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Abstract
Vision foundation models (FMs) like CLIP have
exhibited exceptional capabilities in visual and
linguistic understanding, particularly in zero-shot
inference tasks. However, these models strug-
gle with data that significantly deviates from
their training samples, necessitating fine-tuning,
which is often infeasible in centralized settings
due to data privacy concerns. Federated learn-
ing (FL) combined with parameter-efficient fine-
tuning (PEFT) offers a potential solution, yet ex-
isting methods face issues with domain-specific
characteristics and out-of-domain generalization.
We propose a cross-silo Federated Adapter Gener-
alization (FedAG), a novel federated fine-tuning
approach that leverages multiple fine-grained
adapters to capture domain-specific knowledge
while enhancing out-of-domain generalization.
Our method uses quality-aware in-domain mutual
learning and attention-regularized cross-domain
learning to integrate domain-specific insights
effectively. Experiments of the CLIP model
on three domain-shifting datasets, ImageCLEF-
DA, Office-Home, and DomainNet, demonstrate
the superior performance of FedAG in both in-
domain and out-of-domain scenarios. We envi-
sion this work as a milestone for generalizing
CLIP to handle the challenge of out-of-domain
knowledge under federated learning setting. The
source code can be found at https://github.
com/JackqqWang/fedag.

1. Introduction
CLIP (Contrastive Language–Image Pre-training) (Radford
et al., 2021) and its variants (Li et al., 2023), have demon-
strated superior capabilities in understanding visual con-
cepts and their linguistic descriptions. They have been em-
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ployed in a wide range of vision tasks, including image
classification, especially for zero-shot inference, thanks to
their large number of parameters and the extensive train-
ing data. However, these models still face challenges when
confronted with input data significantly different from their
training data. Therefore, fine-tuning becomes essential. Tra-
ditional fine-tuning strategies are typically conducted in a
centralized manner. However, this approach is often imprac-
tical, particularly for sensitive data like medical informa-
tion, which is often distributed among clients and cannot be
shared. This distributed scenario significantly complicates
the fine-tuning process for CLIP.

Recent studies addressed this challenge by combining feder-
ated learning (FL) with fine-tuning techniques, a technique
known as federated fine-tuning. Existing approaches (Xiao
et al., 2023; Wang et al., 2024b; Marchisio et al., 2023;
Chua et al., 2023; Khalid et al., 2023; Wang et al., 2024a)
typically fine-tune these models without utilizing the en-
tire model. Instead, they often employ layer-drop tech-
niques (Sajjad et al., 2023) to compress a full model into a
sub-model. The sub-model and an emulator are distributed
to clients. Clients then update this compressed sub-model
with their private data with the help of the emulator iter-
atively. The resulting sub-model is eventually incorpo-
rated into the full model to complete fine-tuning. However,
these compression techniques fail to maintain alignment
between the fine-tuned compressed layers and the remain-
ing ones, leading to performance degradation. Federated
parameter-efficient fine-tuning (PEFT) techniques, such as
FedCLIP (Lu et al., 2023) and FedPETuning (Zhang et al.,
2023), have emerged to address the aforementioned prob-
lem. These approaches involve deploying the foundation
model with an additional adapter on each client, which is
then collaboratively trained like FedAvg (McMahan et al.,
2017). The aggregated adapter is subsequently integrated
into the foundation model to achieve fine-tuning. However,
they have several issues:

Indistinguishable in domain-specific characteristics. In
real-world applications, the data collected by clients may
exhibit different characteristics even for the same task. For
instance, the stylistic realism of an image can vary across
different forms of visual art, such as painting, photogra-
phy, and digital art, leading to unique artistic expressions.
However, existing models typically employ a single adapter
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Figure 1. In-domain preliminary results.
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Figure 2. Out-of-domain preliminary results.
to capture knowledge from mixed domains, resulting in
a performance gap compared to domain-specific adapters.
We conducted a preliminary experiment on the DomainNet
dataset to validate this observation, using three domains:
“clipart”, “painting”, and “real”. Following FedCLIP (Lu
et al., 2023), we employed an attention-based adapter to fine-
tune CLIP in two ways. The first way is to use all the data
from three domains to fine-tune one adapter, denoted as
CLIPO. The other is to fine-tune three individual adapters
only using each domain’s data, denoted as CLIPM .

The results are shown in Figure 1. It can be observed that
despite using data from all three domains to fine-tune the
adapter, CLIPO still performs worse than CLIPM , which
fine-tunes each adapter using only domain-specific data.
This issue is expected to exacerbate in the federated fine-
tuning setting due to the heterogeneity of clients, leading
to an aggregated adapter inferior to centralized fine-tuning.
These initial findings motivate us to develop domain-specific
adapters for use in federated PEFT.

Incapable to out-of-domain generalization. While exist-
ing federated fine-tuning approaches can improve perfor-
mance compared to zero-shot inference on the original mod-
els, they still struggle when faced with new or out-of-domain
data. To explore the out-of-domain generalization ability,
we use the fine-tuned CLIPO to directly conduct the in-
ference on three new domains: “infograph”, “quickdraw”,
and “sketch”, comparing with the zero-shot inference with
CLIP, denoted as CLIPZ .We fine-tune three new individ-
ual adapters using each domain’s data denoted as CLIP∗

M ,
which can be treated as the performance upper bound.

Figure 2 shows the preliminary results of the out-of-domain
testing. We can observe that fine-tuning with a shared
adapter (CLIPO) does improve performance compared to
CLIPZ , but the degree of improvement is limited, as the
results are far from the performance achieved by CLIP∗

M .
Therefore, it is crucial to enhance the adapters’ capability
for out-of-domain generalization, especially in the federated
fine-tuning setting.

However, addressing the aforementioned issue is challeng-
ing. On the one hand, it is hard to directly extend existing

work to model domain-specific characteristics. Sub-model
fine-tuning approaches encounter difficulties in compressing
multiple domain-specific sub-models and aggregating them.
Similarly, PEFT approaches face challenges in aggregating
adapters with diverse knowledge. On the other hand, equip-
ping the capability of out-of-domain generalization with
federated fine-tuning is an open challenge in this domain
and is largely underexplored in existing studies. Thus, it is
urgent to develop a new method to tackle these challenges
simultaneously.

In this paper, we propose a novel federated fine-tuning ap-
proach named Federated Adapter Generalization (FedAG),
as shown in Figure 3. Intuitively, the types of domains for a
specific task are usually limited, and the data belonging to a
domain is usually collected by a specific client. This moti-
vates us to design a new model under the cross-silo federated
learning setting and allow all clients to be involved in the
learning at each communication round. Besides, this setting
also allows us to employ multiple fine-grained adapters to in-
ject domain-specific knowledge into corresponding adapters
while enhancing the capability of out-of-domain knowledge
generalization by jointly combining these adapters. Unlike
existing work, which either compresses a sub-model for
each client or deploys a foundation model, we enable clients
to have their domain-specific models representing the char-
acteristics of their data. These client models are trained
with private data (Figure 3(b)) and uploaded to the server to
inject their domain-specific knowledge into CLIP.

2. Related Work
Fine-tuning foundation models is essential for specific
downstream tasks, especially parameter-efficient fine-tuning
(PEFT) (Ding et al., 2023; He et al., 2022; Han et al.,
2024). However, the data privacy issue limits the fine-
tuning of foundation models in a centralized way. Offsite-
tuning (Xiao et al., 2023) incorporating federated learning
techniques (McMahan et al., 2017) has recently been pro-
posed to address this problem by incorporating federated
learning techniques. Existing works can be roughly divided
into three categories. Federated full model tuning (Deng
et al., 2023; Fan et al., 2023) uses client outcomes as feed-
back to guide the fine-tuning of the foundation model. Fed-
erated partial model tuning (Peng et al., 2024; Marchisio
et al., 2022; Khalid et al., 2023) compresses a submodel
from the foundation model, then sends the compressed one
to clients for extracting client knowledge, and finally aggre-
gates the parameters learned from clients into the foundation
model. Federated PEFT (Lu et al., 2023; Zhang et al., 2023)
techniques use an extra adapter to learn and exchange client
knowledge.

Our work falls into the federated PEFT category, and only a
few studies have begun exploring this challenging task. In
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Figure 3. The overview of proposed FedAG. We use three domains (N = 3) as an example.

(Lu et al., 2023), each client has a foundation model and ex-
changes the adapters with the server in each communication
round. The server conducts the basic FedAvg on the adapter
and returns it to the clients. Similarly, FedPETuning (Zhang
et al., 2023) provides a parameter-efficient tuning approach
on pre-the trained language models via sharing part of the
client models in federated learning. The aforementioned
studies typically require clients to possess foundation mod-
els. However, this is impractical since small clients may be
unable to fine-tune a large foundation model. Our approach
places the foundation model on the server side, representing
a more practical setting. Moreover, our objective is to enable
clients to collaboratively contribute to the foundation model
learning using their specific domain knowledge, without
accessing local data.

3. Methodology
3.1. Model Input

The proposed model FedAG aims to iteratively inject
domain knowledge into the vision foundation model
deployed on the server through collaboration with
N mutually exclusive and independent domain-specific
clients {C1, · · · , CN} without sharing their private data
{D1, · · · ,DN}. To facilitate knowledge transfer while safe-
guarding clients’ data privacy, the conventional approach
involves data-free knowledge transfer, where often random
Gaussian noise is utilized to distill knowledge from one
model to another (Chen et al., 2019). Despite recent ad-
vancements (Raikwar & Mishra, 2022), noise-based knowl-
edge transfer still encounters performance degradation com-
pared to using real data. To conduct effective knowledge
transfer, we leverage the open-source text-to-image model,
Stable Diffusion 2.0 (Rombach et al., 2022), to generate
domain-specific data Sn for each client Cn.

In practice, clients will share the style information (text
prompt or the generated textual inversion token) so that
domain-specific synthetic data {S1, · · · ,SN} can be gener-
ated on the server1. Once synthetic data is generated, they
will be transferred to the corresponding clients to perform
the quality estimation. The communication of the synthetic
data is only a one-time cost and is often negligible. The de-
tails of synthetic data generation can be found in §Sec. 4.1.

3.2. Model Overview

As shown in Figure 3, the proposed FedAG model com-
prises two main updates: the client update and the server
update. The client update module (§Sec. 3.3) is designed to
train a local model fn for each client Cn using their respec-
tive data Dn, where the parameters of fn (i.e., Wt

n at the
t-th communication round) encapsulate the domain-specific
knowledge. Additionally, it estimates a data-quality score
αi,t
n ∈ αt

n for each synthetic instance sin ∈ Sn. The client
model parameters Wt

n and the estimated quality scores αt
n

are then uploaded to the central server for further processing.

During the server update at the t-th communication round,
FedAG first learns the logits of synthetic data using the
CLIP framework in §Sec. 3.4.1. It then integrates the do-
main knowledge from Wt

n into the corresponding domain-
specific attention-based adapter At

n based on the learned
logits through a quality-aware in-domain mutual learning
module that is detailed in §Sec. 3.4.2. Furthermore, it ex-
tends the model’s capability to out-of-domain knowledge us-
ing an attention-regularized cross-domain learning module,
as described in §Sec. 3.4.3. Afterward, the updated client

1Although it is possible to generate synthetic data on the client
side and upload it to the server, some clients may lack the capacity
to deploy the Stable Diffusion model. Furthermore, uploading data
is less efficient than downloading it. Therefore, based on these
considerations, we enable the server to generate synthetic data.
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models (denoted as {Ŵt
1, · · · ,Ŵt

N}) are redistributed to
their respective clients for another round of the client update.

3.3. Client Update

3.3.1. CLIENT MODEL TRAINING

At the t-th communication round, client Cn will receive
an updated model Ŵt−1

n from the server, which is trained
using the synthetic data Sn in the server update. Since the
generated synthetic data Sn is different from the real domain
data Dn, directly using Ŵt−1

n as the initialized client model
at the t-the communication round (i.e., Wt

n = Ŵt−1
n ) will

be unsuitable2. To mitigate this issue, we propose the use of
momentum update to initialize the client model as follows:

Wt
n = γWt−1

n + (1− γ)Ŵt−1
n , (1)

where γ is the hyperparameter. We then use the traditional
cross-entropy (CE) loss to train the client model’s parame-
ters Wt

n for the n-th client using Dn as follows:

min
Wt

n

Lt
n :=

1

|Dn|
∑

(xi
n,y

i
n)∈Dn

CE(fn(xi
n;W

t
n),y

i
n), (2)

where fn is a ViT-Tiny model (Wu et al., 2022), |Dn| is
the total number of private training data, xi

n is the i-th data
feature, yi

n ∈ {0, 1}|Y| is the corresponding label, and Y
is the set of distinct labels, which is shared by all domains.
The trained model Wt

n via Eq. (2) contains the knowledge
of the n-th domain.

3.3.2. QUALITY ESTIMATION FOR DOMAIN-SPECIFIC
SYNTHETIC DATA

The synthetic dataset Sn, generated through stable diffusion,
is essential for the server update but presents an unknown
quality challenge. To address this, we propose estimating
data quality using a prototype-based similarity measurement
for each domain-specific set of generated data Sn, utilizing
the trained local model Wt

n.

Label-aware Prototype Representation Learning. Let
Dy

n ⊂ Dn denote the subset of training data with labels
y ∈ Yn. For each data instance xi

n within Dy
n, we first

derive its feature representation ri,tn using the encoder layers
of Wt

n before the prediction layer. We then compute a
prototype representation py,t

n for each label category y by
averaging the representations of all data in Dy

n, specifically,
py,t
n = 1

|Dy
n|

∑
xi
n∈Dy

n
ri,tn .

Similarity-based Data Quality Estimation. For the gen-
erated data subset Sy

n ⊂ Sn labeled y in the n-th domain,
each instance sin ∈ Sy

n also receives a feature representation

2An empirical experiment has been conducted to demonstrate
this issue, as shown in Appendix D.

qi,t
n through Wt

n. We then calculate the cosine similar-
ity αi,t

n between qi,t
n and the corresponding prototype py,t

n ,
represented as αi,t

n = cos(qi,t
n ,py,t

n ). The vector of these
similarity scores, αt

n, for all generated data in Sn on the
n-th client, is then compiled and prepared for uploading to
the server along with Wt

n.

This methodology offers significant advantages: it ensures
that uploading synthetic data quality scores does not com-
promise the confidentiality of client data, and it allows
each client model to provide specific data-quality scores,
thus enhancing the precision of the mutual learning process
(§Sec. 3.4.2).

3.4. Server Update

Upon receiving the uploaded client models
{Wt

1, · · · ,Wt
N} and their corresponding estimated

data-quality scores {αt
1, · · · ,αt

N}, the server integrates
domain-specific knowledge into CLIP. This is achieved
by incorporating domain-specific attention-based adapters
{At

1, · · · ,At
N}, each consisting of an identical multi-layer

block positioned after the feature extractor of CLIP.

3.4.1. CLIP-BASED LOGIT LEARNING

The goal of FedAG is to inject domain knowledge included
in client model parameters into the CLIP model in a PEFT
way. Let Encimg() represent the frozen image encoder and
Enctxt() be the frozen text encoder of CLIP. Let Ly denote
the description of class label y, i.e., “a photo of a [class]”.
To learn the logit for an image sin ∈ Sn, we follow the
CLIP pre-training framework and take the image sin and all
the label descriptions {Ly}|Y|

y=1 as the input. In particular,
we first obtain the representations of sin and Ly using the
corresponding encoders as follows:

Iin = Encimg(s
i
n),Ty = Enctxt(Ly). (3)

Following FedCLIP (Lu et al., 2023), the image represen-
tation Iin ∈ Rd will pass an attention-based adapter An to
obtain a fine-tuned domain-specific representation as fol-
lows:

Ĩi,tn = At
n(I

i
n)⊙Iin = Softmax(MLP1,t

n (Tanh(MLP2,t
n (Iin))))⊙Iin.

(4)
where Ĩi,tn ∈ Rd, d is the dimension size, and ⊙ denotes the
element-wise dot product. MLP is the multi-layer percep-
tion.

Finally, we can obtain the domain-specific logit for the input
image as follows:

ϕi,t
n = [Ĩi,tn ·T⊤

1 , · · · , Ĩi,tn ·T⊤
|Y|]. (5)
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3.4.2. QUALITY-AWARE IN-DOMAIN MUTUAL
LEARNING

To transfer domain-specific knowledge from the client
model Wt

n to the CLIP model (i.e., the corresponding
adapter At

n), an intuitive way is to conduct knowledge dis-
tillation (Hinton et al., 2015) by treating Wt

n as the teacher
network and the adapter-based CLIP as the student network.
However, this simple strategy presents several limitations:
it overlooks the quality of domain-specific synthetic data
Sn involved in the distillation process and only allows uni-
directional knowledge transfer, which does not update the
local model Wt

n, thus underutilizing the potential of the
federated learning framework.

To overcome these shortcomings, we introduce a quality-
aware in-domain mutual learning strategy. This approach
not only ensures effective integration of domain-specific
knowledge into At

n but also facilitates dynamic updates
of the local model, leveraging the quality assessments of
the synthetic data to enhance the overall learning process.
Note that we use Ŵt

n to distinguish the updates of the client
model Wt

n on the server. The loss function is defined as
follows:

min
At

n,Ŵt
n

J t
n :=

1

2
∑|Sn|

j=1 αj,t
n

∑
sin∈Sn

αi,t
n

{
KL(θi,t

n ||φi,t
n ) (6)

+KL(φi,t
n ||θi,t

n )
}
, (7)

θi,t
n = fn(s

i
n;Ŵ

t
n),φ

i,t
n = softmax(ϕi,t

n )), (8)

where θi,t
n is the predicted probabilities by the client model

Ŵt
n on each data instance sin on the server, and φi,t

n is prob-
abilities ouputed by the CLIP model using Eq. (5). KL(·||·)
is the Kullback–Leibler divergence.

3.4.3. ATTENTION-REGULARIZED CROSS-DOMAIN
LEARNING

Using Eq. (7), we can update the adapters and client models
simultaneously. However, such a design may only work for
data belonging to existing domains, i.e., there is a lack of
generalization ability for out-of-domain data. We propose a
novel attention-regularized cross-domain learning strategy
to equip the proposed FedAG with the capability for dealing
with out-of-domain data.

In particular, for a synthetic data instance sin ∈ Sn,
we not only generate its logit ϕi,t

n via Eq. (5) with the
domain-specifc adaptor At

n but also from other adaptors
{At

1, · · · ,At
n−1,A

t
n+1, · · · ,At

N}. We calculate the atten-
tion score βi,t

k ∈ R (k ∈ [1, N ]) for each adaptor using a
softmax function on top of an MLP layer and then obtain

the aggregated logit for each data instance as follows:

ηi,t
n =

N∑
k=1

βi,t
k ϕi,t

k , (9)

[βi,t
1 , · · · , βi,t

N ] = softmax([MLP(ϕi,t
1 ), · · · ,MLP(ϕi,t

N )]).
(10)

The domain index n is known for each training data during
the training. Thus, the attention weight βi,t

n should be larger
than those obtained from the other adapters. We use this
intuition as prior knowledge to guide the model learning via
an attention-based regularizer as follows:

Ri,t
n = max(0, δ+max([βi,t

1 , · · · , βi,t
n−1, β

i,t
n+1, · · · , β

i,t
N ])−βi,t

n )),
(11)

where δ is the margin hyperparameter.

3.4.4. SERVER OPTIMIZATION

Based on Eqs. (7), (8), (9), and (11), we obtain the final loss
function for the server update as follows:

min
At,Wt

Gt :=
1

N

N∑
n=1

[
J t
n +

∑
(sin,y

i
n)∈Sn

[
CE(φi,t

n ,yi
n)︸ ︷︷ ︸

In-domain Prediction

+ CE(κi,t
n ,yi

n)︸ ︷︷ ︸
Cross-domain Prediction

+λRi,t
n

]]
, (12)

where At = {At
1, · · · ,At

N}, Wt = {Ŵt
1, · · · ,Ŵt

N},
κi,t
n = softmax(ηi,t

n ), and λ is the hyperparameter. The
updated client models Wt = {Ŵt

1, · · · ,Ŵt
N} will be re-

distributed to the corresponding domain-specific clients for
update in the next communication round.

3.5. Inference

FedAG will be trained iteratively using Eqs. (2) and (12)
until convergence. We then conduct the inference on the
testing data. For the in-domain scenario, where the do-
main index n is known, we use the label index with the
maximum value in ϕi

n as the predicted label, i.e., ŷin =
argmax{1,··· ,|Y|}(ϕ

i
n) via Eq. (5). For the out-of-domain

scenario where the domain is unknown, we use the label
index with the maximum value in ηi as the predicted label,
i.e., ŷi = argmax{1,··· ,|Y|}(η

i) via Eq. (9).

4. Experiments
4.1. Experimental Setups

Datasets. To fairly validate the proposed model FedAG in
our experiments, we focus on the image classification task
on three commonly used domain-shifting datasets: Domain-
Net, Office-Home, and ImageCLEF-DA. More details can
be found in Appendix. We also incorporate synthetic data

5



Enhancing Foundation Models with Federated Domain Knowledge Infusion

Table 1. The results (mean and standard deviation) of in-domain evaluation of three runs.

Setting Method ImageCLEF-DA Office-Home DomainNet
Caltech ImageNet Art Product Real Clipart Painting Real

Zero-shot CLIPZ 97.25± 1.03 96.87± 1.67 78.12± 1.21 85.14± 0.84 86.33± 1.25 62.67± 2.68 59.77± 2.50 78.07± 1.90

C
en

tr
a. Classical ViTcen 85.41± 3.87 82.06± 2.89 62.81± 3.68 83.97± 3.91 76.32± 3.68 53.44± 3.97 58.32± 2.23 77.01± 2.65

PEFT CLIPL 98.49± 1.70 95.45± 2.44 85.01± 2.78 87.92± 2.06 88.44± 1.25 68.15± 1.89 65.66± 1.97 83.28± 2.05
CLIPA 98.11± 2.01 95.52± 1.42 84.17± 2.22 88.02± 1.76 88.26± 1.86 68.5± 2.20 65.13± 1.66 82.79± 2.37

Fe
de

ra
te

d Classical

FedAvg 95.11± 3.90 83.33± 2.74 75.62± 1.76 86.85± 2.58 82.07± 2.96 51.66± 3.80 53.02± 2.74 69.34± 3.97
FedAvgft 90.06± 2.08 80.25± 2.30 61.33± 1.71 75.51± 2.09 74.68± 2.15 48.27± 3.60 43.87± 1.77 62.06± 2.08
FedProx 95.75± 3.62 84.16± 2.85 76.98± 1.52 87.26± 1.47 83.15± 1.70 50.4± 2.76 53.45± 1.05 69.87± 1.45
FedProxft 91.30± 1.85 80.54± 2.11 62.47± 1.86 75.65± 1.38 74.98± 1.76 48.89± 3.10 44.92± 1.62 63.77± 1.10

CLIP
FedCLIP 97.34± 3.11 97.89± 2.06 82.14± 1.35 84.33± 2.31 87.62± 1.89 67.96± 2.05 65.78± 1.66 82.93± 1.21
FedOT 97.26± 2.85 97.91± 1.73 82.56± 1.91 85.47± 2.98 86.61± 3.26 67.68± 2.74 65.85± 1.78 83.20± 1.40
FedAG 98.62± 1.34 98.56 ± 1.78 84.97 ± 1.78 88.69 ± 1.06 88.79 ± 1.57 70.36 ± 1.96 66.29 ± 1.08 84.92 ± 0.85

during the model training. The number of synthetic data for
each training domain equals 10% of the real domain data.
The details of synthetic data generation for different datasets
are as follows. When training the proposed FedAG, we also
incorporate domain-level synthetic data generated by Sta-
ble Diffusion V2. The number of synthetic data for each
training domain equals 10% of the real domain data. For
the style-distinctive datasets, DomainNet and OfficeHome,
synthetic data can be readily generated using text prompts
following the template “a photograph/drawing of $class in
$style style”. However, for ImageCLEF-DA, where the
style information is implicit and challenging to articulate
using text prompts, we resort to generating synthetic data
using textual inversion (Gal et al., 2022). Textual inversion
entails deriving an appropriate text token corresponding to
the implicit style. We sampled 10 instances from each of the
12 classes within the real ImageCLEF dataset and employed
the Diffuser library to perform textual inversion. Once the
style token is derived, the server utilizes a similar template,
“a $class in $style token style”, to generate synthetic images
for ImageCLEF-DA. Implementation Details can be found
in Appendix C.

Baselines. We compare the proposed FedAG with several
baselines in different settings, including zero-shot inference,
centralized training, and federated learning.

• Zero-Shot Inference. We directly use the original CLIP
model to predict the labels for given images in the testing
data denoted as CLIPZ .

• Centralized Learning. Since FedAG uses private do-
main data {D1, · · · ,DN} for client training and synthetic
data {S1, · · · ,SN} for server training, for a fair compari-
son, we also use them together for the centralized training
baselines. This setting involves two kinds of centralized
training: classical centralized training and fine-tuning on
CLIP. For the classical training, we directly train ViT
with all data, denoted as ViTcen. We also choose two
commonly used parameter-efficient fine-tuning methods,
adapter fine-tuning and LoRA (Hu et al., 2022) as base-
lines, which are denoted as CLIPA and CLIPL. CLIPA

will learn a shared adapter, but the number of parame-
ters in the adaptor is the same as that of FedAG, although
FedAG is equipped with several domain-specific adapters.
We set the rank for CLIPL as 32.

• Federted Learning. We use two classical federated learn-
ing approaches, FedAvg (McMahan et al., 2017) and Fed-
Prox (Li et al., 2020), as baselines. These approaches
are trained only with client data without interacting with
CLIP. Since our model FedAG uses synthetic data for
fine-tuning the client models, in the experiments, we also
fine-tuned FedAvg and FedProx the same epochs as our
approach on the server at each communication round.
The fine-tuned models are denoted as FedAvgft and Fed-
Proxft. The most relevant baselines are FedCLIP (Lu
et al., 2023) and FedOT (Xiao et al., 2023). FedCLIP
deploys a CLIP model for each client and fine-tunes the
adapter on the local side. The adapters are uploaded to
the server for aggregation, similar to FedAvg. To conduct
a fair comparison, we conduct the same fine-tuning pro-
cess on the adapter embedded in the same CLIP model on
the server side as our own approach. FedOT (Xiao et al.,
2023) is a federated version of Offsite-Tuning, where
the CLIP model generates a compressed model and an
emulator, which are shared with clients for their training.

4.2. In-domain Result Analysis

We train the models using the domains shown in the table
and conduct the testing with the remaining domain data.
Table 1 presents the average accuracy of three runs for
the in-domain evaluation. We can observe that the proposed
FedAG performs best on all domains in all datasets. CLIPZ

is a zero-shot learning model with CLIP, which does not
use any training data. It performs better than the classical
federated learning models like FedAvg and FedProx. These
comparisons prove the predictive power of foundation mod-
els for downstream tasks. The centralized PEFT approaches
(CLIPL and CLIPA) achieve comparable performance but
outperform the zero-shot model CLIPZ , which confirms the
necessity of fine-tuning foundation models for boosting per-
formance. Although they are trained in a centralized manner
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Table 2. The results (mean and standard deviation) of out-of-domain evaluation of three runs.

Setting Method ImageCLEF-DA Office-Home DomainNet
Pascal Clipart Infograph Quickdraw Sketch

Zero-shot CLIPZ 82.13± 0.58 61.07± 1.09 39.34± 2.24 13.06± 1.87 58.11± 1.56

C
en

tr
a. Classical ViTcen 71.66± 3.40 42.66± 2.74 20.15± 3.66 10.67± 1.62 40.75± 2.93

PEFT CLIPL 81.22± 1.63 67.15± 2.88 42.10± 2.87 14.38± 2.70 59.48± 2.60
CLIPA 81.08± 2.97 67.31± 2.51 42.22± 3.51 13.85± 1.55 59.01± 2.74

Fe
de

ra
te

d Classical

FedAvg 78.33± 4.33 43.58± 3.65 26.75± 3.70 10.78± 2.95 40.56± 3.11
FedAvgft 73.02± 3.88 41.12± 3.20 24.27± 3.14 10.33± 2.40 37.91± 2.25
FedProx 78.69± 3.06 45.88± 2.87 27.50± 3.55 12.04± 2.29 40.97± 2.84
FedProxft 72.68± 2.74 40.75± 2.44 24.63± 2.81 11.89± 2.48 38.54± 2.36

CLIP
FedCLIP 82.45± 2.46 64.44± 2.53 41.65± 3.18 12.89± 2.70 59.23± 2.52
FedOT 82.10± 2.89 65.27± 2.69 40.70± 2.90 15.51± 2.64 60.30± 2.70
FedAG 83.78 ± 1.94 68.15 ± 1.08 45.56 ± 2.26 21.04 ± 2.20 63.29 ± 1.76

and perform the best among all baselines, their performance
is worse than that of FedAG. The reason is that these two
approaches only use one adapter or two low-rank matrices to
store mixed domain knowledge. However, our model uses
domain-specific adapters to capture the characteristics of do-
mains, thus leading to the best performance in the in-domain
evaluation. These results also validate the design of multiple
domain adapters. When comparing with the federated fine-
tuning approaches, we can find they also perform better than
CLIPZ but have performance gaps with centralized PEFT
approaches CLIPL and CLIPA. These results demonstrate
the efficacy of injecting domain knowledge into foundation
models in a federated way.

4.3. Out-of-domain Result Analysis

The ultimate goal of training a foundation model is to ap-
ply it to various downstream tasks, including inference on
unseen data. To assess this capability, we conduct an out-of-
domain evaluation using the trained models with in-domain
evaluation to validate the unseen domains. The results are
shown in Table 2.

We observe similar trends to those in the in-domain evalu-
ation. Specifically, FedAG outperforms all baselines, and
CLIPZ performs better than classical models. However,
compared to the in-domain evaluation results, the perfor-
mance gaps between the centralized PEFT models (i.e.,
CLIPL and CLIPA) and CLIPZ are not as significant. In
fact, their performance is even worse than that of FedOT in
several domains. These results highlight the limitations of
existing models in generalizing out-of-domain knowledge.
In contrast to existing approaches, our proposed FedAG
consistently achieves superior performance, leading to sig-
nificant improvements in accuracy. For instance, in the
Quickdraw domain of the DomainNet dataset, our approach
demonstrates a 36% performance increase compared to the

Table 3. Ablation study on the DomainNet dataset. C for Clipart,
P for Painting, R for Real, I for Infograph, Q for Quickdraw, S for
Sketch.

Method In-domain Out-of-domain
C P R I Q S

FedAGmome 68.54 65.60 83.00 44.38 20.14 62.85
FedAGquality 68.12 65.13 83.11 44.79 20.58 63.15
FedAGkd 69.88 64.27 82.55 42.62 18.40 62.03
FedAGcross 70.04 66.11 84.13 40.63 15.70 59.04
FedAGreg 68.26 64.05 81.08 42.01 17.55 61.69
FedAG 70.36 66.29 84.92 45.56 21.04 63.29

best baseline FedOT. These results strongly indicate that our
model effectively handles out-of-domain knowledge.

4.4. Abaltion Study

We use the following baselines to validate the effectiveness
of our model design. FedAGmome does not use momentum
update (i.e., Eq. (1)) for the local model after receiving the
learned global model. FedAGquality denotes removing data
quality estimation in Eq. (7). FedAGcross denotes removing
the module of attention-regularized cross-domain learning.
FedAGreg means that we remove the designed attention-
based regularization term R in Eq. (12). The results of the
ablation studies are presented in Tables 3. It is evident that
removing each designed module results in a performance
drop, underscoring the necessity of each module. Inter-
estingly, the in-domain results suggest that cross-domain
learning may not be as crucial compared to momentum
updates and data quality estimation. However, in the out-
of-domain evaluation, FedAGcross plays a significant role,
as its removal leads to a dramatic performance drop. These
findings align with the motivations behind our model design,
emphasizing the importance of the cross-domain learning
module in addressing the out-of-domain issue.
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4.5. Momentum Update for Clients

Figure 7 displays the empirical experiment results of mod-
els trained with real and synthetic data on the DomainNet
dataset in a centralized manner using three domains: “Cli-
part”, “Painting”, and “Real”, where the model used in this
preliminary experiment is the same as our client model,
which is TinyViT (Wu et al., 2022). The testing data used
in the experiment are the head-out in-domain data. The data
details can be found in §Sec. 4.1.

It is evident from Figure 7 that models trained with real data
outperform those trained with synthetic data by a significant
margin. Therefore, replacing the well-trained client model
Wt−1

n with the distributed Ŵt−1
n arbitrarily would disrupt

the clients’ training. Thus, we propose to use the momentum
update for the client training.

A
C

C
 (%

)

Synthetic Data Real Data

Figure 4. Performance comparison with synthetic data and real
data.

4.6. Influence of Domain Knowledge

To investigate the impact of domain knowledge on in-
domain and out-of-domain performance, we adjust the set-
ting of in-domain and out-of-domain data utilization. We
selected DomainNet for our experiments because it encom-
passes a wide variety of domains, and its zero-shot per-
formance across these domains exhibits significant vari-
ability. In our primary experiment, we assigned three do-
mains Clipart, Painting, and Real to different clients for
training. We further extended our study to include three
additional training configurations: (1) two training domains:
Clipart and Painting, (2) four training domains: Clipart,
Painting, Real and Infograph, and (3) five training domains:
Clipart, Painting, Real, Infograph, and Quickdraw. For
all the scenarios, we always keep the Sketch domain for
out-of-domain testing. The in-domain and out-of-domain
test results from these configurations are subsequently re-
ported. From the analysis presented in Table 4, it is evident
that increasing the number of domains enhances the per-
formance in both in-domain and out-of-domain tests. This
improvement is particularly noticeable in domains that ini-
tially demonstrated weaker performance, such as Infograph
and Quickdraw. Such enhancements can be attributed to our
proposed method’s ability to effectively utilize knowledge
from various domains.

Table 4. Results with different training domains.
Setting Clipart Painting Real Infograph Quickdraw Sketch

2 → 4 69.23 ✓ 64.33 ✓ 81.15 ✗ 42.90 ✗ 16.20 ✗ 61.00 ✗
3 → 3 70.36 ✓ 66.29 ✓ 84.92 ✓ 45.56 ✗ 21.04 ✗ 63.29 ✗
4 → 2 70.21 ✓ 66.57 ✓ 85.17 ✓ 45.48 ✓ 21.89 ✗ 65.08 ✗
5 → 1 70.35 ✓ 66.48 ✓ 85.68 ✓ 46.50 ✓ 23.84 ✓ 66.78 ✗

4.7. Generalization Study

To assess the effectiveness of various image encoders and
to validate the generalizability of our proposed method,
we conducted additional tests using different CLIP image
encoders on the server side, including ResNet-50 (RS) and
ViT-Tiny (VT). The outcomes of these tests are shown in
Figure 5. In our main experiments, we employed the ViT-
B-32 (VB) encoder. We can observe that ResNet-50 is the
weakest encoder, but its performance is comparable to that
of the best baseline FedOT listed in Tables 1 and 2. Using
other encoders can significantly enhance the performance,
validating the generalizability of FedAG.

4.8. Performance Upper-bound Exploration

To further validate the efficacy of our proposed method,
FedAG, we conducted a comparative analysis against an
upper bound benchmark. In the upper bound scenario, all
training and synthetic data are combined to fine-tune a CLIP
adapter, with each adapter tailored to a specific domain.
This process, referred to as CLIPM , involves tuning domain-
specific adapters using the corresponding domain data. The
comparative results are presented in Table 9. Our findings
reveal that the performance of FedAG closely approaches,
and in some instances surpasses, this upper bound. This fur-
ther demonstrates the effectiveness of our proposed FedAG.

Table 5. Upper bound analysis.

Dataset Domain CLIPM FedAG

ImageCLEF-DA
Caltech 98.55 98.62
ImageNet 95.86 98.56
Pascal 83.67 83.78

Office-Home

Art 85.14 84.97
Product 88.78 88.69
Real 88.98 88.79
Clipart 69.59 68.15

DomainNet

Clipart 69.44 70.36
Painting 66.47 66.29
Real 84.86 84.92
Infograph 46.78 45.56
Quickdraw 21.80 21.04
Skectch 65.44 63.29
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Figure 5. Results on the DomainNet dataset with different image encoders of CLIP. The blue dashed line denotes the performance of the
best baseline FedOT using ViT-B-32 (VB) as the encoder.

Table 6. The performance of FedAG with different sizes of syn-
thetic data. “in” means the in-domain results, and “out” means the
out-of-domain results.

Dataset Domain Data Volume
100% 75% 50% 25%

Im
ag

e
C

L
E

F-
D

A

Caltech (in) 98.62 98.88 97.51 97.86
ImageNet (in) 98.56 98.47 97.22 97.31
Painting (out) 83.78 83.04 82.50 82.43

O
ffi

ce
-H

om
e

Art (in) 84.97 84.30 82.46 82.04
Product (in) 88.69 88.21 87.51 86.77
Real (in) 88.79 88.63 87.18 86.45
Clipart (out) 68.15 67.30 66.78 66.44

D
om

ai
nN

et

Clipart (in) 70.36 68.41 67.96 66.12
Painting (in) 66.29 65.15 64.04 61.50
Real (in) 84.92 84.50 83.09 81.96
Infograph (out) 45.56 44.21 43.76 40.05
Quickdraw (out) 21.04 20.76 18.89 16.76
Sketch (out) 63.29 62.33 61.07 59.53

4.9. Synthetic Data Volume

In this subsection, we examine the influence of synthetic
data volume on the performance of our proposed algorithm.
We sampled subsets of 75%, 50%, and 25% from the syn-
thetic data used in our main experiments while keeping all
other settings constant. The results for both in-domain and
out-of-domain evaluations are presented in Table 10. From
the analysis, we observe the following: (1) As the volume
of synthetic data decreases, there is a corresponding decline
in performance across the three datasets for both in-domain
and out-of-domain scenarios. (2) The performance degrada-
tion from reducing synthetic data from 50% to 25% is more
pronounced than the drop from 100% to 50%. (3) Notably,
even with a minimal amount of synthetic data (25%), our ap-
proach maintains reasonable performance in both in-domain
and out-of-domain settings for all datasets. In summary,
our investigation into the effects of synthetic data volume
confirms its impact on algorithm performance; however, our
approach demonstrates resilience to reduced data volumes
within certain limits.

4.10. Case Study

To further illustrate the effectiveness of the proposed FedAG
for out-of-domain generalization, we use two case studies to

visualize the attention weights β learned by Eq. (9) with the
four fine-tuned models on various domains, as mentioned
in Table 4. These variations are depicted in Figure 6. The
first image, originating from the Sketch domain, shows that
within the context of out-of-domain data, Clipart receives
the highest attention score, followed by Real and Painting.
Conversely, for the in-domain example from the Real do-
main (as depicted in the second image), including identical
domain data in the training regimen results in it receiving
the highest attention score. These observations, supported
by both Table 4 and Figure 6, effectively illustrate the dy-
namic nature of domain knowledge in influencing model
performance. They also highlight how the attention score β
adjusts in response to various domain knowledge configu-
rations, emphasizing the adaptability and efficiency of our
method in leveraging diverse domain insights.

Pic 1
Domain: Sketch
Label: Bird

Pic 2
Domain: Real
Label: Apple
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Figure 6. The visulization of β on two image samples.

5. Conclusion
In this study, we introduced FedAG, an innovative federated
fine-tuning approach designed to address the challenges of
domain-specific characteristics and out-of-domain gener-
alization with CLIP. Using multiple fine-grained adapters
and novel learning modules, FedAG effectively integrates
domain-specific knowledge and enhances generalization
across diverse domains. Our extensive experiments on var-
ious datasets validate the efficacy of FedAG, showing per-
formance improvements over state-of-the-art methods. Our
proposed approach has the potential to be applied to cross-
device federated learning if a large number of domains are
available, which we plan to extend in our future work.
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Impact Statement
This paper contributes to advancing federated learning, foun-
dation models, and domain adaptation by enabling efficient
collaboration among multiple parties. Our work facilitates
the development of foundation model generalization while
addressing challenges in distributed data utilization, domain
adaptation, and parameter-efficient fine-tuning. These con-
tributions have broad implications for sustainable comput-
ing, improving the adaptability and efficiency of foundation
models across diverse and decentralized environments.
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Appendix
A. Pseudo-code of FedAG

Algorithm 1 shows the pseudo-code of the proposed FedAG
model, which contains two main updates: the client update
(lines 6-14) and the server update (lines 15 - 32).

B. Dataset

DomainNet3. It totally has 569,010 images from 6 domains, in-
cluding clipart, infographics, painting, quickdraw, real, and sketch.
Each domain contains 48K to 172K images, categorized into 345
classes.

Office-Home4. It has 15,500 images from 4 different dimensions:
artistic images, clip art, product images, and real-world images.
Each domain has 65 object classes.

ImageCLEF-DA5. It is a benchmark for the ImageCLEF 2014
domain adaption challenge, including Caltech-256, ImageNet
ILSVRC 2012, and Pascal VOC 2012. There are 12 categories and
50 images in each category.

C. Implementation Details

For each dataset, we assign each in-domain data to one client.
We utilize ViT-Tiny-patch16-2246 for the client model and ViT-B-
327 for the image encoder for the server side. Our experimental
setup involves 10 communication rounds. For the local update,
we set the local training epoch as 10, the local learning rate as
1e-4, the batch size as 32, γ = 0.9, and the optimizer used in the
optimization as Adam. For the server update, we set λ = 0.1, δ
= 1e-3, the epoch of quality-aware in-domain mutual learning as
3, and the epoch of adapter initialization as 5. We keep the shared
parameter settings consistent across our method and the baselines.
The unique hyperparameters for the baselines are adopted as per the
specifications in their respective original papers. All experiments
are conducted on an NVIDIA A6000 with CUDA version 12.0,
running on a Ubuntu 20.04.6 LTS server. All baselines and the
proposed FedAG are implemented using PyTorch 2.0.1.

D. Momentum Update for Clients

Figure 7 displays the empirical experiment results of models
trained with real and synthetic data on the DomainNet dataset
in a centralized manner using three domains: “Clipart”, “Painting”,
and “Real”, where the model used in this preliminary experiment
is the same as our client model, which is TinyViT (Wu et al., 2022).
The testing data used in the experiment are the head-out in-domain
data. The data details can be found in §Sec. 4.1.

It is evident from Figure 7 that models trained with real data out-
perform those trained with synthetic data by a significant margin.
Therefore, replacing the well-trained client model Wt−1

n with
the distributed Ŵt−1

n arbitrarily would disrupt the clients’ train-

3https://ai.bu.edu/M3SDA/
4https://www.hemanthdv.org/

officeHomeDataset.html
5https://www.imageclef.org/2014
6https://huggingface.co/timm/vit_base_

patch16_224.augreg2_in21k_ft_in1k
7https://huggingface.co/openai/

clip-vit-base-patch32
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Figure 7. Performance comparison with synthetic data and real
data.

ing. Thus, we propose to use the momentum update for the client
training.

E. Details of Baselines

Table 7 shows the approaches used in the experiments, including
training ways, deployment details, and used data.

F. Performance Upper-bound Exploration

To further validate the efficacy of our proposed method, FedAG,
we conducted a comparative analysis against an upper bound
benchmark. In the upper bound scenario, all training and syn-
thetic data are combined to fine-tune a CLIP adapter, with each
adapter tailored to a specific domain. This process, referred to
as CLIPM , involves tuning domain-specific adapters using the
corresponding domain data. The comparative results are presented
in Table 9. Our findings reveal that the performance of FedAG
closely approaches, and in some instances surpasses, this upper
bound. This further demonstrates the effectiveness of our proposed
FedAG.

G. Additional Experiment Results of Ablation Study

In order to more thoroughly evaluate the effectiveness of our de-
signed modules, we conducted ablation studies on two additional
datasets: ImageCLEF-DA and Office-Home. The results of these
studies are detailed in Table 8. Our observations indicate that the
performance trends on ImageCLEF-DA and Office-Home datasets
are consistent with those observed on the DomainNet dataset. This
consistency across different datasets further validates the effec-
tiveness of the individual components of our proposed method,
FedAG, reinforcing the robustness and generalizability of our ap-
proach.

H. Study on Key Hyperparameters

We examined the impact of key hyperparameters λ and δ on our
model’s performance, with results illustrated in Figure 8 for λ
and Figure 9 for δ. Our observations from the experiments are as
follows: (1) Increasing values of λ and δ correspond to improved
in-domain performance. This enhancement can be attributed to
the mechanisms described in equations 11 and 12, where higher
values of λ and δ focus the training more intensively on in-domain
knowledge acquisition. (2) Within a certain range, elevating λ and
δ also enhances out-of-domain learning, potentially due to the ef-
fectiveness of in-domain adapters, which facilitate out-of-domain
inference through the cross-domain learning module discussed in
Sec. 3.4.3. However, excessively high values of λ or δ might overly
concentrate the learning process on in-domain aspects, thereby

12
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Table 7. Summaries of approaches used in this work.
Name Training Way Deployment Details Used Data
CLIPZ No training Zero-short on CLIP No data
CLIPO Centralized Fine-tuning one adapter on CLIP In-domain data
CLIPM Centralized Fine-tuning multiple individual adapters In-domain data
CLIP∗

M Centralized Fine-tuning multiple individual adapters Out-of-domain data
CLIPL Centralized Fine-tuning one adapter on CLIP In-domain and synthetic data
CLIPA Centralized Fine-tuning LoRA on CLIP In-domain and synthetic data
ViTcen Centralized Fine-tuning ViT-B-32 In-domain and synthetic data

FedAvg Federated Client: Fine-tuning ViT-Tiny In-domain data
Server: No training No data

FedProx Federated Client: Fine-tuning ViT-Tiny In-domain data
Server: No training No data

FedAvgft Federated Client: Fine-tuning ViT-Tiny In-domain data
Server: Fine-tuning the aggregated model Synthetic data

FedProxft Federated Client: Fine-tuning ViT-Tiny In-domain data
Server: Fine-tuning the aggregated model Synthetic data

FedCLIP Federated
Client: CLIP + Adapter In-domain data
Server: No training No data
Post-training: Fine-tuning one adapter Synthetic data

FedOT Federated Client: Adapter + emulator In-domain data
Server: Fine-tuning one adapter on CLIP Synthetic data

FedAG Federated Client: Fine-tuning ViT-Tiny In-domain data
Server: Fine-tuning multiple adapters on CLIP Synthetic data

Table 8. Ablation study experiment results on ImageCLEF-DA and Office-Home datasets. ✓ denotes the in-domain and ✗ denotes the
out-of-domain.

Method ImageCLEF-DA Office-Home
Caltech ✓ ImageNet ✓ Pascal ✗ Art ✓ Product ✓ Real ✓ Clipart ✗

FedAGmome 98.28 98.17 83.11 84.88 88.09 88.20 66.15
FedAGquality 97.45 98.21 83.26 82.47 87.14 87.24 67.20
FedAG kd 97.41 98.04 83.21 81.89 86.54 86.57 67.31
FedAGcross 98.44 98.36 82.55 83.09 87.88 88.62 63.89
FedAGreg 97.30 97.13 81.17 81.55 85.69 86.11 67.36
FedAG 98.62 98.56 83.78 84.97 88.69 88.79 68.15

degrading out-of-domain performance. In summary, careful ad-
justment of λ and δ offers a means to tailor performance across
different domain configurations, achieving a balance between in-
domain focus and out-of-domain generalization.

I. Synthetic Data Volume

In this subsection, we examine the influence of synthetic data vol-
ume on the performance of our proposed algorithm. We sampled
subsets of 75%, 50%, and 25% from the synthetic data used in
our main experiments while keeping all other settings constant.
The results for both in-domain and out-of-domain evaluations are
presented in Table 10. From the analysis, we observe the fol-
lowing: (1) As the volume of synthetic data decreases, there is a
corresponding decline in performance across the three datasets for
both in-domain and out-of-domain scenarios. (2) The performance
degradation from reducing synthetic data from 50% to 25% is

more pronounced than the drop from 100% to 50%. (3) Notably,
even with a minimal amount of synthetic data (25%), our approach
maintains reasonable performance in both in-domain and out-of-
domain settings for all datasets. In summary, our investigation into
the effects of synthetic data volume confirms its impact on algo-
rithm performance; however, our approach demonstrates resilience
to reduced data volumes within certain limits.

13



Enhancing Foundation Models with Federated Domain Knowledge Infusion

0          0.1        0.5         0.9 0          0.1        0.5         0.9 0          0.1        0.5         0.9

0          0.1        0.5         0.9 0          0.1        0.5         0.9 0          0.1        0.5         0.9

A
C

C
%

A
C

C
%

𝜆𝜆 𝜆𝜆 𝜆𝜆

Figure 8. Hyperparameter study of λ on the DomainNet dataset. Red is the color for the in-domain, and blue is the color for the
out-of-domain.
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Figure 9. Hyperparameter study of δ on the DomainNet dataset. Red is the color for the in-domain, and blue is the color for the
out-of-domain.

Table 9. Upper bound analysis.

Dataset Domain CLIPM FedAG

ImageCLEF-DA
Caltech 98.55 98.62
ImageNet 95.86 98.56
Pascal 83.67 83.78

Office-Home

Art 85.14 84.97
Product 88.78 88.69
Real 88.98 88.79
Clipart 69.59 68.15

DomainNet

Clipart 69.44 70.36
Painting 66.47 66.29
Real 84.86 84.92
Infograph 46.78 45.56
Quickdraw 21.80 21.04
Skectch 65.44 63.29

Table 10. The performance of FedAG with different sizes of syn-
thetic data. “in” means the in-domain results, and “out” means the
out-of-domain results.

Dataset Domain Data Volume
100% 75% 50% 25%

Im
ag

e
C

L
E

F-
D

A

Caltech (in) 98.62 98.88 97.51 97.86
ImageNet (in) 98.56 98.47 97.22 97.31
Painting (out) 83.78 83.04 82.50 82.43

O
ffi

ce
-H

om
e

Art (in) 84.97 84.30 82.46 82.04
Product (in) 88.69 88.21 87.51 86.77
Real (in) 88.79 88.63 87.18 86.45
Clipart (out) 68.15 67.30 66.78 66.44

D
om

ai
nN

et

Clipart (in) 70.36 68.41 67.96 66.12
Painting (in) 66.29 65.15 64.04 61.50
Real (in) 84.92 84.50 83.09 81.96
Infograph (out) 45.56 44.21 43.76 40.05
Quickdraw (out) 21.04 20.76 18.89 16.76
Sketch (out) 63.29 62.33 61.07 59.53
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Algorithm 1 Algorithm Flow of FedAG.
Input: Local data {D1, · · · ,DN}, Stable Diffusion V2, domain descriptions, task label descriptions, communication

rounds T , local training epoch Ec, server training epoch Es, and hyperparameters: λ, γ, and δ
Server Initialization

Use Stable Diffusion V2 to generate domain-specific synthetic data {S1, · · · ,SN} based on domain descriptions and
task label descriptions;
Use CLIP training to initialize domain-specific adapters using {S1, · · · ,SN} individually;

Distribute each domain-specific synthetic dataset Sn to the corresponding client Cn;
for each communication round t = 1, 2, · · · ,T do

Client Update
for each client n ∈ [1, · · · , N ] do

Momentum update Wt
n if t > 1;

for each local epoch e ∈ [1, Ec] do
Update Wt

n with Eq. (2);
end
Calculate quality scores αt

n using Wt
n for Sn;

end
Upload {(Wt

1,α
t
1), · · · , (Wt

N ,αt
N )} to the server;

Server Update
Ŵt

1 = Wt
1, · · · ,Ŵt

N = Wt
N ;

for each server epoch e ∈ [1, Es] do
Initialize the total loss Gt = 0;
for each domain n ∈ [1, · · · , N ] do

// Quality-aware In-domain Mutual Learning
Obtain domain-specific logits ϕi,t

n for each synthetic data sin ∈ Sn using Eq. (5);
Obtain predicted propobalities θi,t

n for each synthetic data sin ∈ Sn using the upload client model Ŵt
n;

Calculate J t
n using θi,t

n and ϕi,t
n using Eq. (7) for each data;

// Attention-regularized Cross-domain Learning
Caluate the aggregated logits ηi,t

n using Eq. (9) each synthetic data sin ∈ Sn;
Obtain the attention-based regularize Ri,t

n using Eq. (11) each synthetic data sin ∈ Sn;
Obtain the loss of a specific domain Gt

n;
Gt+ = Gt

n;

end
Optimize Gt using Eq. (12);

end
Distribute the updated local models Wt = {Ŵt

1, · · · ,Ŵt
N} to the corresponding local clients;

end
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