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Abstract

Federated learning (FL) allows collaborative machine learning training without
sharing private data. While most FL methods assume identical data domains across
clients, real-world scenarios often involve heterogeneous data domains. Federated
Prototype Learning (FedPL) addresses this issue, using mean feature vectors as
prototypes to enhance model generalization. However, existing FedPL methods
create the same number of prototypes for each client, leading to cross-domain
performance gaps and disparities for clients with varied data distributions. To miti-
gate cross-domain feature representation variance, we introduce FedPLVM, which
establishes variance-aware dual-level prototypes clustering and employs a novel α-
sparsity prototype loss. The dual-level prototypes clustering strategy creates local
clustered prototypes based on private data features, then performs global prototypes
clustering to reduce communication complexity and preserve local data privacy.
The α-sparsity prototype loss aligns samples from underrepresented domains, en-
hancing intra-class similarity and reducing inter-class similarity. Evaluations on
Digit-5, Office-10, and DomainNet datasets demonstrate our method’s superiority
over existing approaches.

1 Introduction

Federated Learning [21] (FL) is a novel distributed learning framework that enables clients to collabo-
ratively train a global model using their respective local datasets, thereby preserving data privacy. FL
offers distinct advantages over traditional distributed learning methodologies by mitigating communi-
cation costs and addressing privacy concerns, which has led to its increased adoption across various
sectors. Despite these benefits, FL comes with its own challenges, especially in terms of data hetero-
geneity [41]. In FL, clients gather private data from unique sources, resulting in non-independent
and identically distributed (non-IID) datasets. Such non-IID distributions can lead clients toward
their local optima, potentially diverging from the global objective. Consequently, this may impede
convergence rates and diminish overall model performance [17].

To address the aforementioned issue of data heterogeneity, numerous FL techniques have been
devised [20, 5, 41, 29, 14, 12]. While these methods have indeed improved convergence, their focus
on non-IID scenarios remains largely restricted. Typically, they assume that the data across clients
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Figure 1: Illustration of federated learning with heterogeneous data domains. The Vanilla
column depicts the local feature distribution of the standard FedPL approach, obtaining average
local and global prototypes directly. Proposed method showcased in the adjacent column yields a
larger inter-class distance and a reduced intra-class distance. Note that without capturing variance
information, even for hard domains, local averaged prototypes for each class can be well distinguished
while the feature vectors are still mixed up. Both methods illustrate noticeable variations in domain
characteristics across datasets, as detailed in Fig. 4.

pertain to a single domain, attributing non-IID distribution to label skew alone. Yet, in more realistic
scenarios, clients gather data according to their unique preferences, making it impractical to assume
identical domain origins for local data. Instead, the data often stems from heterogeneous domains,
resulting in varied feature distributions.

Current approaches [10, 32] to FL in heterogeneous domains aim to develop a global prototype for
each label category. These prototypes are designed to minimize the distance between the individual
training samples and their corresponding category’s global prototype. Typically, a global prototype
is computed as the mean of the local prototypes from each client, whereas a local prototype is
itself the average of the representations of samples within the same category. Several studies have
proposed unique designs to enhance training performance in these settings. For example, one work
[33] enables contrastive learning at the client level by facilitating the exchange of local prototypes,
thus promoting inter-client knowledge transfer. However, this exchange raises privacy concerns
and substantially increases communication overhead. Another study [10] opts for a clustering
approach to identify representative prototypes, thereby preserving domain diversity and preventing
bias towards predominant domains. This technique has proven effective, especially in scenarios with
disproportionate client distribution across domains.

Although these methods improve overall performance across domains, they do not address the unequal
learning challenges that arise from domain diversity. For instance, on the Digits dataset [42], methods
may perform well in domains like MNIST [7] but underperform in more challenging domains such
as SVHN [24]. This discrepancy is evident in representation distributions, as exemplified in Fig. 1,
where ‘easy’ domains show tight clustering of samples within the same category and clear separation
between different categories, facilitating accurate classification. In contrast, ‘hard’ domains display
looser clustering, increasing the likelihood of misclassification, particularly for samples near category
boundaries. Addressing these disparities is crucial for the equitable advancement of FL methodologies
across diverse client domains.

Considering the challenges posed by unequal learning due to domain diversity, we introduce a
novel method, termed FedPLVM (short for Federated Prototype Learning with Variance Mitigation).
FedPLVM devises two main mechanisms. Firstly, we develop a dual-level prototype clustering
mechanism that adeptly captures variance information, a significant improvement over previous
methodologies that rely on averaging local training samples’ representations to derive local prototypes.
Our local-level clustering generates multiple local clustered prototypes within each domain. To
further mitigate increased communication costs and privacy concerns arising from transferring a
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comprehensive set of diverse prototypes for each class from every client, we employ global-level
prototype clustering on the server side. Secondly, by capturing the variance information through
clustered prototypes, we design an innovative α-sparsity prototype loss to enhance the training
process. To prevent the intermingling of feature distributions from ‘hard’ clients, instead of simply
maximizing the feature-level distance between each local instance and the prototypes of other classes,
we refine this distance by elevating it to an α power, with α being a value between 0 and 1. This
modification effectively repels other prototypes, thereby introducing greater sparsity in the inter-class
feature distributions. Moreover, we incorporate an intra-class similarity correction term to lessen the
feature-level distance among intra-class samples, thereby concentrating the α-sparsity prototype loss
on amplifying the feature-level distance across inter-class samples. Collectively, these two strategies
empower FedPLVM to reasonably leverage variance information, thus equilibrating fairness between
‘hard’ and ‘easy’ learning domains and enhancing overall learning performance. Consequently,
FedPLVM emerges as a reliable approach for Federated Learning in contexts characterized by
heterogeneous data domains. Our main contributions are outlined as follows:

• This study delves into FL with heterogeneous data domains, examining why models exhibit
varying performance across different domains. We identify a fundamental limitation in
existing methods: their inability to effectively address the disparate learning challenges
inherent in diverse domains.

• To tackle these uneven learning challenges, we introduce a novel approach, FedPLVM. This
method incorporates a dual-level prototype clustering method, capturing the rich sample
representation variance information while ensuring communication efficiency. Additionally,
we develop a new α-sparsity prototype loss to address learning difficulties more equitably.

• Extensive experiments conducted on the Digit-5 [42], Office-10 [8], and DomainNet [26]
datasets demonstrate the superior performance of our proposed method when compared
with multiple state-of-the-art approaches.

2 Related Work

Federated Learning. FL aims to train a global model through collaboration among multiple clients
while preserving their data privacy. FedAvg [21], the pioneering work in FL, demonstrates the
advantages of this approach in terms of privacy and communication efficiency by aggregating local
model parameters to train a global model. A significant challenge in FL is data heterogeneity,
often manifested as non-IID (independently and identically distributed) data. Subsequent research,
following FedAvg, has primarily focused on addressing data heterogeneity to enhance training
performance in FL environments. Specifically, studies such as [18, 2, 30] have improved performance
by incorporating a global penalty term to mitigate discrepancies. Other works, e.g., [32, 23], have
sought to maximize feature-level agreement between local and global models to further boost
performance. Recent works [10, 32, 19, 40] have explored data heterogeneity arising from client-
specific domain diversity, while overlooking the challenges of unequal learning across different
domains. In this paper, we propose a novel approach using dual-level prototype clustering to capture
essential local variance information. Additionally, we introduce a new α-sparsity loss, specifically
designed to tackle the challenges of learning in diverse domains, thereby facilitating the development
of a more generalizable global model.

Prototype Learning. Prototype learning has been extensively explored in various tasks, such as
transfer learning [27, 13], few-shot learning [31], zero-shot learning [11], and unsupervised learning
[34]. The concept of a prototype in this context refers to the average feature vectors of samples
within the same class. In the FL literature, prototypes serve to abstract knowledge while preserving
privacy. Specifically, approaches like FedProc [23] and FedProto [32] focus on achieving feature-wise
alignment with global prototypes. FedPCL [33] employs prototypes to capture knowledge across
clients, constructing client representations in a prototype-wise contrastive manner using a set of
pre-trained models. FPL [10] highlights the use of cluster-based and unbiased global prototypes to
tackle the challenges in FL where clients possess domain-diverse data. Our study addresses a similar
issue as FPL but with distinct emphases. While FPL concentrates on the disparities in the number of
clients across domains, aiming to mitigate the bias in the overall model caused by domains with more
clients, our work focuses on the intrinsic learning challenges that vary across domains.
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Figure 2: An overview of our proposed FedPLVM framework. Once the sample embedding is
generated by the feature extractor, the client conducts the first-level local clustering, following Eq. 3.
Subsequently, the server gathers all local clustered prototypes and local models (comprising feature
extractors and classifiers), initiates the second-level global clustering based on Eq. 4, and averages the
local models to form a global model. Finally, clients utilize the received global clustered prototypes
to update the local model, employing loss functions Lα from Eq. 5 and LCE from Eq. 9.

Contrastive Learning. Contrastive learning is a promising self-supervised learning technique. The
work by [25] constructs pairs of positives and negatives for each sample and applies the InfoNCE
loss to compare these pairs. Another work by [15] extends contrastive learning from self-supervised
to fully supervised settings, utilizing both label information and contrastive methods. Additionally,
some studies [16, 39] integrate contrastive learning into local training to enhance performance in FL.
Instead of the conventional InfoNCE loss, our approach introduces a new α-sparsity loss, aiming
to further reduce similarity among inter-class sample features while amplifying similarity among
intra-class samples.

3 Preliminary

Regular FL Scenario. Consider the classic FL scenario: there exist K clients and one server, which
aims to assist all clients to train a common machine learning model without sharing their private data,
denoted by Dk = {xi, yi}Nk

i for client k. Formally, the global objective of FL can be formulated as:

min
w

K∑
k=1

Nk

N
Lk(w;Dk), (1)

where Lk is the local loss function for client k, w and N =
∑K

k=1 Nk denote the shareable model
and the total number of samples among all clients respectively.

Domain Shift in FL. In the simplest FL setting, the label and feature distribution are the same
between two clients i and j, formally Pi(y) = Pj(y) and Pi(x|y) = Pj(x|y). Extending such a
scenario to the heterogeneous data setting brings us to the point of domain shift, also denoted as
feature non-IID setting. Domain shift is caused by distinctive feature distributions among clients, that
is Pi(x|y) ̸= Pj(x|y), though their label space is still the same.

Federated Prototype Learning. To handle the FL domain shift problem, previous works [32, 10]
divide the classification network into two parts: feature extractor and classifier. The feature extractor
h : RV → RD maps a sample x ∈ RV into the feature space and generates the corresponding
feature vector z = h(x) ∈ RD. Then the classifier f : RD → RM outputs the M -class prediction
f(z) = f(h(x)) ∈ RM given the feature vector z. The intuition of FedPL is adjusting the feature
extractor to generate a consistent feature distribution among different domains. Similar to the global
shareable model, the straightforward solution computes the average feature vector of all samples
belonging to the same class for further processing, called the prototype. Due to the distributed
property of FL, we cannot collect all samples via the server, which makes the above-mentioned idea
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a two-step procedure:

p̄mk =
1

|Dm
k |

∑
(xi,yi)∈Dm

k

h(xi), ḡm =
1

K

K∑
k=1

p̄mk , ∀k ∈ K,m ∈M, (2)

where K = {1, 2, . . . ,K} is the set of clients,M = {1, 2, . . . ,M} is the set of classes. p̄mk and ḡm

denotes the local prototype of class m on client k and the global prototype of class m, respectively.
Dm

k is the subset that all samples belonging to class m in the local dataset Dk. Upon obtaining the
prototypes, most FedPL works tend to design a loss function that approximates the prototype of one’s
own class while staying away from the prototypes of others.

4 FedPLVM: FedPL with Variance Mitigation

4.1 Dual-Level Prototype Generation

Local Prototype Clustering. To mitigate the impact of domain variance in FedPL, we revise the
two-step averaged prototype generation process to a dual-level clustering algorithm. In Fig. 1, the
pronounced diversity in domain variances among clients becomes evident, intricately linked to
the complexity of their datasets. For instance, comparing the feature distribution between Synth
and MNIST shows a visibly more scattered pattern in Synth due to its higher complexity, whereas
MNIST, being comparatively easier to learn, displays a more structured distribution. It becomes
evident that computing a single local averaged prototype for one class per client is ‘unfair’, given the
differing richness of feature distribution information among clients. Particularly, for ‘hard’ clients
with complex datasets such as SVHN, employing multiple local prototypes becomes imperative to
capture the scattered feature distribution comprehensively. Hence, we propose the first-level prototype
generation, namely local prototype clustering. Instead of a straightforward averaging approach, our
method involves initially clustering the feature vectors of all same-class local samples, forming
several local clustered prototypes as a set of local representations.

Pm
k =

{
pmk,j

}Jk,m

j=1

Cluster←−−−−− {h(xi)|(xi, yi) ∈ Dm
k } , (3)

where Jk,m and pmk,j represents the number of local clustered prototypes and the j-th local clustered
prototype of class m on client k clustered from the set of feature vectors {h(xi)|(xi, yi) ∈ Dm

k }. It is
important to note that the number of local clustered prototypes may differ across various classes and
clients. To determine these prototypes, we employ the parameter-free clustering algorithm, FINCH
[28], utilizing cosine similarity as the clustering metric. We also conduct additional experiments
on comparison with other clustering methods in Supplementary Material. This choice ensures the
alignment of the number of local clustered prototypes with the sparsity of the domain distribution. By
leveraging this approach, we enhance the representation of distinct feature distributions, preventing
the overdrift of local averaged prototypes towards densely concentrated regions in the feature space.

Global Prototype Clustering on Server. Distributing all local clustered prototypes among clients
poses challenges due to the extra communication cost and privacy concerns. Hence, we introduce the
second level of prototype generation, namely global prototype clustering, which can be formulated
as:

Gm =
{
gmj

}Cm

j=1

Cluster←−−−−− Pm = {Pm
k }

K
k=1 , (4)

where Cm and gmj denote the number of global clustered prototypes and the j-th global clustered
prototype of class m on the server from the local collected prototypes set Pm = {Pm

k }Kk=1. Through
the second-level global clustering, we significantly reduce the number of prototypes that the server
must distribute to clients compared to distributing all locally clustered prototypes, alleviating potential
communication costs. Dual-level clustering also addresses privacy concerns that arise from original
local clustered prototypes potentially revealing client-specific features and the corresponding results
can be found in Supplementary Material.

4.2 α-Sparsity Prototype Loss

Unlike previous methods in FedPL, which generate a single prototype per class, our approach
employs dual-level clustering to create multiple prototypes for each class, thereby capturing valuable
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variance information. This multiplicity of prototypes could potentially lead to overlapping feature
representations among different classes, especially in challenging client scenarios. To mitigate this
risk, we introduce a novel α-sparsity prototype loss, inspired by the InfoNCE-based loss. Our newly
designed α-sparsity prototype loss enhances inter-class feature distribution sparsity and maintains
balanced feature representation distances within classes, unlike the traditional InfoNCE-based loss.
The formulation of the α-sparsity prototype loss is detailed below:

Lα = Lcontra + Lcorr. (5)

The first contrastive term can be formulated as:

Lcontra =− log

∑
gyi∈Gyi

exp (sα(h(xi), g
yi)/τ)∑

g∈G
exp (sα(h(xi), g)/τ)

, (6)

where τ is the temperature hyper-parameter that controls the concentration strength of the similarity
[35], and G = {Gm}Mm=1 is the set of all global clustered prototypes. sα(·, ·) in the first term is the
modified α-sparsity cosine similarity metric between the feature vector h(xi) and the prototype gm

from class m and can be formulated as:

sα(h(xi), g
m) =

(
h(xi)

||h(xi)||
· gm

||gm||

)α

, (7)

where α ∈ (0, 1). This metric serves to compel the feature extractor to generate feature outputs
closely aligned with the global clustered prototypes of their respective classes while distancing them
from other global prototypes. It achieves this by maximizing intra-class similarity and minimizing
inter-class similarity. As our feature vectors have positive values, cosine similarity always falls within
the range of [0, 1]. By introducing a sparsity factor α to the similarity and applying it as a power, all
similarity values are elevated. However, due to the smaller denominator component representing
similarity with other classes in the Lα function, the impact of the concave function (·)α is more
pronounced. This emphasis on maximizing inter-class distance is what we denote as α-sparsity
operation, which directs more attention toward expanding the overall feature distribution to a broader
range. Consequently, it mitigates the issue of feature distributions within one class being excessively
dispersed and overlapping with feature distributions of other classes.

This modification does indeed lead to an unintended consequence: an increase in intra-class distance
due to heightened similarity between the feature vector and prototypes of the corresponding class,
resulting from the concavity of (·)α. This brings us to the second correction term of our α-sparsity
prototype loss:

Lcorr =

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
gyi∈Gyi

sα(h(xi), g
yi)− Cyi

∣∣∣∣∣∣
∣∣∣∣∣∣
2

. (8)

The latter term within the α-sparsity prototype loss serves as a corrective measure, which focuses on
pushing the average cosine similarity closer to 1. This correction measure aims to counterbalance the
increase in intra-class distance stemming from the adjustment introduced by α.

An additional Cross-Entropy (CE) loss [6] is employed to train the classifier and derive prediction
results, which can be formulated as:

LCE =
∑

(xi,yi)∈Dk

−1yi
log(f(h(xi))). (9)

The total local loss, combining the previously mentioned loss functions, is expressed as follows:

Llocal = λLα + LCE . (10)

Here, λ serves as a hyper-parameter that regulates the balance between the α-sparsity prototype loss
and the CE loss. This formulation allows for a unified and weighted consideration of the α-sparsity
prototype loss.

In summary, our FedPLVM operates as follows in each training round: Initially, each client generates
feature vectors for all local samples and clusters these into several local clustered prototypes. These
local clustered prototypes are then uploaded to the server, which aggregates them into distinct
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prototype sets for various classes and further clusters them to form global clustered prototypes.
Concurrently, the server collects local models from all clients and consolidates them into a unified
global model. The server then distributes all global clustered prototypes and global model to clients.
Subsequently, each client utilizes the global clustered prototypes to train the global model on its
private dataset using Llocal, obtaining its local model. Finally, clients employ their local models to
generate new feature vectors and repeat the aforementioned procedure in the next training round. For
a detailed insight into FedPLVM, refer to Algorithm 1 in the Supplementary Material.

Comparison with FPL [10]. FPL studies on FL among clients with distinct domain datasets and is
considered a state-of-the-art method. FPL is specifically designed to address imbalances in client
distribution across domains, aiming to neutralize the skewed influence of domains with more clients
on the global model training. In contrast, our study concentrates on the unequal learning obstacles
that vary by domain, a challenge that persists regardless of equal client distribution, leading to distinct
learning hurdles across domains and thereby leading to our two key operations. Firstly, although both
our method and FPL employ prototype clustering, the objectives and implementations markedly differ.
FPL’s clustering is intended to harmonize the impact of local prototypes from each domain, involving
only global (server-level) clustering. Conversely, our method integrates dual-level clustering at both
the client (local) and server (global) levels. Our technique distinguishes itself by performing local
prototype clustering, capturing critical variance and not just the mean data, which is particularly
crucial in hard domains. At the global level, our clustering aims to reduce communication overhead
and privacy risks by limiting the prototype variety each client sends, thereby enhancing both efficiency
and privacy. Secondly, we introduce an innovative α-sparsity prototype loss that features a corrective
component to reasonably utilize the variance information to reduce feature similarity across different
classes while boosting it within the same class, promoting more effective and stable learning.

5 Experiments

Datasets. We evaluate our proposed algorithm on three datasets: Digit-5 [42], Office-10 [8] and
DomainNet [26]. Digit-5 is a dataset for digits recognition, consisting of 5 domains: MNIST, SVHN,
USPS, Synth and MNIST-M. Office-10 is a dataset for office item recognition, consisting of 4
domains: Amazon, Caltech, DSLR and Webcam. DomainNet is a large-scale classification dataset,
consisting of 6 domains: Clipart, Infograph, Painting, Quickdraw, Real and Sketch.

Baselines. We compare our algorithm with classic FL methods: FedAvg [21], FedProx [18], FedPL
methods: FedProto [32], FedPCL [33], FPL[10] and FL method on feature skew: FedFA [43].

Implement Details. We employ the ResNet10 [9] as our backbone model, configuring the feature
vectors’ dimension to 512. The optimization is done using the SGD optimizer, employing a learning
rate of 0.01, momentum of 0.5, and a weight decay of 1e− 5. For Digit-5, Office-10 and DomainNet,
we use 5, 4 and 6 clients respectively. The client data is independent and identically distributed (i.i.d.)
and non i.i.d. results can be found in Supplementary Material. It is important to note that each client
operates within distinct data domains, meaning different datasets. For Digit-5 and Office-10, each
client possessed 100 training samples and 1000 test samples. Global communication rounds are
fixed at T = 50 for Digit-5 and T = 80 for Office-10. Each local training epoch consists of E = 2
iterations. We maintain default hyper-parameter values: τ = 0.07, α = 0.25, and λ = 100. As for
DomainNet, we followed the setup in FedPCL using a 10-class subset. Each client employs 300
training samples and all test samples (approximately 1000, vary on domains). λ = 1 and T = 200
for DomainNet. The batch size is set at 32 for all datasets. Details regarding hyper-parameter settings
will be elaborated in Sec. 5.2. For fair comparisons, we conduct each setting for 5 experiments and
report the average result.

5.1 Performance Comparison

We compare our proposed method with the state-of-the-art methods using the Digit-5, Office-10 and
DomainNet datasets, as detailed in Tab. 1, Tab. 2 and Tab. 6. Our method demonstrates significant
improvements in average accuracy over baseline methods for both datasets. A closer examination
of domain-specific results reveals a more pronounced enhancement in performance on domains
that are more challenging to learn. For instance, within the Digit-5 dataset, our method achieves
a 5.3% increase in accuracy for the SVHN domain, which is more difficult, and a 0.58% increase
for the MNIST dataset, considered easier. This aligns with the goal of our method, which is to
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Table 1: Test accuracy on Digit-5. Avg means average results among all clients. Details in Sec. 5.1.

Methods Digit-5

MNIST SVHN USPS Synth MNIST-M Avg ∆

FedAvg 84.98 ± 0.92 29.38 ± 1.06 82.36 ± 1.18 47.00 ± 0.73 53.14 ± 0.78 59.37 -
FedProx 85.72 ± 1.50 28.86 ± 1.23 82.30 ± 0.75 46.78 ± 1.10 52.60 ± 2.37 59.25 -0.12
FedProto 88.60 ± 0.72 31.94 ± 1.58 85.54 ± 0.34 51.82 ± 1.12 56.86 ± 0.42 62.95 +3.58
FedPCL 88.84 ± 1.08 39.70 ± 2.25 84.74 ± 0.72 54.70 ± 1.18 59.96 ± 1.34 65.59 +6.22
FedFA 89.46 ± 0.55 38.96 ± 1.69 85.86 ± 0.38 58.04 ± 1.06 61.38 ± 0.98 66.74 +7.37
FPL 90.12 ± 1.39 36.78 ± 1.88 86.10 ± 0.66 57.36 ± 1.96 64.02 ± 1.38 66.88 +7.51
Ours 90.70 ± 0.39 42.08 ± 1.59 86.24 ± 1.37 60.08 ± 1.47 67.16 ± 0.77 69.25 +9.88

Table 2: Test accuracy on Office-10. Details in Sec. 5.1.

Methods Office-10

Amazon Caltech DSLR Webcam Avg ∆

FedAvg 48.26 ± 1.92 35.11 ± 0.96 57.29 ± 1.47 71.75 ± 0.80 53.10 -
FedProx 47.74 ± 0.65 36.44 ± 1.92 56.25 ± 4.42 73.45 ± 0.80 53.47 +0.37
FedProto 49.31 ± 2.18 36.07 ± 0.91 57.38 ± 2.55 79.05 ± 2.40 55.45 +2.35
FedPCL 53.65 ± 2.33 38.93 ± 2.73 58.13 ± 5.08 78.64 ± 0.83 57.34 +4.24
FedFA 56.46 ± 2.15 40.91 ± 2.39 60.00 ± 4.68 78.58 ± 1.86 58.99 +5.89
FPL 54.38 ± 1.02 38.24 ± 2.38 61.25 ± 3.19 80.34 ± 1.73 58.55 +5.45
Ours 57.03 ± 1.45 42.71 ± 1.04 61.50 ± 2.02 81.36 ± 1.86 60.65 +7.55

address the disparate learning challenges across various domains, enhancing fairness and aiding
in performance improvement in harder domains. Similar improvements can also be observed in
Office-10 and DomainNet in Sec. C of Appendix.

5.2 Ablation Study

To evaluate the effectiveness of each component within our proposed methodology, we conducted a
series of ablation studies using the Digit-5 dataset.

5.2.1 Impact of Dual-Level Prototype Generation.

In this subsection, we focus on examining the impact of dual-level clustered prototypes, as demon-
strated by the results in Tab. 3. The first row illustrates outcomes derived from calculating local
prototypes by averaging features of samples within the same class, and global prototypes through
the direct averaging of these local prototypes. This approach, utilizing straightforward averaging for
both levels, yields the least effective performance. This is attributed to its failure to capture variance
information, a non-trivial aspect in this context. Moreover, adopting a solely global clustering
approach does not significantly enhance performance. This is attributed to the fact that while global
clusters incorporate inter-domain variance, they overlook the critical aspect of high intra-domain
sample variance, particularly in domains that are challenging to learn. To elucidate this, we present
a t-SNE visualization analysis in Fig. 3 comparing the three prototype generation methods. Our
approach fosters a more generalizable decision boundary, as illustrated in the visualization. This
ability to effectively capture variance at both local and global levels is key to why our dual-level
clustering method outperforms the others.

Table 3: Comparison on prototype generation methods. Variance means the average distance
from the normalized feature vector of one sample to its corresponding class feature center (i.e. the
averaged prototype). Results are then used for visualization in Fig. 3. Details in Sec. 5.2.1.

Local Global MNIST SVHN USPS Synth MNIST-M Avg Variance

Avg Avg 86.90 33.10 83.90 53.40 61.40 63.54 1.725
Avg Cluster 89.40 37.00 85.50 56.60 63.50 66.40 1.393

Cluster Cluster 90.20 43.70 86.90 61.20 65.40 69.48 0.825

To further explore alternative methods, we examine the efficacy of directly transferring all local
prototypes to each client without employing any aggregation or clustering techniques. This approach
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Figure 3: Visualization of different prototype generation methods. The first row averages feature
vectors locally and averages local prototypes globally. The second row averages feature vectors
locally and clusters local prototypes globally. The last row (ours) clusters feature vectors locally and
clusters local clustered prototypes globally. The last column Total is the visualization of mixing the
feature vectors from all datasets. Details in Sec. 5.2.1.

preserves variance information but raises significant privacy concerns, unlike our dual-level clustering
method, which offers enhanced privacy protection. As demonstrated in Tab. 4, directly transferring
all local prototypes yields performance comparable to our dual-cluster approach. However, it requires
transmitting approximately five times as many prototypes in each training round.

Table 4: Comparison between w/o and w/ global clustering. w/o means the server distributes all
local clustered prototypes to the clients for local training. Avg # of prototypes is the average number
of prototypes each client receives from the server during each global round. Details in Sec. 5.2.1.

Global Clustering Avg Avg # of Prototypes Privacy Preservation Communication Cost

w/o 69.18 ± 0.77 100.92 × 4.76×
w/ 69.47 ± 0.71 21.20 ✓ 1×

5.2.2 Impact of α-Sparsity Prototype Loss.
Table 5: Comparison on components
of α-sparsity prototype loss. Contrast
and Correction stand for the contrastive
and corrective loss term in the total α-
sparsity loss respectively. Avg is the av-
erage accuracy result for all clients. De-
tails in Sec. 5.2.2.

Contrast Correction Avg ∆

w/o w/o 66.96 ± 0.85 -
w/ w/o 68.42 ± 0.95 +1.46

w/o w/ 67.95 ± 0.63 +0.99
w/ w/ 69.25 ± 0.62 +2.29

To evaluate the specific impact of our proposed α-sparsity
prototype loss, we conduct experiments comparing both
contrastive and corrective loss terms. Results in Tab. 5
demonstrates that employing the contrast term led to a
1.46% improvement in final average accuracy, while the
correction term resulted in a 0.99% enhancement. Com-
bining all components yields the best performance, show-
casing a 2.29% improvement. Our investigation also fo-
cuses on the sparsity parameter α, depicted in Fig. 4. We
find that varying α within the range of (0, 1) consistently
outperforms the baseline setting with α = 1. After careful
consideration of numerical stability, we opt for an α value
of 0.250.

Comparing our method to the prior work FPL, which also integrates its proposed prototype loss with
the CE loss, we explore different prototype loss weights, denoted by λ. The results depicted in Fig. 4
substantiate the superiority of our approach over FPL across various λ settings.
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Figure 4: Impact of α sparsity and λ prototype loss weight. The left figure shows the accuracy of
two selected datasets and the average accuracy among all clients with different α. The right figure
shows the effects of different λ for both FPL and our proposed approach. Details in Sec. 5.2.2.

5.3 Impact of Temperature τ .

To assess the impact of the contrastive temperature (τ ) on our model’s performance, we conduct
the following experiment. The results, depicted in Fig. 5, demonstrate that our method consistently
surpasses the baselines across a range of temperatures (refer to Tab. 1 and Tab. 2 for details, where
FPL exhibits the highest baseline performance at 66.88% and 58.55% respectively). Further analysis
indicates that an optimal temperature setting for our model on Digit-5 is τ = 0.070. Another results
on Office-10 identifies an optimal temperature setting for our model at τ = 0.045, while we maintain
τ = 0.070 for stability in performance comparisons. It is noteworthy that temperatures either
significantly higher or lower than this value lead to training difficulties due to numerical instability.
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Figure 5: Impact of τ . The left figure shows the impact on the Digital-5 dataset while the right
figure shows on the Office-10 dataset. Average means the average test accuracy with variance among
all clients. Details in Sec. 5.3.

6 Conclusion

In this paper, we start by noting the significant difference in domain-specific representation variance
across various datasets within the context of federated learning involving heterogeneous data do-
mains. Traditional methods relying on averaged prototypes, calculated as the mean values of feature
representations from samples within the same class, consistently fail to capture this essential local
information. Our proposed approach, FedPLVM, addresses this issue by implementing a dual-level
prototype generation method. This method leverages first-level local clustering to manage variance
information and employs second-level global clustering to streamline communication complexity
while ensuring privacy. Additionally, we introduce an α-sparsity prototype loss that prioritizes
expanding the inter-class distance, considering the diverse cross-domain variances, and includes a
correction term to subsequently reduce the intra-class distance. Comprehensive experiments have
been conducted to validate the effectiveness of FedPLVM, demonstrating a significant accuracy
improvement over state-of-the-art federated prototype learning methods.
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A Supplementary Material Overview

The supplementary material is organized into the following sections:

B: Detailed algorithm of our proposed method, FedPLVM.

C: Further results of our experiments.

D: Additional quantitative results comparing FedPLVM and other baseline methods under the label
non-i.i.d. setting.

E: Additional quantitative results comparing different clustering algorithms for the prototype cluster-
ing procedure of FedPLVM.

F: Additional quantitative results comparing FedPLVM and FPL[10] under the unbalanced client
domain distribution setting.

G: Additional quantitative results employing differential privacy technology in conjunction with
FedPLVM.

H: Additional quantitative results comparing different global prototype generation methodologies of
FedPLVM.

I: Additional quantitative results analyzing the effectiveness of local prototypes clustering on different
domains.

J: Discussion on the wider range of scenario of our method, including limitation and broader impact.

B Detailed Algorithm of FedPLVM

We summarize our proposed method, FedPLVM in the Alg. 1.

Algorithm 1 FedPLVM

Input: Communication rounds T , local training epochs E, number of classes M , number of
clients K, private dataset Dk = {xi, yi}Nk

i

Output: Global model wT+1

Server Aggregation:
1: for t = 1, 2, ..., T do
2: for k = 1, 2, ...,K do
3: Collect local models and clustered prototypes wt

k,E+1, {Pm
k }Mm=1 ← Local Update

(k,wt,G)
4: end for
5: Aggregate collected prototypes {Pm}Mm=1
6: Generate global clustered prototypes G in Eq. 4
7: Aggregate global model wt+1 =

∑K
k=1

Nk

N wt
k,E+1

8: end for
Local Update(k,wt,G):

1: wt
k,1 ← wt

2: for e = 1, 2, ..., E do
3: Update wt

k,e+1 from wt
k,e using G by Eq. 10

4: end for
5: Compute local feature vectors {h(xi)}Nk

i=1 for Dk

6: Generate local clustered prototypes {Pm
k }Mm=1 in Eq. 3

7: Return wt
k,E+1, {Pm

k }Mm=1

C Further results on DomainNet

Due to page limitation, we put some further experimental results in Sec. 5.1 here:
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Table 6: Test accuracy on DomainNet. Details in Sec. 5.1.

Methods DomainNet

Clipart Infograph Painting Quickdraw Real Sketch Avg ∆

FedAvg 50.62 ± 0.58 27.31 ± 0.91 42.71 ± 2.72 14.11 ± 1.26 43.71 ± 3.39 34.67 ± 2.80 35.52 -
FedProx 52.33 ± 1.25 28.22 ± 0.11 42.56 ± 3.32 13.50 ± 0.94 45.85 ± 1.19 35.46 ± 2.98 36.32 +0.80
FedProto 54.08 ± 2.11 30.44 ± 1.70 47.20 ± 3.34 19.40 ± 3.36 50.57 ± 2.07 44.22 ± 2.61 40.99 +5.47
FedPCL 53.37 ± 1.76 29.53 ± 3.08 46.69 ± 3.51 16.32 ± 1.22 51.36 ± 1.85 43.32 ± 0.12 40.10 +4.58
FedFA 53.20 ± 0.50 29.22 ± 1.50 47.12 ± 1.42 17.90 ± 0.65 50.14 ± 1.37 45.76 ± 1.61 40.56 +5.04
FPL 53.13 ± 0.65 27.55 ± 1.86 45.40 ± 2.29 17.47 ± 1.36 50.64 ± 1.33 47.64 ± 2.45 40.31 +4.79
Ours 54.19 ± 1.73 31.14 ± 1.68 47.22 ± 1.10 22.40 ± 1.91 51.66 ± 1.73 48.70 ± 2.03 42.55 +7.03
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Figure 6: Impact of α on the DomainNet
dataset.
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Figure 7: Test accuracy on DomainNet with
different Dirichlet distribution parameters.

D Label Non-I.I.D. Setting

We expanded our method’s assessment on Digit-5 and Office-10 within a non-i.i.d. label setting.
Utilizing the Dirichlet method (α = 0.5), we shaped the data distribution and generated non-i.i.d.
datasets for individual clients. Notably, our approach showcased substantial accuracy improvements
compared to baseline methods across both datasets. Non-i.i.d. distributions are visualized in Fig. 8,
the variation in features across non-identically distributed data is reflected by the colors of the dots,
whereas the non-identical label distribution (α = 0.5) is denoted by the sizes of the dots. For the
top figure in Fig. 8, client index 0, 1, 2, 3, 4 own the datasets MNIST, SVHN, USPS, Synth and
MNIST-M respectively; for the bottom figure, client index 0, 1, 2, 3 represent the dataset domains
Amazon, Caltech, DSLR and Webcam repectively.
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Figure 8: Visualization of data distributions under label non-i.i.d. setting. Every point on the
graph symbolizes a collection of samples belonging to a specific class assigned to a client. The left
figure is from digit-5 and the right figure is from office-10. Details in Sec. D

The outcomes are presented in Tab. 7 and Tab. 8. Consistent with our findings in the i.i.d. label
setting, we observed a significant performance boost in domains that pose greater learning challenges.
For instance, within the Digit-5 dataset, our method achieved a 2.24% accuracy surge in the Synth
domain—a more complex task—while showing a 0.94% increase in accuracy for the comparatively
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easier USPS dataset. This reiterates our method’s aim: addressing disparate learning difficulties
among domains, fostering fairness, and bolstering performance, especially in tougher domains.
Similar advancements were evident within the Office-10 dataset.

Table 7: Test accuracy on Digit-5 under label non-i.i.d. setting. Avg means average results among
all clients. We apply the Dirichlet method (α = 0.5) to obtain the data distribution and create the
non-i.i.d. dataset for each client. Details in Sec. D.

Methods Digit-5

MNIST SVHN USPS Synth MNIST-M Avg ∆

FedAvg 79.44 ± 0.86 24.16 ± 0.91 65.46 ± 1.86 40.58 ± 0.87 55.16 ± 1.24 52.96 -
FedProx 81.40 ± 0.53 24.44 ± 1.06 67.54 ± 2.05 41.64 ± 1.02 55.80 ± 0.58 54.16 +1.20
FedProto 83.28 ± 0.80 23.06 ± 0.51 69.98 ± 0.81 40.78 ± 0.99 57.66 ± 0.85 54.95 +1.99
FedPCL 85.44 ± 2.13 25.82 ± 0.97 69.28 ± 3.73 42.60 ± 1.55 58.66 ± 1.46 56.36 +3.40
FedFA 86.65 ± 0.69 29.57 ± 1.97 73.48 ± 0.77 47.19 ± 0.49 60.24 ± 1.24 59.43 +6.47
FPL 85.18 ± 2.66 31.54 ± 2.96 72.96 ± 2.41 49.48 ± 2.42 61.08 ± 2.10 60.05 +7.09
Ours 86.18 ± 0.98 33.24 ± 1.31 73.98 ± 2.17 51.72 ± 1.08 62.90 ± 1.32 61.60 +8.64

Table 8: Test accuracy on Office-10 under label non-i.i.d. setting. Avg means average results
among all clients. We apply the Dirichlet method (α = 0.5) to obtain the data distribution and create
the non-i.i.d. dataset for each client. Details in Sec. D.

Methods Office-10

Amazon Caltech DSLR Webcam Avg ∆

FedAvg 47.36 ± 1.60 33.63 ± 0.21 49.42 ± 1.37 72.95 ± 1.38 50.84 -
FedProx 48.58 ± 0.76 33.78 ± 0.63 52.42 ± 5.31 75.10 ± 0.80 52.47 +1.63
FedProto 52.44 ± 0.86 35.56 ± 1.09 51.38 ± 0.19 75.62 ± 2.11 53.75 +2.91
FedPCL 54.07 ± 0.76 36.56 ± 2.18 57.62 ± 0.11 76.42 ± 0.82 56.17 +5.33
FedFA 53.28 ± 1.72 36.67 ± 1.49 53.71 ± 1.43 73.20 ± 2.52 54.22 +3.38
FPL 53.05 ± 0.50 35.41 ± 1.05 58.67 ± 2.95 76.62 ± 1.60 55.94 +5.10
Ours 55.28 ± 0.76 37.48 ± 0.21 59.79 ± 1.90 77.36 ± 0.08 57.48 +6.64

E Different Clustering Algorithms

In our paper, FINCH is employed for our dual-level prototype clustering due to its parameter-free
nature. Here we select the one with the minimum number of cluster centers among several possible
clustering schemes generated by FINCH. This characteristic obviates the need for hyper-parameter
tuning typically required in clustering methods, such as selecting the number of centers in K-Means
algorithm. However, this does not imply exclusivity to the FINCH clustering algorithm within our
method. Our approach is compatible with various clustering algorithms, including simpler methods
like K-Means. The experiments result in Tab. 9 show that with a carefully tuned K-Means algorithm
(precisely determining the appropriate number of centers), our method with K-Means achieves
performance comparable to that achieved using FINCH. Conversely, poorly tuned parameters result
in weaker performance with the K-Means clustering. This reinforces our choice of FINCH, for its
parameter-free advantage.

Table 9: Comparison with K-Means Algorithm. Adaptive K means we use the number of clustering
centers from FINCH as K. Details in Sec. E.

Local Global MNIST SVHN USPS Synth MNIST-M Avg

Adaptive K Adaptive K 89.97 42.10 85.83 60.90 66.03 68.97
K = 2 K = 2 89.53 40.67 85.33 59.13 63.53 67.64
K = 5 K = 5 89.72 41.97 85.41 60.13 64.69 68.38

FINCH FINCH 90.70 42.08 86.24 60.08 67.16 69.25

F Unbalanced Clients Distribution Setting

We further explore the performance of our FedPLVM in handling unbalanced client distributions,
mirroring the scenario demonstrated in FPL. Within a pool of 10 clients, the data ownership is
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distributed as follows: 1 client possesses MNIST domain data, 4 clients hold SVHN domain data, 2
clients possess USPS domain data, 2 clients hold Synth domain data, and 1 client owns MNIST-M
domain data.

The outcomes, presented in Tab. 10, showcase our approach’s equitable performance, notably in
enhancing test accuracy on clients dealing with the more challenging datasets. Comparatively, in
contrast to FPL, our method displays a significant 2.94% improvement in SVHN dataset performance.
It is worth noting that our ‘avg’ column in Tab. 10 represents the average test accuracy across all
clients, differing from FPL, which calculates the average test accuracy first among clients with
the same dataset and then averages across datasets. This distinction addresses potential unfairness,
wherein a higher representation of clients with ‘easy’ datasets could disproportionately influence the
final accuracy in FPL.

Table 10: Comparison on unbalanced clients distribution. Test accuracy on each dataset domain is
the average result among all clients that own the corresponding dataset. Avg means average results
among all clients. Details in Sec. F.

Methods MNIST SVHN USPS Synth MNIST-M Avg

FPL 90.44 ± 0.67 59.78 ± 1.56 85.14 ± 0.93 73.01 ± 1.09 69.34 ± 0.98 71.52
Ours 90.90 ± 0.97 62.72 ± 1.69 85.92 ± 0.75 74.51 ± 1.20 71.32 ± 0.35 73.40

G Privacy Protection

In our method, the server only receives clustered local prototypes, making it challenging to reconstruct
the clients’ local datasets. We also employ a differential privacy (DP) technology to validate the
impact of FedPLVM. Each client trains local model by DP-SGD [1] to perturb model parameters.
The noise multiplier is determined by [22, 4, 3]. The privacy budget ϵ and approximate parameter δ
are set as 4.0 and 1e − 5 respectively for a (ϵ, δ)-DP setting. Meanwhile, we also incorporate the
clustered local prototypes with the privacy protection technique. We set the scale parameter s = 0.05
and the perturbation coefficient p = 0.1 for the Gaussian noise distribution generation of our local
clustered prototypes. As shown in Tab. 11, the average accuracy drops at most 0.77% if we employ
the privacy protection only for the prototypes. The approximate DP causes a slightly larger decrease
in accuracy, up to 2.45%. Note that even with the privacy protection technologies, our method reaches
a comparable performance to the most advanced baseline in Tab. 1.

Table 11: Impact of differential privacy. Avg means average results among all clients. w/ and w/o
represents we incorporate the local model or the local clustered prototypes with the privacy protection
technologies or not. Details in Sec. G.

Model Prototypes MNIST SVHN USPS Synth MNIST-M Avg

w/ w/ 89.74 ± 0.35 38.40 ± 2.86 84.44 ± 0.48 55.98 ± 1.27 62.44 ± 1.25 66.20
w/ w/o 89.42 ± 0.85 38.12 ± 1.12 83.68 ± 0.43 57.54 ± 1.74 65.26 ± 0.51 66.80

w/o w/ 90.64 ± 0.34 40.12 ± 1.95 86.40 ± 0.99 58.80 ± 1.53 66.44 ± 1.60 68.48
w/o w/o 90.70 ± 0.39 42.08 ± 1.59 86.24 ± 1.37 60.08 ± 1.47 67.16 ± 0.77 69.25

H Global Prototypes Generation

The determination of the number of global prototypes for a class is contingent on the associated learn-
ing challenges. In instances where a class within a domain presents significant learning difficulties, it
is characterized by large variance. Consequently, employing a single global prototype, reducing the
sufficiency of variance information, could decay the learning performance. Incorporating multiple
global prototypes for such a class can introduce additional variance information, thereby enhancing
the learning process. We provide averaged experiment results in Tab. 12. (Note in the main paper we
only report the single experiment to be consistent with the corresponding visualization.) The results
validate the necessity of our dual-level clustering.
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Table 12: Comparison with Local Cluster & Global Average. Details in Sec. H.
Local Global MNIST SVHN USPS Synth MNIST-M Avg

Cluster Avg 89.43 ± 0.55 40.57 ± 1.21 85.74 ± 0.89 59.77 ± 0.88 65.03 ± 1.02 68.11
Cluster Cluster 90.70 ± 0.39 42.08 ± 1.59 86.24 ± 1.37 60.08 ± 1.47 67.16 ± 0.77 69.25
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Figure 9: Tendency of average number of local clustered prototypes for different classes in
different domains. Details in Sec. I.

I Local Prototypes Clustering

Local prototype clustering is beneficial because it captures essential variance information, not just
the average data, which is particularly crucial in hard domains. Easy domains tend to show tight
clustering within the same category and clear distinctions between different categories, facilitating
accurate classification. In contrast, hard domains often exhibit looser clustering, increasing the risk of
misclassification, especially for samples near category boundaries. Therefore, only capturing average
data suffices for easy domains but falls short for hard domains.

Our proposed method captures more feature distribution variation information by introducing the
local prototypes clustering, since clustering provides more prototypes compared to simply averaging
especially considering the sparse distribution in hard domains as shown in Fig. 3. For easy domains,
where the average is sufficient, our method generates fewer prototypes.

To demonstrate this, we refer to Fig. 9. The y-axis shows the average number of local prototypes
among classes generated at each selected round. The easy domain (MNIST) has fewer prototypes
generated compared to the hard domain (SVHN), showing that in hard domains, more prototypes
are utilized to better capture the variance information. Furthermore, an average performance gain of
3.08% in experiment of impact of local prototypes clustering in Tab. 3 also supports this observation.

J Discussion on Wider Range of Scenarios

J.1 Limitation.

While FedPLVM introduces innovative strategies to address domain heterogeneity in federated
learning, it also comes with certain limitations and challenges. For example, noisy labels, or
incorrectly labeled data instances, are a common issue in real-world datasets. A few previous works
has discussed the related impact in FL scenario [37, 38, 36]. This noisy case will bring two problems
for prototype learning in FL: Prototype Distortion. Noisy labels can lead to distorted prototype
representations, as the local prototypes clustered for each class may be influenced by mislabeled
instances. This distortion can propagate throughout the training process, affecting the model’s ability
to accurately capture the true underlying data distribution. Prototype Ambiguity. In the presence
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of noisy labels, the distinction between different classes becomes less clear, leading to ambiguity in
prototype definitions. Prototypes may no longer accurately represent the true characteristics of their
respective classes, making it difficult for the model to generalize effectively. These make noisy labels
in FL scenario an interesting direction for future extension to our proposed FedPLVM.

J.2 Broader Impact.

FedPLVM primarily addresses the challenges of cross-domain federated learning, where data from
heterogeneous domains need to be collaboratively utilized while preserving privacy. This capability
enables the application of FedPLVM in various real-life scenarios, including: Healthcare Data
Collaboration. Different hospitals or healthcare institutions often possess diverse patient datasets
with varying characteristics and distributions. FedPLVM allows these institutions to collaboratively
train machine learning models for tasks such as disease diagnosis, patient outcome prediction, or
personalized treatment recommendation while ensuring data privacy and security. Internet of Things
(IoT) Networks. IoT devices deployed in different locations or environments generate heterogeneous
data streams, including sensor readings, environmental data, and user interactions. FedPLVM enables
federated learning across IoT networks, facilitating tasks such as anomaly detection, predictive
maintenance, or environmental monitoring without centralized data collection, thus preserving user
privacy and reducing communication overhead.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Details can be found in Sec. 1.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Details can be found in Sec. J.
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Details can be found in Sec. 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide the code soon in the following github link https://github.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details can be found in Sec. 5.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Details can be found in Sec. 5.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details can be found in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Details can be found in Sec. J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Details can be found in Sec. 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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25


	Introduction
	Related Work
	Preliminary
	FedPLVM: FedPL with Variance Mitigation
	Dual-Level Prototype Generation
	-Sparsity Prototype Loss

	Experiments
	Performance Comparison
	Ablation Study
	Impact of Dual-Level Prototype Generation.
	Impact of -Sparsity Prototype Loss.

	Impact of Temperature .

	Conclusion
	Supplementary Material Overview
	Detailed Algorithm of FedPLVM
	Further results on DomainNet
	Label Non-I.I.D. Setting
	Different Clustering Algorithms
	Unbalanced Clients Distribution Setting
	Privacy Protection
	Global Prototypes Generation
	Local Prototypes Clustering
	Discussion on Wider Range of Scenarios
	Limitation.
	Broader Impact.


