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ABSTRACT

Text-to-3D shape generation has shown great promise in generating novel 3D con-
tent based on given text prompts. However, existing generative methods mostly
focus on geometric or visual plausibility while ignoring functionality for the gen-
erated 3D shapes. This greatly hinders the practicality of generated 3D shapes in
real-world applications. In this work, we propose Fun3D, a physics compliance
functional text-to-3D shape generation method. By analyzing the solid mechan-
ics of generated 3D shapes, we reveal that the 3D shapes generated by existing
text-to-3D generation methods are impractical for real-world applications as the
generated 3D shapes do not conform to the laws of physics. To this end, we lever-
age 3D diffusion models to provide 3D shape priors and design a data-driven dif-
ferentiable physics layer to optimize 3D shape priors with solid mechanics. This
allows us to optimize geometry efficiently and learn physics information about 3D
shapes at the same time. Experimental results demonstrate that our method can
consider both geometric plausibility and functional requirement, further bridging
3D virtual modeling and physical worlds.

1 INTRODUCTION

Text-to-3D shape generation can synthesize novel 3D content based on text prompts. It is critical for
a variety of applications, including personalized customization, film-making, robotics simulation,
gaming, and so on. Recently, text-to-3D shape generation Poole et al. (2022); Lin et al. (2023);
Tang et al. (2023) have achieved promising results with the development of generative models (e.g.,
generative adversarial networks Goodfellow et al. (2020) , diffusion models Ho et al. (2020); Rom-
bach et al. (2022)) and 3D representations (e.g., DeepSDF Park et al. (2019) and neural radiance
fields Mildenhall et al. (2021)). Existing text-to-3D generation methods mostly focus on the visual
realism of generated 3D shapes.

The remarkable performance of text-to-3D shape generation has not only led to significant advance-
ments in the computer vision domain but has also generated substantial interest in real-world appli-
cations, such as the engineering design Guo et al. (2023); Rios et al. (2023). In contrast to computer
vision, where the primary focus is on the visual aspects of 3D objects, real-world design prob-
lems demand additional considerations for physical functionality in real-world environments. For
instance, in the design of mechanical components, it is crucial to incorporate features such as cham-
fered corners to mitigate stress concentration and avoid vertical transitions to enhance component
longevity Sackfield et al. (2013). These requirements necessitate the integration of physical princi-
ples with visual aesthetics to ensure that the generated 3D objects are both practical and functional
in real-world applications. However, most current methods fail to incorporate physical information,
leading to 3D objects that are unfunctional for real-world environments. More seriously, due to
physical deficiencies, the generative model may even generate ill-defined or unrealistic 3D-shapes,
further obstructing the generative capability.

Real-world functionality requirements such as engineering designs commonly account for the in-
teraction between 3D geometry and the physical environment, with physical information being key
to describing this interaction. Given the importance of physics, this work emphasizes incorporating
physical information into the generative process. Specifically, we treat the object described by the
3D geometry as a solid and incorporate basic solid mechanics properties into our analysis. Thus,
we conform the 3D geometry to linear elasticity Bertram & Glüge (2015) behavior. In Figure 1,
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(a) Diffusion-SDF (b) Ours

Geometry Physics analyzed by FEM Geometry Physics Physics analyzed by FEM

Figure 1: Motivation. By applying distributed force on the object top, we analyze the solid me-
chanics of 3D shapes generated by text-to-3D generation methods by FEM. For physics, the lighter
the color values, the higher the stress levels. We observe that the generated 3D shape by Diffusion-
SDF Li et al. (2023) will experience notably higher stress in some regions, demonstrating that the
generated geometry is fragile. In contrast, the stress distribution of our generated 3D shape is more
uniform as the generated geometry conforms to the physical laws. Moreover, our learned physics
information is comparable to the physics obtained by FEM.

we analyze the solid mechanics of a 3D shape generated by Diffusion-SDF using the conventional
Finite Element Method (FEM) Zienkiewicz & Taylor (2000). By applying distributed force on the
tabletop, we can observe that stress (quantified by the von-Mises stress) spreads across the entire ge-
ometry, with certain regions experiencing notably higher stress levels than others. Typically, these
concentrated high-stress regions are potential areas of failure due to external forces. Therefore,
minimizing the maximum stress and uniformly distributing the stress throughout the geometry can
reduce susceptibility to failure, thus improving the functionality of the generated object. This paper
aims to achieve geometry generation and optimization, considering not only computer vision but
also physical functionality.

In this paper, we propose Fun3D, a physics compliance text-to-3D shape generation method to
achieve the functional generation. Specifically, our method contains two stages. In the first stage,
we initialize a 3D shape based on 3D diffusion models and convert it into implicit geometry rep-
resentations, Signed Distance Function (SDF) Park et al. (2019). This allows our approach to be
flexibly combined with existing generative methods. In the second stage, we design a data-driven
differentiable physics layer to enable geometry and physics optimization at the same time. Our dif-
ferentiable physics layer is parameterized by neural networks and used to learn the solid mechanics
of generated 3D shapes on demand when optimizing geometries. To guarantee the precision of the
feedback physics information, we introduce a physics prior embedding which is achieved by lever-
aging the FEM results computed for the initial generated 3D shape to initialize the differentiable
physics layer. We introduce a relaxed geometry loss and a series of physics losses during training to
guide the optimization. Moreover, we design an alternating training strategy to learn geometry and
physics information collaboratively. In this way, our method can simultaneously optimize geometry
and learn the physics of generated 3D shapes, considering both the geometric plausibility and the
functionality requirement, i.e., “What you get is what you text, and what you get is immediately
functional”.

Overall, our contributions are summarized as follows:

• We propose Fun3D, i.e., a physics compliance text-to-3D functional shape generation method, to
incorporate the physical laws into generated 3D shapes. This approach bridges the gap between
3D virtual modeling and the physical world, ensuring that the generated shapes are both visually
appealing and physically functional.

• We design a data-driven differentiable physical layer to learn physics cues during training effec-
tively. Moreover, an alternating training strategy is introduced to stabilize the learning of physics.
Thus, our method can collaboratively optimize geometry and physics flexibly and reliably.

• Experiments demonstrate that our method can improve geometric or visual preferences without
requiring extra training data and manual interaction and endow generated 3D shapes with physical
perception capabilities.

2 RELATED WORK

Text-to-3D Shape Generation Recently, text-to-3D shape generation has achieved significant suc-
cess. On the one hand, some generation methods train their models on text-3D pairs and can directly
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generate 3D shapes from texts without requiring any optimization at inference Sanghi et al. (2022);
Mittal et al. (2022); Li et al. (2023); Nichol et al. (2022); Jun & Nichol (2023). CLIP-forge Sanghi
et al. (2022) uses renderings of shapes with pre-trained image-text joint embedding to learn shapes
conditioned on texts. AutoSDF Mittal et al. (2022) explores an auto-regressive prior for 3D shape
generation based on a discretized SDF autoencoder. Recent works employ diffusion models to learn
a probabilistic mapping from the text to 3D shapes, such as Diffusion-SDF Li et al. (2023), Point-
E Nichol et al. (2022) and Shape-E Jun & Nichol (2023). On the other hand, some methods lift
2D diffusion models for text-to-3D generation Poole et al. (2022); Lin et al. (2023); Tang et al.
(2023); Wang et al. (2024). These methods, such as DreamFusion Poole et al. (2022) and Dream-
Gaussian Tang et al. (2023), leverage pretrained text-to-image diffusion models as the guidance to
optimize 3D representations, including neural radiance fields (NeRF) Mildenhall et al. (2021); Bar-
ron et al. (2021); Müller et al. (2022); Fu et al. (2022) and Gaussian Splatting Tang et al. (2023).
Therefore, these methods do not require any 3D data. However, whether these generation methods
train their models on 3D data or text-to-image priors, there is no guarantee that they can perceive
physics information from large amounts of data. This work shows that our method can learn physics
properties for the generated 3D shapes during training.

Physics-aware 3D Generation There exist several physics-aware 3D generation meth-
ods Mezghanni et al. (2021; 2022); Liu et al. (2023b); Wang & He (2019); Xie et al. (2024); Zhong
et al. (2024); Guo et al. (2024); Chen et al. (2024). These methods utilize either offline simulations
or online simulations to ensure the physical validity of generated shapes. Mezghanni et al. (2021)
pre-trains a surrogate network using offline simulations to predict stability to inform the generative
learning. Mezghanni et al. (2022); Liu et al. (2023b) design online simulation layers to provide
physical guidance for the generative learning. All these methods do not need to learn physics feed-
back during shape learning. Unlike them, our method collaboratively learns geometry and physics
during training.

Physics-Informed Machine Learning The simulation and modeling of physical systems have
long played a crucial role in various scientific and engineering domains Heermann & Heermann
(1990). Traditionally, the FEM has been instrumental in these tasks. However, recent advancements
in deep neural networks have prompted researchers to explore novel applications in these domains
Raissi (2018). Among these methods, PINNs have garnered significant attention Raissi et al. (2019).
PINNs stand out due to their ability to integrate governing equations of mechanics, often expressed
through PDEs, into the learning objectives of neural networks. This integration ensures the network
outputs align with the fundamental governing physics. Consequently, there has been a proliferation
of studies on PINNs in recent years Deng et al. (2023); Chiu et al. (2022); Mao et al. (2020); Wang
et al. (2023). While several methods have been proposed, the majority of research on PINNs primar-
ily focuses on simulating physical systems. There is a limited number of discussions on optimization
based on PINNs, such as physics-informed inverse design Lu et al. (2021), PDE constrained opti-
mization Hao et al. (2022), and PINN-assisted topology optimization Jeong et al. (2023); Yin et al.
(2023). However, most of these works concentrate on optimizing simple functions or 2D geometries.
None of them address the optimization of 3D geometries.

3 METHOD

Given a text describing our target object, Fun3D aims to generate a 3D shape that simultaneously
satisfies geometric plausibility and physical functionality. This section first gives an overview of
the whole framework of Fun3D in Sec. 3.1. Then, we describe the geometry representations and
initialization in Sec. 3.2. We elaborate on our physics representations and governing equations used
to model the physical laws in Sec. 3.3. In Sec. 3.4, we detail our physics prior embedding and
training process.

3.1 OVERVIEW

Figure 2 depicts the overall framework of our method. It is a two-stage pipeline, including initializa-
tion with diffusion-based methods and optimization with our designed differentiable physics layer.
In the initialization stage, we generate an initial 3D shape by leveraging diffusion-based text-to-3D
shape generation methods and convert it into a neural implicit representation, i.e., SDF, which is
parameterized by neural networks. In the optimization stage, we design a data-driven differentiable
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“I want a table that can bear 10 kg.”
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Figure 2: Overall framework of our method. Our method consists of two stages, initialization and
optimization. We employ a 3D diffusion model to generate an initial mesh in the initialization stage.
Then, the mesh is used to initialize the geometry network. Physics embedding is first computed
to initialize the physics network in the optimization stage. Then, we sample 3D points to compute
their geometry (SDF) and physics (displacement, strain, stress) properties. In this way, a total loss
composed of geometry constraint loss, design loss, volume regularization loss, and physics loss is
calculated to optimize the geometry and physics networks simultaneously.

physics layer to represent physics by neural networks implicitly. Then, the implicit physics repre-
sentations are initialized by the FEM results computed for the initial 3D shape and our designed
physics losses. On this basis, we further introduce relaxed geometry losses and an alternating train-
ing strategy to optimize the 3D geometry and its corresponding physics information collaboratively.

3.2 GEOMETRY REPRESENTATIONS AND INITIALIZATION

Geometry Representations. Our method consists of two key representations, geometry and
physics. In order to allow our geometry to support physics perception, the geometry representa-
tion should have the following properties.

• Differentiability of geometry: The geometry representation should be differentiable to allow for
end-to-end back-propagation during training.

• Scalability of geometry: The geometry representation should be scalable to allow for fine-grained
sampling in the entire 3D space.

• Discriminability of interior and exterior: For physics, the solid mechanics will work on geometry
surfaces and interior. Therefore, the geometry representation should make it easy to distinguish
between interior and exterior.

To this end, we employ an implicit SDF Park et al. (2019) encoded by neural networks to represent
our geometry. It is naturally differentiable and can be evaluated at different resolutions. For any 3D
point x, its SDF value f̂S(x) represents the signed distance to the surfaces. That is, if the output SDF
is a negative value, the corresponding point will be outside the object; otherwise, the corresponding
point will be inside. Therefore, it is easy for point x to distinguish between interior and exterior with
its SDF sign.

As physics calculations are contingent upon geometry, it’s imperative to find a representation
that the physics network can easily understand. Inspired by topology optimization Bendsoe &
Sigmund (2013), we opt to convert the SDF to the density field function. This is achieved as
ρ̂(x) = Sigmoid( f̂S(x)

τ ), where τ is the temperature hyper-parameter. Different from the SDF
f̂S(x), we follow the same assumption with “Solid Isotropic Material with Penalisation” Bendsøe
(1989); Bendsøe & Sigmund (1999), i.e., the density field function ρ̂(x) will directly influence the
physical properties of the material in the entire 3D space, such as Young’s module and Possion’s
ratio Zienkiewicz & Taylor (2000). This definition allows incorporating the geometry information
into the physics layer.
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Geometry Initialization. To initialize our geometry representations, we use a 3D diffusion model
to generate an initial 3D shape M based on the text prompts T . In general, 3D diffusion models
will output meshes to represent 3D shapes because mesh representations provide a clear topological
structure, making them convenient for operations and analysis. To allow our method for the subse-
quent optimization with SDF, we convert the meshM to an initial SDF finit by training a geometry
network Gθ parameterized by θ. This geometry network transfers the shape prior information from
3D diffusion models, thus we can focus on optimizing this geometry network in the next stage.

3.3 PHYSICS REPRESENTATIONS AND GOVERNING EQUATIONS

Physics Quantities. To describe the solid mechanics of geometry, we consider three fundamental
physical quantities within the context of physics Bertram & Glüge (2015).

• Displacement: Representing the shift of any point within a geometric structure, displacement is
characterized by a 3D vector u(x) = (u1(x), u2(x), u3(x)).

• Strain: Strain serves as a measure of deformation, depicting the relative displacement between
points within a geometric body. Typically, strain at a point is denoted by a second-order tensor
ϵ(x) = {(ϵij(x))|i, j = 1, 2, 3}.

• Stress: Stress encapsulates the internal forces exerted by neighboring points within a continuous
geometric entity. The Cauchy stress tensor, often employed to describe stress, is denoted as
σ(x) = {(σij(x))|i, j = 1, 2, 3}.

Moreover, it is important to acknowledge that the applicability of physical principles is often contin-
gent upon specific external environmental factors, typically referred to as boundary conditions. In
this study, the boundary conditions for a given geometry are defined based on typical usage scenar-
ios associated with the object. For example, in the case of a table, an external force may be applied
to its top surface in alignment with practical functional requirements.

Governing Equations. Governing equations serve as a foundational set of equations, often com-
prising ordinary or partial differential equations, to articulate the behavior of a physical system. As
mentioned in Sec. 1, in this work, our focus lies primarily on the classical linear elastic system,
which aptly characterizes elastic bodies under conditions of minimal deformation. The following
equations delineate this system:

∇ · σ + F = 0, (1a)

ϵ =
1

2
[∇u + (∇u)⊤], (1b)

σ = C : ϵ. (1c)

Here, F denotes body force per unit mass, “:” is the double dot product, and C is the fourth-order
stiffness tensor. Note that, in this paper, we assume that a shape is made by the isotropic material.
At this time, all elements in C are decided by only two parameters, Young’s module and Poisson’s
ratio. Typically, these two parameters are determined by the material properties of the geometric
body under consideration. The details can be found in Zienkiewicz & Taylor (2000). For the sake of
simplicity and generality within this study, we set these parameters as 1 and 0.3, respectively. The
ensuing boundary conditions supplement these governing equations:

u = ū, x ∈ Γu; σ · n = F̄, x ∈ Γf . (2)

Here, ū and F̄ represent the already known displacement and force, at the corresponding boundaries
Γu and Γt, while n denotes the unit outward normal vector on the relevant boundaries Γf .

Physics Representations based on Neural Networks. Similar to PINNs, in our physics layer, a
neural network Uϕ parameterized by ϕ is used to predict the displacement û(x) at point x within
the geometry. Subsequently, utilizing automatic differentiation based on Equation 1c, we obtain the
predicted strain tensor ϵ̂(x). According to Equation 1a, we compute the predicted Cauchy stress
tensor σ̂(x).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.4 PHYSICS PRIOR EMBEDDING AND TRAINING

Physics Prior Embedding. To enhance physics compliance guidance in geometry optimization, a
high-precision simulator capable of providing accurate physical insights is essential. FEM stands
out as a classical and reliable approach, renowned for its accuracy in capturing physical phenom-
ena, particularly in simple systems such as linear elastic setups. However, FEM-based simulators
often lack differentiability, which presents challenges when integrating them into online geometry
optimization workflows. Physics-informed machine learning has recently emerged as a promising
alternative to traditional physical simulations. The differentiability of neural network architectures
enables seamless integration into online geometry optimization processes. Despite this advantage,
physics-informed machine learning is still evolving, and current implementations face difficulties in
achieving highly precise simulations for complex 3D geometries. To address this issue, we introduce
a technique called physics prior embedding. This approach leverages the inherent differentiability
of neural networks while enhancing the precision of physics predictions by incorporating FEM data
into the training process of the physics-informed layers. By combining the differentiability of neural
networks with the high-precision physical information provided by FEM, this technique facilitates
effective geometric optimization, ensuring accurate physics guidance throughout the optimization
process.

Physics Driven Pretraining. During the pretraining process, we keep the initial geometry un-
changed and focus mainly on obtaining its precise physical information by utilizing a neural net-
work. The whole process of the physics driven pretraining contains the following steps:

• Data Generation: We assume that a regular geometric space Ω+ (i.e., a cube) can adequately en-
compass the original geometry Ω. Consequently, we sample a set of points DΩ+ = {(x(l))}NΩ+

l=1
within Ω+ to evaluate whether the predictions provided by the physics layer satisfies the gov-
erning equations. Additionally, we require two other sets of sample points, denoted as DΓu =

{(x(l)
Γu

)}NΓu

l=1 and DΓ+
f

= {(x(l)
Γf
)}

N
Γ
+
f

l=1 . These sets contain sample points on the traction and

traction-free boundaries of Ω+, respectively. Furthermore, we simulate the physics for the ini-
tial geometry using FEM, resulting in a precise-physics dataset Dfem = {xfem,ufem,σfem} =
{(x(l)

fem,u(l)
fem,σ

(l)
fem)}Nfem

l=1 . This dataset serves to enhance the pretraining of the physics layer
and provide better guidance for the optimization process.

• Geometry Incorporation: We integrate geometry information into the physics layer inspired by
topology optimization techniques Yin et al. (2023). Specifically, it is achieved as follows:

σ̂ = ρ̂C : ϵ, (3)

and the equilibrium equation 1a is modified as:

∇ · σ̂ + ρ̂F = 0. (4)

Thus, the predicted Cauchy stress tensor σ̂ can also be provided by combining the predictions
from both the geometry network and the physics layer.

• Pretraining: To ensure that the physics layer provides highly accurate predictions for the physics,
it must satisfy both the governing equations and the simulation results obtained from FEM. There-
fore, the loss function for the pretraining process is defined as follows:

Lpl = wpdeLpde + wbcLbc+ + wfemLfem, (5)

Lpde = ||∇ · σ̂ + ρ̂F||2Ω+ , Lbc = ||û− ū||2Γu
+ ||σ̂ · n− F̄||2

Γ+
f

,

Lfem = ||ûfem − ufem||2 + ||σ̂fem · n− σfem||2,
(6)

where Γ+
f contains all of the sample points on the traction force boundaries of Ω and the traction-

free boundaries of Ω+, and ûfem and σ̂fem are predictions provided by the physics layer for the
sample points inDfem. In terms of the above loss functions, Lpde is estimated based onDΩ+ , Lbc

is estimated based onDΓu andDΓ+
f

, and Lfem is calculated based onDfem. These loss functions
aim to make the predictions of the physics layer satisfy the PDE, the boundary conditions, and
the precise physics data, respectively.
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Physics Driven Co-training. We introduce a co-training framework for iterative geometry re-
finement to optimize the geometry while incorporating physical information. During this process,
we aim to enhance the adherence of the geometry to objective physical laws while avoiding drastic
changes that deviate from the intended concept and maintaining aesthetic qualities. Therefore, we
introduce the following loss functions in our co-training process:

• Design Loss: Unlike conventional physics-informed machine learning, our objective extends be-
yond accurately computing the physics fields; we aim to achieve optimal geometry. Hence, we
need to devise an indicator to assess the quality of a given geometry. The indicator we consider
is based on achieving uniform stress distribution throughout the geometry, thereby minimizing
stress concentration. Note that, though it is impossible to make the stress absolutely distributed in
the whole geometry, such a way is still able to avoid the stress concentration as much as possible.
Accordingly, the design loss is defined as Ldesign = maxx∈Ω+{ρ̂σ̂vm} −

∫
x∈Ω+ ρ̂σ̂vmdx∫

x∈Ω+ ρ̂dx , where

σ̂vm =

√
3
2

(
σ̂ − tr(σ̂)

3 I
)
:
(
σ̂ − tr(σ̂)

3 I
)

is the approximated von-Mises stress, I is an identity

matrix, and Ldesign can be estimated based on DΩ+ .
• Geometry Constraint Loss: The geometry constraint loss is designed to avoid excessive de-

formation of geometry. This is achieved by utilizing a dataset Dgc = {(x(i)
gc , ρ

(i)
gc )}Ngc

i=1 sam-
pled outside the envelope of the geometry. We assume that, for these points, the correspond-
ing density values are kept unchanged. Thus, the geometry constraint loss can be calculated as

Lgc =
1

Ngc

∑Ngc

i=1

(
ρ̂(x(i)gc )− ρ

(i)
gc

)2
.

• Volume Regularization Loss: Similar to the geometry constraint loss, the volume regularization
loss is to constrain the volume regularization of the optimized object to the target value. Its
meaning is to ensure that the overall mass of the geometry is equal to or does not exceed a preset
value. In this document, the volume regularization loss is defined as Lvr = max{

∫
x∈Ω+ ρ̂dx −

Mv, 0}, where Mv is the maximum total volume. This can be estimated based on DΩ+ .
• Eikonal Loss: To ensure the smoothness of the geometric surface, we also introduced the eikonal

regularization, which can be described as Leikonal = (||∇f̂S || − 1)2.

In addition to the aforementioned loss functions, Lpde, Lbc, and Lfem are also incorporated into
the co-training process. It’s important to note that the dataset provided by FEM corresponds to the
initial geometry. The associated physics values will also change as the geometry evolves during
the co-training process. However, we assume that the changes in geometry are not substantial (we
also employ Lgc and Lvr to achieve this), and the FEM data for the initial geometry can still offer
guidance for optimization. Therefore, Lfem remains employed throughout the co-training process.

The pseudo-code of the co-training process is shown in Algorithm 1 of the Appendix. In this
process, we alternately optimize two integrated loss functions Lpl and Lcotrain. Specifically, Lpl is
the same as Equation 5, and Lcotrain is calculated as follows:

Lcotrain = wdesignLdesign + wgcLgc + wvrLvr + weikonalLeikonal, (7)

where wdesign, wgc, wvr, and weikonal are the weights for different loss functions. Note that our fo-
cus lies on the convergence of Lpl to ensure that the PINN can provide sufficiently accurate physical
predictions, thereby ensuring that the physics can offer correct guidance for geometry optimization.
Consequently, for every t epoch, we optimize Lcotrain for one step. Further details are outlined in
Algorithm 1 presented in Appendix, and α and β are the learning rates in the optimization process.

3.5 DISCUSSIONS: DIFFERENCE FROM THE TRADITIONAL 3D GENERATION

In general, to verify the functionality of a generated 3D shape, its interaction with external environ-
ments must be considered. Physics dictates how a 3D object behaves in response to its surroundings.
This is an aspect often overlooked in traditional 3D generation methods. Traditional 3D shape gen-
eration typically creates shapes based on training data, without accounting for the specific scenarios
where the object will be applied or how it will interact with the physical environment. In contrast,
Fun3D not only focuses on creating the object but also considers how it will interact with its physical
surroundings and perform its intended function. This includes understanding how external forces
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Figure 3: Qualitative geometry comparison.

act on the object, the resulting internal changes, and their overall impact on its performance. A
noteworthy point in Fun3D is that the interaction between the object and its external environment
must be well-defined. For example, objects like tables and chairs have straightforward interactions,
with forces typically acting directly on their surfaces. In the following experimental discussion,
we primarily verify the effectiveness of the proposed method on such 3D objects with clearly de-
fined interactions. In contrast, for objects like animals, their interaction with the physical world is
less explicit, making it harder to define how forces act on them. However, this does not imply that
the proposed method cannot be applied to objects with less clear interactions. By operating under
assumed interactive physical conditions rather than fully relying on the actual environment, the pro-
posed method can still refine the generated 3D shapes. This capability is further validated in Sec. 4.5
using various animal objects.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Evaluation Metrics. Our work points out that generated 3D shapes need to consider both geometric
plausibility and functionality requirement. For the geometric plausibility, we use the Aesthetic Pre-
dictor LAION-AI (2022) to assess the aesthetic quality of 3D models following Huang et al. (2024).
For the functionality requirement evaluation, we compute the maximal von-Mises stress of different
3D models to evaluate the durability of 3D models.

Comparison Methods. We compare our method with different text-to-3D generation methods, in-
cluding Diffusion-SDF Li et al. (2023), Shap-E Jun & Nichol (2023) and Zero123 Liu et al. (2023a).
Diffusion-SDF is trained on ShapeNet dataset Chang et al. (2015), Shap-E is trained on their own
collected high-quality 3D assets, and Zero123 is trained on Objaverse dataset Deitke et al. (2023).

4.2 GEOMETRY COMPARISONS

We show the geometry comparison results with Diffusion-SDF and Shap-E in Figure 3. By giving
a text description, Diffusion-SDF, Shap-E and our method will generate the corresponding object.
We observe that Diffusion-SDF, Shap-E and our method can generate visually plausible 3D shapes.
Moreover, our method can generate more complete and sturdy objects. For example, when gen-
erating a “two layered table”, Diffusion-SDF generates a table with some holes. By incorporating
physics knowledge into our method, our method needs to consider a more uniform stress distribu-
tion. Therefore, our method can generate a more complete 3D shape. When generating an object
containing some complex connections, Diffusion-SDF and Shap-E produce fragile connections, like
the connections in the red boxes of the “bed”. In addition, the physics information helps our method
generate more symmetric 3D shapes, like the “chair”. Table 1 further reports the quantitative aes-
thetic evaluation of 3D models generated by our method and comparison methods. It shows that our
method achieves better aesthetic scores, indicating that our generated 3D models are more visually
appealing. Therefore, by incorporating precise physics into 3D generative methods, our method can
generate higher-quality geometries, considering both visual realism and practical needs.
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Table 1: The aesthetic quality (higher is better) and maximal von-Mises stress (lower is better) in
the shapes generated by the Diffusion-SDF/Shap-E and our method.

Aesthetic ↑ Maximal von-Mises stress ↓
Diffusion-SDF/Shap-E Ours Diffusion-SDF/Shap-E Ours

Bed 4.0387 4.2990 25.0583 5.9935
Chair 2.8905 3.1423 15.6467 5.8478
Monitor 3.1612 3.3115 215.9561 6.3204
Office Chair 3.7931 4.2783 40.5651 27.7762
Tear Drop Table 3.0500 3.6367 16.7696 8.0138
Two Layer Table 3.7178 3.7652 10.8793 2.7844

Figure 4: The physics predictions for the tear drop table (upper) and the two-layered table (lower)
provided by the FEM (left), the physical layer without physics prior embedding, and the physical
layer with physics prior embedding.

4.3 ANALYSIS OF PHYSICS CONFORMITY

To comprehensively evaluate the generated shapes from a physics perspective, we perform FEM
simulations on shapes generated by both the comparison methods and our proposed approach. We
obtain a stress field for each shape, from which we calculate the maximal von-Mises stress and
record the results in Table 1. Analysis of the data in Table 1 reveals a consistent trend across all six
shapes: the maximal von-Mises stress for shapes generated by our method is consistently lower than
that of the shapes generated by the comparison methods. This indicates that, under identical loading
conditions, our method yields shapes with reduced occurrences of stress concentration at specific
points, mitigating the risk of localized high-stress levels. Consequently, the shapes generated by
our method demonstrate enhanced load-bearing capacity and are less susceptible to damage. These
findings underscore the efficacy of our proposed approach. Furthermore, in Figure 4 we present the
predicted von-Mises stress provided by our physics layer for tear drop table and two-layered table,
alongside the corresponding results obtained from FEM simulations. A comparison between the two
reveals that, although the predicted von-Mises stress values are not identical to those obtained from
FEM, they still exhibit stress distributions consistent with physical laws. In contrast, the physics
layer fails to provide accurate and reasonable physical predictions without physics prior embedding.

4.4 ABLATION STUDY

Here, we conduct additional experiments on the “curving chair” and “oval artistic table” to study
the effect of different designs on our proposed method. The results are reported in Figure 5. We
observe that the initial geometries generated by Diffusion-SDF Li et al. (2023) contain holes or weak
joints, as shown in Figure 5(a). In contrast, by incorporating physics into our method, our generated
shapes can significantly alleviate these defects. As for our different designs, without geometry con-
straints, the geometries cannot maintain the shape information. Without physics loss, the geometries
become rough and uneven. Without FEM embedding, some details cannot be preserved. Without
design loss, the geometries become fatter. These comparison experiments effectively demonstrate
that our different designs facilitate our method to generate high-quality 3D models. Additionally,
we quantitatively evaluate the results of the ablation study and assess the average aesthetic values
and mean maximal von-Mises stress values in Table 2. In terms of aesthetic value, our method
produces superior results, demonstrating its effectiveness in enhancing the visual appeal of the gen-
erated 3D shapes. Moreover, the full version of Fun3D improves the maximal von-Mises stress
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Figure 5: Additional ablation study results demonstrated that our proposed method eliminates the
geometry defects introduced from Diffusion-SDF generation, strengthening the weak joints to make
the optimized geometry more realistic and sturdy. The combined loss components work in harmony
to ensure the shape integrity and sturdiness of the geometry. Hence, removing any lost component
will result in degrading 3D shapes.

Table 2: Ablation study.
Initial w/o geometry w/o physics w/o FEM w/o design Ours (Full model)

Aesthetic ↑ 3.7597 3.08775 3.2935 3.69965 3.48905 3.92305
Maximal von-Mises stress ↓ 26.22645 - 4.13275 4.89045 3.1852 7.3265
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Figure 6: Qualitative comparison with Zero123 on animals.

compared to the initial shape. It is important to emphasize that maximal von-Mises stress assesses a
3D object’s structural integrity under external forces from an engineering perspective, without con-
sidering artistic aspects. Consequently, while an algorithm without geometry loss, physics loss, and
FEM embedding may yield better performance in terms of maximal von-Mises stress, the absence
of these components can lead to a loss of aesthetic quality in the optimized shape.

4.5 GENERALIZATION AND DIVERSITY

In Sec. 4.2, we validate our method and comparison methods, Diffusion-SDF and Shap-E, on fur-
niture, e.g., chair and table, which usually needs to consider both aesthetic and functionality in
practice. To further investigate the efficacy of our method on generalization and diversity, we com-
pare our method with Zero123 on animal objects. We relax the practical functionality requirement
by simply applying force to the animal backs. In fact, animals do not always carry heavy objects on
their backs. The results in Figure 6 show that our method can strengthen animal limbs, thus high-
lighting the functionality of our method in practice. This further demonstrates that our method can
generalize to other text-to-3D generation methods and produce diverse 3D shapes, such as animals.

5 CONCLUSION

In this paper, we have proposed a physics compliance text-to-3D functional shape generation method
to endow generated 3D shapes with physics perception capability. Our work reveals that the 3D
shapes generated by existing text-to-3D generative methods do not conform to the laws of physics.
Therefore, current generated 3D shapes are impractical in many real-world applications. To address
this, we design a data-driven physics layer to learn physics information on demand when optimizing
geometries. This guides our generated 3D shapes to satisfy both visual preferences and physical
functionality, opening up a new avenue for text-to-3D shape generation.

10
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A APPENDIX

In this Appendix, we first provide the background knowledge of linear elastic solid mechanics in
A.1. Then, the pseudo code is provided in A.2. In A.3, we deep dive into the mechanism of Fun3D,
revealing its effectiveness in the loss function. A.4 details the implementation of Fun3D and A.5
studies the effectiveness of physical loss during the co-training progress. Then, in A.6, we present
additional experimental analysis to verify generalization of our method. Next, wen report the com-
putational time of our method in A.7. Finally, we discuss our method’s limitation and future work
in A.8.

A.1 LINEAR ELASTIC SOLID MECHANICS

Though we introduced the governing functions of the linear elastic solid mechanics in Section 3.3,
they may not be easy for the audience to understand without mechanical backgrounds. Henceforth,
this section provides essential background knowledge of linear elastic solid mechanics.

Based on the assumption of isotropic homogenous material, both the Cauchy stress tensor and the
strain tensor are symmetric, i.e., ϵ12 = ϵ21, ϵ13 = ϵ31, ϵ23 = ϵ32, σ12 = σ21, σ13 = σ31, and
σ23 = σ32. In this way, the governing equations can be expanded as follows, which are called the
strain-displacement equations, the constitutive equations, and the equilibrium equations:

• Strain-displacement equations: This set of equations establishes the relationship between
the displacement field and the strain field, which are described as:

ϵ11(x) =
∂u1(x)
∂x1

, (8)

ϵ22(x) =
∂u2(x)
∂x2

, (9)

ϵ33(x) =
∂u3(x)
∂x3

, (10)

ϵ12(x) =
∂u1(x)
∂x2

+
∂u2(x)
∂x1

, (11)

ϵ13(x) =
∂u1(x)
∂x3

+
∂u3(x)
∂x1

, (12)

ϵ23(x) =
∂u2(x)
∂x3

+
∂u3(x)
∂x2

, (13)

• Constitutive equations: This set of equations mainly establishes the relationship between
the strain field and the stress field:

σ11(x) = (λ+ 2µ) · ϵ11(x) + λ · ϵ22(x) + λ · ϵ33(x), (14)

σ22(x) = (λ+ 2µ) · ϵ22(x) + λ · ϵ11(x) + λ · ϵ33(x), (15)

σ33(x) = (λ+ 2µ) · ϵ33(x) + λ · ϵ22(x) + λ · ϵ33(x), (16)

σ12(x) = µ · ϵ12(x), (17)

σ13(x) = µ · ϵ13(x), (18)

σ23(x) = µ · ϵ23(x), (19)

where λ = Eν
(1+ν)(1−2ν) and µ = E

2(1+ν) are Lame parameters, and E and ν are Young’s
module and Possion ratio, respectively.
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• Equilibrium equations: This set of equations aims to describe the equilibrium relationship
of forces, i.e.,

∂σ11(x)
∂x1

+
∂σxy(x)
∂x2

+
∂σ13(x)
∂x3

+ F1(x) = 0, (20)

∂σ12(x)
∂x1

+
∂σ22(x)
∂x2

+
∂σ23(x)
∂x3

+ F2(x) = 0, (21)

∂σ13(x)
∂x1

+
∂σ23(x)
∂x2

+
∂σ33(x)
∂x3

+ F3(x) = 0, (22)

where F = (F1(x), F2(x), F3(x)) is the already known force field, e.g., gravitational field.
For simplicy, we assume F = 0 here.

Moreover, the boundary conditions can be described as follows:

• Boundary Conditions: The first is the surface stress boundary condition. It describes that
the force should be at equilibrium at the boundary Γf :

σ11(x) · n1(x) + σ12(x) · n2(x) + σ13(x) · n3(x) = Fn1
(x), (23)

σ12(x) · n1(x) + σ22(x) · n2(x) + σ23(x) · n3(x) = Fn2
(x), (24)

σ13(x) · n1(x) + σ23(x) · n2(x) + σ33(x) · n3(x) = Fn3
(x), (25)

where n = (n1(x), n2(x)n3(x)) is the normal vector of a point x on the boundary Γt,
F̄ = (Fn1

(x), Fn2
(x), Fn3

(x)) is the force at the boundary point x ∈ Γt (decomposed
in the direction of the normal vector). The second one is called displacement boundary
conditions, which means that the displacements of boundary points x ∈ Γu are already
known, i.e.,

u1(x) = ū1(x), (26)

u2(x) = ū2(x), (27)

u3(x) = ū3(x), (28)

where ū = (u1(x), u2(x), u3(x)) is the already known displacement.

A.2 PSEUDO CODE OF THE ALGORITHM

The pseudo code of our method is provided in Algorithm 1.

A.3 THE MECHANISM OF FUN3D

In this section, we delve deeper into the effectiveness of different loss components and provide
further insights into our implementation details. In Section 3.3, we introduced three groups of loss
components: physics loss components (Lpde, Lbc, and Lfem), geometry loss components (Lgc, Lvr,
and Leikonal), and the design loss component Ldesign, which utilizes physical information to guide
geometry optimization. In order to improve the sturdiness of the geometry and maintain its shape, we
proposed the following optimization strategy. Initially, our implementation does not incorporate the
design loss component. Instead, we rely on geometry loss components to facilitate the optimization,
leading to an increase in the geometry volume. As the geometry reaches the target volume Mv , we
limit the growth only to the high-stress regions based on the guidance of physics information. This
is accomplished through a combination of Ldesign and Lvr. Thus, in our implementation, we use
the following simplified version:

Lcombine = δ

(
max{

∑
x∈DΩ+

ρ̂−Mv

|DΩ+ |
, 0}

)
·

(∑
x∈DΩ+

{(σ̂vm,max − σ̂vm)ρ̂}
|DΩ+ |

)
, (29)
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Algorithm 1 Physics Driven Co-training
Input: DΩ+ , DΓu

, DΓ+
f

, Dfem, Dgc, t, and epochmax;
Output: Gθ, Uϕ;

1: epoch = 0;
2: for epoch < epochmax do
3: if epoch%t == 0 then
4: Freeze the parameters of Uϕ;
5: Calculate Lcotrain based on DΩ+ , DΓu , DΓ+

f
, Dfem, and Dgc;

6: θ ← θ − α · ∇θLcotrain;
7: else
8: Freeze the parameters of Gθ;
9: Calculate Lpl by utilizing DΩ+ , DΓu

, DΓ+
f

, and Dfem;
10: ϕ← ϕ− β · ∇ϕLpl;
11: end if
12: end for
13: Output the SDF function.

where δ(·) represents the Dirichlet function, and σ̂vm,max = maxx∈Ω+{σ̂vm} is detached during
the training process. This combination serves a specific purpose: if the geometry surpasses the target
volume, the design loss aids in limiting the growth or even removing the regions characterized by
low von-Mises stress. Such regions are typically non-load-bearing and contribute minimally to the
structure’s functionality. This evolutionary approach offers several advantages. Firstly, it eliminates
geometry defects inherited during the 3D model generation. Secondly, it fosters the development of
a more sturdy geometry by aligning with principles of physics, thus enhancing the overall realism
of the design.

A.4 IMPLEMENTATION DETAILS

Our method is implemented by PyTorch Paszke et al. (2019) on two Teslia V100 GPUs with 32MiB
graphics memory. The 3D diffusion model used in our method to obtain the initial 3D mesh is
Diffusion-SDF Li et al. (2023). This model mainly generates two object types: chair and table. In
addition, we also validate our method using other 3D diffusion model, Shap-E Jun & Nichol (2023)
and Zero123 Liu et al. (2023a).

Our geometry network Gθ is modeled by an 8-layer multi-layer perceptron (MLP) with 256 hidden
units. It is initialized by the geometric initialization Atzmon & Lipman (2020). To transfer the shape
priors from 3D diffusion models to the geometry network, we follow DeepSDF Park et al. (2019)
to train our geometry network. The geometry network is trained for 50 epochs, with each epoch
comprising 200 training steps. A batch size of 16,384 SDF samples is employed, and the learning
rate is set to 5e-4.

Our physics network Uϕ is modeled by a 6-layer MLP with 125 hidden units. To train the physics
networks efficiently and effectively, a dense-sparse strategy is employed to partition computation
regions into “dense” regions where physics precision is crucial, and “sparse” regions where physics
precision can be relaxed (i.e.regions distant from the mesh). The dense-sparse ratio is set at 0.3, with
the dense regions being defined as regions where finit(x) < 0.10. The physics network is trained
for 10,000 epochs with a learning rate 5e-3.

The co-training process spans 1000 epochs, with a learning rate of 1e-5 set for both the physics
network and the geometry network. The weights corresponding to Lpde, Lbc, Lfem, Lcombine, Lgc,
and Leikonal are set to 1, 10, 10, 20, 10, and 10, respectively. The t in Algorithm 1 is set to 10. In
terms of the FEM data, we provide the displacement and stress values for the tetrahedral with 7000
nodes. All these data are obtained using Abaqus Barbero (2023).
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Table 3: Comparison of Fun3D and Fun3D w/o physics update.
Fun3D w/o physics update Fun3D

Chair 1.6456 1.4508
Tear Drop Table 13.5092 8.7364
Two Layer Table 2.5687 1.9049

A.5 ADDITIONAL ABLATION STUDIES

In the previous ablation study, we verified the effectiveness of incorporating physics by comparing
the proposed method with variants that omit physics loss or FEM loss. Here, we extend the com-
parison by introducing a stronger baseline that includes physical priors, focusing specifically on the
effectiveness of the physical loss during the co-training process. The results are presented in Ta-
ble 3. For the enhanced baseline, both FEM data and physics-informed loss were integrated into the
physics driven pretraining process. However, in the physics driven co-training phase, the parameters
of the physics-informed layer were fixed, and only the 3D shape was updated through the geometry
network. We refer to this baseline as ”Fun3D without physics update” and report the mean squared
errors of the predicted stress fields for three optimized 3D shapes (the tear drop table, the two-layer
table, and the chair). The error is calculated by comparing the physics-informed layer’s predictions
with the ground truth provided by the FEM method. The results show that for all three 3D shapes,
the proposed full version Fun3D outperforms the baseline.

A.6 MORE DISCUSSIONS ON GENERALIZABILITY

Shap-E Ours Shap-E Ours

“Bridge” “Cross table”

Figure 7: Our proposed method is not limited to only 3D shapes generated from Diffusion-SDF
model, but also from the Shap-E model presented here.

To investigate the generalization of our method, we employ Shap-E as our 3D generative model to
synthesize initial geometries. As presented in the results in Figure 7, when the generated 3D shapes
have inherent defects, such as uneven surfaces or weak joints, our method can effectively eliminate
these defects, resulting in more realistic 3D shapes.

A.7 DISCUSSIONS ON THE COMPUTATIONAL TIME

Table 4: Time consumption of the proposed method.
Bed Chair Monitor Office Chair Tear Drop Table Two-Layer Table

Times 411.6426 434.2527 436.2826 423.1809 422.5796 413.7805

One may be interested in the computational time required by the proposed method. Therefore, we
discuss the time consumption involved in the shape optimization process in this subsection. On
average, the joint optimization stage takes approximately 423.6 seconds to achieve optimization.
For reference, the time spent on the joint optimization process for six different 3D shapes is listed
in Table 4. In addition to the time required for joint optimization, precise physical data must be
generated to initialize the physical network using the FEM method. Fortunately, for linear elasticity,
FEM solvers are relatively efficient; in our experiments, the Abaqus solver took about 5 seconds to
generate the necessary physical data. However, for more complex physical equations, such as hyper-
elasticity or dynamic physics, the FEM solver would require more time to complete the simulation.
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A.8 LIMITATION AND FUTURE WORK

While our method can generate high-quality 3D shapes with the assistance of precise physics data,
there are still some limitations: 1) Efficiency. We use vanilla MLPs to parameterize our geometry
and physics representations. This compromises the efficiency of our approach. Inspired by Instant-
NGP Müller et al. (2022), we can leverage multi-resolution hash encoding to parameterize these two
representations to improve our efficiency. 2) Precision of Physics. The precision of our physics in-
formation depends in part on the number of sampling points, following the similar reason explained
in Chiu et al. (2022). In the future, we may increase the number of sampling points to boost the
precision of physics information using more efficient geometry and physics representations.
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