s ability 201

to discern subtle yet critical differences between 202

visually similar scenes. 203

3.3 Spatial Descriptions within Environment 204

A key challenge for the LLM-based VLN agent is 205

effectively representing the spatial structure of its 206

visual environment. In MapGPT, the action space 207

is highly discretized, allowing only a generic “turn 208

left” action without differentiating between sub- 209

tle and significant turns, such as turning 5 degrees 210

versus 30 degrees. This coarse granularity poses 211

a significant limitation when processing instruc- 212

tions like “turn slightly left” as the agent lacks 213

the ability to interpret the environment with suffi- 214

cient details to execute the command precisely. A 215

straightforward approach to addressing this limita- 216

tion is to directly provide raw heading and elevation 217

values. For example, rather than the ambiguous in- 218

struction “turn left” the action space could specify 219

“turn left 5 degrees”. However, our experiments (Ap- 220

pendix A.3) reveal that the agent struggles to effec- 221

tively comprehend and integrate this fine-grained 222

spatial information, suggesting that merely provid- 223

ing numerical orientation values is insufficient for 224

enhancing its spatial reasoning. 225

To address this challenge, we draw inspiration 226

3



Methods NE↓ SR↑ SPL↑
NavGPT (with GPT-4) 6.46 34 29
MapGPT (with GPT-4) 6.29 38.8 25.8

MapGPT (with GPT-4V) 5.63 43.7 34.8
MapGPT (with GPT-4o) 5.31 43.8 36.5

Ours (with GPT-4o) 4.79 49.5 42.5

Table 1: Results on the validation unseen set of the
R2R dataset. We implement our method solely on GPT-
4o (OpenAI, 2024), as GPT-4V has been deprecated.

from the approach of obtaining analogical scene227

descriptions from images and extend it to spatial un-228

derstanding. Our approach focuses on constructing229

a structured contextual representation that captures230

spatial relationships across discrete images. Fig. 2231

illustrates our designed prompts for describing spa-232

tial relationships. We begin by computing the spa-233

tial relation, including the relative rotational angle234

(e.g., “left by 20 degrees”) and the relative distance235

(e.g., “0.21 meters”; note that MapGPT ignores236

distance). These computed attributes are then in-237

corporated into a structured prompt that guides the238

LLMs to generate a detailed paragraph analyzing239

the spatial relationships. The generated description240

explicitly considers directional comparisons, eleva-241

tion differences, and distance variations, ensuring242

a comprehensive understanding of the spatial con-243

text. We provide full prompts in the Appendix A.4.244

We denote the generated spatial description as S,245

and our enhanced LLM agent’s decision-making246

process is finally defined as follows:247

at = LLM(I,Ht,Mt, {Ot, OTt}, St, At), (3)248

where {Ot, OTt} indicates that our agent can flexi-249

bly take either the image, its corresponding scene250

description, or both as input.251

4 Experiments252

Datasets and Evaluation Metrics. We evaluate253

our method on the R2R dataset (Anderson et al.,254

2018), a standard benchmark for VLN. Our pri-255

mary evaluation metrics include Success Rate (SR),256

Success weighted by Path Length (SPL), and Nav-257

igation Error (NE). We follow MapGPT conduct-258

ing evaluations on a sampled subset of the R2R259

dataset, consisting of 72 scenarios and 216 exam-260

ples. We also report our results on the R2R unseen261

dataset (∼ 2000 examples). We provide details262

of evaluation metrics and implementation in the263

Appendix A.1.264

Results Table 1 shows the final performance re-265

sults on the R2R unseen dataset, demonstrating that266

Methods # Image Text GPT SR↑ SPL↑
NavGPT 1 - BLIP-2 GPT-3.5 16.7 13.0

MapGPT

2 - BLIP-2 GPT-4 41.2 25.4
3 - BLIP-2 GPT-4o 38.5 26.9
4 - GPT-4o GPT-4o 45.6 36.2
5 ✔ - GPT-4v 47.7 38.1
6 ✔ - GPT-4o-05-13 41.2 35.1
7 ✔ - GPT-4o 47.7 38.7

Ours
8 - GPT-4o(SI) GPT-4o 48.2 36.2
9 - GPT-4o (SI+SP) GPT-4o 50.0 36.4
10 ✔ GPT-4o (SI+SP) GPT-4o 50.0 40.2

Table 2: Results on 72 diverse scenes from the R2R
dataset. All GPT-4o versions are from the 08-06 release,
except GPT-4o-05-13, which is from the 05-13. SI:
scene descriptions for images; SP: spatial descriptions.

our method significantly enhances the baselines, 267

achieving around 6% improvement in both SR and 268

SPL. Table 2 presents our results on 72 diverse 269

scenes. We compare our approach against other 270

LLM-based agents, varying the image input, text 271

input, and GPT backbones. Our findings highlight 272

the importance of using a more advanced captioner 273

for scene descriptions, as BLIP-2 (#3) significantly 274

underperforms compared to GPT-4o (#4). Addi- 275

tionally, the latest GPT-4o (#7) demonstrates a no- 276

table improvement over its previous version (#6). 277

Rows 8 to 10 show our method’s results. Compar- 278

ing #4 and #8, we observe that our scene descrip- 279

tions enhance navigation performance, particularly 280

in SR, with an improvement of nearly 3%. Row 9 281

shows that incorporating spatial descriptions fur- 282

ther boosts SR by an additional 2%. Notably, our 283

results using only text input surpass the baseline 284

results that take image as input (#7). Finally, in 285

#10, we integrate both analogical scene and spa- 286

tial descriptions while also including the image as 287

input, resulting in an around 4% improvement in 288

SPL. This result indicates that our analogical rea- 289

soning descriptions also enhance reasoning over 290

images, suggesting that while images inherently 291

contain all necessary information, our text-based 292

analogical descriptions compensate for the lack of 293

high-level reasoning in visual understanding. 294

5 Conclusion 295

In this paper, we propose enhancing the contextual 296

understanding of LLM-based VLN agents by gen- 297

erating analogical scene and spatial descriptions. 298

We encourage the agent to compare images from 299

different perspectives and help the agent construct 300

a structured spatial understanding of the environ- 301

ment. We evaluate our method on the R2R dataset 302

and demonstrate that our approach significantly 303

improves navigation performance. 304
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6 Limitation305

Despite the significant improvement in navigation306

performance achieved by our analogical reasoning307

descriptions, several limitations remain. First, the308

quality of the generated descriptions heavily de-309

pends on the underlying language model, which310

may introduce biases or hallucinations that could311

impact decision-making. Second, the process of312

generating analogical descriptions adds an addi-313

tional computational step, potentially increasing314

processing costs compared to direct image-based315

navigation.316
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A Appendix484

A.1 Experiments485

Evaluation Metrics Three main metrics are used486

to evaluate navigation performance: (1) Navigation487

Error (NE): the mean of the shortest path distance488

between the agent’s final position and the goal des-489

tination. (2) Success Rate (SR): the percentage490

of the predicted final position being within 3 me-491

ters from the goal destination. (3) Success Rate492

Weighted Path Length (SPL): normalizes success493

rate by trajectory length.494

Implementation Details. We utilize GPT-4o-08-495

06 as the backbone for our LLM-based agent, given496

that GPT-4V has been deprecated. In this work,497

we employ GPT-4o-08-06 as the backbone for498

our LLM-based agent, as GPT-4V has been depre-499

cated. MapGPT reports its results using GPT-4o-500

05-03, but our implementation with GPT-4o-08-06501

achieves better performance (around 6% on suc-502

cess rate). To ensure deterministic outputs, we set503

the temperature to 0. Additionally, we constrain504

the agent’s decision-making process by limiting the505

maximum number of generated actions to 15 and506

the maximum token output from GPT to 2000.507

A.2 Qualitative Examples508

Fig. 3 and Fig. 4 present two qualitative examples509

illustrating the effectiveness of the proposed ana-510

logical scene and spatial descriptions. In Fig. 3,511

the scene descriptions generated by BLIP-2 and512

GPT-4o are highly similar despite the visual differ-513

ences between the scenes. Even for GPT-4o, across514

three images, the descriptions primarily focus on515

the general scene, referring to an “ornate chapel in-516

terior” without providing distinguishing details. In517

contrast, our method emphasizes different aspects518

of each image: for example, Image 1 highlights519

“the confessional booth”, Image 2 focuses on “the520

benches”, and Image 3 emphasizes “the grand al-521

tar”. These distinct descriptions enable the agent522

to accurately select Image 2, which aligns with523

the given instruction. Furthermore, in Fig 4, We524

present an example demonstrating the effectiveness525

of spatial descriptions. In this case, both Image 4526

and Image 5 contain an entranceway. However, our527

approach encourages the agent to infer that less528

left/right rotation corresponds to a direction closer529

to forward. As a result, the agent correctly reasons530

that Image 5 is better aligned with the instruction531

“walk to”.532

A.3 Different Strategies for Spatial Reasoning 533

We conduct experiments to examine how different 534

spatial reasoning strategies impact navigation per- 535

formance. Intuitively, enabling an agent to under- 536

stand nuanced spatial concepts can be achieved by 537

explicitly incorporating varying degrees of rotation 538

into its action space. For example, the agent’s ac- 539

tion space is more precisely defined, such as “turn 540

5 degrees left”. However, our results reveal that 541

introducing fine-grained rotational actions leads 542

to a slight decline in navigation performance (row 543

#2 in Table. 3). This suggests that VLN agents 544

struggle to effectively structure spatial information 545

when relying solely on numerical rotations degrees. 546

To address this, we propose generating descrip- 547

tive paragraphs that systematically capture spatial 548

relationships between images. Empirical results 549

demonstrate that our approach enhances navigation 550

performance compared to directly using numerical 551

values into the action space (#3 in Table. 3). 552

A.4 Prompts for Spatial Descriptions 553

Generate a paragraph to analyze the spatial relation-
ships between discrete images in an environment, con-
sidering the comparision of their directions, elevations
and distance. The input consists of images with spe-
cific angles and distances relative to a central point.
Here are some rules to follow: Angles between 120
to 240 degree to the left or right indicate behind or
around. Angles equals 180 degrees indicate direct be-
hind. Less angles rotation degrees to the left or right
indicate closer to the forward direction. For exam-
ple, Given places along with their spatial information:
Place0 is to my right 180.0 degrees and up 30.0 de-
grees, positioned 0.21 meters away, Place 2 is to my
right 60.0 degrees and up 30.0 degrees, positioned
0.21 meters away Place 3 is to my right 90.0 degrees
and up 30.0 degrees, positioned 0.18 meters away.
Place 4 is to my right 90.0 degrees, positioned 0.05
meters away. Please generate a descriptive paragraph
explaining the spatial relationships and navigation
steps to these images. For example: “To navigate
to Image0, Image2, and Image3, you need to move
upward. As you turn right, you will encounter Im-
age2 first, followed by Image3, and finally Image0,
which is directly behind you. Image4 is in the same
direction as Image3, but Image3 requires looking up
while Image4 does not. Additionally, Image4 is very
close to you.” Output the response in JSON format
with the key ’environmental analysis.’ "

554

Methods SR↑ SPL↑
1 MapGPT 47.7 38.7
2 +spatial attributes 46.8 37.9

3 +spatial descriptions 49.1 39.3

Table 3: Different strategies for spatial reasoning.
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Image1: The image depicts an interior space with a classic, ornate design, featuring wooden paneling and red 
drapery. The room showcases a red velvet bench and curtains, with intricate wooden carvings.
Image2: The image depicts an ornate, traditional chapel interior with rich red and wooden tones. Red velvet 
curtains and cushioned kneelers contrast with the intricately carved wooden altar and paneling.
Image3: The image depicts an ornate chapel interior with a richly decorated altar and wooden paneling. 
The altar features intricate carvings and religious icons.

Image1: The scene depicts an ornate interior space with a focus on a wooden confessional booth. The booth 
features intricate woodwork and is partially enclosed by a red curtain. 
Image2: This image showcases a richly decorated interior with a series of red velvet benches facing a wooden 
altar. The altar is intricately carved, featuring religious iconography. Above, chandeliers hang from the ceiling, 
adding elegance to the space. The walls are lined with red curtains.
Image3: The focus here is on a grand altar set against a backdrop of detailed wood carvings depicting religious 
figures. The altar is flanked by red velvet benches, and the ceiling is adorned with ornate chandeliers. 

Instructions: Walk forward to the padded benches.

Analogical 
Scene 
Descriptions
(GPT-4o)

Scene 
Descriptions
(GPT-4o)

Image1 Image2 Image3

Image1: In the scene, there is an ornate wooden room with a red curtain. The room also features two 
chandeliers hanging from the ceiling, adding a touch of elegance to the space.
Image2: In the scene, there is an ornate wooden altar with a chandelier hanging above it. The altar is 
adorned with intricate carvings and decorations, giving it a sense of grandeur and elegance. 
Image3: In the scene, there is an ornate wooden altar with intricate carvings. The altar is adorned with 
two red chairs placed in front of it, creating a cozy and inviting atmosphere. 

Scene 
Descriptions
(BLIP-2)

Figure 3: A qualitative example demonstrating the effectiveness of analogical scene descriptions. We collect scene
descriptions from both BLIP-2 and GPT-4o. Bold text highlights similar descriptions across images, while text in
green boxes represents our generated analogical scene descriptions, each emphasizing different aspects.

MapGPT: The instruction is walk to the end of the entrance way. Image 4 shows a hallway that seems to 
lead further into the building, which aligns with the instruction to walk to the end of the entrance way. I 
should go to Place 4.

Right 30 degreeLeft 210 degree Left 180 degree Left 150 degree Left 90 degree

Image4 Image5Image1 Image2 Image3

Environmental Analysis: To navigate through the environment, begin by turning to your right to 
encounter image 5. As you turn left, you will encounter image 4, image 3, image 2, and image 1. Image 2 
is directly behind you. Image 5 is closer to the forward direction.  

Ours: The instruction suggests that I need to walk through an entrance way, and eventually reach a 
dining room. The images provided do not directly depict a dining room or a kitchen area, but they do 
show hallways and rooms with seating areas. Based on the environmental analysis, Image 5 are the 
most straightforward to access, and correspond to the same hallway description.  I should go to Place 5.

Instructions: Walk to the end of the entrance way. Continue straight until you 
reach the dining room.

Figure 4: A qualitative example illustrating the effectiveness of our spatial descriptions. The agent successfully
identified Place5 based on its relative position, as it is closer to the forward direction than other images and better
aligned with the instruction “walk to” compared to Place4, which requires a significant left turn.
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