TASTE: TEXT-ALIGNED SPEECH TOKENIZATION AND EMBEDDING FOR SPOKEN LANGUAGE MODELING

Anonymous authors
Paper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

018

019

020

021

022

024

025

026

027

028

031

033

034

037

038

040

041

042

043

044

046

047

048

051

052

ABSTRACT

Recent efforts target spoken language models (SLMs) that not only listen but also speak for more natural human-LLM interaction. Joint text-speech modeling is a promising direction to achieve this. However, the effectiveness of recent speech tokens for joint modeling remains underexplored. To address this, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a method that directly addresses the modality gap by aligning speech token with the corresponding text transcription during the tokenization stage. We propose a method that can achieve this through an attention-based aggregation mechanism and with speech reconstruction as the training objective. We have conducted extensive experiments to demonstrate that TASTE can preserve essential paralinguistic information while dramatically reducing the token sequence length. Moreover, TASTE enables straightforward joint spoken language modeling by using Low-Rank Adaptation on the pre-trained text LLM. Our experimental results show that joint modeling with TASTE outperforms other pre-trained SLMs in tasks such as speech continuation and likelihood-based next-speech selection, showcasing its effectiveness. To our best knowledge, TASTE is the first end-to-end approach that utilizes a reconstruction objective to learn a joint tokenization and embedding tailored for text-speech spoken language modeling. Our demo, code, and models are available at https://anonymous-ai-work.github.io/TASTE-SpokenLM.github.io.

1 Introduction

Spoken language modeling (SLM) is an intriguing direction nowadays that aims at creating models that can not only listen but also *speak* [26, 38, 10, 14, 28, 1]. Typically, building an SLM requires two stages: first, deriving speech tokenizations; second, training a language model based on the speech tokens. For the speech tokens, previous approaches either apply self-supervised learning (SSL) representations following by discretization techniques [2, 26, 38, 17] or reuse units from neural codec models like EnCodec and SoundStream [9, 56, 25, 47]. Although autoregressive modeling with these speech tokens shows great potential in text-to-speech (TTS) [51, 54, 23, 6], previous SLMs that model only speech tokens [26, 38] have been shown to lack semantic fidelity [28].

To bridge this gap, one promising direction is to leverage text—which is rich in semantics—during spoken language modeling. TWIST [17] shows that SLMs can benefit from initializing with text LLMs. Building on this idea, recent work has shifted toward joint text–speech modeling [39, 10, 52, 14] to enhance semantic coherence in generated speech. Such approaches typically adopt a hybrid decoding scheme that generates both text and speech tokens. However, combining the two modalities introduces a length mismatch, since speech token sequences are usually much longer than their textual counterparts. Common remedies include interleaving text and speech tokens [39] or inserting padding to synchronize sequence lengths [10, 52, 14, 53], but these solutions rely on additional alignment procedures or heuristic rules, making joint modeling more complex.

As hybrid text–speech decoding becomes the prevailing paradigm for joint SLM [10, 52, 14, 27, 53], the design of speech tokens should be reconsidered in light of this setting. This motivates the development of more effective joint tokenization methods, which can be derived under the following two considerations: 1) a speech token should avoid redundantly encoding text content—already captured by the text tokens—and instead focus on conveying paralinguistic information; and 2) a straightforward one-to-one correspondence between text and speech tokens is preferable, as it allows

Figure 1: **The concept overview.** Conventional methods extract speech tokens solely from speech, inevitably carries overlapped information with text tokens and induces length-mismatch problem when conducting joint text-speech modeling. By taking dual modalities as input, we generate speech tokenization that is aligned with text, facilitating straightforward and effective joint modeling.

SLMs to generate a text token and a speech token simultaneously without any heuristics or explicit alignments applied, mitigating the length mismatch issue during the tokenization stage.

In this work, we introduce $\underline{\mathbf{T}}$ ext- $\underline{\mathbf{A}}$ ligned $\underline{\mathbf{S}}$ peech $\underline{\mathbf{T}}$ okenization and $\underline{\mathbf{E}}$ mbedding (TASTE), a special type of joint tokenization tailored for text-speech joint spoken language modeling. By acknowledging that the length mismatch introduces additional complexity in joint modeling, we develop our speech token to be aligned with its corresponding text transcription tokens. To achieve this, we first obtain the textual transcription of a speech with the ASR model; then we derive the speech token based on the transcription through a specialized cross-attention mechanism for speech reconstruction. Note that the full process can be accomplished in an end-to-end manner, with no explicit speech-text alignment required. Unlike previous speech tokens that are developed under a fixed stride with fixed down-sampling rate, our speech token has dynamic frequency as it is text-aligned. Figure 1 shows an overall concept of TASTE, illustrating how our joint tokenization allows effective joint modeling.

To evaluate the effectiveness of TASTE, we first conduct extensive experiments on speech reconstruction. Our results on LibriSpeech [40] show that TASTE not only resynthesizes speech in high quality, but also retains similarity to the original speech. TASTE achieves high-end reconstruction at an extremely low bit rate (\sim 150 bps); while the other comparable methods are often more than thousands of bps. We attribute the efficiency to the involvement of text tokens during encoding and decoding, and our speech tokens focus on carrying paralinguistic information, which is backed up by the demonstration that TASTE allows simple text-aligned speech editing. By exchanging the partial text-aligned speech tokens from two different utterances with the same content, we demonstrate that the paralinguistic information such as duration and tone can be exchanged precisely following the words being exchanged, resulting in natural edited speech.

On the other hand, we demonstrate that TASTE successfully allows effective spoken language modeling. We perform straightforward joint modeling with TASTE under Low-Rank Adaptation [21]. We first perform speech continuation experiments with 3-second speech prompts given. The evaluation is three-fold. We use GPT-40 for evaluating the semantic aspect; UTMOS [44] for the acoustic aspect; and the human listening test for the general evaluation. Results show that our SLMs not only generates natural, meaningful speech continuations, but also outperforms the other 7B pre-trained SLMs across all the continuation evaluation aspects with 1.3B parameters. We also evaluate our SLMs on two benchmarks, SALMON [32] and StoryCloze [17] and our results show that our SLMs achieve comparable performance compared to the other text-speech joint modeling methods. Moreover, we show that our pretrained SLM can perform spoken question answering under the few-shot scenario.

In summary, we derive TASTE, a specialized tokenization approach for text–speech spoken language modeling. By aligning speech tokens with their text counterparts, TASTE provides a simple yet effective form of joint tokenization. Our results highlight joint tokenization as a key factor in joint modeling, offering a new perspective that may foster further research into more effective designs.

2 Method

We propose text-aligned speech tokenization and embedding (TASTE) to facilitate effective joint speech-text spoken language modeling. Here, we first introduce how we derive our joint tokenization in Section 2.1, and then discuss how we use TASTE for spoken language modeling (§ 2.2).

Figure 2: The overall framework of our text-aligned speech tokenization and embedding. The left side illustrate the process of obtaining the TASTE tokenization \hat{z} , detailed in Section 2.1.1; while the right side demonstrate how we reconstruct the speech with TASTE (Section 2.1.2). The training objective for our speech reconstruction is discussed in Section 2.1.3.

As depicted in Figure 2, TASTE is comprised of the two main components: the text-aligned speech tokenizer (§ 2.1.1) that produces the text-aligned speech tokenization; and the speech decoder (§ 2.1.2) to *reconstruct* speech based on the text token and the TASTE speech token aligned with it. The training objective of speech reconstruction is described in Section 2.1.3.

2.1 BUILDING TASTE

2.1.1 TASTE SPEECH TOKENIZER

In TASTE, the speech tokenizer, denoted as $Tokenizer(\cdot)$, is designed to generate the text-aligned speech tokenization and embedding with the speech-text pair X=(u,v) taken as input, where v represents the textual transcription of the speech utterance u, which can be easily obtained through an automatic speech recognition (ASR) system. Recent developments in robust and efficient ASR [41, 15] allow us to focus on discussing how to derive the text-aligned speech token effectively by assuming that v is of sufficient quality. The TASTE speech tokenizer is composed of three major components: an encoder, an aggregator, and a quantizer.

The encoder $\operatorname{Encoder}(\cdot)$ contains L layers of Transformer [50] encoder blocks and is used to extract high-dimensional speech representation. We employ the pre-trained Whisper ASR encoder [41] as our speech encoder, and it is frozen during training. For an input speech utterance \boldsymbol{u} , the encoder produces a sequence of hidden states from each layer $[\boldsymbol{h}^{(1)}, \boldsymbol{h}^{(2)}, \dots, \boldsymbol{h}^{(L)}]$. In our experiments, we retain the *last* hidden layer representation $\boldsymbol{h}^{(L)}$ and the *shallow* representation $\boldsymbol{h}^{(l)}$ from the first half of the hidden representations of the encoder for later usage, denoted as:

$$m{h}^{(L)}, m{h}^{(l)} = \mathrm{Encoder}(m{u}), \quad ext{ where } 1 \leq l \leq \left\lfloor \frac{L}{2} \right\rfloor.$$

Note that both of the hidden representations $h^{(L)}, h^{(l)} \in \mathbb{R}^{T \times d_h}$ have their length denoted as T and the hidden dimension indicated by d_h .

The hidden representations extracted from the encoder are then passed to the *aggregator*. The aggregator is designed to obtain a more compressed speech representation z that is aligned in length with the text transcription v. Consider that $v = [v_1, v_2, \dots, v_N], v_i \in V$ is a text token sequence with length N, the input and output of the aggregator can be denoted as:

$$z = \operatorname{Aggregator}(v, h^{(L)}, h^{(l)}), \text{ where } z \in \mathbb{R}^{N \times d_z}, v \in \mathbb{V}^N, \text{ and } h^{(L)}, h^{(l)} \in \mathbb{R}^{T \times d_h}.$$

To make the speech representation z text-aligned, we conduct a simple yet effective attention mechanism based on the three inputs. Consider that the original multi-head attention in [50] is denoted as $\operatorname{MultiHead}(Q,K,V)$, our first layer attention in the aggregator takes:

 $Q = \text{text transcription } v, \quad K = \text{encoder last hidden } h^{(L)}, \quad V = \text{encoder shallow hidden } h^{(l)}.$

By doing so, the length of our first multi-head attention output should follow the text transcription v. Note that the query of the following layers becomes the output from the previous layer. In addition, intuitions of using the encoder's last hidden representation as keys, and the shallow hidden representation as values can be described as follows: 1) In Transformer-based ASR models, the last hidden states often encode rich speech-text alignment cues; sometimes the cross-attention weight matrices can even be exploited as soft word-alignment maps [41, 15]. 2) The shallow representation has been shown to support high-quality speech reconstruction even when the quantization is applied [11, 12]. Based on the above observations, we design our aggregator that can use the soft attention maps obtained from last encoder representations and the text transcriptions, to aggregate the shallow encoder representations that is beneficial for high-end speech reconstruction.

After getting the text-aligned representation, the quantizer Quantizer(\cdot) is adopted to discretize the text-aligned representation. We use the residual vector quantization (RVQ) to allow coarse-to-fine quantization. Given the text-aligned speech representation z and the quantizer containing R residual vector quantization layers, we generate:

$$\boldsymbol{q}, \hat{\boldsymbol{z}} = \text{Quantizer}(\boldsymbol{z}), \qquad \boldsymbol{q} = [\boldsymbol{q}^{(1)}, \boldsymbol{q}^{(2)}, \dots, \boldsymbol{q}^{(R)}], \quad \hat{\boldsymbol{z}} = \sum_{r=1}^{R} \hat{\boldsymbol{z}}^{(r)}$$
 (1)

where each $q^{(r)} \in \mathbb{C}^N$ denotes the r-th layer code sequence with code set \mathbb{C} ; and the quantized embedding \hat{z} to be the summation over each layer of the codebook vectors. Note that both of the code sequence and the quantized speech embedding \hat{z} are text-aligned, with the lengths to be N.

2.1.2 TASTE SPEECH DECODER

The speech decoder aims to perform speech reconstruction conditioned on the text token sequence and the text-aligned speech tokenization. As shown in Figure 2, the text and speech tokens are aligned in lengths and being fed into the speech decoder after weighted sum in an autoregressive manner. The speech decoder is composed of the two components: the unit decoder and the unit-to-speech vocoder.

The unit decoder $\mathrm{UnitDecoder}(\cdot)$ is a Transformer-based decoder that takes the text token sequence v and the aligned speech embedding \hat{z} as condition and predicts the speech unit y for reconstruction:

$$y = \text{UnitDecoder}(\hat{z}, v).$$
 (2)

Note that the additional speaker embedding is also taken as input to facilitate global speaker voice control in our spoken language models [22]. After we generating the speech unit y, we use a unit-to-speech vocoder to further transform the unit into the reconstructed speech.

2.1.3 Training Objective

Similar to other reconstruction-based speech tokens [59, 30], we derive TASTE by training it for speech resynthesis. To achieve this, we extract the speech unit y^{target} with length T' from the original speech u as the target unit for our speech tokenizer and speech decoder. Given the text transcription v, the TASTE speech embedding \hat{z} , and the unit from the original speech y^{target} as the target, the speech reconstruction through the tokenizer and the unit decoder parametrized by θ under the next prediction schema can be considered as minimizing the cross-entropy loss below:

$$\mathcal{L}_{ce}(\theta) = \frac{1}{|T'|} \sum_{t=1}^{T'} -\log p_{\theta}(y_t^{\text{target}} | \hat{\boldsymbol{z}}, \boldsymbol{v}; \boldsymbol{y}_{< t}^{\text{target}})$$
(3)

On the other hand, we employ the quantization loss as well to tokenize the continuous representation z extracted from the encoder-aggregator. Following prior works [9, 56], given that $z^{(r)}$ is the r-th residual and $\hat{z}^{(r)}$ indicates the r-th quantized residual, the the commitment loss is defined as:

$$\mathcal{L}_{\text{rvq}}(\theta) = \sum_{r=1}^{R} \| \boldsymbol{z}^{(r)} - \hat{\boldsymbol{z}}^{(r)} \|. \tag{4}$$

By summation over both losses, we formulate the overall loss for training TASTE as:

$$\mathcal{L}_{\text{taste}} = \mathcal{L}_{\text{ce}} + \mathcal{L}_{\text{rvq}}.\tag{5}$$

Note that to allow gradient to back-propagate from the unit decoder through the tokenizer, the straight-through estimation technique is applied towards the quantization process during training.

2.2 TASTE FOR SPOKEN LANGUAGE MODELING

Next, we describe how we conduct effective spoken language modeling with TASTE. Following previous work [17, 39], we perform pre-training on speech data. The text transcription of the speech data is also used for joint speech-text pre-training of our text-aligned spoken language model (TASLM). Since TASTE tokenization already aligns with the text token sequence, we can conduct a straightforward joint modeling, as illustrated in Figure 1. To demonstrate the robustness of TASTE, we perform two types of text-aligned spoken language modeling. First, we build TASLM_{token} over our text-aligned speech **token** q, discussed in Section 2.2.1. Then, we show how we build TASLM_{emb} with our text-aligned speech **embedding** \hat{z} , detailed in Section 2.2.2.

2.2.1 Modeling TASTE Token

As our speech tokens derived from the RVQ quantizer contain R layers of codes, we employ R linear heads for multi-head prediction in our $\mathrm{TASLM}_{\mathrm{token}}$. Namely, the $\mathrm{TASLM}_{\mathrm{token}}$ simultaneously predicts the next text token and the corresponding R layers of speech tokens in each step. The overall training objective follows the original next token prediction scheme, but with multiple predictions across modalities at each step. Specifically, given the text transcription v and R layers of quantized RVQ codes q, the multi-head next-token prediction training objective can be formulated as:

$$\mathcal{L}_{\text{token}}(\phi) = \frac{1}{|N|} \sum_{i=1}^{N} \left(-\log p_{\phi}^{\text{text}} (v_i | \boldsymbol{v}_{< i}, \boldsymbol{q}_{< i}) + \sum_{r=1}^{R} -\log p_{\phi}^{(r)} (q_i^{(r)} | \boldsymbol{v}_{< i}, \boldsymbol{q}_{< i}) \right), \tag{6}$$

with ϕ represents the parameter of the TASLM_{token}, and $p^{(r)}$ is the r-th probability prediction for the r-th RVQ code. As for inference, we directly sample the codes and the text simultaneously, and transform the codes into the corresponding embedding for the speech decoder to generate speech.

2.2.2 Modeling TASTE Embedding

Besides the token code sets, recent progress on latent modeling [23, 35, 48, 13] motivates us to conduct experiments on modeling our text-aligned speech embedding. Referencing MELLE [35], we employ a linear layer that predicts the mean vector μ_i and a log-magnitude variance vector $\log \sigma_i^2$, where i indicates the i-th frame of the sequence. And the final predicted latent of frame i is denoted as $e_i = \mu_i + \sigma_i \odot \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$. Following MELLE, the straight-through estimator is applied to allow gradients to back-propagate properly during training.

To facilitate latent prediction, we apply the regularization loss and the Kullback-Leibler (KL) divergence loss druing training, which is described as follows:

$$\mathcal{L}_{\text{reg}}(\psi) = \|\boldsymbol{e}_{\psi} - \hat{\boldsymbol{z}}\|_{2}^{2}, \quad \mathcal{L}_{\text{KL}} = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{d_{z}} (\sigma_{i}[j] + (\mu_{i}[j] - \hat{z}_{i}[j])^{2}) - 1 - \log \sigma_{i}^{2}[j]), \quad (7)$$

where ψ indicates the parameter of TASLM_{emb}, and d_z is the dimension of our text-aligned embedding \hat{z} . The regularization loss \mathcal{L}_{reg} is adopted to predict close latent towards the target embedding \hat{z} . The KL divergence loss calculates the KL divergence between the predicted latent distribution and the target distribution. Following MELLE, we select the target distribution to be $\mathcal{N}(\hat{z}_i, I)$. This allows simplification of \mathcal{L}_{KL} , which can then be approximated with the predicted vectors μ_i , σ_i , and the target embedding \hat{z}_i . Finally, the overall loss along with the text loss is described as:

$$\mathcal{L}_{\text{emb}}(\psi) = \lambda_{\text{reg}} \cdot \mathcal{L}_{\text{reg}} + \lambda_{\text{KL}} \cdot \mathcal{L}_{\text{KL}} + \frac{1}{|N|} \sum_{i=1}^{N} -\log p_{\psi}^{\text{text}} (v_i \big| \boldsymbol{v}_{< i}, \hat{\boldsymbol{z}}_{< i}), \tag{8}$$

where λ_{reg} , λ_{KL} to be the weighted coefficients of the two losses, respectively.

3 EXPERIMENT SETUP

Model Configuration For our TASTE speech tokenizer, we initialize our encoder from Whisper [41]. Specifically, we use whisper-large-v3 for our initialization. By doing so, we can

reduce computational cost between obtaining the ASR transcription and extracting the TASTE tokenization with the TASTE encoder frozen during training. On the other hand, we use the S3 token from CosyVoice [11] as the target unit for speech reconstruction. Since their speech tokenization facilitates additional speaker embedding, we follow the same procedure to obtain one. Adding speaker embedding allows global speaker voice control, which is a reasonable and useful scenario for spoken language models. The unit-to-speech vocoder is comprised of a flow model [29, 34] and a HifiGAN. We use the published pre-trained ones from [11], and they are not involved in our training. For the quantizer, we set the RVQ layer R=4, the codebook size 512, and the codebook dimension to be 256. For the spoken language modeling, we follow previous work [17, 39, 10, 28] and initialize our spoken language model from a text LLM. However, this introduces the vocabulary mismatch problem between the ASR and LLM. We resolve this issue by using word-level TASTE tokenization and embedding, which is detailed in Appendix A.5. Moreover, we conduct LoRA for parameter-efficient fine-tuning of our TASLMs. We set the corresponding hyperparameters rank r=64 and $\alpha=128$.

Dataset We use two datasets—*Emilia* and *LibriTTS*—as our training datasets. Emilia [18] is an in-the-wild dataset where the speech is web-scaled and the transcriptions are pseudo-labeled. We use only the English subset of this multi-lingual corpus, which is about 40,000 hours. LibriTTS [57] is a reading-style corpus based on LibriSpeech [40]. We use all the training splits in LibriTTS for training, which is approximately 600 hours of speech. In addition, the *test-clean* split in LibriSpeech is used for evaluation purposes for our TASTE tokenizer and TASLMs.

4 RESULT

We separate our experimental results into two parts. Section 4.1 discusses how TASTE strikes a good reconstruction quality while enables effective joint spoken language modeling; while Seciton 4.2 presents the additional results and ablation study of our joint tokenization and text-aligned SLM.

4.1 Main Results

To demonstrate the benefits of our joint tokenization, we first evaluate the performance of TASTE on speech reconstruction; then introduce how it allows effective spoken language modeling. For simplicity, the evaluation metrics are introduced within each section.

4.1.1 TASTE FOR SPEECH RECONSTRUCTION

Evaluation We evaluate our joint tokenization on two aspects: QUALITY and SIMILARITY. For QUALITY assessment, we use ASR-WER, UTMOS [44], and DNS-MOS [43] as our metrics for evaluation. In ASR-WER, we use HuBERT-Large [20] as the ASR model to transcribe the reconstructed speech, and then calculate the word-error rate (WER) on the transcription. ¹ UTMOS and DNS-MOS are both neural-based MOS predictors. While both evaluate the speech quality, the design purpose of DNS-MOS makes it more suitable for evaluation regarding the noise levels. For SIMILARITY assessment, we measure ViSQOL, duration consistency (Drtn. Con.), speaker similarity (Spkr. Sim.), and the MUSHRA human listening test score. ViSQOL [8]is a production-ready tool that predicts speech quality via spectro-temporal image similarity comparisons. For the duration consistency, we first get the word-level alignment of the transcriptions of the original and the reconstructed speech using Montreal Forced Aligner [33]; then we calculate if the duration between each of the same words is matched under a preset tolerance window, which is set to 50 milliseconds. In the MUSHRA human listening test, we follow the original protocal [46] to instruct evaluators to rate similarity and quality on a scale of 1 to 100 with reference given.

Results Analysis Table 1 reports the results of speech reconstruction on LibriSpeech. To better understand the effectiveness of TASTE, we highlight three main observations. 1) Since our tokens are text-aligned, TASTE operates at the lowest frequency and bitrate among all tokenization methods. We estimate these dynamic values by counting the total number of tokens and accumulating the duration over the testing set. 2) Despite this extremely low bitrate, TASTE achieves on-par or even superior performance to higher-bitrate methods in the quality assessment. In particular, TASTE yields lower

¹https://huggingface.co/facebook/hubert-large-ls960-ft

Table 1: **The speech tokenization evaluation results** on the *test-clean* split of LibriSpeech. The evaluation is separated into the **QUALITY** and the **SIMILARITY** assessments, as introduced in Section 4.1.1. We use gray text to indicate the worst-performing methods in each metric. Freq. indicates the number of tokens per second. All reported results already account for the effect of ASR errors whenever textual transcriptions are involved (Text-only and TASTE).

Method	Freq	Bitrate	Ritrate QUALITY			SIMILARITY				
Method	rrcq.	Dinaic	$\overline{\text{WER}\downarrow}$	UTMOS	DNSMOS	ViSQOL	Drtn. Con.	Spkr. Sim.	MUSHRA	
Ground Truth	16k	256k	2.1%	4.09	3.84	-	-	-	76.6	
E J [0]	75	1500	5.1%	1.58	3.26	3.46	0.94	0.63	-	
Encodec [9]	75	3000	2.6%	2.35	3.48	3.81	0.96	0.78	25.6	
	50	500	5.2%	1.27	2.99	2.80	0.94	0.35	-	
SpeechTokenizer [59]	50	2000	3.0%	3.56	3.60	3.65	0.97	0.80	53.9	
	50	4000	2.5%	3.90	3.76	4.03	0.98	0.92	-	
Mimi [10]	12.5	1000	3.1%	3.60	3.60	3.62	0.96	0.82	67.6	
S3 token (topline) [11]	25	600	3.0%	4.18	3.90	3.30	0.96	0.82	70.2	
Text-only (baseline)	~ 3	\sim 50	5.9%	4.31	4.11	2.44	0.57	0.78	42.6	
TASTE (ours)	$\sim \! 3$	$\sim\!\!150$	4.4%	4.29	<u>4.10</u>	3.05	0.91	0.80	68.3	

ASR-WER than the text-only baseline, which we attribute to speech tokens carrying paralinguistic information that improves the naturalness of reconstructed speech. 3) In terms of similarity, TASTE performs comparably to high-bitrate, fixed down-sampling methods across multiple metrics. The inferior results on ViSQOL can be partly attributed to our use of a flow-based vocoder, as both TASTE and the S3 token topline exhibit weaker ViSQOL performance—a phenomenon also observed in [30]. This degradation on ViSQOL is not reflected in the MUSHRA listening test, where TASTE attains competitive perceptual quality and similarity from a human perspective. In general, TASTE significantly outperforms the text-only baseline, confirming that it carries sufficient paralinguistic information to allow high-quality speech reconstruction.

4.1.2 TASTE FOR SPOKEN LANGUAGE MODELING

TASTE is designed specifically to enable effective joint spoken language modeling (SLM). To examine its effectiveness, we train pretrained SLMs on top of TASTE following the methodology in Section 2.2. In line with prior work [17, 39, 28], we evaluate these models from two perspectives: speech continuation evaluation and likelihood-based evaluation, described as below.

Table 2: **Pretrained SLM speech continuation and likelihood-based next-speech selection results.** The superscripts at the bottom of the table indicate the base models used by each SLM, indicated by superscripts. Cascade models refer to the pipeline with ASR [41], text continuation by LMs [49], and TTS [11]. This allow us to evaluate SLMs with cascade models in continuation perspective.

M-41 1	Finetuned / base	Co	NTINUAT	ION	LIKELIHOOD		
Method	parameters	GPT-40	UTMOS	Human	SALMON	StoryCloze	Overall
Cascade							
Cascade (LLaMA3.2-1B $^{\alpha}$)	-	3.15	4.25	4.00	-	-	-
Cascade (LLaMA2-7B $^{\beta}$)	-	3.43	4.25	3.98	-	-	-
Spoken LMs							
TWIST 1.3B [17]	$1.3B / 1.3B^{\theta}$	1.48	3.25	1.95	62.5	61.5	62.0
TWIST 7B [17]	$7\mathrm{B}$ / $7\mathrm{B}^{\gamma}$	1.44	3.27	2.04	63.4	64.7	64.1
Spirit LM [39]	$7\mathrm{B}$ / $7\mathrm{B}^{\beta}$	2.79	3.41	2.38	59.1	72.0	65.6
Spirit LM Expr. [39]	$7\mathrm{B}$ / $7\mathrm{B}^{\beta}$	1.90	3.40	2.41	69.0	66.2	67.6
Baseline (S3 token)	$\overline{45}\overline{M}/\overline{1.3}\overline{B}^{\overline{\alpha}}$	1.37	4.04	2.84	50.2	58.7	54.5
TASLM 1B (token)	$45\mathrm{M} / 1.3\mathrm{B}^{\alpha}$	3.08	4.07	3.93	60.8	76.5	68.7
TASLM 1B (embed.)	$45\mathrm{M} / 1.3\mathrm{B}^{\alpha}$	3.16	4.22	4.16	57.7	76.7	67.2

Base models: $^{\alpha}$ LLaMA3.2-1B, $^{\beta}$ LLaMA2-7B, $^{\gamma}$ LLaMA-7B, $^{\theta}$ OPT-1.3B

Speech Continuation Evaluation First, each pretrained SLM is conditioned on 3-second speech segments from LibriSpeech *test-clean* to generate speech continuations under their own decoding schemes, following the setup in [17, 28]. The generated continuations are then evaluated along two main aspects: *semantic coherence* and *speech naturalness*. For the semantic aspect, we transcribe the continuations using ASR and ask GPT-40 to assign MOS scores based on their coherence. For the speech naturalness aspect, we compute UTMOS as an objective score of speech quality. In addition, human evaluators provide an overall MOS score that jointly considers both coherence and naturalness. The detailed instructions given to GPT-40 and human evaluators are provided in Appendix A.4.2.

Likelihood-Based Evaluation Following previous work [17, 39, 28], we also evaluate the SLMs through likelihood-based benchmarks, where the accuracy score is based on whether the pretrained SLM chooses the correct continuation from the two given speech utterances based on its output likelihoods. We adopt two established benchmarks SALMON [32] and spoken StoryCloze [17, 36], which covers the acoustic aspect and the semantic aspect, respectively. Since both benchmarks contain multiple tasks, we report the average accuracy across these tasks within each benchmark for simplicity. The detailed results are in Appendix A.2.2 for the interested readers. We also report the mean of the SALMON and StoryCloze as an overall assessment for both aspects.

Results Analysis The results of TASLM compared to other pre-trained SLMs are shown in Table 2, and three main advantages can be observed. 1) Compared to other pretrained SLMs, TASLM achieves substantially better performance on speech continuation across both human and machine evaluations, while also performing competitively on the likelihood-based benchmarks. Notably, this is achieved with only LoRA finetuning on a relatively small 1.3B base language model, illustrating the effectiveness of TASTE for joint modeling. 2) Compared to cascade models with the same base LM, our TASLM_{emb} achieves comparable scores on GPT-40 but higher human MOS. This indicates that its generated speech is more natural than cascade systems that rely solely on TTS during continuation. TASLM is the only SLM that not only maintains but even surpasses the performance of its corresponding text-based model, highlighting the importance of speech token modeling. 3) Directly using the S3 token for joint modeling following [52] yields poor performance across *all* aspects, even though it surpasses TASTE in speech reconstruction. This shows that while reconstruction quality is critical, it is not the sole consideration in tokenization for spoken language modeling. Taken together, these results highlight the central contribution of TASTE: building a joint tokenization that facilitates more effective joint spoken language modeling.

4.2 Additional Results

4.2.1 TASTE FOR TEXT-ALIGNED SPEECH EDITING

Beyond the main results presented above, we report several intriguing observations that further showcase the versatility of TASTE. The first is that TASTE naturally enables *text-aligned speech editing*, as illustrated in Figure 3. Suppose we have two utterances with the same transcript but different paralinguistic characteristics. By exchanging their TASTE token sequences word by word,

Figure 3: An illustration of TASTE for text-aligned speech editing. On the left shows the process of our text-aligned speech editing. We first extract the TASTE tokens; swap the tokens partially; and then decode the edited TASTE tokens into edited speech. On the right shows an example visualization. Only the durations of the words with exchanged TASTE tokens show significant difference.

Table 3: Evaluation of spoken question answering. Table 4: Ablation study on the effects of Performance across modalities is compared row-wise, each module in TASTE speech tokenizer. where T is text and S denotes speech.

433

434

445 446

448

449

450

451

452

453

454 455 456

457 458

459

460

461

462

463

464

465

466 467

468 469

470

471

472

473

474

475 476 477

478 479

480

481

482

483

484

485

Method	Mode	Web Q.	LLaMA-Q.
Mini-Omni 0.5B(T→T)	T	21.3	39.0
Mini-Omni 0.5B [52]	T+S	4.5	11.6
Helium 7B (text)	_ T_	32.3	75.0
Moshi 7B [10]	T+S	26.6	62.3
LLaMA3.1-8B-Instruct	_ T	60.4	71.7
Llama-Omni-8B [14]	T+S	35.5	67.3
$\overline{LLaMA3.2-1B^{\dagger}}$	_ T	24.0	51.0
TASLM 1B (embed.) [†]	T+S	27.1	57.6

[†]We apply few-shot learning to facilitate question answering.

Enc. is encoder, Agg. is aggregator, and Quan. is quantizer. *: top-5 accuracy.

Modules	Freq.	S3 token Acc.*
Enc.	50Hz	0.98
Enc. + Agg.	${\sim}3Hz$	0.88
Enc. $+$ Agg. $+$ Quan.	${\sim}3Hz$	0.76
Enc. (last)	50Hz	0.84
Enc. + Agg. (last)	${\sim}3Hz$	0.78
Text-only	\sim 3Hz	0.65

we ask whether the associated paralinguistic traits are transferred as well. To make the effect clear, we select utterances that differ mainly in speaking rate and examine duration changes using MFA [33]. As illustrated in Figure 3, swapping tokens at specific word positions causes the corresponding words to exhibit clear duration shifts, while untouched words preserve their original timing—evidence that TASTE enables precise, text-aligned manipulation. This observation also echoes our design principle introduced in Section 1: a speech token should avoid redundantly encoding text content and instead concentrate on conveying paralinguistic information. Additional examples targeting other paralinguistic dimensions are provided on our demo page.

4.2.2 TASLM FOR SPOKEN QUESTION ANSWERING

Next, we intriguingly find out that our TASLM exhibits spoken QA ability under few-shot scenario [4]. We are the only pretrained SLM in Table 2 that exhibits this capability. As a result, we compare it against other instruction-finetuned joint SLMs in Table 3 to better understand the performance. We use two spoken question answering benchmarks, Web Questions [3] and LLaMA-Questions [37], following [10]. We report the accuracy of answer containment. To more comprehensively assess the impact of adding speech, we also report the performance of each system's underlying base text LLM. Notably, TASLM is the only approach that preserves its base text LLM's performance. We attribute this to TASTE's joint tokenization strategy. Specifically, we employ a straightforward one-to-one mapping between text and speech tokens, which enables simple and effective joint modeling.

4.2.3 ABLATION STUDY ON TASTE SPEECH TOKENIZER

We run an ablation on TASTE speech tokenizer and use S3 token top-5 reconstruction accuracy as a proxy for information retention. Table 4 first covers the module-wise ablations of our *encoder*, aggregator, and quantizer. The aggregator sharply reduces token rate with only a small drop in accuracy. Adding the quantizer lowers accuracy further, but performance is still well above the text-only baseline. Secondly, we show that using only the *last* hidden state $\mathbf{h}^{(L)}$ performs worse than using the *shallow* hidden states $\mathbf{h}^{(l)}$ (as values for the aggregator), confirming our design choice.

CONCLUSION

In this work, we propose Text-Aligned Speech Tokenization and Embedding (TASTE), to facilitate joint text-speech spoken language modeling. By aggregating proper encoder representation through the specialized cross-attention mechanism and taking the ASR model as initialization, we make the speech tokenization text-aligned in an end-to-end manner with no explicit word alignment required. With our text-aligned speech tokenization and embedding, joint text-speech modeling becomes straightforward and effective. We conduct extensive experiments demonstrating the benefits of developing a joint tokenization tailored for spoken language modeling. We anticipate that these findings encourage further research on more effective joint tokenization for generative modeling.

REFERENCES

- [1] Siddhant Arora, Kai-Wei Chang, Chung-Ming Chien, Yifan Peng, Haibin Wu, Yossi Adi, Emmanuel Dupoux, Hung-Yi Lee, Karen Livescu, and Shinji Watanabe. On the landscape of spoken language models: A comprehensive survey. *arXiv preprint arXiv:2504.08528*, 2025.
- [2] Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for self-supervised learning of speech representations. In *Advances in Neural Information Processing Systems*, 2020.
- [3] Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer pairs. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, 2013.
- [4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 2020.
- [5] Li-Wei Chen and Alexander Rudnicky. Fine-grained style control in transformer-based text-to-speech synthesis. In *ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2022.
- [6] Sanyuan Chen, Shujie Liu, Long Zhou, Yanqing Liu, Xu Tan, Jinyu Li, Sheng Zhao, Yao Qian, and Furu Wei. Vall-e 2: Neural codec language models are human parity zero-shot text to speech synthesizers. *arXiv preprint arXiv:2406.05370*, 2024.
- [7] Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human evaluations? In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2023.
- [8] Michael Chinen, Felicia SC Lim, Jan Skoglund, Nikita Gureev, Feargus O'Gorman, and Andrew Hines. Visqol v3: An open source production ready objective speech and audio metric. In 2020 twelfth international conference on quality of multimedia experience (QoMEX), 2020.
- [9] Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio compression. *Transactions on Machine Learning Research*, 2023.
- [10] Alexandre Défossez, Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue. *arXiv preprint arXiv:2410.00037*, 2024.
- [11] Zhihao Du, Qian Chen, Shiliang Zhang, Kai Hu, Heng Lu, Yexin Yang, Hangrui Hu, Siqi Zheng, Yue Gu, Ziyang Ma, et al. Cosyvoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens. *arXiv* preprint arXiv:2407.05407, 2024.
- [12] Zhihao Du, Yuxuan Wang, Qian Chen, Xian Shi, Xiang Lv, Tianyu Zhao, Zhifu Gao, Yexin Yang, Changfeng Gao, Hui Wang, et al. Cosyvoice 2: Scalable streaming speech synthesis with large language models. *CoRR*, 2024.
- [13] Lijie Fan, Luming Tang, Siyang Qin, Tianhong Li, Xuan Yang, Siyuan Qiao, Andreas Steiner, Chen Sun, Yuanzhen Li, Tao Zhu, et al. Unified autoregressive visual generation and understanding with continuous tokens. *arXiv preprint arXiv:2503.13436*, 2025.
- [14] Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, and Yang Feng. Llamaomni: Seamless speech interaction with large language models. *CoRR*, 2024.
- [15] Sanchit Gandhi, Patrick von Platen, and Alexander M Rush. Distil-whisper: Robust knowledge distillation via large-scale pseudo labelling. *arXiv preprint arXiv*:2311.00430, 2023.
- [16] Alex Graves. Sequence transduction with recurrent neural networks. *arXiv preprint arXiv:1211.3711*, 2012.
- [17] Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai Gat, Alexis Conneau, Felix Kreuk, Jade Copet, Alexandre Defossez, Gabriel Synnaeve, Emmanuel Dupoux, et al. Textually pretrained speech language models. *Advances in Neural Information Processing Systems*, 2023.

- [18] Haorui He, Zengqiang Shang, Chaoren Wang, Xuyuan Li, Yicheng Gu, Hua Hua, Liwei Liu, Chen Yang, Jiaqi Li, Peiyang Shi, et al. Emilia: An extensive, multilingual, and diverse speech dataset for large-scale speech generation. In 2024 IEEE Spoken Language Technology Workshop (SLT), 2024.
 - [19] Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm training. *arXiv preprint arXiv:2410.10989*, 2024.
 - [20] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked prediction of hidden units. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 2021.
 - [21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. *arXiv* preprint arXiv:2106.09685, 2021.
 - [22] Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong Leng, Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factorized codec and diffusion models. *International Conference on Machine Learning*, 2024.
 - [23] Jaehyeon Kim, Keon Lee, Seungjun Chung, and Jaewoong Cho. Clam-tts: Improving neural codec language model for zero-shot text-to-speech. *ICLR*, 2024.
 - [24] Diederik P Kingma. Adam: A method for stochastic optimization. In *International Conference on Learning Representations*, 2015.
 - [25] Rithesh Kumar, Prem Seetharaman, Alejandro Luebs, Ishaan Kumar, and Kundan Kumar. High-fidelity audio compression with improved rvqgan. *Advances in Neural Information Processing Systems*, 2023.
 - [26] Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh Nguyen, Jade Copet, Alexei Baevski, Abdelrahman Mohamed, et al. On generative spoken language modeling from raw audio. *Transactions of the Association for Computational Linguistics*, 2021.
 - [27] Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng Ming, Guosheng Dong, Da Pan, et al. Baichuan-omni-1.5 technical report. arXiv preprint arXiv:2501.15368, 2025.
 - [28] Guan-Ting Lin, Prashanth Gurunath Shivakumar, Aditya Gourav, Yile Gu, Ankur Gandhe, Hung-yi Lee, and Ivan Bulyko. Align-slm: Textless spoken language models with reinforcement learning from ai feedback. *arXiv preprint arXiv:2411.01834*, 2024.
 - [29] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching for generative modeling. *The Eleventh International Conference on Learning Representations*, 2022.
 - [30] Alexander H Liu, Sang-gil Lee, Chao-Han Huck Yang, Yuan Gong, Yu-Chiang Frank Wang, James R Glass, Rafael Valle, and Bryan Catanzaro. Uniwav: Towards unified pre-training for speech representation learning and generation. The Thirteenth International Conference on Learning Representations, 2025.
 - [31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019.
 - [32] Gallil Maimon, Amit Roth, and Yossi Adi. Salmon: A suite for acoustic language model evaluation. *arXiv preprint arXiv:2409.07437*, 2024.
 - [33] Michael McAuliffe, Michaela Socolof, Sarah Mihuc, Michael Wagner, and Morgan Sonderegger. Montreal forced aligner: Trainable text-speech alignment using kaldi. In *Interspeech 2017*, 2017.

- [34] Shivam Mehta, Ambika Kirkland, Harm Lameris, Jonas Beskow, Éva Székely, and Gustav Eje Henter. Overflow: Putting flows on top of neural transducers for better tts. *Interspeech* 2023, 2022.
 - [35] Lingwei Meng, Long Zhou, Shujie Liu, Sanyuan Chen, Bing Han, Shujie Hu, Yanqing Liu, Jinyu Li, Sheng Zhao, Xixin Wu, et al. Autoregressive speech synthesis without vector quantization. *CoRR*, 2024.
 - [36] Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. A corpus and evaluation framework for deeper understanding of commonsense stories. *Proceedings of NAACL-HLT*, 2016.
 - [37] Eliya Nachmani, Alon Levkovitch, Roy Hirsch, Julian Salazar, Chulayuth Asawaroengchai, Soroosh Mariooryad, Ehud Rivlin, RJ Skerry-Ryan, and Michelle Tadmor Ramanovich. Spoken question answering and speech continuation using spectrogram-powered llm. In *The Twelfth International Conference on Learning Representations*, 2024.
 - [38] Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello, Robin Algayres, Benoît Sagot, Abdelrahman Mohamed, et al. Generative spoken dialogue language modeling. *Transactions of the Association for Computational Linguistics*, 2023.
 - [39] Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R Costa-Jussa, Maha Elbayad, Sravya Popuri, Christophe Ropers, Paul-Ambroise Duquenne, Robin Algayres, Ruslan Mavlyutov, et al. Spirit-lm: Interleaved spoken and written language model. *Transactions of the Association for Computational Linguistics*, 2025.
 - [40] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: An asr corpus based on public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015.
 - [41] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust speech recognition via large-scale weak supervision. In *International conference on machine learning*, 2023.
 - [42] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In *Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery and data mining*, 2020.
 - [43] Chandan KA Reddy, Vishak Gopal, and Ross Cutler. Dnsmos: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors. In *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2021.
 - [44] Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi, and Hiroshi Saruwatari. Utmos: Utokyo-sarulab system for voicemos challenge 2022. *Interspeech* 2022, 2022.
 - [45] Monica Sekoyan, Nithin Rao Koluguri, Nune Tadevosyan, Piotr Zelasko, Travis Bartley, Nick Karpov, Jagadeesh Balam, and Boris Ginsburg. Canary-1b-v2 & parakeet-tdt-0.6 b-v3: Efficient and high-performance models for multilingual asr and ast. *arXiv preprint arXiv:2509.14128*, 2025.
 - [46] B Series. Method for the subjective assessment of intermediate quality level of audio systems. *International Telecommunication Union Radiocommunication Assembly*, 2014.
 - [47] Hubert Siuzdak, Florian Grötschla, and Luca A Lanzendörfer. Snac: Multi-scale neural audio codec. Audio Imagination: NeurIPS 2024 Workshop AI-Driven Speech, Music, and Sound Generation, 2024.
 - [48] Yutao Sun, Hangbo Bao, Wenhui Wang, Zhiliang Peng, Li Dong, Shaohan Huang, Jianyong Wang, and Furu Wei. Multimodal latent language modeling with next-token diffusion. *arXiv* preprint arXiv:2412.08635, 2024.

- [49] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- [50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 2017.
- [51] Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech synthesizers. *arXiv preprint arXiv:2301.02111*, 2023.
- [52] Zhifei Xie and Changqiao Wu. Mini-omni: Language models can hear, talk while thinking in streaming. *arXiv preprint arXiv:2408.16725*, 2024.
- [53] Zhifei Xie and Changqiao Wu. Mini-omni2: Towards open-source gpt-40 with vision, speech and duplex capabilities. *arXiv preprint arXiv:2410.11190*, 2024.
- [54] Detai Xin, Xu Tan, Kai Shen, Zeqian Ju, Dongchao Yang, Yuancheng Wang, Shinnosuke Takamichi, Hiroshi Saruwatari, Shujie Liu, Jinyu Li, et al. Rall-e: Robust codec language modeling with chain-of-thought prompting for text-to-speech synthesis. *arXiv preprint arXiv:2404.03204*, 2024.
- [55] Hainan Xu, Fei Jia, Somshubra Majumdar, He Huang, Shinji Watanabe, and Boris Ginsburg. Efficient sequence transduction by jointly predicting tokens and durations. In *International Conference on Machine Learning*, 2023.
- [56] Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan Skoglund, and Marco Tagliasacchi. Soundstream: An end-to-end neural audio codec. *IEEE/ACM Transactions on Audio, Speech, and Language Processing*, 2021.
- [57] Heiga Zen, Viet Dang, Rob Clark, Yu Zhang, Ron J Weiss, Ye Jia, Zhifeng Chen, and Yonghui Wu. Libritts: A corpus derived from librispeech for text-to-speech. *Interspeech* 2019, 2019.
- [58] Aohan Zeng, Zhengxiao Du, Mingdao Liu, Kedong Wang, Shengmin Jiang, Lei Zhao, Yuxiao Dong, and Jie Tang. Glm-4-voice: Towards intelligent and human-like end-to-end spoken chatbot. *arXiv preprint arXiv:2412.02612*, 2024.
- [59] Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified speech tokenizer for speech large language models. *ICLR*, 2024.
- [60] Katerina Zmolikova, Marc Delcroix, Tsubasa Ochiai, Keisuke Kinoshita, Jan Černockỳ, and Dong Yu. Neural target speech extraction: An overview. *IEEE Signal Processing Magazine*, 2023.

Limitation Several limitations of our current work suggest promising avenues for future development. First, while our pretrained spoken language model (SLM) generates high-quality audio continuations, it lacks mechanisms for turn-taking and instruction following; developing a dialogue system is a practical next step. Second, TASTE has so far been evaluated only on English; confirming its generalizability across other languages remains future work. Third, our tokenization method is tailored for joint SLMs, and its applicability to other generative tasks remains underexplored. Fourth, our pipeline currently focuses on single-speaker speech with lexical content and does not explicitly handle multi-speaker, overlapping, or non-lexical events (e.g., laughter, coughing). Future work could support these capabilities by incorporating target speech extraction [60] and non-lexical event tags. Finally, system latency and streaming performance are yet to be optimized for real-time applications. Overall, none of these limitations is a fundamental barrier; rather, they are natural extensions and optimization targets that will further enhance the versatility of our TASTE framework.

Broader Impact TASTE enables the efficient development of spoken language models. It lowers the barrier to building speech systems and improves the accessibility and convenience of human–computer interaction. At the same time, it raises security concerns: systems built with TASTE can more easily mimic a person's voice and synthesize convincing personalized speech. Moreover, TASTE's textaligned speech editing makes voice manipulation straightforward. Overall, TASTE offers clear utility for beneficial applications, but responsible deployment—paired with consent, provenance, and anti-abuse safeguards—is essential to mitigate misuse risks.

A APPENDIX

A.1 RELATED WORK

Recent SLMs often require speech tokenization to conduct language modeling with the next prediction objective as the text LLMs. Unlike text, the speech signal is continuous and lengthy, making it difficult to derive proper speech tokenization for spoken language modeling. Common approaches may utilize self-supervised learned (SSL) speech models followed by quantization techniques to extract speech tokens [2, 20, 26, 17, 39]. In addition, audio or speech codec models have also been used for tokenization in recent SLMs [56, 9, 10, 59]. These models are designed for resynthesis, where the speech decoders are jointly learned with the encoders, making them easy to use for developing SLMs.

With speech tokenization, GSLM [26, 38] first demonstrates the possibility of building an SLM that can generate speech. TWIST [17] further shows that SLM can benefit from initialization with the text-pretrained LLM. With regard to the huge success of text-only LLMs, recent work shifts the focus towards joint speech-text modeling [17, 10, 52]. Challenged by the modality gap between speech and text tokens, different techniques are introduced to facilitate joint modeling. Spirit LM [39] adopts an interleaving strategy; moshi [10] trains its own tokenizer with a reduced token frequency. Moreover, different patterns and strategies such as delayed or sequential generation are introduced for joint modeling, aiming for more reasonable and coherent speech outputs [52].

Despite the increasing demand of joint speech-text modeling [39, 10, 52], we do not find any work discussing the effectiveness of current speech tokenization for it. Moreover, the speech token is often derived with speech or audio-only data ². Nonetheless, we observe that recent work is trying to mitigate the modality gap by reducing speech token frequency [10, 58] or conducting additional training stage for text-speech alignment [52]. This motivates us to design a speech tokenization that is directly aligned with its text counterpart, tackling the mismatch issue during the tokenization stage.

In the main text, we have mentioned that we utilize a specialized mechanism based on attention to extract and aggregate the encoder representations. We clarify that the text-speech cross-attention mechanism has also been used for fine-grained control of text-to-speech synthesis (TTS). More specifically, Chen & Rudnicky [5] propose content-style cross-attention to indicate their text-speech cross-attention mechanism that enables style transfer in TTS. Although both utilize specialized text-speech cross-attention mechanism, the design choices and problem formulations are completely different. We attribute of our main novelty to inventing a text-aligned speech tokenization and embedding for joint spoken language modeling, and the text-speech cross-attention mechanism is considered and shown to be a clean, effective, and straightforward way of achieving it.

²An exception is CosyVoice [11]. We discuss it in Section 2 since it is related to our method.

Table 5: The ablation study on how the ASR affects the perfor- Table 6: The ablation study on mance of our TASTE tokenizer regarding speech reconstruction. how the ASR affects our SLM GT: ground-truth transcription.

on spoken OA.

Method	WER	UTMOS	DNS-MOS	ViSQOL	Drtn. Con.	Spkr. Sim.
TASTE (w/ ASR)	4.4%	4.29	4.10	3.05	0.91	0.80
TASTE (w/GT)	4.6%	4.24	4.08	3.06	0.91	0.81

Methods	Web-Q	LLaMA-Q
TASLM (w/ ASR)	27.1	57.6
TASLM (w/GT)	28.0	57.7

Table 7: The ablation study on using a different ASR model regarding the SLM continuation semantic evaluation. Overall, we do not observe significant relative performance difference.

Evaluation Models	TWIST 1.3B	TWIST 7B	Spirit LM	Spirit LM Expr.	S3 token	TASLM (token)	TASLM (embed.)
Whisper + GPT-4o	1.48	1.44	2.79	1.90	1.37	3.08	3.16
nvidia-parakeet + GPT-40	1.38	1.49	2.76	2.06	1.42	3.20	3.37

A.2 SUPPLEMENTARY RESULTS

ABLATION STUDY ON THE EFFECT OF ASR

Because our tokenization, SLM, as well as the evaluation using GPT-40 all rely on an ASR system to extract text transcriptions, we conduct several ablation studies to assess the impact of ASR on performance. 1) In Table 5 and Table 6, we study how the ASR affects the performance of our TASTE tokenizer on speech reconstruction and TASLM on spoken question answering. Our results indicate that on both the tokenization and the SLM stages, the performance drop introduced by the ASR errors are almost negligible, primarily attributed to the robustness of recent ASR systems. Note that we do not use any ground-truth transcriptions in the previous experiments in the main text. 2) We study how substituting the ASR used to produce transcripts before GPT-4o's semantic-coherence evaluation affects the reported scores. As shown in Table 7, we use another ASR model named nvidia-parakeet [45]. Different from the encoder-decoder architecture of Whisper [41], the model employs an RNN-T [16, 55] backbone. The results indicate that there is no significant relative performance difference between using Whisper and nvidia-parakeet ASR systems. TASLMs reach much better results in both evaluation setups compared to the other pretrained SLMs.

A.2.2 DETAILS ON SALMON AND STORYCLOZE

Our detailed results on SALMON and StoryCloze are reported in Table 8. The introductions of the two benchmarks—SALMON and StoryCloze—are described below.

SALMON for Acoustic Evaluation SALMON offers a comprehensive set of metrics designed to evaluate SLMs in multiple dimensions. In summary, each test sample consists of a positive sample and a negative sample. The negative sample differs from the positive sample by having some

Table 8: The evaluation results on SALMON and StoryCloze of different SLMs, and BG means background. We report likelihood-based accuracy on SALMON (acoustic aspect) and StoryCloze (semantic aspect). The baseline (S3 token) is conducted by joint speech-text modeling with the S3 token as speech tokenization.

METHOD	Lora SALMon (Acoustic Consistency)							STORYCLOZE
METHOD	LOKA	Sentiment	Speaker	Gender	Room	BG (domain)	BG (rand.)	sSC / tSC
Previous Work		Schullen	Speaker	Gender	Room	(domain)	(rand.)	3307130
Previous work								
TWIST 1.3B ([17])	X	61.5 ± 3.4	69.0 ± 3.3	69.5 ± 3.3	59.0 ± 3.5	55.5 ± 3.5	60.5 ± 3.5	52.4 ± 0.8 / 70.6 ± 0.7
TWIST 7B ([17])	X	61.5 ± 3.4	71.0 ± 3.2	70.0 ± 3.2	62.0 ± 3.4	55.5 ± 3.5	60.5 ± 3.5	55.3 ± 0.8 / 74.1 ± 0.7
Spirit LM ([39])	X	54.5 ± 3.5	69.5 ± 3.3	67.0 ± 3.3	54.5 ± 3.5	53.5 ± 3.5	55.5 ± 3.5	61.0 ± 0.8 / 82.9 ± 0.6
Spirit LM Expr. ([39])	X	73.5 ± 3.1	81.0 ± 2.8	85.0 ± 2.5	54.5 ± 3.5	56.0 ± 3.5	64.0 ± 3.4	56.9 ± 0.8 / 75.4 ± 0.7
- Ōurs								
Baseline (S3 token)	1	49.5 ± 3.5	48.8 ± 3.5	48.8 ± 3.5	49.5 ± 3.5	55.3 ± 3.5	49.5 ± 3.5	$54.4{\pm}0.8$ / $63.0{\pm}0.8$
TASLM 1B (token)	1	59.0 ± 3.5	68.0 ± 3.3	70.5 ± 3.2	61.0 ± 3.4	52.0 ± 3.5	54.0 ± 3.5	$64.2{\pm}0.8$ / $88.9{\pm}0.5$
TASLM 1B (embedding)	1	57.5 ± 3.5	67.0 ± 3.3	75.5 ± 3.0	50.0 ± 3.5	47.0 ± 3.5	49.0 ± 3.5	$64.0{\pm}0.8$ / $89.5{\pm}0.5$

 segments altered. These alterations include changes in speaker, gender, environment (e.g., room acoustics), or sentiment in the middle of the utterance. The SLM serves as an anomoly detector that aims to distinguish between the pairs of *positive* and *negative* samples. The distinction is based on the likelihood score given by each SLM, which is then evaluated with the overall precision between the ground truth and the prediction.

StoryCloze for Semantic Evaluation To evaluate the SLMs' ability to comprehend semantic coherence and logical reasoning, we employ the spoken version of StoryCloze test (sSC) and the Topic StoryCloze test (tSC) assembled by [17]. Assessment of narrative understanding involves presenting a four-sentence story setup, followed by two possible endings. These tasks require the model to select the most appropriate conclusion, thereby testing its grasp of causal and temporal relationships within a narrative. Similarly to SALMON, we measure the accuracy of the distinctions based on the likelihood scores.

A.2.3 REPORT OF STANDARD DEVIATIONS

We report the standard deviations of our tables in the main text to allow further investigation.

Table 9: Results with standard deviations of Table 1

Method	Bitrate		QUALITY		SIMILARITY				
Method	Dittate	WER ↓	UTMOS	DNSMOS	ViSQOL	Drtn. Con.	Spkr. Sim.	MUSHRA	
Ground Truth	256k	2.1%±0.07	4.09 ± 0.32	$3.84{\pm}0.26$	-	-	-	76.6±15.9	
E1 [0]	1500	$5.1\%\pm0.11$	1.58 ± 0.34	3.26 ± 0.24	3.46 ± 0.28	0.94 ± 0.003	0.63 ± 0.10	-	
Encodec [9]	3000	$2.6\% \!\pm\! 0.08$	$2.35{\pm}0.53$	$3.48{\pm}0.25$	$3.81 {\pm} 0.27$	$0.96 {\pm} 0.002$	0.78 ± 0.07	25.6 ± 18.6	
	500	$5.2\% \pm 0.11$	1.27 ± 0.05	2.99 ± 0.17	2.80 ± 0.24	0.94 ± 0.003	0.35 ± 0.09	-	
SpeechTokenizer [59]	2000	$3.0\% \pm 0.08$	3.56 ± 0.43	$3.60 {\pm} 0.28$	$3.65{\pm}0.22$	$0.97 {\pm} 0.002$	$0.80 {\pm} 0.06$	53.9 ± 22.9	
	4000	$2.5\% \!\pm\! 0.08$	3.90 ± 0.36	3.76 ± 0.28	4.03 ± 0.17	$0.98 {\pm} 0.002$	$0.92 {\pm} 0.04$	-	
Mimi [10]	1000	3.1%±0.09	3.60 ± 0.37	3.60 ± 0.30	3.62 ± 0.26	0.96 ± 0.002	$0.82{\pm}0.06$	67.6±19.8	
S3 token (topline) [11]	600	$3.0\%\pm0.09$	4.18 ± 0.27	3.90±0.24	3.30 ± 0.26	0.96 ± 0.002	0.82 ± 0.09	70.2±17.0	
Text-only (baseline)	~ 50	$5.9\% \pm 0.11$	$4.31 {\pm} 0.16$	$4.11 {\pm} 0.22$	$2.44 \!\pm\! 0.23$	$0.57{\pm}0.006$	0.78 ± 0.09	42.6 ± 27.1	
TASTE (ours)	~ 150	$4.4\% \!\pm\! 0.11$	$4.29 \!\pm\! 0.18$	$4.10{\pm}0.22$	$3.05 {\pm} 0.26$	$0.91 {\pm} 0.003$	$0.80 {\pm} 0.08$	68.3 ± 17.1	

Table 10: Results with standard deviations of Table 2.

Method	Finetuned / base	C	ONTINUATIO	ON	LIKELIHOOD		
Method	parameters	GPT-40	UTMOS	Human	SALMON	StoryCloze	Overall
Cascade							
Cascade (LLaMA3.2-1B $^{\alpha}$)	-	3.15 ± 1.27	4.25 ± 0.22	4.00 ± 1.28	-	-	-
Cascade (LLaMA2-7B $^{\beta}$)	-	3.43 ± 1.27	$4.25{\pm}0.25$	$3.98{\pm}1.29$	-	-	-
Spoken LMs							
TWIST 1.3B [17]	$1.3B / 1.3B^{\theta}$	1.48 ± 0.70	$3.25{\pm}0.48$	1.95 ± 1.01	62.5 ± 1.4	61.5 ± 0.5	62.0 ± 0.7
TWIST 7B [17]	$7B / 7B^{\gamma}$	1.44 ± 0.70	3.27 ± 0.52	2.04 ± 0.91	63.4 ± 1.4	64.7 ± 0.5	64.1 ± 0.7
Spirit LM [39]	$7B / 7B^{\beta}$	2.79 ± 1.06	3.41 ± 0.19	$2.38{\pm}0.81$	59.1 ± 1.4	72.0 ± 0.5	65.6 ± 0.7
Spirit LM Expr. [39]	$7B / 7B^{\beta}$	1.90 ± 1.03	3.40 ± 0.30	2.41 ± 0.96	69.0 ± 1.3	66.2 ± 0.5	67.6 ± 0.7
Baseline (S3 token)	$-45M/1.3B^{\alpha}$	1.37 ± 0.87	4.04±0.27	2.84 ± 1.11	50.2±1.4	58.7±0.6	54.5±0.8
TASLM 1B (token)	$45M / 1.3B^{\alpha}$	3.08 ± 1.37	4.07 ± 0.28	3.93 ± 1.30	60.8 ± 1.4	76.5 ± 0.5	68.7 ± 0.7
TASLM 1B (embed.)	$45M / 1.3B^{\alpha}$	$3.16{\pm}1.33$	$4.22{\pm}0.21$	$4.16{\pm}1.20$	57.7 ± 1.4	76.7 ± 0.5	67.2 ± 0.7

Base models: $^{\alpha}$ LLaMA3.2-1B, $^{\beta}$ LLaMA2-7B, $^{\gamma}$ LLaMA-7B, $^{\theta}$ OPT-1.3B

Table 11: Results with standard deviations of Table 3.

Method	Mode	Web Q.	LLaMA-Q.
Mini-Omni 0.5B(T→T)	T	21.3±0.9	39.0±2.8
Mini-Omni 0.5B [52]	T+A	4.5 ± 0.5	11.6 ± 1.8
Helium 7B (text)	T -	32.3 ± 1.0	75.0±2.5
Moshi 7B [10]	T+A	26.6 ± 1.0	62.3 ± 2.8
LLaMA3.1-8B-Instruct	T -	60.4 ± 1.1	71.7±2.6
Llama-Omni-8B [14]	T+A	35.5 ± 1.1	67.3 ± 2.7
LLaMA3.2-1B [†]	T -	24.0 ± 0.9	51.0±2.9
TASLM 1B (embed.) [†]	T+A	27.1±1.0	57.6±2.9

 $^{^\}dagger\textsc{We}$ apply few-shot learning to facilitate question answering

A.3 TRAINING DETAILS

We separate the training process into the two phases: *deriving TASTE tokenization* and *conducting spoken language modeling with TASTE*. In the tokenization phase, only the Aggregator, Quantizer, and the UnitDecoder is trainable. We use the Adam [24] optimizer and the learning rate is set to 0.0016. The batch size is set to 160 seconds on each of the 8 NVIDIA A6000 GPUs we used. Note that in the first 2 epochs the quantization is not applied. From the beginning of the third epoch, quantization is applied and the Quantizer starts to be updated. We train the TASTE tokenizer for 5 epochs, which takes about 2 days for learning, with the learning rate gradually decayed.

As for the spoken language modeling training phase, we use the AdamW [31] optimizer, the Consine scheduler with the learning rate set to 1e-5. We use 8 Nvidia A6000 GPUs for training. The total batch size summation over the GPUs is set to 768 samples with the gradient accumulation steps set to 2. To reduce the memory overhead and the computational cost, we employ bfloat16 mixed precision during training. Tools such as DeepSpeed [42] and Liger Kernel [19] are also applied to speed up the fine-tuning process of the SLM.

A.4 EVALUATION DETAILS

A.4.1 HUMAN EVALUATION

We conduct human listening tests through Amazon Mechanical Turk. In each experiment, we randomly select the same 20 samples from each method; and for each sample we collect more than 10 evaluation scores across different human evaluators.

MUSHRA In Table 1, we have shown our result of the MUSRHA human listening test [46]. Following [59], we conduct the evaluation with a hidden reference but without a lowerpass-filtered anchor. We instruct evaluators to rate the perceptual quality of the given samples with respect to the ground truth on a scale of 1 to 100.

Speech Continuation MOS In Table 2, we mention that we have conducted the human listening test to evaluate the overall performance of the speech continuations. Here, we present the instruction for human speech continuation MOS evaluation as follows:

Instruction for Human Speech Continuation MOS Evaluation

In this test, each sample will contain a short audio clip called "prompt" (3 seconds) and a longer audio clip called "prompt+continuation" (\sim 15 seconds).

You will be asked to rate the speech quality of the "prompt+continuation" audio clip, specifically focus on the "continuation" part.

The rating should be based on how likely you think that the long audio is a proper continuation of the "prompt" audio.

Specifically, the rating should be based on the following scale:

- 1: Bad The "continuation" is not distinguishable or not natural.
- 2: Poor The "continuation" is 25% distinguishable.
- 3: Fair The "continuation" is 50% distinguishable and natural.
- 4: Good The "continuation" is 75% distinguishable and natural.
- 5: Excellent The "continuation" is distinguishable, meaningful, and natural.

Distinguishable means that the words in the "continuation" is distinguishable.

Natural means that the "continuation" sounds like a real human voice and a natural continuation of the prompt without considering the content of the speech.

Meaningful means that you can not only distinguish the words but also understand the meaning of the whole "prompt+continuation".

A.4.2 GPT-40 FOR MOS EVALUATION

As introduced in Section 4.1.2, we use GPT-40 to assign MOS scores to the speech continuation results [7, 28]. Here, we describe the detailed procedure. First, whisper-large-v3 is applied to transcribe the generated speech. Then, given the transcription, the text content from the prompt audio, and the instruction template, GPT-40 can produce a score between 1 and 5. The instruction template is provided below:

Instruction Prompt for GPT-40 MOS Evaluation

```
The task is evaluating the relevance and likelihood of the
predicted text continuation, given the text prompt. You should
also consider whether the meaning of the text continuation is
making sense. The text prompt is:
"{prompt}"
 and the text continuation is :
"{content}"
You must give an overall rating from 1 to 5. The rating guideline
is as below:
1: The text continuation is very unlikely and irrelevant to the
text prompt.
2: The text continuation is unlikely and marginally relevant to
the text prompt.
3: The text continuation is moderately likely and relevant to the
text prompt.
4: The text continuation is likely and relevant to the text
prompt.
5: The text continuation is very likely and highly relevant.
You should take the following steps to provide the score:
First: briefly analyze the sample with the above definition.
Second: MUST follow the output format as: I would rate the score
```

A.5 TACKLING THE VOCABULARY MISMATCH

The vocabulary mismatch problem lies in the fact that the vocabulary sets are different between the ASR and the LLM, and TASTE is aligned with the text transcription tokens from ASR. Consider that given a text transcription \boldsymbol{v} and the vocabulary sets of ASR and LLM denoted as \mathbb{V}^{asr} and \mathbb{V}^{llm} , the ASR tokenized sequence $\boldsymbol{v}^{\text{asr}} = [v_1^{\text{asr}}, v_2^{\text{asr}}, \dots, v_N^{\text{asr}}], v_i^{\text{asr}} \in \mathbb{V}^{\text{asr}}$ and the LLM tokenized sequence $\boldsymbol{v}^{\text{llm}} = [v_1^{\text{llm}}, v_2^{\text{llm}}, \dots, v_M^{\text{llm}}], v_i^{\text{llm}} \in \mathbb{V}^{\text{llm}}$ can be different in terms of token ids and sequence lengths. Since the TASTE token and embedding are aligned with $\boldsymbol{v}^{\text{asr}}$, we need to derive a method to align them with $\boldsymbol{v}^{\text{llm}}$ for text-aligned speech-text modeling. Notice that $\boldsymbol{v}^{\text{asr}}$ and $\boldsymbol{v}^{\text{llm}}$ both represent \boldsymbol{v} , we propose to mitigate the issue through word-level grouping, averaging, and aligning, detailed in Algorithm 1. By crafting TASTE speech tokenization into the word level, we are able to align it with the text tokens of the LLM, denoted as \tilde{q}, \tilde{z} . In practice, we also adopt the word-level averaging technique during the TASTE tokenization training phase, ensuring that the word-level TASTE tokenization facilitates high-quality reconstruction.

973

1009 1010

1011 1012

1013

1014

1015

1016

1017

1023 1024 1025

Algorithm 1 Aligning TASTE with LLM Tokenization via Word-Level Techniques

```
1: Initialization:
974
                           Text transcription v = [word_1, word_2, \dots, word_W]
975
                           ASR tokens of the transcription \boldsymbol{v}^{\text{asr}} = [v_1^{\text{asr}}, v_2^{\text{asr}}, \dots, v_N^{\text{asr}}] TASTE embedding \hat{\boldsymbol{z}} = [\hat{z}_1, \hat{z}_2, \dots, \hat{z}_N] LLM tokens of the transcription \boldsymbol{v}^{\text{llm}} = [v_1^{\text{llm}}, v_2^{\text{llm}}, \dots, v_M^{\text{llm}}]
976
977
978
                 2: procedure WORDLEVELGROUPING(v, v^{\text{asr}}, \hat{z}, v^{\text{llm}})
979
                             Since v^{asr} is a token sequence represents v, we can easily group it by words:
                 3:
                             v_{\text{grouped}}^{\text{asr}} \leftarrow \underbrace{[(v_1^{\text{asr}}, v_2^{\text{asr}}, v_3^{\text{asr}})_1, \underbrace{(v_4^{\text{asr}})_2, \dots, (v_{N-1}^{\text{asr}}, v_N^{\text{asr}})_W]}_{\text{word}_1} \quad \triangleright \text{Group } v^{\text{asr}} \text{ by the words o}
With the word-level grouping from v_{\text{grouped}}^{\text{asr}}, we can group TASTE embedding \hat{z} as well:
980
                 4:
                                                                                                                                         \triangleright Group v^{\rm asr} by the words of v
981
982
                 5:
983
                 6:
                             \hat{z}_{\text{grouped}} \leftarrow [(\hat{z}_1, \hat{z}_2, \hat{z}_3)_1, (\hat{z}_4)_2, \dots, (\hat{z}_{N-1}, \hat{z}_N)_W]
984
                             Finally, we can group v^{\text{llm}} following the similar procedure of grouping v^{\text{asr}}:
                 7:
985
                             \boldsymbol{v}_{\text{grouped}}^{\text{llm}} \leftarrow \underbrace{[(v_1^{\text{llm}}, v_2^{\text{llm}})_1, \underbrace{(v_3^{\text{llm}}, v_4^{\text{llm}})_2}_{\text{word}_2}, \dots, \underbrace{(v_{M-2}^{\text{llm}}, v_{M-1}^{\text{llm}}, v_M^{\text{llm}})_W}]}_{\text{word}_W}
                 8:
986
987
                             Due to the vocabulary mismatch, the grouping of v_{\text{grouped}}^{\text{llm}} is different from v_{\text{grouped}}^{\text{asr}}, \hat{z}_{\text{grouped}}.
                 9:
988
                10: end procedure
989
                11: procedure WORDLEVELAVERAGING(\hat{z}_{\text{grouped}})
990
                12:
                             \bar{z} \leftarrow []
                                                                                                                                                 ▷ Initialize a new sequence
991
                13:
                             for word group index i \leftarrow 1 to W do
992
                14:
                                     word group (\hat{z}_j, \dots, \hat{z}_k) \leftarrow \hat{z}_{\text{grouped}}[i]
993
                                     \bar{z}_{[j:k]} \leftarrow \text{Average}((\hat{z}_j, \dots, \hat{z}_k))
                15:

    Average the word group

994
                16:
                                    append \bar{z}_{[i:k]} to \bar{z}
995
                17:
                             end for
                             Resulting in word-level TASTE embedding \bar{z} \in \mathbb{R}^{W \times d_z}, where W is the word length of v.
996
                18:
997
                19: end procedure
               20: procedure ALIGNWORDLEVELEMBEDDINGWITHLLM(ar{z}, v_{	ext{grouped}}^{	ext{llm}})
998
                21:
999
                             \tilde{z} \leftarrow []
                                                                                                                                                 22:
                             for word group index i \leftarrow 1 to W do
1000
                                    \text{word group } (v_j^{\text{llm}}, \dots, v_k^{\text{llm}}) \leftarrow \boldsymbol{v}_{\text{grouped}}^{\text{llm}}[i]
                23:
1001
                                    M \leftarrow \text{Length}((v_j^{\text{llm}}, \dots, v_k^{\text{llm}}))
                24:
                                                                                                                                  ▶ Get the length of the word group.
1002
                                    for m \leftarrow 1 to M do
                25:
                                                                                                                   \triangleright add M \times \bar{z}[i] into the aligned sequence \tilde{z}
1003
                26:
                                           append \bar{z}[i] to \tilde{z}
1004
                                    end for
                27:
1005
                28:
                             end for
                29: end procedure
                30: return The LLM-aligned word-level TASTE embedding \tilde{z} and its codes form \tilde{q}
1008
```

A.6 DISCUSSION ON THE USAGE OF LLM

We discuss our usage of LLM following the conference's policy. We use an AI assistant (ChatGPT specifically) to polish English prose, including grammar correction, wording refinements, consistent terminology and hyphenation, and minor restructuring for clarity and flow. The assistant suggests alternative phrasings, section bridges, and standard disclosure/impact wording based on author-provided content. It does not generate novel ideas, claims, analyses, figures, code, or results, and it does not access proprietary data. All technical content and conclusions are our own, and we review and edit all AI-assisted text and take full responsibility for the final manuscript.