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ABSTRACT

Recent efforts target spoken language models (SLMs) that not only listen but also
speak for more natural human-LLM interaction. Joint text-speech modeling is a
promising direction to achieve this. However, the effectiveness of recent speech
tokens for joint modeling remains underexplored. To address this, we introduce
Text-Aligned Speech Tokenization and Embedding (TASTE), a method that di-
rectly addresses the modality gap by aligning speech token with the corresponding
text transcription during the tokenization stage. We propose a method that can
achieve this through an attention-based aggregation mechanism and with speech
reconstruction as the training objective. We have conducted extensive experi-
ments to demonstrate that TASTE can preserve essential paralinguistic information
while dramatically reducing the token sequence length. Moreover, TASTE enables
straightforward joint spoken language modeling by using Low-Rank Adaptation
on the pre-trained text LLM. Our experimental results show that joint modeling
with TASTE outperforms other pre-trained SLMs in tasks such as speech contin-
uation and likelihood-based next-speech selection, showcasing its effectiveness.
To our best knowledge, TASTE is the first end-to-end approach that utilizes a
reconstruction objective to learn a joint tokenization and embedding tailored for
text-speech spoken language modeling. Our demo, code, and models are available
at https://anonymous-ai-work.github.io/TASTE-SpokenLM.github.io.

1 INTRODUCTION

Spoken language modeling (SLM) is an intriguing direction nowadays that aims at creating models
that can not only listen but also speak (Lakhotia et al., 2021; Nguyen et al., 2023; Défossez et al., 2024;
Fang et al., 2024; Arora et al., 2025). Typically, building an SLM requires two stages: first, deriving
speech tokenizations; second, training a language model based on the speech tokens. For the speech
tokens, previous approaches either apply self-supervised learning (SSL) representations following by
discretization techniques (Baevski et al., 2020; Lakhotia et al., 2021; Nguyen et al., 2023; Hassid et al.,
2023) or reuse units from neural codec models like EnCodec and SoundStream (Défossez et al., 2023;
Zeghidour et al., 2021; Kumar et al., 2023; Siuzdak et al., 2024). Although autoregressive modeling
with these speech tokens shows great potential in text-to-speech (TTS) (Wang et al., 2023; Xin et al.,
2024a; Kim et al., 2024; Chen et al., 2024), previous SLMs that model only speech tokens (Lakhotia
et al., 2021; Nguyen et al., 2023) have been shown to lack semantic fidelity (Lin et al., 2024).

To bridge this gap, one promising direction is to leverage text—which is rich in semantics—during
spoken language modeling. TWIST (Hassid et al., 2023) shows that SLMs can benefit from initializing
with text LLMs. Building on this idea, recent work has shifted toward joint text–speech modeling
to enhance semantic coherence in generated speech. Such approaches typically adopt a hybrid
decoding scheme that generates both text and speech tokens. However, combining the two modalities
introduces a length mismatch, since speech token sequences are usually much longer than their
textual counterparts. Common remedies include interleaving text and speech tokens (Nguyen et al.,
2025) or inserting padding to synchronize sequence lengths (Défossez et al., 2024; Xie & Wu, 2024a;
Fang et al., 2024; Xie & Wu, 2024b), but these solutions rely on additional alignment procedures or
heuristic rules, making joint modeling more complex.

As hybrid text–speech decoding becomes the prevailing paradigm for joint SLM (Défossez et al.,
2024; Xie & Wu, 2024a; Fang et al., 2024; Li et al., 2025; Xie & Wu, 2024b), the design of speech
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Figure 1: The concept overview. Conventional methods extract speech tokens solely from speech,
inevitably carries overlapped information with text tokens and induces length-mismatch problem
when conducting joint text-speech modeling. By taking dual modalities as input, we generate speech
tokenization that is aligned with text, facilitating straightforward and effective joint modeling.

tokens should be reconsidered in light of this setting. This motivates the development of more
effective joint tokenization methods, which can be derived under the following two considerations:
1) a speech token should avoid redundantly encoding text content—already captured by the text
tokens—and instead focus on conveying paralinguistic information; and 2) a straightforward one-to-
one correspondence between text and speech tokens is preferable, as it allows SLMs to generate a
text token and a speech token simultaneously without any heuristics or explicit alignments applied,
mitigating the length mismatch issue during the tokenization stage.

In this work, we introduce Text-Aligned Speech Tokenization and Embedding (TASTE), a special
type of joint tokenization tailored for text-speech joint spoken language modeling. By acknowledging
that the length mismatch introduces additional complexity in joint modeling, we develop our speech
token to be aligned with its corresponding text transcription tokens. To achieve this, we first obtain
the textual transcription of a speech with the ASR model; then we derive the speech token based on
the transcription through a specialized cross-attention mechanism for speech reconstruction. Note
that the full process can be accomplished in an end-to-end manner, with no explicit speech-text
alignment required. Unlike previous speech tokens that are developed under a fixed stride with fixed
down-sampling rate, our speech token has dynamic frequency as it is text-aligned. Figure 1 shows an
overall concept of TASTE, illustrating how our joint tokenization allows effective joint modeling.

To evaluate the effectiveness of TASTE, we first conduct extensive experiments on speech reconstruc-
tion. Our results on LibriSpeech (Panayotov et al., 2015) show that TASTE not only resynthesizes
speech in high quality, but also retains similarity to the original speech. TASTE achieves high-end
reconstruction at an extremely low bit rate (∼150 bps); while the other comparable methods are
often more than thousands of bps. We attribute the efficiency to the involvement of text tokens
during encoding and decoding, and our speech tokens focus on carrying paralinguistic information,
which is backed up by the demonstration that TASTE allows simple text-aligned speech editing. By
exchanging the partial text-aligned speech tokens from two different utterances with the same content,
we demonstrate that the paralinguistic information such as duration and tone can be exchanged
precisely following the words being exchanged, resulting in natural edited speech.

On the other hand, we demonstrate that TASTE successfully allows effective spoken language
modeling. We perform straightforward joint modeling with TASTE under Low-Rank Adaptation (Hu
et al., 2021). We first perform speech continuation experiments with 3-second speech prompts given.
The evaluation is three-fold. We use GPT-4o for evaluating the semantic aspect; UTMOS (Saeki et al.,
2022) for the acoustic aspect; and the human listening test for the general evaluation. Results show
that our SLMs not only generates natural, meaningful speech continuations, but also outperforms the
other 7B pre-trained SLMs across all the continuation evaluation aspects with 1.3B parameters. We
also evaluate our SLMs on two benchmarks, SALMON (Maimon et al., 2024) and StoryCloze (Hassid
et al., 2023) and our results show that our SLMs achieve comparable performance compared to the
other text-speech joint modeling methods. Moreover, we show that our pretrained SLM can perform
spoken question answering under the few-shot scenario.

In summary, we derive TASTE, a specialized tokenization approach for text–speech spoken language
modeling. By aligning speech tokens with their text counterparts, TASTE provides a simple yet
effective form of joint tokenization. Our results highlight joint tokenization as a key factor in joint
modeling, offering a new perspective that may foster further research into more effective designs.
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2 RELATED WORK

Recent SLMs often require speech tokenization to conduct language modeling with the next prediction
objective as the text LLMs. Unlike text, the speech signal is continuous and lengthy, making it difficult
to derive proper speech tokenization for spoken language modeling. Common approaches may utilize
self-supervised learned (SSL) speech models followed by quantization techniques to extract speech
tokens (Baevski et al., 2020; Hsu et al., 2021; Lakhotia et al., 2021; Hassid et al., 2023; Nguyen
et al., 2025). In addition, audio or speech codec models have also been used for tokenization in recent
SLMs (Zeghidour et al., 2021; Défossez et al., 2023; 2024; Zhang et al., 2024). These models are
designed for resynthesis, where the speech decoders are jointly learned with the encoders, making
them easy to use for developing SLMs.

With speech tokenization, GSLM (Lakhotia et al., 2021) first demonstrates the possibility of building
an SLM that can generate speech. TWIST (Hassid et al., 2023) further shows that SLM can benefit
from initialization with the text-pretrained LLM. With regard to the huge success of text-only LLMs,
recent work shifts the focus towards joint speech-text modeling (Défossez et al., 2024; Xie & Wu,
2024a). Challenged by the modality gap between speech and text tokens, different techniques are
introduced to facilitate joint modeling. Spirit LM (Nguyen et al., 2025) adopts an interleaving
strategy; moshi (Défossez et al., 2024) trains its own tokenizer with a reduced token frequency.
Moreover, delayed or sequential generation are introduced for joint modeling (Xie & Wu, 2024a).

Despite the increasing demand of joint speech-text modeling, we do not find any work discussing
the effectiveness of current speech tokenization for it. Moreover, the speech token is often derived
with speech or audio-only data 1. Nonetheless, we observe that recent work is trying to mitigate
the modality gap by reducing speech token frequency (Défossez et al., 2024; Zeng et al., 2024) or
conducting additional training stage for text-speech alignment (Xie & Wu, 2024a). This motivates us
to design a speech tokenization that is directly aligned with its text counterpart, tackling the mismatch
issue during the tokenization stage.

In TASTE, we utilize a specialized mechanism based on attention to aggregate the encoder represen-
tations. We clarify that the text-speech cross-attention mechanism has also been used for fine-grained
control of TTS. More specifically, Chen & Rudnicky (2022) propose content-style cross-attention to
indicate their text-speech cross-attention mechanism that enables style transfer in TTS. Although both
utilize a specialized text-speech cross-attention mechanism, the design choices and problem formula-
tions are completely different. We attribute of our main novelty to inventing a text-aligned speech
tokenization and embedding for joint spoken language modeling, and the text-speech cross-attention
mechanism is considered and shown to be a clean and effective way of achieving it.

3 METHOD

We propose text-aligned speech tokenization and embedding (TASTE) to facilitate effective joint
speech-text spoken language modeling. Here, we first introduce how we derive our joint tokenization
in Section 3.1, and then discuss how we use TASTE for spoken language modeling (§ 3.2).

As depicted in Figure 2, TASTE is comprised of the two main components: the text-aligned speech
tokenizer (§ 3.1.1) that produces the text-aligned speech tokenization; and the speech decoder (§ 3.1.2)
to reconstruct speech based on the text token and the TASTE speech token aligned with it. The
training objective of speech reconstruction is described in Section 3.1.3.

3.1 BUILDING TASTE

3.1.1 TASTE SPEECH TOKENIZER

In TASTE, the speech tokenizer, denoted as Tokenizer(·), is designed to generate the text-aligned
speech tokenization and embedding with the speech-text pair X = (u,v) taken as input, where
v represents the textual transcription of the speech utterance u, which can be easily obtained
through an automatic speech recognition (ASR) system. Recent developments in robust and efficient
ASR (Radford et al., 2023; Gandhi et al., 2023) allow us to focus on discussing how to derive the

1An exception is CosyVoice (Du et al., 2024a). We discuss it in Section 3 since it is related to our method.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pre-trained
Speech Encoder

(Whisper)
Attention-Based

Aggregator

key

value query
how are you

TASTE

(ASR)

Speech Decoder

RVQ Quantizer

are youhow

§ 2.1.1  TASTE Speech Tokenizer § 2.1.2  TASTE Speech Decoder

§ 2.1.3  Speech Reconstruction Training Objective

Figure 2: The overall framework of our text-aligned speech tokenization and embedding. The
left side illustrate the process of obtaining the TASTE tokenization ẑ, detailed in Section 3.1.1; while
the right side demonstrate how we reconstruct the speech with TASTE (Section 3.1.2). The training
objective for our speech reconstruction is discussed in Section 3.1.3.

text-aligned speech token effectively by assuming that v is of sufficient quality. The TASTE speech
tokenizer is composed of three major components: an encoder, an aggregator, and a quantizer.

The encoder Encoder(·) contains L layers of Transformer (Vaswani et al., 2017) encoder blocks
and is used to extract high-dimensional speech representation. We employ the pre-trained Whisper
ASR encoder (Radford et al., 2023) as our speech encoder, and it is frozen during training. For
an input speech utterance u, the encoder produces a sequence of hidden states from each layer
[h(1),h(2), . . . ,h(L)]. In our experiments, we retain the last hidden layer representation h(L) and
the shallow representation h(l) from the first half of the hidden representations of the encoder for
later usage, denoted as:

h(L),h(l) = Encoder(u), where 1 ≤ l ≤
⌊
L
2

⌋
.

Note that both of the hidden representations h(L),h(l) ∈ RT×dh have their length denoted as T and
the hidden dimension indicated by dh.

The hidden representations extracted from the encoder are then passed to the aggregator. The
aggregator is designed to obtain a more compressed speech representation z that is aligned in length
with the text transcription v. Consider that v = [v1, v2, . . . , vN ], vi ∈ V is a text token sequence
with length N , the input and output of the aggregator can be denoted as:

z = Aggregator(v,h(L),h(l)), where z ∈ RN×dz ,v ∈ VN , and h(L),h(l) ∈ RT×dh .

To make the speech representation z text-aligned, we conduct a simple yet effective attention
mechanism based on the three inputs. Consider that the original multi-head attention in Vaswani et al.
(2017) is denoted as MultiHead(Q,K, V ), our first layer attention in the aggregator takes:

Q = text transcription v, K = encoder last hidden h(L), V = encoder shallow hidden h(l).

By doing so, the length of our first multi-head attention output should follow the text transcription
v. Note that the query of the following layers becomes the output from the previous layer. In
addition, intuitions of using the encoder’s last hidden representation as keys, and the shallow hidden
representation as values can be described as follows: 1) In Transformer-based ASR models, the last
hidden states often encode rich speech-text alignment cues; sometimes the cross-attention weight
matrices can even be exploited as soft word-alignment maps (Radford et al., 2023; Gandhi et al., 2023).
2) The shallow representation has been shown to support high-quality speech reconstruction even
when the quantization is applied (Du et al., 2024a;b). Based on the above observations, we design
our aggregator that can use the soft attention maps obtained from the last encoder representations and
the text transcriptions, to aggregate the shallow encoder representations that have been shown to be
beneficial for high-end speech reconstruction.

After getting the text-aligned representation, the quantizer Quantizer(·) is adopted to discretize the
text-aligned representation. We use the residual vector quantization (RVQ) to allow coarse-to-fine
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quantization. Given the text-aligned speech representation z and the quantizer containing R residual
vector quantization layers, we generate:

q, ẑ = Quantizer(z), q = [q(1), q(2), . . . , q(R)], ẑ =

R∑
r=1

ẑ(r) (1)

where each q(r) ∈ CN denotes the r-th layer code sequence with code set C; and the quantized
embedding ẑ to be the summation over each layer of the codebook vectors. Note that both of the
code sequence and the quantized speech embedding ẑ are text-aligned, with the lengths to be N .

3.1.2 TASTE SPEECH DECODER

The speech decoder aims to perform speech reconstruction conditioned on the text token sequence
and the text-aligned speech tokenization. As shown in Figure 2, the text and speech tokens are aligned
in lengths and being fed into the speech decoder after weighted sum in an autoregressive manner. The
speech decoder is composed of the two components: the unit decoder and the unit-to-speech vocoder.

The unit decoder UnitDecoder(·) is a Transformer-based decoder that takes the text token sequence
v and the aligned speech embedding ẑ as condition and predicts the speech unit y for reconstruction:

y = UnitDecoder(ẑ,v). (2)

Note that the additional speaker embedding is also taken as input to facilitate global speaker voice
control in our spoken language models (Ju et al., 2024). After we generating the speech unit y, we
use a unit-to-speech vocoder to further transform the unit into the reconstructed speech.

3.1.3 TRAINING OBJECTIVE

Similar to other reconstruction-based speech tokens (Zhang et al., 2024; Liu et al., 2025), we derive
TASTE by training it for speech resynthesis. To achieve this, we extract the speech unit ytarget with
length T ′ from the original speech u as the target unit for our speech tokenizer and speech decoder.
Given the text transcription v, the TASTE speech embedding ẑ, and the unit from the original speech
ytarget as the target, the speech reconstruction through the tokenizer and the unit decoder parametrized
by θ under the next prediction schema can be considered as minimizing the cross-entropy loss below:

Lce(θ) =
1

|T ′|

T ′∑
t=1

−log pθ(y
target
t

∣∣ẑ,v;ytarget
<t ) (3)

On the other hand, we employ the quantization loss as well to tokenize the continuous representation
z extracted from the encoder-aggregator. Following prior works (Défossez et al., 2023; Zeghidour
et al., 2021), given that z(r) is the r-th residual and ẑ(r) indicates the r-th quantized residual, the the
commitment loss is defined as:

Lrvq(θ) =

R∑
r=1

∥z(r) − ẑ(r)∥. (4)

By summation over both losses, we formulate the overall loss for training TASTE as:

Ltaste = Lce + Lrvq. (5)

Note that to allow gradient to back-propagate from the unit decoder through the tokenizer, the
straight-through estimation technique is applied towards the quantization process during traning.

3.2 TASTE FOR SPOKEN LANGUAGE MODELING

Next, we describe how we conduct effective spoken language modeling with TASTE. Following
previous work (Hassid et al., 2023; Nguyen et al., 2025), we perform pre-training on speech data. The
text transcription of the speech data is also used for joint speech-text pre-training of our text-aligned
spoken language model (TASLM). Since TASTE tokenization already aligns with the text token
sequence, we can conduct a straightforward joint modeling, as illustrated in Figure 1. To demonstrate
the robustness of TASTE, we perform two types of text-aligned spoken language modeling. First, we
build TASLMtoken over our text-aligned speech token q, discussed in Section 3.2.1. Then, we show
how we build TASLMemb with our text-aligned speech embedding ẑ, detailed in Section 3.2.2.
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3.2.1 MODELING TASTE TOKEN

As our speech tokens derived from the RVQ quantizer contain R layers of codes, we employ R
linear heads for multi-head prediction in our TASLMtoken. Namely, the TASLMtoken simultaneously
predicts the next text token and the corresponding R layers of speech tokens in each step. The overall
training objective follows the original next token prediction scheme, but with multiple predictions
across modalities at each step. Specifically, given the text transcription v and R layers of quantized
RVQ codes q, the multi-head next-token prediction training objective can be formulated as:

Ltoken(ϕ) =
1

|N |

N∑
i=1

(
−log ptext

ϕ

(
vi
∣∣v<i, q<i)+ R∑

r=1

−log p(r)
ϕ

(
q(r)
i

∣∣v<i, q<i)), (6)

with ϕ represents the parameter of the TASLMtoken, and p(r) is the r-th probability prediction for
the r-th RVQ code. As for inference, we directly sample the codes and the text simultaneously, and
transform the codes into the corresponding embedding for the speech decoder to generate speech.

3.2.2 MODELING TASTE EMBEDDING

Besides the token code sets, recent progress on latent modeling (Kim et al., 2024; Meng et al., 2024;
Sun et al., 2024; Fan et al., 2025) motivates us to conduct experiments on modeling our text-aligned
speech embedding. Referencing MELLE (Meng et al., 2024), we employ a linear layer that predicts
the mean vector µi and a log-magnitude variance vector log σ2

i , where i indicates the i-th frame
of the sequence. And the final predicted latent of frame i is denoted as ei = µi + σi ⊙ ϵ, where
ϵ ∼ N (0, I). Following MELLE, the straight-through estimator is applied to allow gradients to
back-propagate properly during training.

To facilitate latent prediction, we apply the regularization loss and the Kullback-Leibler (KL) diver-
gence loss druing training, which is described as follows:

Lreg(ψ) = ∥eψ − ẑ∥22, LKL =
1

2

N∑
i=1

dz∑
j=1

(
σi[j] + (µi[j]− ẑi[j])2)− 1− log σ2

i [j]
)
, (7)

where ψ indicates the parameter of TASLMemb, and dz is the dimension of our text-aligned embed-
ding ẑ. The regularization loss Lreg is adopted to predict close latent towards the target embedding
ẑ. The KL divergence loss calculates the KL divergence between the predicted latent distribution
and the target distribution. Following MELLE, we select the target distribution to be N (ẑi, I).
This allows simplification of LKL, which can then be approximated with the predicted vectors
µi, σi, and the target embedding ẑi. Finally, the overall loss along with the text loss is described as:

Lemb(ψ) = λreg · Lreg + λKL · LKL +
1

|N |

N∑
i=1

−log ptext
ψ

(
vi
∣∣v<i, ẑ<i), (8)

where λreg, λKL to be the weighted coefficients of the two losses, respectively.

4 EXPERIMENT SETUP

Model Configuration For our TASTE speech tokenizer, we initialize our encoder from Whis-
per (Radford et al., 2023). By doing so, we can reduce computational cost between obtaining the
ASR transcription and extracting the TASTE tokenization with the TASTE encoder frozen during
training. On the other hand, we use the S3 token from Du et al. (2024a) as the target unit for speech
reconstruction. Since their speech tokenization facilitates additional speaker embedding, we follow
the same procedure to obtain one. Adding speaker embedding allows global speaker voice control,
which is a reasonable and useful scenario for spoken language models. The unit-to-speech vocoder
is comprised of a flow model (Lipman et al., 2022; Mehta et al., 2022) and a HifiGAN. We use the
published pre-trained ones from Du et al. (2024a), and they are not involved in our training. For the
quantizer, we set the RVQ layer R = 4, the codebook size 512, and the codebook dimension to be
256. For the spoken language modeling, we follow previous work (Hassid et al., 2023) and initialize
our spoken language model from a text LLM. However, this introduces the vocabulary mismatch
problem between the ASR and LLM. We resolve this issue by using word-level TASTE tokenization
and embedding, which is detailed in Appendix A.4. Moreover, we conduct LoRA fine-tuning of our
TASLMs, with hyperparameters rank r = 64 and α = 128.

6
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Table 1: The speech tokenization evaluation results on the test-clean split of LibriSpeech. The
evaluation is separated into the QUALITY and the SIMILARITY assessments, as introduced in
Section 5.1.1. We use gray text to indicate the worst-performing methods in each metric. Freq.
indicates the number of tokens per second. All reported results already account for the effect of ASR
errors whenever textual transcriptions are involved (Text-only and TASTE).

Method Freq. Bitrate QUALITY SIMILARITY

WER ↓ UTMOS DNSMOS ViSQOL Drtn. Con. Spkr. Sim. MUSHRA
Ground Truth 16k 256k 2.1% 4.09 3.84 - - - 76.6

Encodecα
75 1500 5.1% 1.58 3.26 3.46 0.94 0.63 -
75 3000 2.6% 2.35 3.48 3.81 0.96 0.78 25.6
50 500 5.2% 1.27 2.99 2.80 0.94 0.35 -

SpeechTokenizerβ 50 2000 3.0% 3.56 3.60 3.65 0.97 0.80 53.9
50 4000 2.5% 3.90 3.76 4.03 0.98 0.92 -

Mimiγ 12.5 1000 3.1% 3.60 3.60 3.62 0.96 0.82 67.6
S3 tokenθ (topline) 25 600 3.0% 4.18 3.90 3.30 0.96 0.82 70.2
Text-only (baseline) ∼3 ∼50 5.9% 4.31 4.11 2.44 0.57 0.78 42.6
TASTE (ours) ∼3 ∼150 4.4% 4.29 4.10 3.05 0.91 0.80 68.3
α Défossez et al. (2023), β Zhang et al. (2024), γ Défossez et al. (2024), θ Du et al. (2024a)

Dataset We use two datasets–Emilia and LibriTTS–as our training datasets. Emilia (He et al., 2024)
is an in-the-wild dataset where the speech is web-scaled and the transcriptions are pseudo-labeled. We
use only the English subset of this multi-lingual corpus, which is about 40,000 hours. LibriTTS (Zen
et al., 2019) is a reading-style corpus based on LibriSpeech (Panayotov et al., 2015). We use all the
training splits in LibriTTS for training, which is approximately 600 hours of speech. In addition, the
test-clean split in LibriSpeech is used for evaluation purposes for our TASTE tokenizer and TASLMs.

5 RESULT

We separate our experimental results into two parts. Section 5.1 discusses how TASTE strikes a good
reconstruction quality while enables effective joint spoken language modeling; while Seciton 5.2
presents the additional results and ablation study of our joint tokenization and text-aligned SLM.

5.1 MAIN RESULTS

To demonstrate the benefits of our joint tokenization, we first evaluate the performance of TASTE
on speech reconstruction; then introduce how it allows effective spoken language modeling. For
simplicity, the evaluation metrics are introduced within each section.

5.1.1 TASTE FOR SPEECH RECONSTRUCTION

Evaluation We evaluate our joint tokenization on two aspects: QUALITY and SIMILARITY. For
QUALITY assessment, we use ASR-WER, UTMOS (Saeki et al., 2022), and DNS-MOS (Reddy
et al., 2021) as our metrics for evaluation. In ASR-WER, we use HuBERT-Large (Hsu et al., 2021)
as the ASR model to transcribe the reconstructed speech, and then calculate the word-error rate
(WER) on the transcription. 2 UTMOS and DNS-MOS are both neural-based MOS predictors.
While both evaluate the speech quality, the design purpose of DNS-MOS makes it more suitable for
evaluation regarding the noise levels. For SIMILARITY assessment, we measure ViSQOL, duration
consistency (Drtn. Con.), speaker similarity (Spkr. Sim.), and the MUSHRA human listening test
score. ViSQOL (Chinen et al., 2020)is a production-ready tool that predicts speech quality via spectro-
temporal image similarity comparisons. For the duration consistency, we first get the word-level
alignment of the transcriptions of the original and the reconstructed speech using Montreal Forced
Aligner (McAuliffe et al., 2017); then we calculate if the duration between each of the same words is
matched under a preset tolerance window, which is set to 50 milliseconds. In the MUSHRA human
listening test, we follow the original protocal (Series, 2014) to instruct evaluators to rate similarity
and quality on a scale of 1 to 100 with reference given.

2https://huggingface.co/facebook/hubert-large-ls960-ft
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Results Analysis Table 1 reports the results of speech reconstruction on LibriSpeech. To better
understand the effectiveness of TASTE, we highlight three main observations. 1) Since our tokens are
text-aligned, TASTE operates at the lowest frequency and bitrate among all tokenization methods. We
estimate these dynamic values by counting the total number of tokens and accumulating the duration
over the testing set. 2) Despite this extremely low bitrate, TASTE achieves on-par or even superior
performance to higher-bitrate methods in the quality assessment. In particular, TASTE yields lower
ASR-WER than the text-only baseline, which we attribute to speech tokens carrying paralinguistic
information that improves the naturalness of reconstructed speech. 3) In terms of similarity, TASTE
performs comparably to high-bitrate, fixed down-sampling methods across multiple metrics. The
inferior results on ViSQOL can be partly attributed to our use of a flow-based vocoder, as both
TASTE and the S3 token topline exhibit weaker ViSQOL performance—a phenomenon also observed
in Liu et al. (2025). This degradation on ViSQOL is not reflected in the MUSHRA listening test,
where TASTE attains competitive perceptual quality and similarity from a human perspective. In
general, TASTE significantly outperforms the text-only baseline, confirming that it carries sufficient
paralinguistic information to allow high-quality speech reconstruction.

5.1.2 TASTE FOR SPOKEN LANGUAGE MODELING

TASTE is designed specifically to enable effective joint spoken language modeling (SLM). To
examine its effectiveness, we train pretrained SLMs on top of TASTE following the methodology in
Section 3.2. In line with prior work (Nguyen et al., 2025; Lin et al., 2024), we evaluate these models
from two perspectives: speech continuation evaluation and likelihood-based evaluation.

Speech Continuation Evaluation First, each pretrained SLM is conditioned on 3-second speech
segments from LibriSpeech test-clean to generate speech continuations under their own decoding
schemes, following Hassid et al. (2023); Lin et al. (2024). The generated continuations are then
evaluated along two main aspects: semantic coherence and speech naturalness. For the semantic
aspect, we transcribe the continuations using ASR and ask GPT-4o to assign MOS scores based on
their coherence. For the speech naturalness aspect, we compute UTMOS as an objective score of
speech quality. In addition, human evaluators provide an overall MOS score that jointly considers
both coherence and naturalness. The detailed instructions given to GPT-4o and human evaluators are
provided in Appendix A.3.2.

Likelihood-Based Evaluation Following previous work (Hassid et al., 2023; Nguyen et al., 2025;
Lin et al., 2024), we also evaluate the SLMs through likelihood-based benchmarks, where the
accuracy score is based on whether the pretrained SLM chooses the correct continuation from the
two given speech utterances based on its output likelihoods. We adopt two established benchmarks
SALMON (Maimon et al., 2024) and spoken StoryCloze (Hassid et al., 2023; Mostafazadeh et al.,

Table 2: Pretrained SLM speech continuation and likelihood-based next-speech selection results.
The superscripts at the bottom of the table indicate the base models used by each SLM, indicated by
superscripts. Cascade models refer to the pipeline with ASR (Radford et al., 2023), text continuation
by LMs (Touvron et al., 2023), and TTS (Du et al., 2024a). This allow us to evaluate SLMs with
cascade models in continuation perspective.

Method
Finetuned / base CONTINUATION LIKELIHOOD

parameters GPT-4o UTMOS Human SALMON StoryCloze Overall
Cascade
Cascade (LLaMA3.2-1Bα) - 3.15 4.25 4.00 - - -
Cascade (LLaMA2-7Bβ) - 3.43 4.25 3.98 - - -

Spoken LMs
TWIST 1.3B (Hassid et al., 2023) 1.3B / 1.3Bθ 1.48 3.25 1.95 62.5 61.5 62.0
TWIST 7B (Hassid et al., 2023) 7B / 7Bγ 1.44 3.27 2.04 63.4 64.7 64.1
Spirit LM (Nguyen et al., 2025) 7B / 7Bβ 2.79 3.41 2.38 59.1 72.0 65.6
Spirit LM Expr. (Nguyen et al., 2025) 7B / 7Bβ 1.90 3.40 2.41 69.0 66.2 67.6
Baseline (S3 token) 45M / 1.3Bα 1.37 4.04 2.84 50.2 58.7 54.5
TASLM 1B (token) 45M / 1.3Bα 3.08 4.07 3.93 60.8 76.5 68.7
TASLM 1B (embed.) 45M / 1.3Bα 3.16 4.22 4.16 57.7 76.7 67.2

Base models: αLLaMA3.2-1B, βLLaMA2-7B, γLLaMA-7B, θOPT-1.3B
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2016), which covers the acoustic aspect and the semantic aspect, respectively. Since both benchmarks
contain multiple tasks, we report the average accuracy across these tasks within each benchmark for
simplicity. The detailed results are in Appendix A.1.5 for the interested readers. We also report the
mean of the SALMON and StoryCloze as an overall assessment for both aspects.

Results Analysis The results of TASLM compared to other pre-trained SLMs are shown in Table 2,
and three main advantages can be observed. 1) Compared to other pretrained SLMs, TASLM
achieves substantially better performance on speech continuation across both human and machine
evaluations, while also performing competitively on the likelihood-based benchmarks. Notably, this
is achieved with only LoRA finetuning on a relatively small 1.3B base language model, illustrating
the effectiveness of TASTE for joint modeling. 2) Compared to cascade models with the same
base LM, our TASLMemb achieves comparable scores on GPT-4o but higher human MOS. This
indicates that its generated speech is more natural than cascade systems that rely solely on TTS during
continuation. TASLM is the only SLM that not only maintains but even surpasses the performance
of its corresponding text-based model, highlighting the importance of speech token modeling. 3)
Directly using the S3 token for joint modeling following Xie & Wu (2024a) yields poor performance
across all aspects, even though it surpasses TASTE in speech reconstruction. This shows that while
reconstruction quality is critical, it is not the sole consideration in tokenization for spoken language
modeling. Taken together, these results highlight the central contribution of TASTE: building a joint
tokenization that facilitates more effective joint spoken language modeling.

5.2 ADDITIONAL RESULTS

5.2.1 TASTE FOR TEXT-ALIGNED SPEECH EDITING

Beyond the main results presented above, we report several intriguing observations that further
showcase the versatility of TASTE. The first is that TASTE naturally enables text-aligned speech
editing, as illustrated in Figure 3. Suppose we have two utterances with the same transcript but
different paralinguistic characteristics. By exchanging their TASTE token sequences word by word,
we ask whether the associated paralinguistic traits are transferred as well. To make the effect
clear, we select utterances that differ mainly in speaking rate and examine duration changes using
MFA (McAuliffe et al., 2017). As illustrated in Figure 3, swapping tokens at specific word positions
causes the corresponding words to exhibit clear duration shifts, while untouched words preserve their
original timing—evidence that TASTE enables precise, text-aligned manipulation. This observation
also echoes our design principle introduced in Section 1: a speech token should avoid redundantly
encoding text content and instead concentrate on conveying paralinguistic information. Additional
examples targeting other paralinguistic dimensions are provided on our demo page.

5.2.2 TASLM FOR SPOKEN QUESTION ANSWERING

Next, we intriguingly find out that our TASLM exhibits spoken QA ability under few-shot sce-
nario (Brown et al., 2020). We are the only pretrained SLM in Table 2 that exhibits this capability. As

The captain's face had been...
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The    captain's   face   had  been...

The   captain's face    had been... The captain's face  had been...

swap for text-aligned speech editingOriginal A
(fast)

Original B
(slow)

Edited A
(partially
slow in

fast)

Edited B
(partially 

fast in slow)

similar duration in other words

TASTE
Speech Tokenizer

nice to meet you today

nice to meet you today

TASTE
Speech Tokenizer

nice to meet you today

nice to meet you today

1. Extract the
original

TASTE tokens

2. Swap for text-aligned
speech editing

Speech Decoder Speech Decoder3. Decode the
edited TASTE
tokens back

to speechnice to  meet you today nice to  meet you today

Original A Original B

Edited A Edited B

similar 
duration

Result Visualization (an example focused on duration)

Figure 3: An illustration of TASTE for text-aligned speech editing. On the left shows the process
of our text-aligned speech editing. We first extract the TASTE tokens; swap the tokens partially; and
then decode the edited TASTE tokens into edited speech. On the right shows an example visualization.
Only the durations of the words with exchanged TASTE tokens show significant difference.
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Table 3: Evaluation of spoken question answering.
Performance across modalities is compared row-wise,
where T is text and S denotes speech.

Method Mode Web Q. LLaMA-Q.
Mini-Omni 0.5B(T−→T) T 21.3 39.0
Mini-Omni 0.5B T+S 4.5 11.6
Helium 7B (text) T 32.3 75.0
Moshi 7B T+S 26.6 62.3
LLaMA3.1-8B-Instruct T 60.4 71.7
Llama-Omni-8B T+S 35.5 67.3
LLaMA3.2-1B† T 24.0 51.0
TASLM 1B (embed.)† T+S 27.1 57.6
† We apply few-shot learning to facilitate question answering.

Table 4: Ablation study on the effects of
each module in TASTE speech tokenizer.
Enc. is encoder, Agg. is aggregator, and
Quan. is quantizer. *: top-5 accuracy.

Modules Freq. S3 token Acc.*
Enc. 50Hz 0.98
Enc. + Agg. ∼3Hz 0.88
Enc. + Agg. + Quan. ∼3Hz 0.76
Enc. (last) 50Hz 0.84
Enc. + Agg. (last) ∼3Hz 0.78
Text-only ∼3Hz 0.65

a result, we compare it against other instruction-finetuned joint SLMs in Table 3 to better understand
the performance. We use two spoken question answering benchmarks, Web Questions (Berant et al.,
2013) and LLaMA-Questions (Nachmani et al., 2024), following Défossez et al. (2024). We report
the accuracy of answer containment. To more comprehensively assess the impact of adding speech,
we also report the performance of each system’s underlying base text LLM. Notably, TASLM is the
only approach that preserves its base text LLM’s performance. We attribute this to TASTE’s joint
tokenization strategy. Specifically, we employ a straightforward one-to-one mapping between text
and speech tokens, which enables simple and effective joint modeling.

5.2.3 ABLATION STUDY ON TASTE SPEECH TOKENIZER

We run an ablation on TASTE speech tokenizer and use S3 token top-5 reconstruction accuracy as
a proxy for information retention. Table 4 first covers the module-wise ablations of our encoder,
aggregator, and quantizer. The aggregator sharply reduces token rate with only a small drop in
accuracy. Adding the quantizer lowers accuracy further, but performance is still well above the
text-only baseline. Secondly, we show that using only the last hidden state h(L) performs worse than
using the shallow hidden states h(l) (as values for the aggregator), confirming our design choice.

6 CONCLUSION

In this work, we propose Text-Aligned Speech Tokenization and Embedding (TASTE), to facilitate
joint text-speech spoken language modeling. By aggregating proper encoder representation through
the specialized cross-attention mechanism and taking the ASR model as initialization, we make the
speech tokenization text-aligned in an end-to-end manner with no explicit word alignment required.
With our text-aligned speech tokenization and embedding, joint text-speech modeling becomes
straightforward and effective. We conduct extensive experiments demonstrating the benefits of
developing a joint tokenization tailored for spoken language modeling. We anticipate that these
findings encourage further research on more effective joint tokenization for generative modeling.

Limitation Several limitations of our current work suggest promising avenues for future develop-
ment. First, while our pretrained spoken language model generates high-quality audio continuations,
it lacks mechanisms for turn-taking and instruction following; developing a dialogue system is a
practical next step. Second, TASTE has so far been evaluated on English; confirming its general-
izability across other languages remains future work. Third, our tokenization method is tailored
for joint SLMs, and its applicability to other generative tasks remains underexplored. Fourth, our
pipeline currently focuses on single-speaker speech with lexical content and does not explicitly
handle multi-speaker, overlapping, or non-lexical events (e.g., laughter, coughing). Future work could
support these capabilities by incorporating target speech extraction (Zmolikova et al., 2023) and
non-lexical event tags. Finally, system latency and streaming performance are yet to be optimized for
real-time applications. Overall, none of these limitations is a fundamental barrier; rather, they are
natural extensions and research targets that will further enhance the versatility of TASTE framework.
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Ethics Statement TASTE enables the efficient development of spoken language models. It low-
ers the barrier to building speech systems and improves the accessibility and convenience of hu-
man–computer interaction. At the same time, it raises security concerns: systems built with TASTE
can more easily mimic a person’s voice and synthesize convincing personalized speech. Moreover,
TASTE’s text-aligned speech editing makes voice manipulation straightforward. Overall, TASTE
offers clear utility for beneficial applications, but responsible deployment—paired with consent,
provenance, and anti-abuse safeguards—is essential to mitigate misuse risks. On the other hand, this
study includes human evaluations in the form of subjective listening tests. Annotators were recruited
from Amazon Mechanical Turk and compensated fairly according to the platform’s recommended
rates. All participants provided informed consent, and no personal information has been collected.
The audio material used in the evaluation does not contain sensitive content. The study adheres to the
ethical standards commonly adopted in speech perception research.
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Table 5: The ablation study on how the ASR affects the perfor-
mance of our TASTE tokenizer regarding speech reconstruction.
GT: ground-truth transcription.
Method WER UTMOS DNS-MOS ViSQOL Drtn. Con. Spkr. Sim.
TASTE (w/ ASR) 4.4% 4.29 4.10 3.05 0.91 0.80
TASTE (w/ GT) 4.6% 4.24 4.08 3.06 0.91 0.81

Table 6: The ablation study on
how the ASR affects our SLM
on spoken QA.
Methods Web-Q LLaMA-Q
TASLM (w/ ASR) 27.1 57.6
TASLM (w/ GT) 28.0 57.7

Table 7: The ablation study on using a different ASR model regarding the SLM continuation semantic
evaluation. Overall, we do not observe significant relative performance difference.
Evaluation Models TWIST 1.3B TWIST 7B Spirit LM Spirit LM Expr. S3 token TASLM (token) TASLM (embed.)
Whisper + GPT-4o 1.48 1.44 2.79 1.90 1.37 3.08 3.16
nvidia-parakeet + GPT-4o 1.38 1.49 2.76 2.06 1.42 3.20 3.37

A APPENDIX

A.1 SUPPLEMENTARY RESULTS

A.1.1 ABLATION STUDY ON THE EFFECT OF ASR

Because our tokenization, SLM, as well as the evaluation using GPT-4o all rely on an ASR system
to extract text transcriptions, we conduct several ablation studies to assess the impact of ASR on
performance. 1) In Table 5 and Table 6, we study how the ASR affects the performance of our TASTE
tokenizer on speech reconstruction and TASLM on spoken question answering. Our results indicate
that on both the tokenization and the SLM stages, the performance drop introduced by the ASR
errors are almost negligible, primarily attributed to the robustness of recent ASR systems. Note that
we do not use any ground-truth transcriptions in the previous experiments in the main text. 2) We
study how substituting the ASR used to produce transcripts before GPT-4o’s semantic-coherence
evaluation affects the reported scores. As shown in Table 7, we use another ASR model named
nvidia-parakeet (Sekoyan et al., 2025), which employs an RNN-T (Graves, 2012; Xu et al., 2023)
backbone. The results indicate that there is no significant relative performance difference between
using Whisper and nvidia-parakeet ASR systems. TASLMs achieve much better results in both
evaluation setups compared to the other pretrained SLMs.

A.1.2 AGGREGATOR CROSS ATTENTION VISUALIZATION

To understand whether the aggregator has learned the text-speech aligned pattern, we visualize its
cross attention map across all the layers and heads in Figure 4 and Figure 5.

Figure 4: The cross attention map of the last layer in our aggregator. As illustrated, a lot of heads
clearly demonstrate the text-speech aligned behavior.
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Figure 5: The cross attention map of the first layer in our aggregator. As illustrated, the behavior
is quite different from the last layer in Figure 4. We observe some special heads: Head 8th showns
clear alignment; while head 19th lights up at the silence part.

A.1.3 DISCUSSION ON THE SELECTION OF SHALLOW HIDDEN LAYER

In Section 3.1.1, we propose using the shallow hidden representation from Whisper encoder as the
key in our specialized cross attention, as it carries rich acoustic information. In practice, we select
l = 6. In Table 4, this allows us to achieve a near-optimal reconstruction accuracy on the target S3
unit. To further justify this selection, we follow the analysis methodology of Pasad et al. (2021) and
compute the Canonical Correlation Analysis (CCA; Hotelling (1992)) between each Whisper encoder
layer and the target S3 unit embeddings. The resulting similarity curve is shown in Figure 6. The
correlations peak at the 4-th to 8-th layers, indicating that these shallow layers encode representations
most aligned with the S3 targets—supporting our design choice of using a shallow hidden state.
Importantly, Table 4 also shows that while the choice of the shallow layer affects the attainable upper
bound, it does not impose a strict limitation on our method: even using the final encoder layer, whose
correlation to S3 is much lower, still yields reconstruction quality better than the text-only baseline.

Figure 6: Canonical Correlation Analysis (CCA) between each Whisper encoder layer and the
S3 target embeddings. Layers 4–8 exhibit the highest correlation with the S3 units, indicating that
shallow representations contain the most target-relevant acoustic information.
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Table 8: The tokenizer robustness ablation study. We apply four different level of noise, with
signal-to-noise ratio (SNR) ranging from 20dB (almost clean) to 5dB (very noisy). Our method
substantially achieves good reconstruction quality across all noise levels.

Method Bitrate
SNR=20dB (clean) SNR=15dB SNR=10dB SNR=5dB (noisy)

WER ↓ Sim. ↑ Rank WER ↓ Sim. ↑ Rank WER ↓ Sim. ↑ Rank WER ↓ Sim. ↑ Rank
Ground Truth 256k 2.3% - - 2.5% - - 3.6% - - 9.2% - -

500 93.7% 0.193 13 97.7% 0.201 12 98.6% 0.205 12 98.3% 0.202 13
DACα 1000 36.0% 0.292 11 55.0% 0.276 11 80.2% 0.278 11 94.5% 0.283 10

12000 2.5% 0.937 1 2.9% 0.924 1 4.7% 0.914 1 12.3% 0.907 1
500 98.7% 0.295 12 104.6% 0.264 12 107.1% 0.264 12 105.8% 0.283 12

DM-Codecβ 1000 33.9% 0.479 9 53.0% 0.447 9 77.4% 0.435 9 97.1% 0.415 9
4000 3.9% 0.737 5 6.4% 0.689 6 14.4% 0.647 6 38.5% 0.595 6
500 15.2% 0.334 9 33.9% 0.324 9 64.2% 0.301 9 91.7% 0.277 10

SpeechTokenizerγ 2000 7.3% 0.773 8 16.3% 0.734 8 39.4% 0.682 8 73.8% 0.600 8
4000 4.4% 0.864 2 8.1% 0.822 4 21.0% 0.765 4 49.2% 0.684 5

BigCodecδ 1040 10.1% 0.829 7 17.8% 0.785 7 33.5% 0.718 7 63.0% 0.625 6
Mimiϵ 1000 5.1% 0.804 6 7.8% 0.772 5 14.7% 0.726 4 33.6% 0.673 4
S3 tokenζ 600 3.9% 0.860 2 5.2% 0.841 2 8.1% 0.815 2 16.7% 0.779 3
TASTE (ours) ∼150 4.8% 0.842 4 5.3% 0.830 3 6.9% 0.815 2 11.1% 0.792 1
α Kumar et al. (2023); β Ahasan et al. (2025); γ Zhang et al. (2024); δ Xin et al. (2024b); ϵ Défossez et al. (2024); ζ Du et al. (2024a)

A.1.4 ROBUSTNESS ABLATION ON TASTE TOKENIZER

To evaluate our tokenizer robustness, we have conducted controlled noise level experiments on speech
reconstruction. Specifically, we add 4 different levels of white noise to the original waveform and
then evaluate the reconstruction performance. The noise levels are defined by signal-to-noise ratio
(SNR) ranging from 20dB (almost clean) to 5dB (very noisy). We report two metrics: ASR-WER as
an indicator of reconstruction quality, and speaker similarity (Sim.) as a measure of reconstruction
similarity. For ease of comparison, we also provide the overall rank of each tokenizer considering
both metrics. The results in Table 8 show that our tokenizer remains stable across different noise
levels, demonstrating strong robustness. Notably, TASTE achieves the best ASR-WER under the
noisiest condition. This suggests that the underlying ASR system is not a limiting factor for the
general applicability of TASTE; rather, it serves as an effective and reliable source of semantic
information for the reconstruction.

A.1.5 DETAILS ON SALMON AND STORYCLOZE

Our detailed results on SALMON and StoryCloze are reported in Table 9. The introductions of the
two benchmarks—SALMON and StoryCloze—are described below.

SALMON for Acoustic Evaluation SALMON offers a comprehensive set of metrics designed
to evaluate SLMs in multiple dimensions. In summary, each test sample consists of a positive
sample and a negative sample. The negative sample differs from the positive sample by having some

Table 9: The evaluation results on SALMON and StoryCloze of different SLMs, and BG means
background. We report likelihood-based accuracy on SALMON (acoustic aspect) and StoryCloze
(semantic aspect). The baseline (S3 token) is conducted by joint speech-text modeling with the S3
token as speech tokenization.
METHOD LoRA

SALMON (ACOUSTIC CONSISTENCY) STORYCLOZE

Sentiment Speaker Gender Room
BG

(domain)
BG

(rand.) sSC / tSC
Previous Work
TWIST 1.3B ((Hassid et al., 2023)) ✗ 61.5±3.4 69.0±3.3 69.5±3.3 59.0±3.5 55.5±3.5 60.5±3.5 52.4±0.8 / 70.6±0.7
TWIST 7B ((Hassid et al., 2023)) ✗ 61.5±3.4 71.0±3.2 70.0±3.2 62.0±3.4 55.5±3.5 60.5±3.5 55.3±0.8 / 74.1±0.7
Spirit LM ((Nguyen et al., 2025)) ✗ 54.5±3.5 69.5±3.3 67.0±3.3 54.5±3.5 53.5±3.5 55.5±3.5 61.0±0.8 / 82.9±0.6
Spirit LM Expr. ((Nguyen et al., 2025)) ✗ 73.5±3.1 81.0±2.8 85.0±2.5 54.5±3.5 56.0±3.5 64.0±3.4 56.9±0.8 / 75.4±0.7
Ours
Baseline (S3 token) ✓ 49.5±3.5 48.8±3.5 48.8±3.5 49.5±3.5 55.3±3.5 49.5±3.5 54.4±0.8 / 63.0±0.8
TASLM 1B (token) ✓ 59.0±3.5 68.0±3.3 70.5±3.2 61.0±3.4 52.0±3.5 54.0±3.5 64.2±0.8 / 88.9±0.5
TASLM 1B (embedding) ✓ 57.5±3.5 67.0±3.3 75.5±3.0 50.0±3.5 47.0±3.5 49.0±3.5 64.0±0.8 / 89.5±0.5
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segments altered. These alterations include changes in speaker, gender, environment (e.g., room
acoustics), or sentiment in the middle of the utterance. The SLM serves as an anomoly detector that
aims to distinguish between the pairs of positive and negative samples. The distinction is based on
the likelihood score given by each SLM, which is then evaluated with the overall precision between
the ground truth and the prediction.

StoryCloze for Semantic Evaluation To evaluate the SLMs’ ability to comprehend semantic
coherence and logical reasoning, we employ the spoken version of StoryCloze test (sSC) and the
Topic StoryCloze test (tSC) assembled by Hassid et al. (2023). Assessment of narrative understanding
involves presenting a four-sentence story setup, followed by two possible endings. These tasks require
the model to select the most appropriate conclusion, thereby testing its grasp of causal and temporal
relationships within a narrative. Similarly to SALMON, we measure the accuracy of the distinctions
based on the likelihood scores.

Discussion on SALMON and StoryCloze On SALMON, we observe that our TASLM falls short
for background-related attributes (Room, Background) where the samples are added with environ-
mental sounds (echoes, instruments, background noises from FSD50K). Since TASTE tokenization
focuses on natural speech and has not being trained on audio with environmental sound and noise, it
may not be able to convey such information. However, on the speech related attributes, such as gender
and speaker, our TASLM performs much better and is comparable to other SLMs. On StoryCloze,
our TASLM successfully retains its semantic capability with effective joint modeling on TASTE,
leading to the best results among all pretrained SLMs.

A.1.6 REPORT OF STANDARD DEVIATIONS

We report the standard deviations of our tables in the main text to allow further investigation.

Table 10: Results with standard deviations of Table 1
Method Bitrate QUALITY SIMILARITY

WER ↓ UTMOS DNSMOS ViSQOL Drtn. Con. Spkr. Sim. MUSHRA
Ground Truth 256k 2.1%±0.07 4.09±0.32 3.84±0.26 - - - 76.6±15.9

Encodec (Défossez et al., 2023)
1500 5.1%±0.11 1.58±0.34 3.26±0.24 3.46±0.28 0.94±0.003 0.63±0.10 -
3000 2.6%±0.08 2.35±0.53 3.48±0.25 3.81±0.27 0.96±0.002 0.78±0.07 25.6±18.6
500 5.2%±0.11 1.27±0.05 2.99±0.17 2.80±0.24 0.94±0.003 0.35±0.09 -

SpeechTokenizer (Zhang et al., 2024) 2000 3.0%±0.08 3.56±0.43 3.60±0.28 3.65±0.22 0.97±0.002 0.80±0.06 53.9±22.9
4000 2.5%±0.08 3.90±0.36 3.76±0.28 4.03±0.17 0.98±0.002 0.92±0.04 -

Mimi (Défossez et al., 2024) 1000 3.1%±0.09 3.60±0.37 3.60±0.30 3.62±0.26 0.96±0.002 0.82±0.06 67.6±19.8
S3 token (topline) (Du et al., 2024a) 600 3.0%±0.09 4.18±0.27 3.90±0.24 3.30±0.26 0.96±0.002 0.82±0.09 70.2±17.0
Text-only (baseline) ∼50 5.9%±0.11 4.31±0.16 4.11±0.22 2.44±0.23 0.57±0.006 0.78±0.09 42.6±27.1
TASTE (ours) ∼150 4.4%±0.11 4.29±0.18 4.10±0.22 3.05±0.26 0.91±0.003 0.80±0.08 68.3±17.1

Table 11: Results with standard deviations of Table 2.
Method

Finetuned / base CONTINUATION LIKELIHOOD
parameters GPT-4o UTMOS Human SALMON StoryCloze Overall

Cascade
Cascade (LLaMA3.2-1Bα) - 3.15±1.27 4.25±0.22 4.00±1.28 - - -
Cascade (LLaMA2-7Bβ) - 3.43±1.27 4.25±0.25 3.98±1.29 - - -

Spoken LMs
TWIST 1.3B (Hassid et al., 2023) 1.3B / 1.3Bθ 1.48±0.70 3.25±0.48 1.95±1.01 62.5±1.4 61.5±0.5 62.0±0.7
TWIST 7B (Hassid et al., 2023) 7B / 7Bγ 1.44±0.70 3.27±0.52 2.04±0.91 63.4±1.4 64.7±0.5 64.1±0.7
Spirit LM (Nguyen et al., 2025) 7B / 7Bβ 2.79±1.06 3.41±0.19 2.38±0.81 59.1±1.4 72.0±0.5 65.6±0.7
Spirit LM Expr. (Nguyen et al., 2025) 7B / 7Bβ 1.90±1.03 3.40±0.30 2.41±0.96 69.0±1.3 66.2±0.5 67.6±0.7
Baseline (S3 token) 45M / 1.3Bα 1.37±0.87 4.04±0.27 2.84±1.11 50.2±1.4 58.7±0.6 54.5±0.8
TASLM 1B (token) 45M / 1.3Bα 3.08±1.37 4.07±0.28 3.93±1.30 60.8±1.4 76.5±0.5 68.7±0.7
TASLM 1B (embed.) 45M / 1.3Bα 3.16±1.33 4.22±0.21 4.16±1.20 57.7±1.4 76.7±0.5 67.2±0.7

Base models: αLLaMA3.2-1B, βLLaMA2-7B, γLLaMA-7B, θOPT-1.3B

Table 12: Results with standard deviations of Table 3.
Method Mode Web Q. LLaMA-Q.
Mini-Omni 0.5B(T−→T) T 21.3±0.9 39.0±2.8
Mini-Omni 0.5B (Xie & Wu, 2024a) T+A 4.5±0.5 11.6±1.8
Helium 7B (text) T 32.3±1.0 75.0±2.5
Moshi 7B (Défossez et al., 2024) T+A 26.6±1.0 62.3±2.8
LLaMA3.1-8B-Instruct T 60.4±1.1 71.7±2.6
Llama-Omni-8B (Fang et al., 2024) T+A 35.5±1.1 67.3±2.7
LLaMA3.2-1B† T 24.0±0.9 51.0±2.9
TASLM 1B (embed.)† T+A 27.1±1.0 57.6±2.9
†We apply few-shot learning to facilitate question answering.
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A.2 TRAINING DETAILS

A.2.1 HYPERPARAMETERS AND CONFIGURATIONS

We separate the training process into the two phases: deriving TASTE tokenization and conducting
spoken language modeling with TASTE. In the tokenization phase, only the Aggregator, Quantizer,
and the UnitDecoder is trainable. We use the Adam (Kingma, 2015) optimizer and the learning rate
is set to 0.0016. The batch size is set to 160 seconds on each of the 8 NVIDIA A6000 GPUs we used.
Note that in the first 2 epochs the quantization is not applied. From the beginning of the third epoch,
quantization is applied and the Quantizer starts to be updated. We train the TASTE tokenizer for 5
epochs, which takes about 2 days for learning, with the learning rate gradually decayed.

As for the spoken language modeling training phase, we use the AdamW (Loshchilov & Hutter,
2019) optimizer, the Consine scheduler with the learning rate set to 1e-5. We use 8 Nvidia A6000
GPUs for training. The total batch size summation over the GPUs is set to 768 samples with the
gradient accumulation steps set to 2. To reduce the memory overhead and the computational cost, we
employ bfloat16 mixed precision during training. Tools such as DeepSpeed (Rasley et al., 2020)
and Liger Kernel (Hsu et al., 2024) are also applied to speed up the fine-tuning process of the SLM.

A.3 EVALUATION DETAILS

A.3.1 HUMAN EVALUATION

We conduct human listening tests through Amazon Mechanical Turk. In each experiment, we
randomly select the same 20 samples from each method; and for each sample we collect more than
10 evaluation scores across different human evaluators.

MUSHRA In Table 1, we have shown our result of the MUSRHA human listening test (Series,
2014). Following Zhang et al. (2024), we conduct the evaluation with a hidden reference but without
a lowerpass-filtered anchor. We instruct evaluators to rate the perceptual quality of the given samples
with respect to the ground truth on a scale of 1 to 100.

Speech Continuation MOS In Table 2, we mention that we have conducted the human listening
test to evaluate the overall performance of the speech continuations. Here, we present the instruction
for human speech continuation MOS evaluation as follows:

Instruction for Human Speech Continuation MOS Evaluation

In this test, each sample will contain a short audio clip called "prompt" (3 seconds) and a longer audio
clip called "prompt+continuation" (∼15 seconds).
You will be asked to rate the speech quality of the "prompt+continuation" audio clip, specifically focus
on the "continuation" part.
The rating should be based on how likely you think that the long audio is a proper continuation of the
"prompt" audio.
Specifically, the rating should be based on the following scale:

1: Bad - The "continuation" is not distinguishable or not natural.
2: Poor - The "continuation" is 25% distinguishable.
3: Fair - The "continuation" is 50% distinguishable and natural.
4: Good - The "continuation" is 75% distinguishable and natural.
5: Excellent - The "continuation" is distinguishable, meaningful, and natural.

Distinguishable means that the words in the "continuation" is distinguishable.
Natural means that the "continuation" sounds like a real human voice and a natural continuation of the
prompt without considering the content of the speech.
Meaningful means that you can not only distinguish the words but also understand the meaning of the
whole "prompt+continuation".
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A.3.2 GPT-4O FOR MOS EVALUATION

As introduced in Section 5.1.2, we use GPT-4o to assign MOS scores to the speech continuation
results (Chiang & Lee, 2023; Lin et al., 2024). Here, we describe the detailed procedure. First,
whisper-large-v3 is applied to transcribe the generated speech. Then, given the transcription,
the text content from the prompt audio, and the instruction template, GPT-4o can produce a score
between 1 and 5. The instruction template is provided below:

Instruction Prompt for GPT-4o MOS Evaluation

The task is evaluating the relevance and likelihood of the
predicted text continuation, given the text prompt. You should
also consider whether the meaning of the text continuation is
making sense. The text prompt is:

"{prompt}"
, and the text continuation is :
"{content}"

You must give an overall rating from 1 to 5. The rating guideline
is as below:

1: The text continuation is very unlikely and irrelevant to the
text prompt.
2: The text continuation is unlikely and marginally relevant to
the text prompt.
3: The text continuation is moderately likely and relevant to the
text prompt.
4: The text continuation is likely and relevant to the text
prompt.
5: The text continuation is very likely and highly relevant.

You should take the following steps to provide the score:
First: briefly analyze the sample with the above definition.
Second: MUST follow the output format as: I would rate the score
as _

A.4 TACKLING THE VOCABULARY MISMATCH

The vocabulary mismatch problem lies in the fact that the vocabulary sets are different between the
ASR and the LLM, and TASTE is aligned with the text transcription tokens from ASR. Consider
that given a text transcription v and the vocabulary sets of ASR and LLM denoted as Vasr and Vllm,
the ASR tokenized sequence vasr = [vasr

1 , vasr
2 , . . . , vasr

N ], vasr
i ∈ Vasr and the LLM tokenized sequence

vllm = [vllm
1 , vllm

2 , . . . , vllm
M ], vllm

i ∈ Vllm can be different in terms of token ids and sequence lengths.
Since the TASTE token and embedding are aligned with vasr, we need to derive a method to align
them with vllm for text-aligned speech-text modeling. Notice that vasr and vllm both represent v,
we propose to mitigate the issue through word-level grouping, averaging, and aligning, detailed
in Algorithm 1. By crafting TASTE speech tokenization into the word level, we are able to align
it with the text tokens of the LLM, denoted as q̃, z̃. In practice, we also adopt the word-level
averaging technique during the TASTE tokenization training phase, ensuring that the word-level
TASTE tokenization facilitates high-quality reconstruction.
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Algorithm 1 Aligning TASTE with LLM Tokenization via Word-Level Techniques

1: Initialization:
Text transcription v = [word1,word2, . . . ,wordW ]
ASR tokens of the transcription vasr = [vasr

1 , vasr
2 , . . . , vasr

N ]
TASTE embedding ẑ = [ẑ1, ẑ2, . . . , ẑN ]
LLM tokens of the transcription vllm = [vllm

1 , vllm
2 , . . . , vllm

M ]
2: procedure WORDLEVELGROUPING(v,vasr, ẑ,vllm)
3: Since vasr is a token sequence represents v, we can easily group it by words:
4: vasr

grouped ← [(vasr
1 , vasr

2 , vasr
3 )1︸ ︷︷ ︸

word1

, (vasr
4 )2︸ ︷︷ ︸

word2

, . . . , (vasr
N−1,v

asr
N )W︸ ︷︷ ︸

wordW

] ▷ Group vasr by the words of v

5: With the word-level grouping from vasr
grouped, we can group TASTE embedding ẑ as well:

6: ẑgrouped ← [(ẑ1, ẑ2, ẑ3)1, (ẑ4)2, . . . , (ẑN−1, ẑN )W ]
7: Finally, we can group vllm following the similar procedure of grouping vasr:
8: vllm

grouped ← [(vllm
1 , vllm

2 )1︸ ︷︷ ︸
word1

, (vllm
3 , vllm

4 )2︸ ︷︷ ︸
word2

, . . . , (vllm
M−2, v

llm
M−1, v

llm
M )W︸ ︷︷ ︸

wordW

]

9: Due to the vocabulary mismatch, the grouping of vllm
grouped is different from vasr

grouped, ẑgrouped.
10: end procedure
11: procedure WORDLEVELAVERAGING(ẑgrouped)
12: z̄ ← [] ▷ Initialize a new sequence
13: for word group index i← 1 to W do
14: word group (ẑj , . . . , ẑk)← ẑgrouped[i]
15: z̄[j:k] ← Average((ẑj , . . . , ẑk)) ▷ Average the word group
16: append z̄[j:k] to z̄
17: end for
18: Resulting in word-level TASTE embedding z̄ ∈ RW×dz , where W is the word length of v.
19: end procedure
20: procedure ALIGNWORDLEVELEMBEDDINGWITHLLM(z̄,vllm

grouped)
21: z̃ ← [] ▷ Initialize a new sequence
22: for word group index i← 1 to W do
23: word group (vllm

j , . . . , vllm
k )← vllm

grouped[i]

24: M ← Length((vllm
j , . . . , vllm

k )) ▷ Get the length of the word group.
25: for m← 1 to M do ▷ add M × z̄[i] into the aligned sequence z̃
26: append z̄[i] to z̃
27: end for
28: end for
29: end procedure
30: return The LLM-aligned word-level TASTE embedding z̃ and its codes form q̃

A.5 THE WEIGHTED SUM MECHANISM FOR MODALITY FUSION

The speech decoder takes the text-aligned speech embedding ẑ and the text embedding v as input
conditions. As depicted in Figure 2, in practice we perform a weighted sum mechanism to obtain the
final fused embedding zjoint. The weights to fuse the two modalities are represented by two learnable
parameters, denoted as wsp and wtxt. The whole process of modality fusion can be denoted as follows:

ẑ′,v′ = normalize(ẑ),normalize(v),[psp, ptxt] = softmax([wsp, wtxt]), zjoint = psp · ẑ′ + ptxt · v′.

A.6 DISCUSSION ON THE USAGE OF LLM

We discuss our usage of LLM following the conference’s policy. We use an AI assistant (ChatGPT
specifically) to polish English prose, including grammar correction, wording refinements, consistent
terminology and hyphenation, and minor restructuring for clarity and flow. The assistant suggests
alternative phrasings, section bridges, and standard disclosure/impact wording based on author-
provided content. It does not generate novel ideas, claims, analyses, figures, code, or results, and it
does not access proprietary data. All technical content and conclusions are our own, and we review
and edit all AI-assisted text and take full responsibility for the final manuscript.
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