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Abstract

Attention mechanisms have achieved significant empirical success in multiple
fields, but their underlying optimization objectives remain unclear yet. Moreover,
the quadratic complexity of self-attention has become increasingly prohibitive.
Although interpretability and efficiency are two mutually reinforcing pursuits, prior
work typically investigates them separately. In this paper, we propose a unified
optimization objective that derives inherently interpretable and efficient attention
mechanisms through algorithm unrolling. Precisely, we construct a gradient step
of the proposed objective with a set of forward-pass operations of our Contract-
and-Broadcast Self-Attention (CBSA), which compresses input tokens towards
low-dimensional structures by contracting a few representatives of them. This
novel mechanism can not only scale linearly by fixing the number of representa-
tives, but also covers the instantiations of varied attention mechanisms when using
different sets of representatives. We conduct extensive experiments to demonstrate
comparable performance and superior advantages over black-box attention mecha-
nisms on visual tasks. Our work sheds light on the integration of interpretability
and efficiency, as well as the unified formula of attention mechanisms. Code is
available at this https URLL

1 Introduction

Attention mechanisms have been widely applied across diverse areas, including computer vision [1} 2],
natural language processing [3, 4l], and scientific discovery [S]. Nonetheless, a series of puzzling
phenomena—such as emergent segmentation properties [6], in-context learning ability [7], attention
collapse [8} 9] and extreme-token phenomena [10]—have been uncovered in them, hindering the
principled and trustworthy development. At the same time, the quadratic computational and memory
complexity of self-attention with respect to the sequence length impedes its broader applications
in real-time systems [[L1]], as well as the processing of long documents [12] and high-resolution
images [13].

In light of these challenges, it has been more crucial to mathematically demystify attention mech-
anisms, which offers deeper insights into their simplification and acceleration. Over the past few
years, remarkable advances have been made in addressing the interpretability or efficiency issue
separately. On the one hand, in an ante-hoc manner, attention mechanisms can be interpreted by
optimization objectives grounded in clustering [14], denoising [15]], energy minimization [[16]], matrix
decomposition [17], and contrastive learning [[18]. These inherently interpretable approaches are
more rigorous than post-hoc explanations [19]]. On the other hand, numerous techniques have been
developed to alleviate the quadratic complexity of self-attention, including sparse attention [20] and
linear attention [21]].
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However, the joint development of interpretability and efficiency in attention mechanisms remains a
largely unexplored area of research. This leaves the design of efficient attention mostly heuristic, and
the interpretations and explanations for attention mechanisms less instructive. To bridge this gap, we
formulate a unified optimization objective by mildly modifying a compression-driven optimization
objective called MCR? [22]. Indeed, this objective has been utilized for designing an interpretable
softmax attention, MSSA [23]], and a linear-time attention, TSSA [24]. But MSSA also scales
quadratically, and TSSA is effectively a channel attention mechanism, which contrasts sharply with
both softmax attention (token mixer) and linear attention (channel mixer) Therefore, instead of an
isolated mechanism, we aim to develop a framework that unifies these varied attention mechanisms
in an interpretable way, revealing how they are fundamentally connected yet distinctly presented, as
well as the trade-off between expressive capacity and efficiency.

In this paper, we adopt two ante-hoc interpretations to constitute our proposed optimization objective:
a) input tokens are compressed towards low-dimensional structures for compact and structured
representation; and b) the geometry and information-theoretic essence of input tokens can be captured
by a small number of representatives [25} 26] of them. Since the former has been formulated as the
MCR? objective [22} 23] (see Section , the remaining task is to leverage the representatives to
optimize it, thereby efficiently compressing all by contracting a few (see Section[3.1)). By unrolling the
resulting optimization objective, we derive our Contract-and-Broadcast Self-Attention (CBSA), which
contracts the representatives and broadcasts the contractions back to input tokens (see Section [3.2).

Given a fixed number of representatives, the computational and memory complexity of CBSA scales
linearly with the number of input tokens. Moreover, CBSA covers the instantiations of varied attention
mechanisms, including softmax attention, linear attention, and channel attention, by taking different
sets of representatives (see Section . As a result, CBSA serves as a unified formula for these
attention mechanisms, and attributes their differences to their distinct information propagation (more
precisely, compression) patterns induced by the different number and structure of representatives.
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Figure 1: Overview of CBSA. Left panel: Besides projecting tokens onto subspaces and back the ambient
space, there are generally two stages in CBSA: 1) representative initialization and extraction; 2) representative
contraction and contraction broadcast. The former extracts representatives satisfying the inequality constraints
in (@), while the latter is a gradient step of the compression term in (@). Right panel: CBSA covers instantiations
of varied attention mechanisms. Their compression patterns are distinct as illustrated above. Further analysis is
elaborated in Section 3.3}

Paper contributions The contributions of the paper are summarized as follows.

1. We formulate an optimization objective that unifies the interpretability and efficiency of attention
mechanisms through the idea of compressing all by contracting a few.

2. We derive an inherently interpretable and efficient attention mechanism, CBSA, which is a
potential unified formula for different attention mechanisms.

3. We validate the interpretability and efficiency of CBSA through extensive experiments on visual
tasks.

!Softmax attention calculates all possible pairwise similarities between tokens, while TSSA just scales
feature channels according to their second moments; see (13).



2 Notations and preliminaries

Notations. Given a positive integer n, let [n] = {1,2,...,n}. For s > n, let O(s,n) C R¥*”
denote the set of s x n matrices with orthonormal columns, and O(s) = O(s, s) denote the set of
s x s orthogonal matrices. Let I,, denote an identity matrix of size n, and O,, denote a zero square
matrix of size n. Given a vector v € R", let Diag(v) € R™*" be a diagonal matrix with the entries
of v along its diagonal. Let Z € R*" denote IV input tokens represented in the ambient space R<.
Specially, let Z ¢ denote these tokens feeding into the /-th attention layer. The same holds for the
representatives of input tokens, Q € R*™_ where m can be much smaller than N.

Union of subspaces. Although the union of nonlinear manifolds provides a better approximation [27]],
we adopt a much simpler structure: the union of (low-dimensional) linear subspacesE] Specifically, it
is parameterized as K incoherent p-dimensional subspaces spanned by orthonormal bases U (x =
{(Ur € O(d,p)}}~ |, where pK = dand U, U = O,, Vi # j. We refer to the i-th basis vector of
U} as uy;. Similar to [23]], we implement U[ K] as learnable parameters in each attention layer and

thus denote the U [ implemented by the /-th layer as U (K] = = {UK ol

Coding rate. To quantify the compactness, i.e., the extent to which tokens are compressed towards
subspaces, we adopt the (lossy) coding rate [28]], which measures how efficiently the token distribution
can be covered by e-balls under a given quantlzatlon prec1s10n € > 0 (as illustrated in Fig.[T{a)). The
coding rate of input tokens in the ambient space R? is defined as:

R(Z) = %log det (IN n NdQZTZ> (1

MCR? objective. The Maximal Coding Rate Reduction (MCR?) [22] objective adopted in [23] is
defined on the coding rate as follows:

K
max AR(Z) = R(Z) = Re(Z | Up)) = M| Zllo = R(Z) = Y R(U; Z) = A|Z[jo. )
—— —_—— — k=1
expansion compression sparsity

The input tokens are compressed towards K subspaces by the compression term, while expanded
in the ambient space by the expansion term to avoid collapse, yielding compact and structured
representation [22]]. Yu et al. [23] have demonstrated that the approximated gradient step of the
compression term in (2)) corresponds an interpretable softmax attention mechanism.

3 Methods

3.1 Compressing all by contracting a few

Due to the existence of Gram matrix in @), the attention mechanism derived from @), which is
called Multi-head Subspace Self-Attention (MSSA), inevitably scales quadratically with the number
of input tokens. While previous work has bypassed this issue by replacing the Gram matrix with
the covariance matrix [29]] and further introduced a variational formulation [24], these strategies
degenerate the token mixer into a channel mixer and channel attention, respectively.

In this paper, inspired by the concept of landmarks [30L31]], we propose a simple but flexible approach
to streamline the optimization of MCR?: compressing all input tokens by contracting a small number
of representatives of them. Before demonstrating that this achieves linear complexity in /N and
prevents the aforementioned degeneration, we first formulate it as a new optimization objective.

An initial attempt is to impose a set of equality constraints on the coding rates as follows:

max R(Z ZR UlQ)—)|Z|o st. RU.Q)=RU] 2Z), Vi € [K], 3)

2As this structure faces challenges in adapting to all modalities and tasks, we excluded natural language
processing tasks from our experiments. But we argue that it serves as a feasible starting point for finer-grained
structures; further discussion is available on our OpenReview page.



where representatives Q = ¢(Z) are extracted from input tokens Z by a differential function
q() : RPN — Rdxm P This new objective in (@) is equivalent to the original objective in (2) but
is more efficient to handle because the number of representatives (e.g., m = p = ¢/K) can be far
smaller.

Since that the equality constraints in (@) is overly restrictive in practice, we attempt to relax them by
introducing a tolerance 7, which uniformly bounds the absolute difference of the two coding rates
within each subspace, i.e., |[R(U} Q) — R(U], Z)| < . Therefore, contracting the representatives
will correspondingly compress the input tokens as well up to the tolerance 7.

Consequently, we have a relaxed optimization problem for our subsequent derivations as follows:
K
max R(Z )= > RU;Q) - M|Z|o st. |RU[Q)~RUZ)| <7, Vke[K]. &
k=1

In this paper, we employ an arguably simplest way to extract () in each subspace: U,IQ = U,:Z Ay,

where A;, € RY*™ is the coefficient matrix over dictionary UEZ € RP*N je., the projected
representatives in each subspace are linear combinations of the projected input tokens.

3.2 Contract-and-Broadcast Self-Attention

We now are ready to derive an attention mechanism in an ante-hoc interpretable manner, by im-
plementing a gradient step of the compression term in the proposed objective as its forward pass.
This methodology dates back its origins to the pioneering work [32], and is referred to as algorithm
unrolling or unfolding [33]].

Representative initialization and extraction. Inspired by the fact that cross-attention can be
interpreted as approximating the coding rate [34]], we employ this idea to extract representatives that
satisfy the inequality constraints in (@), thus capturing the information-theoretic essence of input
tokens. Specifically, we take an initial guess of the representatives as the query, and the input tokens
as the key and value matrices, i.e.,

U Q = U} Zsoftmax (U] 2)T (U} Qi) k € K], )

Ay

where the initial guess Q) is treated as a constant with respect to Z such that its strategy (whether
input-dependent or not) does not affect the subsequent derivation. To be more specific, following [35],
we initialize Q;,; via an average pooling over the input tokens; see Appendix [A|for discussion. More
importantly, the representatives extracted by this cross-attention operation are linear combinations of
the input tokens, thus naturally leading to the form we desire. Therefore, the attention matrix in (3)

effectively is the coefficient matrix Ay.

Representative contraction and contraction broadcast. To derive the attention mechanism,
following [23], we focus on optimizing the compression term via a gradient descent step. Having the
extracted representatives satisfying the inequality constraints, we take a gradient descent step on the
compression term of the objective function in (4)) with respect to input tokens as follows:

Z + Z—-rkCBSA(Z | U\k)) where (6)
—1
CBSA(Z | U\x)) ZUk UiQ ( (Uk Q)T(UZQ)) AL )
~~~
Contraction Broadcast

in which the step size parameter  is learnable in our implementation. One can verify that (7) is
proportional to the gradient of the compression term in (4) with respect to input tokens, while the
contraction term in (7)) is proportional to the gradient with respect to representatives. Hence, we
refer to this formula as a Contract-and-Broadcast Self-Attention (CBSA), reflecting that: a) the
contraction term gives the contracting directions of the representatives (abbreviated as contractions);

3The representatives are not necessarily a subset of the input tokens; they resemble the cluster centroids in
k-means, which are continuously extracted, rather than discretely selected.



b) the broadcast term, which reuses the attention matrix in @), broadcasts the contractions back to all
input tokens.

Contraction via self-attention. To avoid computing the expensive matrix inverse in (7)), similar to
[23], we approximate it by a Gram matrix and a softmax function (i.e., an attention matrix)

CBSA(Z | Uy) ~ U] Q softmax ((U;Q)T(U;Q)) Al . ®)
~~~
Contraction via self-attention Broadcast

Note that the contraction term now effectively constitutes a self-attention operation in which the
linear projections for the query, key, and value are all identical to the subspace basis, i.e., Wyery =

Wiey = Waalue = U;. By default, we implement CBSA via (8) rather than (7) in our experiments.

Overview of CBSA. The workflow of CBSA is illustrated in the left panel of
Fig.[T] We also construct an inherently interpretable Contract-and-Broadcast — .|= &hem g
Transformer (CBT) by stacking CBSA with the ISTA module [23]], whichis , :
also derived via algorithm unrollingE] We report the computational complex- 5 A
ities of CBSA and its sub-operations in Table[T|and compare the FLOPs of =~ «=| -~
different attention mechanisms in Fig. Where d = 384, H = 6, and a patch
size of 16 x 16. Provided N > 2d/m = 2p (typically 128 in Transformers),
the FLOPs of CBSA are lower than those of MSSA. Further comparisons Figure 2: Computation
with other modules, including MHSA and MLP, are provided in Fig.[9] complexity.

GFLOP:

Table 1: Computational complexities. By default, we set m = p = 4/H, where H = K denotes the number
of attention heads (interpreted as subspaces in our case). The complexity of each sub-operation is computed
by summing the costs across all heads. It is worth noting that the projection operations, which are essential to
almost all attention mechanisms, confine the overall complexity at least O(Nd?).

sub-operations of CBSA

Q(MSSA) Q(CBSA) Q(extraction) / Q(broadcast) ~ Q(contraction)  Q(projection)
INd2 2 2 2 2 2
+2N°d 2Nd* +3Nmd + 2m~d Nmd m~d Nd
fuxp 4nxp (3 4nxp 4nxp
Matmul Matmul Matmul Matmul Matmul
[y Nxp Nxp pxp 4 pxp tuxm  mxp 3 mxp
Softmax { Matmul Diag Softmax
t t e t
Matmul [ [3 { Squeeze Matmul o
A + A Nxp T
Matmul Matmul Matmul Matmul Matmul Matmul Matmul Softmax Attention o Softmax Attention
t t W t t t W t t { WW J N T ”W J
Wy Wiy Woatie Woery Wiy Wt Weaue AR prsan
Pooling Pooling
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(a) Softmax Attention (b) Linear Attention (c) Channel Attention (d) Agent Attention (e) CBSA (ours)

Figure 3: Different attention mechanisms. The mapping function and agent bias in the diagram of Agent
Attention [33]) are omitted for simplicity, and | stands for the matrix transpose.

3.3 CBSA as a unified attention formula

In this subsection, we explore the potential of CBSA to serve as a unified formula for different
attention mechanisms. Unlike recent work [37, 38]], CBSA encompasses a broader spectrum of
mechanisms (see Fig.[3) in an interpretable and mathematically grounded manner.

Our analysis reveals that, CBSA (7)) can derive multiple variants corresponding to existing attention
mechanisms by varying the choice of representatives. In these variants, the distinct initialization,
extraction, contraction, and broadcast steps of CBSA may not be explicitly observed, as some of
them are simplified or fused together due to the specific number and structure of representatives, or
engineering concerns.

Softmax attention variant. Obviously, the input tokens themselves satisfy the constraints in (@), and
thus can be directly used as the representatives, i.e., Q = Z and m = N. In this case, we call the

*The scaling factor and sign inversion [36] introduced by this approximation are absorbed into the learnable
step size « for notational simplicity.

5Note that the ISTA module is designed to unroll the suitably-relaxed proximal gradient step to address the
difference of the sparsity penalty and the expansion term M| Z||o — R(Z).



input tokens are self-expressed [39]], where data samples are linearly represented over a dictionary
composed of themselves. Then we can take a trivial solution for the regularization term where all
coefficient matrices are identity matrices. Substituting them into (8] yields the following operator,
known as MSSA in the white-box transformer [23]]:

K
MSSA(Z |Upx)) =Y Uy UJZ softmax ((U{Z)T(U,IZ)) . )

k=1 ~——
v.s. Wae Z  v.s. softmax((Wiey Z) T (Wauery Z))

Linear attention variant. To analyze the case of orthogonal representatives, we start with a canonical
choice: the principal directions of input tokens. We thus perform singular value decomposition (SVD)
within each subspace:

U} Z = L,=R, Yk € [K], (10)
where L, € O(p), Ry, € O(N, p), Xy, is a p X p diagonal matrix of singular values, and the columns
of Ly, are known as the principal directions. Then, by right multiplying both sides by R}, we have:

U} ZR), = L;Z R R, = L;,)3,,VEk € [K]. (11)

By comparing (TI) with the way to form the representatives, i.e., U;—Q = UEZA;C, we let
U,IQ = L3 and A = Ry,. Substituting them into leads to the following operator:

K K —1
1
S ULF ((U,IZ)(UQZ)T) Ulz =S UL (Im + 22i> Liulz, 2
k=1 N—— k=1 €

V.S. m'aluez¢(m(eyZ)T V.S. (b(ufqueryz)

where F is a function defined on the spectrum of a positive semi-definite matrix and applies f(\;) =
€’/(e2+1,) to each eigenvalues {\; }}_; of the covariance matrixﬂ This operator highly resembles the
linear attention [21]], due to that it also factorizes the N x NN attention matrix and multiplies the key
and value first to linearize the computational complexityﬂ In Appendix [B| we prove that a similar
result holds for any set of orthogonal representatives.

Channel attention variant. Assuming that the basis vectors of U, are the principal directions for
any set of input tokens (which is impossible but simplifies the computation), the directions of the
representatives can be fixed along these basis vectors, i.e., U, = Ly, thereby being orthogonal and
input-agnostic (fixed). Then, (12) is simplified to:

K
> UwDU| Z, where Dy = Diag ([f((w);2)(u);2)")]_,), (13)

%
k=1

which basically recovers TSSA [24]). In (T3)), the feature channels are adaptively scaled according
to their second moments of token projections, while channel attention typical employs an MLP to
predict the channel-wise scaling factors 40, 41]].

Agent attention variant. Agent Attention is basically a variant of CBSA with the contraction
step remove(ﬂ which can be perceived in Fig. [3| Although this removal appears to confine the
token-mixing ability, it is compensated by the pooling-based initialization, which is also a token
mixer [42].

To gain some intuition of the gap in expressive capacity among the aforementioned mechanisms,
we illustrate their compression patterns in the right panel of Fig. [T} The channel attention variant is
restricted to compressing input tokens along fixed axes parameterized by U g, whereas the linear
attention variant compresses them along principal directions that are dynamically determined by
the input. We argue that such a dynamism is crucial for in-context learning [[7]] and for mitigating

®As f is monotonically decreasing, the effect of (T2) is to preserve the principle directions (i.e., representa-
tives) with large variance while suppressing the other directions with vanishing variance [29].

"In fact, (T2) is less expressive than black-box linear attention, because (U}, Z)(U . Z) " is symmetric but
(Waawe Z)(Waey Z) T is generally not.

8Since the query, key, and value are identical in CBSA, the broadcast term can be obtained directly from the
extraction step, eliminating the separate computation branch in Agent Attention.



superposition [43]]. In contrast, softmax attention exhibits much greater flexibility, as it manipulates
each token independently. Actually, its compression can be viewed as operating in an /N-dimensional
space, rather than in the d-dimensional feature space. Our proposed CBSA aims to approximate the
behavior of softmax attention while significantly reducing computational cost.

The above findings can also be interpreted from a dictionary learning perspective, where the rep-
resentatives correspond to the atoms of a dictionary. When the representatives are orthogonal and
fixed, they form a complete dictionary; when they are orthogonal yet input-dependent, they resemble
a submatrix of an overcomplete dictionary as in compressed sensing [44]. When the input tokens
themselves serve as representatives, they constitute a self-expressive dictionary [39]].

4 Experiments

In this section, we evaluate the interpretability and the efficiency of the proposed CBSA and the
CBTs built upon CBSA. As natural images often lie on low-dimensional subspaces [45] 46], we
focus on classical visual tasks such as image classification and semantic segmentation, where higher
resolutions generally lead to better accuracy [47, 48]

Baseline and training configuration. We compare our CBSA to the vanilla softmax attention [49]
11, and interpretable attention mechanisms based on MCR?, e.g., CRATE [23]], ToST [24] and
DEPICT [34]. Table 2] summarizes the baselines with brief descriptions. The results in gray are
cited directly from the corresponding papers; whereas the others are reproduced under varied settings
for fair comparisons. By default, the training configuration follows the baselines, with detailed
information provided in Appendix

Implementation detail. The projection back to the ambient space, which should theoretically be a
left multiplication by U, is over-parameterized with an independently learnable matrix. This strategy
is also adopted in MSSA [23]] and TSSA [24]], and its effect has been analyzed in [36]. In short,
although this relaxation compromises the theoretical rigour, it is crucial for achieving better accuracy.
In addition, the step size « in (6) is implemented as a learnable parameter without constraining
its sign. This allows the model to flexibly choose between compression and decompression. The
PyTorch implementation is provided in Appendix

Table 2: Summary of baselines. Note that these methods are not limited to the tasks listed here, our descriptions
only indicate their usages in the experiments of this paper.

Methods \ Attention Mechanism Complexity Interpretable Tasks

ViT [1] MHSA (softmax attention) quadratic X image classification
CRATE [23] MSSA (softmax attention) quadratic v image classification
ToST [24] TSSA (channel attention) linear v image classification
Agent Attention [35] Agent Attention (linear attention) linear X image classification
Segmenter [50] MHSA quadratic X semantic segmentation
DEPICT [34] MSSA quadratic v semantic segmentation

4.1 Advantages enabled by interpretability

In this subsection, we show superior advantages of CBSA over black-box attention mechanisms. The
most essential aspect of our CBSA is its interpretability, which induces other desirable properties
such as robustness and emergent segmentation.

¢
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Figure 4: Compact and structured representation. There are 10 classes indicated by colors. Points in each
class are generated by sampling from a one-dimensional subspace and are then perturbed by adding noise.

Compact and structured representation. Similar to MCR? [22]], our optimization objective (@) aims
to learn compact and structured representation by compressing input tokens towards low-dimensional
subspaces. To confirm whether its iterative gradient steps can actually achieve this goal, we iterates



the linear attention variant of CBSA @ on synthetic data, where image tokens are modeled as the
points in a three-dimensional space R*. Specifically, it is conducted on each class in the ambient
space (thus being parameter-free) with a forward-only manner. As shown in Fig.[d] the representation
ultimately admits a union of well-separated one-dimensional subspaces after 1024 iterations.
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Figure 5: Evaluation on compression effect. We measure the compression term of (2) as a function of layers.

Compressing all by contracting a few. To confirm our interpretation that CBSA compresses all
input tokens by contracting a few representatives, we check that: whether the input tokens are indeed
compressed; if so, whether the compression is driven by contracting the representatives. We measure
the compression term of (2)) as well as its normalized van'anﬂin Fig.|5} This normalized coding rate is
invariant to in-place scaling and depends on the angles between input tokens. We observe two pieces
of supporting evidences: a) the more compact the ultimate representation is, i.e., the compress10n term
measured in the last layer is lower, the better the model performs on ImageNet-1K (see Table I

the latter half of the layers exhibit consecutive compression, in nearly all models)' ‘| Then, in Flg
we measure the reduced coding rate of the input tokens and representatives, respectively, after they
are processed by CBSA within each subspace. We observe that the two kinds of reduced coding rates
show highly similar trends across most subspaces

Reduced coding rate across all layers and heads Reduced coding rate across all layers and heads

Figure 6: Comparison on reduced coding rates. The reduction with respect to input tokens is calculated
between input tokens and compressed tokens, while the reduction with respect to representatives is calculated
between extracted representatives and contracted representatives. We measure the reduced coding rate with
respect to the input tokens and the representatives, respectively, across all heads of a model. Results of CBT-
T/S are presented here, those of CBT-B/L can be found in Fig. Note that we set k = 1 to exclude the
de-compression cases observed in Fig.El
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Figure 7: Visualization of [CLS] attention map. We empirically estimate the full attention matrix by

Ar Al € RV*Y and visualize the attention maps of the [CLS] token from the early, middle, and late layers of
CBT, CRATE, and their hybrid model, respectively.

Emergent segmentation properties. It has been reported that segmentation properties emerge in
CRATE with merely standard supervised classification training owing to MSSA [51]. Compared
to CRATE, our CBT attends to more semantically meaningful regions in the early layers, but the
segmentation properties fail to persist in subsequent layers. as shown in Fig.[7] To address this

“That is, the input tokens are normalized to unit vector before measuring their coding rate.

!"Note that this correlation does not hold for the normalized coding rate, indicating that compression in
magnitude is a critical aspect.

""We regard the decompression phenomenon in the early layers as a “known unknown” requiring further
investigation.

2We hypothesis that the higher coding rate of the representatives makes them act as “scalpels” in order to
give a “surgery” on the input tokens.



phenomenon, we construct a hybrid model, termed CRATE+CBT, where the first half of the attention
layers employ MSSA and the latter half employs CBSA. In this hybrid model, we observed that the
segmentation properties not only emerged in the very first layer, but are also progressively enhanced
in the following layers, rather than fading as in CBT. Qualitative results supporting this conclusion
can be found in Appendix [C]
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Figure 8: Semantic segmentation on ADE20K. All results are evaluated on the ADE20K validation set.

CBSAT indicates that the CBSA layers are implemented rigorously, i.e., without the overparameterization trick.
Middle and Right: Random Gaussian noises with zero mean and standard deviation o are independently added
to each parameter of the attention layers in the decoder.

Robustness against parameter perturbation. As the attention heads of CBSA are modeled as
low-dimensional subspaces, perturbing their projection matrices (i.e., subspace bases) with relatively
small noise does not significantly alter the subspaces they span [34]. Consequently, as shown in the
right two panels of Fig.[8] CBSA is extremely robust against parameter perturbation, whereas the
black-box method (i.e., Segmenter [S0]) collapses under the same perturbation.

Table 3: Classification on ImageNet-1k. Models are trained on images of resolution 224 x 224 with a patch
size of 16 x 16 where CBT and ViT use convolutional embedding layers but CRATE uses linear embeddings.

Datasets CBT-T(iny) CBT-S(mall) CBT-B(ase) CBT-L(arge) ‘ CRATE-B CRATE-L ‘ ViT-S

# parameters 1.8M 6.7M 25.7M 83.1M 22.8M 77.6M 22.1M
FLOPs L1G 4.0G 15.1G 47.3G 12.6G 433G 9.8G
ImageNet-1K 63.2 714 73.4 74.4 | 708 713 | 724
CIFAR10 94.8 96.3 96.7 97.3 96.8 97.2 97.2
CIFAR100 76.5 80.4 82.0 83.4 82.7 83.6 83.2
Oxford Flowers-102 88.4 91.7 93.6 93.9 88.7 88.3 88.5
Oxford-INIT-Pets 86.8 91.6 926 929 85.3 87.4 88.6

Table 4: Fair comparisons on ImageNet-1K. All models employ convolutional embedding layers and ISTA
feedforward blocks. The only difference lies in the attention mechanism, where Agent-T and Agent-S [35] are
implemented as in CBSA but without the contraction step (as derived in Section[3.3).

ImageNet-1K CBSA-T  CBSA-S ‘ TSSA-T  TSSA-S ‘ MSSA-T  MSSA-S ‘ Agent-T  Agent-S
# pairwise similarities 0.53M 1.1IM ‘ 0.45M 0.91IM ‘ 1.4M 2.8M ‘ 0.52M 1.0M
Top-1 accuracy 63.2 71.4 ‘ 61.2 68.5 ‘ 64.7 72.1 ‘ 63.8 71.8
Image resolution: 224x224 o Image resolution: 384x384 FLOPs of modules in ViT-T FLOPs of modules in ViT-B
128] 20 et g 64
84 s 6.4 Liner Attenti s 32

32 — cBsA” ours) -
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g B ¢ 16 0
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Figure 9: Adapting pre-trained ViTs into CBSA style. We finetune both the adapted models and the original
ViTs on ImageNet- 1k for 50 epochs, and report the top-1 accuracy on the validation set. CBSA™ leverages the
three distinct projection matrices inherited from the pretrained MHSA to calculate query, key, and value, instead

of using a single projection matrix as in (). CBSA" refers to the CBSA* without the contraction step, which is
essentially an Agent attention.

4.2 Evaluations on real-world visual tasks

We pretrain CBT models on the ImageNet-1k dataset, and finetune them on several downstream
datasets. The top-1 accuracy on validation sets is reported in Table[3] In particular, our CBT-Small
achieves comparable top-1 accuracy to ViT-S using only 30% of the parameters and 40% of the



FLOPs. Compared to CRATE models, our CBTs (with convolutional embedding layers) perform
remarkably better while using fewer parameters and FLOPs.

We also conduct a set of fair comparisons across different attention mechanisms, which can be
regarded as variants of CBSA, and report the results in Table {i] In this setting, our CBT models
remain competitive with CRATE while computing significantly fewer pairwise similarities. These
results confirm that, from MSSA to CBSA and then to TSSA, the number of pairwise similarity
computations decreases at the cost of performance sacrifice. In addition, we present the throughput
comparisons on high-resolution images (e.g., 512 x 512) in Table[7] (Appendix [C), showing that our
methods consistently achieves superior training and inference efficiency.

To investigate the potential of applying CBSA to large-scale pretraining, we preliminarily finetune
ViT models pretrained on ImageNet—Zl by adapting their attention blocks into the CBSA style.
For comparison, we also adapt them into linear attention. Experimental results are shown in Fig.[9]
Although CBSA deviates more from MHSA than linear attention and is consequently harder to
adapt from pretrained ViTs, CBSA achieves comparable performance to that of linear attention with
nearly the same FLOPs. Interestingly, when the contraction step is removed, CBSA surpasses linear
attention, which has been extensively investigated in [33].

For semantic segmentation, following the design of DEPICT [34], we build CBT decoders by stack-
ing CBSA layers without the feed-forward modules on the top of ViT encoders. We evaluate the
performance of them on the ADE20K dataset [53]] and show the results in the left panel of Fig.
Clearly, our CBT decoder consistently surpasses both white-box (DEPICT) and black-box (Seg-
menter) counterparts that rely on softmax attention. In particular, the best-performing CBT decoder
improves upon Segmenter by 1.5% mloU while using merely 20% of the FLOPs and 0.06% of the
pairwise similarities in the decoder.

5 Related work

Efficient attention mechanisms can be roughly divided into two categories: sparse attention and
linear attention [54]. Approaches in sparse attention sparsify the attention matrix proactively by
restricting the attention span to either random, or fixed [35} 20], or learnable [56} I57] patterns, or
their combinations. Approaches in linear attention [21} 58] decompose the attention matrix into a
product of two low-rank matrices and thus avoids its explicit computation via the associative property
of multiplication. The idea of using representative tokens has been applied to both. Global tokens
or memory can be introduced in sparse attention to maintain global connectivity, thereby further
shrinking the attention span [59, 60]. Meanwhile, Agent tokens [35] and landmarks [30] can also be
incorporated into linear attention from different perspectives.

Our CBSA distinguishes itself from previous efficient attention mechanisms by being inherently
interpretable and derived from an optimization objective which efficiently compresses input tokens
towards low-dimensional structures. Moreover, it can not only be viewed as sparse attention or linear
attention for leveraging the representatives, but also mathematically generalizes softmax attention,
linear attention, and channel attention as its special cases.

6 Conclusion

We have proposed an optimization objective for deriving attention mechanism and unifying the
investigation towards the interpretability and the efficiency. By unrolling the gradient optimization
steps of this objective, we derived an inherently interpretable and efficient attention mechanism, called
Contract-and-Broadcast Self-Attention (CBSA). We found that our CBSA covers the instantiations of
softmax attention, linear attention, and channel attention by changing the number and structure of
representatives, thus revealing their fundamental connections. We validated the effectiveness of our
CBSA through extensive experiments on visual tasks. We believe that the preliminary framework
established in this work offers a promising direction for exploring a unified formula for existing
attention mechanisms as well as new attention mechanisms in an inherently interpretable way.

3The checkpoint is obtained from the timm [52] library.
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Appendix

A Representative initialization

Besides pooling the input tokens, another intuitive choice for representative initialization is to set them
as learnable (i.e., trainable) parameters, similar to the object queries in [61]], the class embeddings
in [S0], and the registers in [[62]]. However, in this case we found that the attention matrix in the
extraction (cross-attention) step|'*|is low rank. For example, although its maximal rank can be
m=p= % = 64 in CBT models, it typically remains around 5. This indicates that far fewer
initialized representatives are being utilized than expected, leading to unsatisfactory performance of
CBSA.

By contrast, when pooling-based initialization is employed, the rank of the attention matrix always
attains its maximum, i.e., m. Nonetheless, as pointed out in [63]], this still constitutes a low-rank
bottleneck: linear attention underperforms softmax attention, whose attention matrix has rank
N > m. Although this issue can be alleviated by introducing depth-wise convolution (DWC), which
boosts performance while preserving linear complexity, our work does not involve this modification
since we focus on theoretical contributions rather than empirical improvements.

B Derivations

Here, we show how (T2) is derived by substituting U, Q = L, X, Ay = Ry, into ({7):

K m _1
; ULy (Lo + — 5 (LeZ0) T (LiDy) - RY (14)
K 1 —1

=3 UL (Im + GQEZLZLICEQ R, (15)
k=1
K 1 -1

=Y UrLi%x <1m+ 622%) R} (16)
k=1
K 1 —1

=Y UL, <Im + egzi) Ry (17)
k=1
K 1 —1

=Y ULy (Im + 622%) LUz (18)
k=1
K

=S u.F (LkziL;) Uiz (19)
k=1
K

=S U F ((U;Z)(U;Z)T) U]z (20)
k=1

Note that an arbitrary set of orthogonal representatives can be expressed as the principal directions
under an orthogonal rotation and scaling, i.e.,

U] Q = P,L,S Ay = PLU] ZRy Ay, 1)

where P, € O(p) denotes an orthogonal rotation within the k-th subspace, and Ay, is a diagonal
matrix of size p. Generalizing the way to form the representatives in @) from UEQ =U ;— Z Ay to
U} Q = B U/ ZA,, where B), € R¥, we have:

K -1
VaR(@| Uix) x L UBIUL@ (o + S UIQTWIQ) Al @

“That is, rank (softmax ((UZZ)T(UICQ)))-
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Similarly, by substituting U;Q = PyLyX; Ak, Ax = Ry Ay and By, = P into (22)), we obtain

K -1

1
> UiLiAy (Im+€2A§2i) ALIU] Z. (23)
k=1

C More experimental results

Training setup. We train the CBT models in Table [3|and all models in Table 4] 150 epochs with
the Lion optimizer [64]. The learning rate is 2.0 x 10~%, the weight decay coefficient is 0.05, and
the batch size is 256. We also incorporate a warm-up strategy over the first 20 epochs. For data
augmentation, we adopt a rather simple choice: just random cropping and random horizontal flipping.
We apply label smoothing with a smoothing coefficient of 0.1. For fine-tuning, we use the AdamW
optimizer [63], a learning rate of 5 x 10~°, weight decay of 0.01, and batch size 64. The settings
above are largely inherited from [23]].

Quantitative segmentation properties. Following prior works [0, 51]], we evaluate the zero-shot
segmentation performance of ImageNet-1K pretrained models on the PASCAL VOCI12 validation
set [660]. Specifically, we assess the best-performing attention maps of the [CLS] token, but in a
simplified setting that considers only three segmentation targets, instead of fine-grained semantic
classes. In Table[5] we find that the hybrid model has consistently better segmentation performance.
We also measure the segmentation performance of different layers and report the results in Table[6]

Table 5: Zero-shot segmentation. We use the Jaccard similarity, which is also called intersection over
union (IoU), to quantify the alignment between the [CLS] token’s attention map and the segmentation
ground truth. The best-performing results are highlighted in bold.

Segmentation target ‘ (CRATE+CBT)-S CRATE-S CBT-S ToST-S

Foreground 0.68 0.65 0.51 0.42
Background 0.78 0.76 0.72 0.75
Boundary 0.18 0.17 0.15 0.12

Table 6: Zero-shot segmentation across layers. The top-performing three layers for each model are
underlined.
Layers | L1 L2 L3 L4 L5 L6 L7 L8 L9 L0 L11 L12

(CRATE+CBT)-S | 037 044 055 046 056 058 060 053 059 056 055 055

CRATE-S 034 045 051 048 053 056 053 057 055 052 050 039
CBT-S

039 041 043 042 037 040 038 033 035 034 036 033

Table 7: Throughput comparisons. The results below are obtained from experiments on dataset
CIFAR-10 with an image resolution of 512 x 512.

Images/sec | CBI-T ~ViT-T CRATE-T ToST-T | CBT-S ViT-S CRATE-S ToST-S

Training 336 174 203 323 205 94 111 199
Inference 572 370 395 533 405 211 220 429

Reduced coding rate across all layers and heads
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D PyTorch implementation

Algorithm 1: PyTorch implementation of CBSA (8)

class CBSA(nn.Module):
def __init__(self, dim, heads, dim_head):

super () . __init__Q)
inner_dim = heads * dim_head
self.heads = heads
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)

self .pool = nn.AdaptiveAvgPool2d (output_size=(8, 8))

# subspace bases
self .proj = nn.Linear(dim, inner_dim,
# over -parameterization

bias=False)

self.to_out = nn.Linear(inner_dim, dim)

# step-sizes

self.ss_x = nn.Parameter (torch.randn(heads, 1, 1))
self.ss_rep = nn.Parameter (torch.randn(heads, 1, 1))

def attention(self, query, key, value):
dots = (query @ key.transpose(-1, -2))
attn = self.attend(dots)
out = attn @ value
return out, attn

def forward(self, x):
b, n, ¢ = x.shape
height = width = int(n #** 0.5)
# projection onto subspaces
w = self.proj(x)
# representative initialization
rep = self.pool(w[:, :-1, :].reshape(b

* self.scale

, height, width, c).

permute (0, 3, 1, 2)).reshape(b, c, -1).permute(0, 2, 1)
w = w.reshape(b, n, self.heads, self.dim_head).permute(0, 2,

1, 3)

rep = rep.reshape(b, 64, self.heads, self.dim_head).permute (0,

2, 1, 3)
# representative extraction

rep_delta, attn = self.attention(rep, w, w)

rep = rep + self.ss_rep * rep_delta
# representative contraction
x_delta, = self.attention(rep, rep,

# contraction broadcast

rep)

x_delta = attn.transpose(-1, -2) @ x_delta

x_delta = self.ss_x * x_delta

x_delta = rearrange(x_delta, b h n k
# projection back to the ambient space
return self.to_out(x_delta)

->bn (h k)?)

E Limitations

Our work aims to propose a unified framework for both interpretable and efficient attention. Currently,
we have proposed a unified optimization objective to derive such an attention mechanism, CBSA,
which is capable to accommodate previous interpretable attention mechanisms derived from MCR?.

Nonetheless, more fundamental and mathematical connections
efficient attention mechanism remain unexplored.

17
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our three-fold contribution listed in Section [I]is justified in Section [3] and
Section ]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the current limitations of our work in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The assumptions can be found in Section [2]and Section [3]and complete proofs
are in our Appendix.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our designs are clearly formulated in Section [3] and illustrated in Fig.[T] We
also provide the pseudo code of our CBSA in Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The link to our models and code can be found in our abstract.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We present our experimental detail, such the training setup, in Appendix [C|
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We only report error bars in Fig.[6] For other experiments, it would be too
computationally expensive for us.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: One can find the details in our Github page.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research mainly focuses on the interpretability in Al

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our methods pose no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Only publicly available assets are used in this paper, and we followed their
license to reference their authors.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There is no human subjects are involved in our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There is no human subjects are involved in our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

23



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs do not participate any part of our work.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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