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ABSTRACT

We propose a reinforcement learning algorithm for stationary mean-field games,
where the goal is to learn a pair of mean-field state and stationary policy that con-
stitutes the Nash equilibrium. When viewing the mean-field state and the policy
as two players, we propose a fictitious play algorithm which alternatively updates
the mean-field state and the policy via gradient-descent and proximal policy opti-
mization, respectively. Our algorithm is in stark contrast with previous literature
which solves each single-agent reinforcement learning problem induced by the it-
erates mean-field states to the optimum. Furthermore, we prove that our fictitious
play algorithm converges to the Nash equilibrium at a sublinear rate. To the best
of our knowledge, this seems the first provably convergent reinforcement learning
algorithm for mean-field games based on iterative updates of both mean-field state
and policy.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) (Shoham et al., 2007; Busoniu et al., 2008; Hernandez-
Leal et al., 2017; Hernandez-Leal et al.; Zhang et al., 2019) aims to tackle sequential decision-
making problems in multi-agent systems (Wooldridge, 2009) by integrating the classical reinforce-
ment learning framework (Sutton & Barto, 2018) with game-theoretical thinking (Başar & Olsder,
1998). Powered by deep-learning (Goodfellow et al., 2016), MARL recently has achieved striking
empirical successes in games (Silver et al., 2016; 2017; Vinyals et al., 2019; Berner et al., 2019;
Schrittwieser et al., 2019), robotics (Yang & Gu, 2004; Busoniu et al., 2006; Leottau et al., 2018),
transportation (Kuyer et al., 2008; Mannion et al., 2016), and social science (Leibo et al., 2017;
Jaques et al., 2019; Cao et al., 2018; McKee et al., 2020).

Despite the empirical successes, MARL is known to suffer from the scalability issue. Specifically,
in a multi-agent system, each agent interacts with the other agents as well as the environment, with
the goal of maximizing its own expected total return. As a result, for each agent, the reward function
and the transition kernel of its local state also involve the local states and actions of all the other
agents. As a result, as the number of agents increases, the capacity of the joint state-action space
grows exponentially, which brings tremendous difficulty to reinforcement learning algorithms due
to the need to handle high-dimensional input spaces. Such a curse of dimensionality due to having
a large number of agents in the system is named as the “curse of many agents” (Sonu et al., 2017).

To circumvent such a notorious curse, a popular approach is through mean-field approximation,
which imposes symmetry among the agents and specifies that, for each agent, the joint effect of all
the other agents is summarized by a population quantity, which is oftentimes given by the empirical
distribution of the local states and actions of all the other agents or a functional of such an empirical
distribution. Specifically, to obtain symmetry, the reward and local state transition functions are
the same for each agent, which are functions of the local state-action and the population quantity.
Thanks to mean-field approximation, such a multi-agent system, known as the mean-field game
(MFG) (Huang et al., 2003; Lasry & Lions, 2006a;b; 2007; Huang et al., 2007; Guéant et al., 2011;
Carmona & Delarue, 2018), is readily scalable to an arbitrary number of agents.

In this work, we aim to find the Nash equilibrium (Nash, 1950) of MFG with infinite number of
agents via reinforcement learning. By mean-field approximation, such a game consists of a pop-
ulation of symmetric agents among which each individual agent has infinitesimal effect over the
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whole population. By symmetry, it suffices to find a symmetric Nash equilibrium where each agent
adopts the same policy. Under such consideration, we can focus on a single agent, also known as
the representative agent, and view MFG as a game between the representative agent’s local policy
π and the mean-field state L which aggregates the collective effect of the population. Specifically,
the representative agent π aims to find the optimal policy when the mean-field state is fixed to L,
which reduces to solving a Markov decision process (MDP) induced by L. Simultaneously, we aim
to let L be the mean-field state when all the agents adopt policy π. The Nash equilibrium of such a
two-player game, (π∗,L∗), yields a symmetric Nash equilibrium π∗ of the original MFG.

Under proper conditions, the Nash equilibrium (π∗,L∗) can be obtained via fixed-point updates,
which generate a sequence {πt,Lt} as follows. For any t ≥ 0, in the t-th iteration, we solve the
MDP induced by Lt and let πt be the optimal policy. Then we update the mean-field state by letting
Lt+1 be the mean-field state obtained by letting every agent follow πt. Under appropriate assump-
tions, the mapping from Lt to Lt+1 is a contraction and thus such an iterative algorithm converges
to the unique fixed-point of such a contractive mapping, which corresponds to L∗ (Guo et al., 2019).
Based on the contractive property, various reinforcement learning methods are proposed to approxi-
mately implement the fixed-point updates and find the Nash equilibrium (π∗,L∗) (Guo et al., 2019;
2020; Anahtarci et al., 2019b;a; 2020). However, such an approach requires solving a standard
reinforcement learning problem approximately within each iteration, which itself is solved by an
iterative algorithm such as Q-learning (Watkins & Dayan, 1992; Mnih et al., 2015; Bellemare et al.,
2017) or actor-critic methods (Konda & Tsitsiklis, 2000; Haarnoja et al., 2018; Schulman et al.,
2015; 2017). As a result, this approach leads to a double-loop iterative algorithm for solving MFG.
When the state space S is enormous, function approximation tools such as deep neural networks
are equipped to represent the value and policy functions in the reinforcement learning algorithm,
making solving each inner subproblem computationally demanding.

To obtain a computationally efficient algorithm for MFG, we consider the following question:

Can we design a single-loop reinforcement learning algorithm for solving MFG which updates the
policy and mean-field state simultaneously in each iteration?

For such a question, we provide an affirmative answer by proposing a fictitious play (Brown, 1951)
policy optimization algorithm, where we view the policy π and mean-field state L as the two players
and update them simultaneously in each iteration. Fictitious play is a general algorithm framework
for solving games where each player first infers the opponent and then improves its own policy based
on the inferred opponent information. When it comes to MFG, in each iteration, the policy player π
first infers the mean-field state implicitly by solving a policy evaluation problem associated with π
on the MDP induced by L. Then the policy π is updated via a proximal policy optimization (PPO)
(Schulman et al., 2017) step with entropy regularization, which is adopted to ensure the uniqueness
of the Nash equilibrium. Meanwhile, the mean-field state L obtains its update direction by solving
how the mean-field state evolves when all the agents execute policy π with their state distribution
being L. Then L is updated towards this direction with some stepsize. Such an algorithm is single-
loop as the mean-field state L is updated immediately when π is updated.

Furthermore, since L is a distribution over the state space S, when S is continuous, L lies in an
infinite-dimensional space, which makes it computationally challenging to be updated. To overcome
this challenge, we employ a succinct representation of L via kernel mean embedding, which maps
L to an element in a reproducing kernel Hilbert space (RKHS) (Smola et al., 2007; Gretton et al.,
2008; Sriperumbudur et al., 2010). Such a mechanism enables us to update the mean-field state
within RKHS, which can be computed efficiently.

When the stepsizes for policy and mean-field state updates are properly chosen, we prove that our
single-loop fictitious play algorithm converges to the entropy-regularized Nash equilibrium at a sub-
linear Õ(T−1/5)-rate, where T is the total number of iterations and Õ(·) hides logarithmic terms.
To our best knowledge, we establish the first single-loop reinforcement learning algorithm for mean-
field game with finite-time convergence guarantee to Nash equilibrium.

Our Contributions. Our contributions are two-fold. First, we propose a single-loop fictitious play
algorithm that updates both the policy and the mean-field state simultaneously in each iteration,
where the policy is updated via entropy-regularized proximal policy optimization. Moreover, we
utilize kernel mean embedding to represent the mean-field states and the policy update subroutine
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can readily incorporate any function approximation tools to represent both the value and policy
functions, which makes our fictitious play method a general algorithmic framework that is able to
handle MFG with continuous state space. Second, we prove that the policy and mean-field state
sequence generated by the proposed algorithm converges to the Nash equilibrium of the MFG at a
sublinear Õ(T−1/5) rate.

Related Works. Our work belongs to the literature on discrete-time MFG. A variety of works have
focused on the existence of a Nash equilibrium and the behavior of Nash equilibrium as the number
of agents goes to infinity under various settings of MFG. See, e.g., Gomes et al. (2010); Tembine &
Huang (2011); Moon & Başar (2014); Biswas (2015); Saldi et al. (2018b;a; 2019); Więcek (2020)
and the references therein. In addition, our work is more related to the line of research that aims
to solve MFG via reinforcement learning methods. Most of the existing works propose to find the
Nash equilibrium via fixed-point iterations in space of the mean-field states, which requires solving
an MDP induced by a mean-field state within each iteration (Guo et al., 2019; 2020; Anahtarci et al.,
2019a;b; Fu et al., 2019; uz Zaman et al., 2020; Anahtarci et al., 2020). Among these works, Guo
et al. (2019; 2020); Anahtarci et al. (2019a;b; 2020) propose to solve each MDP via Q-learning
Watkins & Dayan (1992) or approximated value iteration (Munos & Szepesvári, 2008), whereas Fu
et al. (2019); uz Zaman et al. (2020) solve each MDP using actor-critic (Konda & Tsitsiklis, 2000)
under the linear-quadratic setting. Furthermore, more closely related works are Elie et al. (2019);
Perrin et al. (2020), which study the convergence of a version of fictitious play for MFG. Similar to
our algorithm, their fictitious play also regards the policy and the mean-field state as the two players.
However, for policy update, they compute the best response policy to the current mean-field state by
solving the MDP induced by the mean-field state to approximate optimality, and the obtained policy
is added to the set of previous policy iterates to form a mixture policy. As a result, their algorithm
is double-loop in essence due to solving an MDP in each iteration. In contrast, our fictitious play is
single-loop — the policy is updated via a single PPO step in each iteration, and the mean-field state
is updated before the policy solves any MDP associated with a mean-field state.

Notations. We use ‖·‖1 to denote the vector `1-norm, and ∆(D) the probability simplex over
D. The Kullback-Leibler (KL) divergence between p1, p2 ∈ ∆(A) is defined as DKL(p1‖p2) :=∑
a∈A p1(a) log p1(a)

p2(a) . Let 1n ∈ Rn denote the all-one vector. For two quantities x and y that may
depend on problem parameters (|A|, γ, etc.), if x ≥ Cy holds for a universals constant C > 0, we
write x & y, x = Ω(y) and y = O(x). We use Õ(·) to denote O(·) ignoring logarithmic factors.

2 BACKGROUND AND PRELIMINARIES

In this section, we first review the standard setting of mean-field games (MFG) from Guo et al.
(2019), and then introduce a more general MFG with mean embedding and entropy regularization.

2.1 MEAN-FIELD GAMES

Consider a discrete-time Markov game involving an infinite number of identical and interchangeable
agents. Let S ⊆ Rd and A ⊆ Rp be the state space and action space, respectively, that are common
to the agents. We assume that S is compact and A is finite. The reward and the state dynamic
for each agent depend on the collective behavior of all agents through the mean-field state, i.e., the
distribution of the states of all agents. As the agents are homogeneous and interchangeable, one can
focus on a single agent representative of the population. Let r : S ×A×∆(S)→ [0, Rmax] be the
(bounded) reward function and P: S × A ×∆(S) → ∆(S) be the state transition kernel. At each
time t, the representative agent is in state st ∈ S , and the probability distribution of st, denoted by
Lt ∈ ∆(S), corresponds to the mean-field state. Upon taking an action at ∈ A, the agent receives
a reward r(st, at,Lt) and transitions to a new state st+1 ∼ P(·|st, at,Lt). A Markovian policy for
the agent is a function π : S → ∆(A) that maps her own state to a distribution over actions,1 i.e.,
π(a|s) is the probability of taking action a in state s. Let Π be the set of all Markovian policies.

1In general, the policy may be a function of the mean-field state Lt as well. We have suppressed this
dependency since our ultimate goal is to find a stationary equilibrium, under which the mean-field state remains
fixed over time. See Guo et al. (2019); Saldi et al. (2018b) for a similar treatment.
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When an agent is operating under a policy π ∈ Π and the mean-field population flow is L :=
(Lt)t≥0, we define the expected cumulative discounted reward (or value function) of this agent as

V π(s,L) := E
[∑∞

t=0γ
tr(st, at,Lt) | s0 = s

]
,

where at ∼ π(·|st), st+1 ∼ P(·|st, at,Lt), and γ ∈ (0, 1) is the discount factor. The goal of this
agent is to find a policy π that maximizes V π(s,L) while interacting with the mean-field L.

We are interested in finding a stationary (time-independent) Nash Equilibrium (NE) of the game,
which is a policy-population pair (π∗,L∗) ∈ Π×∆(S) satisfying the following two properties:

• (Agent rationality) V π
∗
(s,L∗) ≥ V π(s,L∗),∀π ∈ Π, s ∈ S.

• (Population consistency) Lt = L∗,∀t under policy π∗ with initial mean-field state L0 = L∗.

That is, π∗ is the optimal policy under the mean-field L∗, and L∗ remains fixed under π∗. We
formalize the notion of NE in Section 2.3 after introducing a more general setting of MFG.

2.2 MEAN EMBEDDING OF MEAN-FIELD STATES

Note that the mean-field state L∗ is a distribution over the states. When the state space is con-
tinuous, the NE (π∗,L∗) is an infinite dimensional object, posing challenges for learning the NE.
To overcome this challenge, we make use of a succinct representation of the mean-field via mean
embedding, which embeds the mean-field states into a reproducing kernel Hilbert space (RKHS)
(Smola et al., 2007; Gretton et al., 2008; Sriperumbudur et al., 2010). Specifically, given a positive
definite kernel k : S×S → R, letH be the associated RKHS endowed with the inner product 〈·, ·〉H
and norm ‖·‖H. For each L ∈ ∆(S), its mean embedding µL ∈ H is defined as

µL(s) := Ex∼L [k(x, s)] , ∀s ∈ S.
LetM := {µL : L ∈ ∆(S)} ⊆ H be the set of all possible mean embeddings. Note that when k is
the identity kernel, we have µL = L andM = ∆(S) . On the other hand, when k is more structured
(e.g., with a fast decaying eigen spectrum),M has significantly lower complexity than the set ∆(S)
of raw mean-field states.

We assume that the MFG respects the mean embedding structure, in the sense that the reward r : S×
A×M→ [0, Rmax] and transition kernel P : S×A×M→ ∆(S) (with a slight abuse of notation)
depend on the mean-field state L through its mean embedding representation µL. In particular, at
each time t with state st and mean-field state Lt, the representative agent takes action at ∼ π(·|st),
receives reward r(st, at, µLt) and then transitions to a new state st+1 ∼ P(·|st, at, µLt). The NE
of the game is defined analogously. As mentioned, when k is the identity kernel, the above setting
reduces to the standard setting in Section 2.1 with raw-mean field states.

We impose a standard regularity condition on the kernel k.
Assumption 1. The kernel k is bounded and universal, in the sense that k(s, s) ≤ 1,∀s ∈ S and
the corresponding RKHSH is dense w.r.t. the L∞ norm in the space of continuous functions on S.

Assumption 1 is standard in the kernel learning literature (Caponnetto & De Vito, 2007; Muandet
et al., 2012; Szabó et al., 2015; Lin et al., 2017). When the kernel is bounded, the embedding of
each L ∈ ∆(S) satisfies ‖µL‖H ≤

∫
x∼L ‖k(x, ·)‖H dx ≤ 1.When one uses a universal kernel (e.g.,

Gaussian or Laplace kernel), the mean embedding mapping is injective and hence each embedding
µ ∈M uniquely characterizes a distribution L in ∆(S) (Gretton et al., 2008; 2012).

2.3 ENTROPY REGULARIZATION

To ensure the uniqueness of the NE and achieve fast algorithmic convergence, we use an entropy
regularization approach (Cen et al., 2020; Shani et al., 2019; Nachum et al., 2017), which augments
the standard expected reward objective with an entropy term of the policy. In particular, we define
the entropy-regularized value function as

V λ,πµ (s) := Eat∼π(·|st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt[r(st, at, µ)− λ log π(at|st)] | s0 = s

]
,

where the parameter λ > 0 controls the regularization level and µ is the mean-embedding of some
given mean-field state (fixed over time). Equivalently, one may view V λ,πµ as the usual value function
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of π with an entropy-regularized reward

rλ,πµ (s, a) := r(s, a, µ)− λ log π(a|s), ∀s ∈ S, a ∈ A. (1)
Also define the Q-function of a policy π as

Qλ,πµ (s, a) = r(s, a, µ) + γE
[
V λ,πµ (s1) | s0 = s, a0 = a

]
, (2)

which is related to the value function as
V λ,πµ (s) = Ea∼π(·|s)

[
Qλ,πµ (s, a)− λ log π(a|s)

]
=
〈
Qλ,πµ (s, ·), π(·|s)

〉
+ H (π(·|s)) , (3)

where H (π(·|s)) := −
∑
a π(a|s) log π(a|s) is the Shannon entropy of the distribution π(·|s). Since

the reward function r is assumed to be Rmax-bounded, it is easy to show that the Q-function is also
bounded as

∥∥Qλ,πµ ∥∥
∞ ≤ Qmax := (Rmax + γλ log |A|)/(1− γ); see Lemma 5.

Single-Agent MDP. When the mean-field state and its mean-embedding remain fixed over time,
i.e., Lt = L and µLt = µ,∀t, a representative agent aims to solve the optimization problem

max
π:S→∆(A)

V λ,πµ (s) (4)

for each s ∈ S. This problem corresponds to finding the (entropy-regularized) optimal policy for a
single-agent discounted MDP, denoted by MDPµ := (S,A,P(·|·, ·, µ), r(·, ·, µ), γ), that is induced
by µ ∈ M. Let πλ,∗µ be the optimal solution to the problem (4), that is, the optimal regularized
policy of MDPµ. The optimal policy is unique whenever λ > 0. One can thus define a mapping
Γλ1 : M → Π via Γλ1 (µ) = πλ,∗µ , which maps each embedded mean-field state µ to the optimal
regularized policy πλ,∗µ of MDPµ. Let Qλ,∗µ be the optimal regularized Q-function corresponding to
the optimal policy πλ,∗µ .

Throughout the paper, we fix a state distribution ν0 ∈ ∆(S), which will serve as the initial state of
our policy optimization algorithm. For each µ ∈M and a policy π : S → ∆(A), define

Jλµ (π) := Es∼ν0
[
V λ,πµ (s)

]
(5)

as the expectation of the value function V λ,πµ (s) of policy π on the regularized MDPµ. We define
the discounted state visitation distribution ρπµ induced by a policy π on MDPµ as:

ρπµ(s) := (1− γ)

∞∑
t=0

γtP(st = s), (6)

where P(st = s) is the state distribution when s0 ∼ ν0 and the actions are chosen according to π.

Mean-field Dynamics. When all agents follow the same policy π, we can define another mapping
Γ2 : Π×M→M that describes the dynamic of the embedded mean-field state. In particular, given
the current embedding µ corresponding to some mean-field state L, the next embedded mean-field
state µ+ = Γ2(π, µ) is given by

L+(s′) =

∫
S

∑
a∈A
L(s)π(a|s)P(s′|s, a, µ)ds, µ+ = µL+ . (7)

Note that the evolution of the mean-field depends on the agents’ policy in a deterministic manner.

Entropy-regularized Mean-field Nash Equilibrium (NE). With the above notations, we can
formally define our notion of equilibrium.

Definition 1. A stationary (time-independent) entropy-regularized Nash equilibrium for the MFG
is a policy-population pair (π∗, µ∗) ∈ Π×M that satisfies

(agent rationality) π∗ = Γλ1 (µ∗),

(population consistency) µ∗ = Γ2(π∗, µ∗).

When λ = 0, the above definition reduces to that of the (unregularized) NE discussed in Section 2.1,
which requires π∗ to the unregularized optimal policy of MDPµ∗ . For general values of λ, the
regularized NE (π∗, µ∗) approximates the unregularized NE (Geist et al., 2019), in the sense that π∗
is an approximate optimal policy of MDPµ∗ satisfying

max
π∈Π
{J0
µ∗(π)} − Jλµ∗(π∗) ≤ λ log |A|/(1− γ).
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One may further define the composite mapping Λλ : M→M as Λλ(µ) = Γ2

(
Γλ1 (µ), µ

)
. When

Λλ is a contraction, the regularized NE exists and is unique (Guo et al., 2019). Moreover, the iterates
{(πt, µt)}t≥0 given by the two-step update

πt = Γλ1 (µt), µt+1 = Γ2(πt, µt)

converge to the regularized NE at a linear rate. Note that the first step above requires an oracle for
computing the exact optimal policy πλ,∗µt . In most cases, such an exact oracle is not available; various
single-agent reinforcement learning algorithms have been considered for computing an approximate
optimal policy, including Q-learning (Guo et al., 2019) and policy gradient methods (Guo et al.,
2020; Subramanian & Mahajan, 2019). The recent work by Elie et al. (2019) considers fictitious
play iterative learning scheme. We remark that their convergence guarantee requires being able to
compute the approximate optimal policy to an arbitrary precision with high probability.

3 FICTITIOUS PLAY ALGORITHM FOR MFG

In this section, we present a fictitious play algorithm, which simultaneously estimates the policy π∗
and the embedded mean-field state µ∗ of the NE. As given in Algorithm 1, each iteration of the
algorithm involves three steps: policy evaluation (line 3), policy improvement (line 4), and updating
the embedded mean-field state (line 5). Below we explain each step in more details.

Algorithm 1 Mean-Embedded Fictitious Play
1: Input: initial estimate (π0, µ0), step size sequence {αt, βt}t≥0, mixing parameter η.
2: for Iteration t = 0, 1, 2, . . . , T − 1 do
3: (Policy evaluation step) Compute an approximate version Q̂λt : S × A → [0, Qmax] of the

Q-function Qλ,πtµt of policy πt with respect to the entropy-regularized MDPµt
4: (Policy improvement step) Update the policy by

π̂t+1(·|s) ∝ (πt(·|s))1−αtλ exp
(
αtQ̂

λ
t (s, ·)

)
(8)

πt+1(·|s) = (1− η)π̂t+1(·|s) + η · 1|A|(·)/|A| (9)
5: Update the embedded mean-field state by

µt+1 = (1− βt)µt + βt · Γ2(πt+1, µt). (10)
6: end for
7: Output: {(πt, µt)}t=1,...,T

Policy Evaluation. In each iteration, we first evaluate the current policy πt with respect to the
regularized single-agent MDPµt induced by the current mean-field estimate µt. In particular, we
compute an approximation Q̂λt of the true Q-function Qλt := Qλ,πtµt , which can be done using,
e.g., TD(0) or LSTD methods. Our theorem characterizes how convergence depends on the policy
evaluation error in this step.

Policy Improvement. To update our policy estimate πt, we first compute an intermediate policy
π̂t+1 by a single policy improvement step: for each s ∈ S,

π̂t+1(·|s) = argmax
π(·|s)∈∆(A)

{
αt
〈
Q̂λt (s, ·)− λ log πt(·|s), π(·|s)− πt(·|s)

〉
−DKL (π(·|s)‖πt(·|s))

}
,

(11)
where αt > 0 is the stepsize. This step corresponds to one iteration of Proximal Policy Optimization
(PPO) (Schulman et al., 2017). It can also be viewed as one mirror descent iteration, where the
shifted Q-function Q̂λt (s, ·) − λ log πt(·|s) plays the role of the gradient. The maximizer π̂t+1 in
equation (11) can be computed in closed form as done in equation (8) in Algorithm 1. We then
compute the new policy πt+1 by mixing π̂t+1 with a small amount of uniform distribution, as done
in equation (9). “Mixing in” a uniform distribution is a standard technique to prevent the policy from
approaching the boundary of the probability simplex and becoming degenerate. Doing so allows us
to upper bound a quantity of the form DKL (p ‖πt+1(·|s)) (cf. Lemma 2), which otherwise may be
infinite. It also ensures that the KL divergence satisfies a Lipschitz condition (cf. Lemma 3).
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Mean-field Update. We next compute an updated (embedded) mean-field state µt+1 as a weighted
average of the current µt and the mean-field state Γ2(πt+1, µt) induced by the new policy πt+1,
namely, µt+1 = (1 − βt)µt + βt · Γ2(πt+1, µt), where βt ∈ (0, 1) is the stepsize. This update can
be viewed as a single step of the (soft) fixed point iteration for the equation µ = Γ2(πt+1, µ).

We remark that our algorithm is similar to the classical fictitious play approach for finding NEs,
where each agent plays a response to the empirical average of its opponent’s past behaviors. In our
algorithm, the representative agent views the population of all agents collectively as an opponent.
Expanding the recursion (8) and ignoring the difference between π̂t+1 and πt+1, we can write the
policy πt+1 as

πt+1(·|s) ∝ exp
(∑t

τ=0wτ Q̂
λ
τ (s, ·)

)
for some positive weights {wτ}. Therefore, the representative agent is playing a policy that responds
to the (weighted) average of all previous Q functions, which reflects the representative agent’s belief
on the aggregate population policy.

Also note that our algorithm only performs a single policy improvement step to compute the updated
policy πt+1. It is unnecessary to compute the exact optimal policy π∗t+1 = Γλ1 (µt) under µt (which
would require an inner loop for solving MDPµt), as µt is only an approximate anyway of the true
NE mean-field µ∗. Our algorithm updates πt and µt simultaneously within a single loop.

4 MAIN RESULTS

In this section, we establish the theoretical guarantees on learning the regularized NE (π∗, µ∗) of
the MFG for our fictitious play algorithm. To state our theorem, we first discuss several regularity
assumptions on the MFG model. Recall the definition (6) of the discounted state visitation distribu-
tion and let ρ∗ := ρπ

∗

µ∗ ∈ ∆(S) be the visitation distribution induced by the NE (π∗, µ∗). We make
use of the following distance metric between two policies π, π′ ∈ Π:

D(π, π′) := Es∼ρ∗ [‖π(·|s)− π′(·|s)‖1] . (12)

As in the classical MFG literature (Guo et al., 2020; Saldi et al., 2018b), we assume certain Lipschitz
properties for the two mappings Γλ1 :M→ Π and Γ2 : Π×M →M defined in Section 2.3. The
first assumption states that Γλ1 (µ) is Lipschitz in the mean-embedded mean-field state µ with respect
to the RKHS norm.

Assumption 2. There exists a constant d1 > 0, such that for any µ, µ′ ∈M, it holds that

D
(
Γλ1 (µ),Γλ1 (µ′)

)
≤ d1 ‖µ− µ′‖H .

The second assumption states that Γ2(π, µ) is Lipschitz in each of its arguments when the other
argument is fixed.

Assumption 3. There exist constants d2 > 0, d3 > 0 such that for any policies π, π′ ∈ Π and
embedded mean-field states µ, µ′ ∈M, it holds that

‖Γ2(π, µ)− Γ2(π′, µ)‖H ≤ d2D (π, π′) , ‖Γ2(π, µ)− Γ2(π, µ′)‖H ≤ d3 ‖µ− µ′‖H .

Assumptions 2 and 3 immediately imply Lipschitzness of the composite mapping Λλ : M →M,
which we recall is defined as Λλ(µ) = Γ2

(
Γλ1 (µ), µ

)
. The proof is provided in Appendix D.1.

Lemma 1. Suppose Assumptions 2 and 3 hold. Then for each µ, µ′ ∈M, it holds that∥∥Λλ(µ)− Λλ(µ′)
∥∥
H ≤ (d1d2 + d3) ‖µ− µ′‖H .

We next impose an assumption on the boundedness of certain concentrability coefficients. This type
of assumption, standard in analysis of policy optimization algorithms (Kakade & Langford, 2002;
Shani et al., 2019; Bhandari & Russo, 2019; Agarwal et al., 2020), allows one to define the policy
optimization error in an average-case sense with respect to appropriate distributions over the states.

Assumption 4 (Finite Concentrability Coefficients). There exist two constants Cρ, Cρ > 0 such
that for each µ ∈M, it holds that∥∥∥ρπλ,∗µµ /ρ∗

∥∥∥
∞

:= sup
s

[
ρ
πλ,∗µ
µ (s)/ρ∗(s)

]
≤ Cρ and

{
E
s∼ρ

π
λ,∗
µ
µ

[∣∣∣ρ∗(s)/ρπλ,∗µµ (s)
∣∣∣2]}1/2

≤ Cρ.
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Finally, our last assumption stipulates that the state visitation distributions are smooth with respect
to the (embedded) mean-field states of the MFG. This assumption is analogous to those in the liter-
ature on MDP and two-player games (Fei et al., 2020; Radanovic et al., 2019), which requires the
visitation distributions to be smooth with respect to the policy.
Assumption 5. There exists a constant d0 > 0, such that for any µ, µ′ ∈M, it holds that∥∥∥ρπλ,∗µµ − ρ

πλ,∗
µ′

µ′

∥∥∥
1
≤ d0 ‖µ− µ′‖H .

We now state our theoretical guarantees on the convergences of the policy-population sequence
{πt, µt} in Algorithm 1 to the NE {π∗, µ∗}. For the estimates of the embedded mean-field states, it is
natural to consider the distance ‖µt − µ∗‖H in RKHS norm. For convergence to NE policy µ∗, recall
that µ∗ is the optimal policy to MDPµ∗ , and each iteration of our algorithm involves a single policy
improvement step to compute πt+1 rather than solving MDPµt to its optimal policy π∗t+1 := Γλ1 (µt).
As such, we analyze the difference between these two policies in terms of D

(
πt+1, π

∗
t+1

)
, where

the metric D is defined in equation (12). Also let ρ∗t := ρ
π∗t+1
µt denote the discounted visitation

distribution induced by the optimal policy π∗t+1 of MDPµt .
2 With the above considerations in mind,

we have the following theorem, which is proved in Appendix B. .
Theorem 1. Suppose that Assumptions 1–5 hold and d1d2 + d3 < 1 and that the error in the policy
evaluation step in Algorithm 1 satisfies

Es∼ρ∗t
[∥∥Qλt (s, ·)− Q̂λt (s, ·)

∥∥2

∞

]
≤ ε2, ∀t ∈ [T ].

With the choice of

η = cηT
−1, αt ≡ α = cαT

−2/5, βt ≡ β = cβT
−4/5,

for some universal constants cη > 0, cα > 0 and cβ > 0 in Algorithm 1, the resulting policy and
embedded mean-field state sequence {(πt, µt)}Tt=1 satisfy

D
( 1

T

T∑
t=1

πt,
1

T

T∑
t=1

π∗t

)
≤ 1

T

T∑
t=1

D(πt, π
∗
t ) .

1√
λ
·
(√

log T · T−1/5 +
√
ε
)
, (13)

∥∥∥ 1

T

T∑
t=1

µt − µ∗‖H ≤
1

T

T∑
t=1

‖µt − µ∗‖H .
1√
λ
·
(√

log T · T−1/5 +
√
ε
)
. (14)

Theorem 1 bounds the distance between πt and the optimal policy π∗t of MDPµ∗t . By directly mea-
suring the distance between πt and the NE policy π∗, we can define the notion of an δ-approximate
NE of the game.
Definition 2. For each δ > 0, a policy-population pair (π, µ) is called an δ-approximate (entropy-
regularized) NE of the MFG if

D(π, π∗) ≤ δ and ‖µ− µ∗‖H ≤ δ.

The following corollary of Theorem 1 shows that after T iterations of our algorithm, the average
policy-population pair ( 1

T

∑T
t=1 πt,

1
T

∑T
t=1 µt) is an Õ

(
T−1/5

)
-approximate NE.

Corollary 1. Under the assumptions of Theorem 1, we have

D
( 1

T

T∑
t=1

πt, π
∗
)

+
∥∥∥ 1

T

T∑
t=1

µt − µ∗
∥∥∥
H

.
1√
λ
·
(√

log T · T−1/5 +
√
ε
)
.

We prove this corollary in Appendix C.

The above results require an `2-error of ε for policy evaluation. A variety of algorithms have been
shown to achieve such a guarantees, including TD(0) and LSTD (Bhandari et al., 2018).

We also remark that the `∞ condition on concentrability coefficient in Assumption 4 can be relaxed

to an `2 condition of the form
{
E
[∣∣ρπλ,∗µµ (s)/ρ∗(s)

∣∣2]}1/2 ≤ Cρ, under which we can establish an
Õ(T−1/9) convergence rate; see Theorem 2 and Corollary 2 in Appendix E for the details.

2The subscript in ρ∗t emphasizes that ρ∗t only depends on the mean-field state µt at time t through π∗
t+1 =

Γλ1 (µt).
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Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. arXiv preprint arXiv:1911.10635, 2019.

12



Under review as a conference paper at ICLR 2021

Appendices
A TECHNICAL LEMMAS

Lemma 2. Let p∗ and p ∈ ∆(A) and p̂ = (1− η)p+ η
1|A|
|A| . Then

DKL (p∗‖p̂) ≤ log
|A|
η
,

DKL (p∗‖p̂)−DKL (p∗‖p) ≤ 2η.

Proof. By definition we have

DKL (p∗‖p̂) =
∑
a∈A

p∗(a) log
p∗(a)

p̂(a)

=
∑
a∈A

p∗(a) log
p∗(a)

(1− η)p(a) + η
|A|

≤
∑
a∈A

p∗(a) log
1

0 + η
|A|

= log
|A|
η
,

thereby proving the first inequality.

Note that

DKL (p∗‖p̂)−DKL (p∗‖p) =
∑
a∈A

p∗(a) log

(
p(a)

p̂(a)

)
. (15)

If p(a)
p̂(a) ≤ 1 for all a ∈ A then we have

DKL (p∗‖p̂)−DKL (p∗‖p) ≤ 0;

otherwise, there exists a′ such that p(a′) ≥ p̂(a′) and we have

log

(
p(a′)

p̂(a′)

)
= log

(
p(a′)

(1− η)p(a′) + η/|A|

)
≤ log

(
p(a′)

(1− η)p(a′)

)
≤ η

1− η
≤ 2η,

where the third step follows from the fact that log(z) ≤ z− 1 for all z > 0 and the last step holds as
η ∈ [0, 1

2 ]. Therefore, we have log
(
p(a′)
p̂(a′)

)
≤ 2η. Applying Holder’s inequality to (15) completes

the proof.

Lemma 3. Let x, y and z ∈ ∆(A). If x(a) ≥ α1, y(a) ≥ α1 and z(a) ≥ α2 for all a ∈ A, then

DKL(x‖z)−DKL(y‖z) ≤
(

1 + log
1

min {α1, α2}

)
· ‖x− y‖1 .

Proof. Under the lower bound assumption of the lemma, we have
dDKL(x‖z)

dx(a)
= 1 + log

x(a)

z(a)
≤ 1 + log

1

α2

and

−dDKL(x‖z)
dx(a)

≤ −1− logα1.

13



Under review as a conference paper at ICLR 2021

It follows that∥∥∥∥dDKL(x‖z)
dx(a)

∥∥∥∥
∞
≤ max

{
1 + log

1

α2
,−1− logα1

}
≤ 1 + log

1

min {α1, α2}
.

Hence the function x 7→ DKL(x‖z) is Lipschitz w.r.t. ‖·‖1, the dual norm of ‖·‖∞ .

B PROOF OF THEOREM 1

In order to obtain an upper bound on the optimality gap
σtµ := ‖µt − µ∗‖H , (16)

where µ∗ is the embedded mean-field state of the entropy regularized NE, we also need to estimate
the gap between πt+1 and the optimal solution to the entropy regularized MDPµt . We define

σt+1
π := Es∼ρ∗t

[
DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)]
(17)

to quantify the convergence of policy sequence.

Before proceeding, we establish the following properties of entropy regularized MDPs, which are
central to the convergence analysis.

Properties of Regularized MDP. The following lemma quantifies the performance difference
between two policies for a regularized MDP — measured in terms of the expected total reward —
through the Q-function and their KL-divergence. The proof is provided in Appendix D.2.

Lemma 4 (Performance Difference). For each µ ∈M and policies π : S → ∆(A), it holds that

Jλµ (π′)− Jλµ (π) +
λ

1− γ
Es∼ρπ′µ [DKL (π′(·|s)‖π(·|s))]

=
1

1− γ
Es∼ρπ′µ

[〈
Qλ,πµ (s, ·)− λ log π(·|s), π′(·|s)− π(·|s)

〉]
, (18)

where ρπ
′

µ is the discounted state visitation distribution induced by the policy π′ on MDPµ.

We can characterize the optimal policy πλ,∗µ in terms of the optimal Q-functionQλ,∗µ as a Boltzmann
distribution of the form Cen et al. (2020); Nachum et al. (2017)

πλ,∗µ (a|s) ∝ exp

(
Qλ,∗µ (s, a)

λ

)
. (19)

For the setting where the reward function is bounded, we then can obtain a lower bound on πλ,∗µ , as
stated in the following lemma. The proof is provided in Appendix D.3

Lemma 5. Suppose that there exists a constant Rmax > 0 such that 0 ≤
sup(s,a,µ)∈S×A×M r(s, a, µ) ≤ Rmax. For each µ ∈ M, and each policy π : S → ∆(A),
we have ∥∥Qλ,πµ ∥∥

∞ ≤ Qmax :=
Rmax + γλ log |A|

1− γ
.

Also, the optimal policy πλ,∗µ for the regularized MDPµ satisfies

πλ,∗µ (a|s) ≥ 1

eQmax/λ|A|
,∀s ∈ S, a ∈ A.

Convergence Analysis. We now move to the convergence analysis. For clarity of exposition,
we use Eρ [‖π − π′‖1] as shorthand for Es∼ρ [‖π(·|s)− π′(·|s)‖1], where ρ ∈ ∆(S); we also use
Eρ [DKL (π‖π′)] as shorthand for Es∼ρ [DKL (π(·|s)‖π′(·|s))]. We recall that the step sizes are
chosen as

αt ≡ α = cαT
−2/5, βt ≡ β = cβT

−4/5,

where the parameters cα and cβ satisfy that:

cαT
−2/5λ < 1, cβT

−4/5d < 1. (20)

Here d := 1−d1d2−d3 > 0, where d1 appears in Assumption 2, and d2, d3 appear in Assumption 3.
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Step 1: Convergence of Policy. To analyze the convergence of the optimality gap
σt+1
µ = ‖µt+1 − µ∗‖H, we first characterize the convergence behavior of the policy se-

quence {πt}t≥0. In particular, we establish a recursive relationship between σt+1
π =

Es∼ρ∗t
[
DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)]
and σtπ , as stated in the following lemma. The proof is pro-

vided in Section B.1.

Lemma 6. Under the setting of Theorem 1, for each t ≥ 1, we have

σt+1
π ≤ (1− λαt)σtπ + (1− λαt)

(
d0 log

|A|
η

+ κCρd1

)
‖µt−1 − µt‖H + 2εαt +

Q2
max

2
α2
t + 2η,

(21)
where κ = 4

1−γ log |A|η + 2Rmax

λ(1−γ) .

Recall that µt = (1− βt−1)µt−1 + βt−1 · Γ2(πt, µt−1). Under Assumption 1, we have
‖µt−1 − µt‖H = βt−1 ‖µt−1 − Γ2(πt, µt−1)‖H ≤ 2βt−1. (22)

Lemma 6 implies that

σt+1
π ≤ (1− λαt)σtπ + (1− λαt)C1βt−1 + 2εαt +

Q2
max

2
α2
t + 2η, (23)

where we define

C1 := 2

(
d0 log

|A|
η

+ κCρd1

)
.

With αt ≡ α, βt ≡ β, from Equation (23) we have that

σtπ≤
1

λα

(
σtπ − σt+1

π

)
+

(
1

λα
− 1

)
C1β +

2ε

λ
+
Q2

max

2λ
α+

2η

λα
. (24)

Summing over ` = 0, 2, . . . T − 1 on both sides of (24) and dividing by t gives

1

T

T−1∑
t=0

σtπ ≤
1

Tλα

(
σ0
π − σTπ

)
+

(
1

λα
− 1

)
C1β +

2ε

λ
+
Q2

max

2λ
α+

2η

λα

≤ 1

Tλα
σ0
π +

C1β

λα
+

2ε

λ
+
Q2

max

2λ
α+

2η

λα
. (25)

When choosing α = O(T−2/5), β = O(T−4/5) and η = O(T−1), we have C1 = O(log T ).
Therefore, we obtain

1

T

T−1∑
t=0

σtπ .
log T

λT 2/5
+

2ε

λ
. (26)

If we let T be a random number sampled uniformly from {1, . . . , T}, then the above equation can
be written equivalently as

ET

[
σT
π

]
.

log T

λT 2/5
+

2ε

λ
. (27)

Step 2: Convergence of Mean-field Embedding. We now proceed to characterize the optimality
gap for the embedded mean-field state. We obtain the following upper bound on the optimality gap
σt+1
µ = ‖µt+1 − µ∗‖H. The proof is provided in Section B.2.

Lemma 7. Under the setting of Theorem 1, for each t ≥ 0, we have

σt+1
µ ≤

(
1− βtd

)
σtµ + d2Cρβt

√
σt+1
π ,

where d = 1− d1d2 − d3 > 0.

Lemma 7 implies that

σtµ ≤
1

dβt

(
σtµ − σt+1

µ

)
+
d2Cρ

d

√
σt+1
π . (28)
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With βt ≡ β = O(T−4/5), averaging equation (28) over iteration t = 0, . . . , T − 1, we obtain

1

T

T−1∑
t=0

σtµ ≤
1

dβT

(
σ0
µ − σTµ

)
+
d2Cρ

dT

T−1∑
t=0

√
σt+1
π

≤
σ0
µ

dβT
+
d2Cρ

dT

T−1∑
t=0

√
σt+1
π

≤
σ0
µ

dβT
+
d2Cρ

d

√√√√ 1

T

T−1∑
t=0

σt+1
π ,

where the last inequality follows from Cauchy-Schwarz inequality.

From Eq. (26), we have

1

T

T−1∑
t=0

σtµ .
σ0
µ

d
T−1/5 +

d2Cρ

d

√
log T

λT 2/5
+

2ε

λ

.

√
log T

λT 2/5
+

2ε

λ

.
1√
λ

(√
log T

T 1/5
+
√
ε

)
.

This equation, together with Jensen’s inequality, proves equation (14) in Theorem 1.

Turning to equation (13) in Theorem 1, we have

1

T

T∑
t=1

D (πt, π
∗
t ) = ET [D (πT, π

∗
T)]

= ETEs∼ρ∗ [‖π∗T(·|s)− πT(·|s)‖1]

= ETEs∼ρ∗T−1

[
ρ∗(s)

ρ∗T−1(s)
‖π∗T(·|s)− πT(·|s)‖1

]
(i)

≤

√√√√ETEs∼ρ∗T−1

[∣∣∣∣ ρ∗(s)

ρ∗T−1(s)

∣∣∣∣2
]
· ETEs∼ρ∗T−1

[
‖π∗T(·|s)− πT(·|s)‖2

1

]
(ii)

≤
√
C

2

ρ · ETEs∼ρ∗T−1
[2DKL (π∗T(·|s)‖πT(·|s))]

=

√
C

2

ρ · 2ET [σT
π ]

(iii)

.
1√
λ

(√
log T

T 1/5
+
√
ε

)
,

where step (i) follows from Cauchy-Schwarz inequality, step (ii) follows from Assumption 4 and
Pinsker’s inequality, and step (iii) follows from the bound in equation (27). The above equation,
together with Jensen’s inequality, proves equation (13). We have completed the proof of Theorem 1.

B.1 PROOF OF LEMMA 6

The following lemma characterizes this policy improvement step. The proof is provided in Section
D.4.

Lemma 8. For any distributions p∗, p ∈ ∆(A),state s ∈ S and function G : S × A → R, it holds
for p′ ∈ ∆(A) with p′(·) ∝ p(·) · exp [αG(s, ·)] that

DKL (p∗‖p′) ≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉+ α2 ‖G(s, ·)‖2∞ /2.

Recall that

π̂t+1(·|s) ∝ πt(·|s) · exp
[
αt

(
Q̂λt (s, ·)− λ log πt(·|s)

)]
.
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Lemma 8 implies that for each s ∈ S, we have
DKL

(
π∗t+1(·|s)‖π̂t+1(·|s)

)
≤DKL

(
π∗t+1(·|s)‖πt(·|s)

)
− αt

〈
Q̂λt (s, ·)− λ log πt(·|s), π∗t+1(·|s)− πt(·|s)

〉
+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2

=DKL

(
π∗t+1(·|s)‖πt(·|s)

)
− αt

〈
Qλt (s, ·)− λ log πt(·|s), π∗t+1(·|s)− πt(·|s)

〉
+ αt

〈
Qλt (s, ·)− Q̂λt (s, ·), π∗t+1(·|s)− πt(·|s)

〉
+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2

≤DKL

(
π∗t+1(·|s)‖πt(·|s)

)
− αt

〈
Qλt (s, ·)− λ log πt(·|s), π∗t+1(·|s)− πt(·|s)

〉
+ 2αt

∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥
∞

+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2.

Recall that πt+1(·|s) = (1− η)π̂t+1(·|s) + η
|A|1|A|. Lemma 2 implies that

DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)
≤DKL

(
π∗t+1(·|s)‖π̂t+1(·|s)

)
+ 2η. (29)

≤DKL

(
π∗t+1(·|s)‖πt(·|s)

)
− αt

〈
Qλt (s, ·)− λ log πt(·|s), π∗t+1(·|s)− πt(·|s)

〉
+ 2αt

∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥
∞

+
∥∥∥Q̂λt ∥∥∥2

∞
α2
t /2 + 2η︸ ︷︷ ︸

Yt(s)

. (30)

Taking expectation over ρ∗t on both sides of (30) yields
Eρ∗t

[
DKL

(
π∗t+1‖πt+1

)]
≤Eρ∗t

[
DKL

(
π∗t+1‖πt

)]
− αtEs∼ρ∗t

[〈
Qλt (s, ·)− λ log πt(·|s), π∗t+1(·|s)− πt(·|s)

〉]
+ Es∼ρ∗t [Yt(s)]

(a)
=Eρ∗t

[
DKL

(
π∗t+1‖πt

)]
− (1− γ)αt

[
Jλµt(π

∗
t+1)− Jλµt(πt)

]
− αtλEρ∗t

[
DKL

(
π∗t+1‖πt

)]
+ Es∼ρ∗t [Yt(s)]

(b)

≤(1− αtλ)Eρ∗t
[
DKL

(
π∗t+1‖πt

)]
+ Es∼ρ∗t [Yt(s)]

(c)

≤(1− αtλ)Eρ∗t [DKL (π∗t ‖πt)]︸ ︷︷ ︸
B1

+(1− αtλ)
∣∣Eρ∗t [DKL

(
π∗t+1‖πt

)
−DKL (π∗t ‖πt)

]∣∣︸ ︷︷ ︸
B2

+Es∼ρ∗t [Yt(s)] ,

(31)

where step (a) follows from Lemma 4; step (b) follows from the fact that Jλµt(πt) ≤ Jλµt(π
∗
t+1), as

π∗t+1 = Γλ1 (µt) is the optimal policy for the regularized MDPµt ; and step (c) holds due to triangle
inequality.

Next we bound the first and second terms on the RHS of (31) separately.

• For the second term B2: Note that π∗t+1 and π∗t are the optimal policy for the regularized
MDPµt and MDPµt−1 , respectively. Define

τ :=
1

|A|
exp

(
−Rmax + γλ log |A|

λ(1− γ)

)
.

By Lemma 5, for all (s, a) ∈ S ×A, we have
π∗t+1(a|s) ≥ τ, and π∗t (a|s) ≥ τ.

Applying Lemma 3 yields
B2 ≤ κEs∼ρ∗t

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
= κEs∼ρ∗

[
ρ∗t (s)

ρ∗(s)
·
∥∥π∗t (·|s)− π∗t+1(·|s)

∥∥
1

]
≤ κCρEs∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
Assumption 4

= κCρD
(
Γλ1 (µt−1),Γλ1 (µt)

)
≤ κCρd1 ‖µt−1 − µt‖H , Assumption (2) (32)
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where

κ := 1 + log
1

min
{
τ, η
|A|

}
≤ 2 max

{
log
|A|
η
,

2

1− γ
log |A|+ Rmax

λ(1− γ)

}
≤ 4

1− γ
log
|A|
η

+
2Rmax

λ(1− γ)

=
4

1− γ
KLmax +

2Rmax

λ(1− γ)
.

• For the first term B1: We have

B1 = Eρ∗t−1
[DKL (π∗t ‖πt)] +

(
Eρ∗t − Eρ∗t−1

)
[DKL (π∗t ‖πt)]

= Eρ∗t−1
[DKL (π∗t ‖πt)] + Es∼ρ∗

[
ρ∗t (s)− ρ∗t−1(s)

ρ∗(s)
DKL (π∗t (·|s)‖πt(·|s))

]
(a)

≤ Eρ∗t−1
[DKL (π∗t ‖πt)] + Es∼ρ∗

[∣∣ρ∗t (s)− ρ∗t−1(s)
∣∣

ρ∗(s)

]
·KLmax,

(b)

≤ Eρ∗t−1
[DKL (π∗t ‖πt)] + KLmax · d0 ‖µt − µt−1‖H (33)

where step (a) uses the fact that `DKL (π∗t (·|s)‖πt(·|s)) ≤ KLmax := log |A|η (cf. Lemma
2) and step (b) follows from Assumption 5.

Combining (31), (32) and (33), we have
Eρ∗t

[
DKL

(
π∗t+1‖πt+1

)]
≤(1− λαt)Eρ∗t−1

[DKL (π∗t ‖πt)]
+ (1− λαt)d0 ·KLmax ‖µt − µt−1‖H + (1− λαt)κCρd1 ‖µt−1 − µt‖H + Es∼ρ∗t [Yt(s)]

=(1− λαt)Eρ∗t−1
[DKL (π∗t ‖πt)]

+ (1− λαt) (d0 ·KLmax + κCρd1) ‖µt−1 − µt‖H + Es∼ρ∗t [Yt(s)] . (34)
Note that

Es∼ρ∗t [Yt(s)] = 2αtEs∼ρ∗t
[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)

∥∥∥
∞

]
+

∥∥∥Q̂λt ∥∥∥2

∞
2

α2
t + 2η

≤ 2αt

√
Es∼ρ∗t

[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥2

∞

]
+

∥∥∥Q̂λt ∥∥∥2

∞
2

α2
t + 2η

≤ 2εαt +
Q2

max

2
α2
t + 2η,

where the last step holds by the assumption on the policy evaluation error and the fact that Q̂λt−1 :

S × A → [0, Qmax] satisfies
∥∥∥Q̂λt−1

∥∥∥
∞
≤ Qmax by definition. Combining the last two display

equations proves the lemma.
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B.2 PROOF OF LEMMA 7

Proof. According to the update rule (10) for the embedded mean-field state, we have
‖µt+1 − µ∗‖H

= ‖(1− βt)µt + βtΓ2(πt+1, µt)− µ∗‖H
=
∥∥(1− βt) (µt − µ∗) + βt

(
Γ2

(
Γλ1 (µt), µt

)
− µ∗

)
− βt

[
Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt+1, µt)

]∥∥
H

≤(1− βt) ‖(µt − µ∗)‖H + βt
∥∥Γ2

(
Γλ1 (µt), µt

)
− µ∗

∥∥
H

+ βt
∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt+1, µt)

∥∥
H

(i)
=(1− βt) ‖µt − µ∗‖H + βt

∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2

(
Γλ1 (µ∗), µ∗

)∥∥
H︸ ︷︷ ︸

(a)

+ βt
∥∥Γ2

(
Γλ1 (µt), µt

)
− Γ2(πt+1, µt)

∥∥
H︸ ︷︷ ︸

(b)

, (35)

where the equality (i) follows from the fact that µ∗ = Γ2

(
Γλ1 (µ∗), µ∗

)
.

Lemma 1 implies that Λ(µ) = Γ2

(
Γλ1 (µ), µ

)
is d1d2 + d3 Lipschitz. It follows that

(a) ≤ (d1d2 + d3) ‖µt − µ∗‖H . (36)
By Assumption 3, we have

(b) ≤ d2D
(
Γλ1 (µt), πt+1

)
. (37)

Combining Eqs. (35)-(37) yields

‖µt+1 − µ∗‖H ≤
(
1− βtd

)
‖µt − µ∗‖H + d2βtD

(
Γλ1 (µt), πt+1

)
, (38)

where d = 1− d1d2 − d3 > 0.

Let us bound the second RHS term above. By the definition of policy distance D in equation (12),
we have

D
(
Γλ1 (µt), πt+1

)
= Eρ∗

[∥∥Γλ1 (µt)− πt+1

∥∥
1

]
= Es∼ρ∗

[∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥

1

]
= Es∼ρ∗t

[
ρ∗(s)

ρ∗t (s)

∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥

1

]

≤

{
Es∼ρ∗t

[∣∣∣∣ρ∗(s)ρ∗t (s)

∣∣∣∣2
]
· Es∼ρ∗t

[∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥2

1

]}1/2

≤ Cρ
√
Es∼ρ∗t

[
DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)]
, (39)

where the first inequality holds due to Cauchy-Schwartz inequality, the last inequality follows from
Assumption 4 and Pinsker’s inequality.

Combining (38)-(39) gives

‖µt+1 − µ∗‖H ≤
(
1− βtd

)
‖µt − µ∗‖H + d2βtCρ

√
Es∼ρ∗t

[
DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)]
.

This completes the proof.

C PROOF OF COROLLARY 1

Proof. Note that for each t ∈ [T ], we have
D(πt, π

∗) ≤ D (πt, π
∗
t ) +D (π∗t , π

∗)

= D (πt, π
∗
t ) +D

(
Γλ1 (µt),Γ

λ
1 (µ∗)

)
≤ D (πt, π

∗
t ) + d1 ‖µt − µ∗‖H ,
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where the last step follows from Assumption 2 on the Lipschitzness of Γλ1 . It follows that

D

(
1

T

T∑
t=1

πt, π
∗

)
+

∥∥∥∥∥ 1

T

T∑
t=1

µt − µ∗
∥∥∥∥∥
H

≤ 1

T

T∑
t=1

D (πt, π
∗) +

1

T

T∑
t=1

‖µt − µ∗‖H

≤ 1

T

T∑
t=1

(D (πt, π
∗
t ) + d1 ‖µt − µ∗‖H) +

1

T

T∑
t=1

‖µt − µ∗‖H

.
1√
λ

(√
log T

T 1/5
+
√
ε

)
,

where in the last step we apply the bounds (13) and (14) in Theorem 1.

D ADDITIONAL PROOFS

D.1 PROOF OF LEMMA 1

Proof. By the definition of Λ, we have∥∥Λλ(µ)− Λλ(µ′)
∥∥
H

=
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ′), µ′

)∥∥
H

≤
∥∥Γ2

(
Γλ1 (µ), µ

)
− Γ2

(
Γλ1 (µ′), µ

)∥∥
H +

∥∥Γ2

(
Γλ1 (µ′), µ

)
− Γ2

(
Γλ1 (µ′), µ′

)∥∥
H triangle inequality

≤d2D
(
Γλ1 (µ),Γλ1 (µ′)

)
+ d3 ‖µ− µ′‖H Assumption 3

≤d1d2 ‖µ− µ′‖H + d3 ‖µ− µ′‖H , Assumption 2
which proves the lemma.

D.2 PROOF OF LEMMA 4

Proof. By the definition of V λ,πµ in (4), we have

V λ,π
′

µ (s)

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
[
rλ,π

′

µ (s, a) + V λ,πµ (st)− V λ,πµ (st)
]
| s0 = s

]
.

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
[
rλ,π

′

µ (s, a) + γV λ,πµ (st+1)− V λ,πµ (st)
]
| s0 = s

]
+ V λ,πµ (s).

(40)

Recall that the Q-function Qλ,πµ of a policy π for the regularized MDPµ is related to V λ,πµ as

V λ,πµ (s) = Ea∼π(s)

[
Qλ,πµ (s, a)− λ log π(a|s)

]
=
〈
Qλ,πµ (s, ·), π(·|s)

〉
+ λH (π(·|s)) , ∀s ∈ S,

Qλ,πµ (s, a) = r(s, a, µ) + γEs1∼P(·|s,a,µ)

[
V λ,πµ (s1)

]
, ∀(s, a) ∈ S ×A.

We have

〈
Qλ,πµ (s, ·), π′(·|s)

〉
= Ea∼π′(s)

[
Qλ,πµ (s, a)

]
,

= Ea∼π′(s)
[
r(s, a, µ) + γEs1∼P(·|s,a,µ)

[
V λ,πµ (s1)

]]
= Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′

µ (s, a) + γV λ,πµ (s1) + λ log π′(a|s)
]

= Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′

µ (s, a) + γV λ,πµ (s1)
]
− λH (π′(·|s)) .
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Therefore,〈
Qλ,πµ (s, ·), π′(·|s)− π(·|s)

〉
=Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′
(s, a, µ) + γV λ,πµ (s1)

]
− λH (π′(·|s))− V λ,πµ (s) + λH (π(·|s))

=Ea∼π′(s),s1∼P(·|s,a,µ)

[
rλ,π

′
(s, a, µ) + γV λ,πµ (s1)− V λ,πµ (s)

]
− λ [H (π′(·|s))−H (π(·|s))] .

(41)
Plugging (41) into (40), we have

V λ,π
′

µ (s)− V λ,π
′

µ (s)

=Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
〈
Qλ,πµ (st, ·), π′(·|st)− π(·|st)

〉
| s0 = s

]

+ Eat∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γtλ (H (π′(·|st))−H (π(·|st))) | s0 = s

]
. (42)

Recall the definition of Jλµ (π) in (5). Taking expectation with respect to s ∼ ν0 on both sides of
(42) yields

Jλµ (π′)− Jλµ (π)

=Es0∼ν0,at∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γt
〈
Qλ,πµ (st, ·), π′(·|st)− π(·|st)

〉]

+ Es0∼ν0,at∼π′(st),st+1∼P(·|st,at,µ)

[ ∞∑
t=0

γtλ (H (π′(·|st))−H (π(·|st)))

]

=
1

1− γ
Es∼ρπ′µ

[〈
Qλ,πµ (s, ·), π′(·|s)− π(·|s)

〉
+ λ (H (π′(·|s))−H (π(·|s)))

]
. (43)

For the entropy term in (43), we have
Es∼ρπ′µ [H (π′(·|s))−H (π(·|s))]

=Es∼ρπ′µ

[〈
log

1

π′(·|s)
, π′(·|s)

〉
−
〈

log
1

π(·|s)
, π(·|s)

〉]
=Es∼ρπ′µ

[〈
log

1

π(·|s)
− log

π′(·|s)
π(·|s)

, π′(·|s)
〉
−
〈

log
1

π(·|s)
, π(·|s)

〉]
=Es∼ρπ′µ

[〈
log

1

π(·|s)
, π′(·|s)− π(·|s)

〉
−DKL (π′(·|s)‖π(·|s))

]
. (44)

Taking (44) into (43) yields the desired equation in Lemma 4.

D.3 PROOF OF LEMMA 5

Proof. Note that the value function V λ,πµ can be written as

V λ,πµ (s) = E

[ ∞∑
t=0

γtrλ,πµ (st, at)|s0 = s

]
.

By the definition of rλ,πµ in (1), we have 0 ≤ Eπ
[
rλ,πµ (st, at)

]
≤ Rmax + λ log |A|. Therefore,

0 ≤ V λ,πµ (s) ≤ Rmax + λ log |A|
1− γ

, ∀s ∈ S,

and

0 ≤ Qλ,πµ (s, a) ≤ Rmax + γ
Rmax + λ log |A|

1− γ
=
Rmax + γλ log |A|

1− γ
, ∀s ∈ S, a ∈ A.
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For the second inequality, we have

πλ,∗µ (a|s) =
exp

(
Qλ,∗µ (s, a)/λ

)
∑
b∈A exp

(
Qλ,∗µ (s, b)/λ

)
≥ 1∑

b∈A exp (Qmax/λ)
=

1

eQmax/λ|A|
as claimed.

D.4 PROOF OF LEMMA 8

Proof. For any function g : A → R and distribution p ∈ ∆(A), let z : A → R be a constant
function defined by

z(a) = log

(∑
a′∈A

p(a′) · exp (αg(a′))

)
.

Note that for any distributions p∗, p′ ∈ ∆(A),〈z, p∗ − p′〉 = 0. Since
p′(·) ∝ p(·) · exp (αg(·)) ,

we have αg(·) = z(·) + log(p′(·)/p(·)). Hence
α 〈g, p∗ − p′〉 = 〈z + log(p′/p), p∗ − p′〉

= 〈z, p∗ − p′〉+ 〈log(p∗/p), p∗〉+ 〈log(p′/p∗), p∗〉+ 〈log(p′/p),−p′〉
= DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) .

Therefore, for each state s ∈ S, we have
α 〈G(s, ·), p∗ − p〉 = α 〈G(s, ·), p∗ − p′〉+ α 〈G(s, ·), p′ − p〉

= DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) + α 〈G(s, ·), p′ − p〉
≤ DKL (p∗‖p)−DKL (p∗‖p′)−DKL (p′‖p) + α ‖G(s, ·)‖∞ · ‖p− p

′‖1 .
Rearranging terms yields
DKL (p∗‖p′) ≤ DKL (p∗‖p)−α 〈G(s, ·), p∗ − p〉−DKL (p′‖p)+α ‖G(s, ·)‖∞ · ‖p− p

′‖1 . (45)

Meanwhile, by Pinsker’s inequality, it holds that

DKL (p′‖p) ≥ ‖p− p′‖21 /2. (46)
By combining (45) and (46), we obtain

DKL (p∗‖p′) ≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉 − ‖p− p′‖21 /2 + α ‖G(s, ·)‖∞ · ‖p− p
′‖1

≤ DKL (p∗‖p)− α 〈G(s, ·), p∗ − p〉+ α2 ‖G(s, ·)‖2∞ /2,

which concludes the proof.

E A WEAKER ASSUMPTION ON CONCENTRABILITY

In this section, we consider a weaker assumption on concentrability, under which Algorithm 1 learns
a policy-population pair that is Õ(T−1/9)-approximate NE after T iterations.

We consider the following distance metric between two policies π, π′ ∈ Π:

W (π, π′) :=

√
Es∼ρ∗

[
‖π(·|s)− π′(·|s)‖21

]
. (47)

Similarly as before, we assume certain Lipschitz properties for the two mappings Γλ1 :M→ Π and
Γ2 : Π×M→M defined in Section 2.3. In particular, we impose the following two assumtpions,
both stated in terms of the new distance metric W (·, ·) defined in (47) above.

Assumption 6. There exists a constant d1 > 0, such that for any µ, µ′ ∈M, it holds that

W
(
Γλ1 (µ),Γλ1 (µ′)

)
≤ d1 ‖µ− µ′‖H .
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Assumption 7. There exist constants d2 > 0, d3 > 0 such that for any policies π, π′ ∈ Π and
embedded mean-field states µ, µ′ ∈M, it holds that

‖Γ2(π, µ)− Γ2(π′, µ)‖H ≤ d2W (π, π′) ,

‖Γ2(π, µ)− Γ2(π, µ′)‖H ≤ d3 ‖µ− µ′‖H .

Assumptions 6 and 7 immediately imply Lipschitzness of the composite mapping Λλ : M →M,
which we recall is defined as Λλ(µ) = Γ2

(
Γλ1 (µ), µ

)
.

Lemma 9. Suppose Assumptions 6 and 7 hold. Then for each µ, µ′ ∈M, it holds that∥∥Λλ(µ)− Λλ(µ′)
∥∥
H ≤ (d1d2 + d3) ‖µ− µ′‖H .

We also consider the following relaxed, `2-type assumption on the concentrability coefficients.

Assumption 8 (Finite Concentrability Coefficients). There exist two constants Cρ, Cρ > 0 such
that for each µ ∈M, it holds thatE

s∼ρ
π
λ,∗
µ
µ


∣∣∣∣∣∣ρ
πλ,∗µ
µ (s)

ρ∗(s)

∣∣∣∣∣∣
2



1/2

≤ Cρ and

E
s∼ρ

π
λ,∗
µ
µ

∣∣∣∣∣ ρ∗(s)

ρ
πλ,∗µ
µ (s)

∣∣∣∣∣
2


1/2

≤ Cρ.

We establish the following convergence result for Algorithm 1.

Theorem 2. Suppose that Assumptions 1, 5, 6, 7, and 8 hold and d1d2 + d3 < 1 and that the error
in the policy evaluation step in Algorithm 1 satisfies

Es∼ρ∗t

[∥∥∥Qλt (s, ·)− Q̂λt (s, ·)
∥∥∥2

∞

]
≤ ε2, ∀t ∈ [T ].

With the choice of

η = cηT
−1, αt ≡ α = cαT

−4/9, βt ≡ β = cβT
−8/9,

for some universal constants cη > 0, cα > 0 and cβ > 0 in Algorithm 1, the resulting policy and
embedded mean-field state sequence {(πt, µt)}Tt=1 satisfy

W

(
1

T

T∑
t=1

πt,
1

T

T∑
t=1

π∗t

)
≤ 1

T

T∑
t=1

W (πt, π
∗
t ) .

1

λ1/4

(
(log T )1/4

T 1/9
+ ε1/4

)
, (48)∥∥∥∥∥ 1

T

T∑
t=1

µt − µ∗
∥∥∥∥∥
H

≤ 1

T

T∑
t=1

‖µt − µ∗‖H .
1

λ1/4

(
(log T )1/4

T 1/9
+ ε1/4

)
. (49)

The following corollary of Theorem 2 shows that after T iterations of our algorithm, the average
policy-population pair

(
1
T

∑T
t=1 πt,

1
T

∑T
t=1 µt

)
is an Õ

(
T−1/9

)
-approximate NE.

Corollary 2. Under the assumptions of Theorem 2, we have

W

(
1

T

T∑
t=1

πt, π
∗

)
+

∥∥∥∥∥ 1

T

T∑
t=1

µt − µ∗
∥∥∥∥∥
H

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε1/4

)
.

E.1 PROOFS OF THEOREM 2 AND COROLLARY 2

The proof follows similar lines as those of Theorem 1 and Corollary 1, with all appearances of the
distance D replaced by the new distance W . Below we only point out the modifications needed.

Lemma 6 remains valid as stated. For the proof of this lemma, the only different step is bounding
the term B2 in equation (31). In particular, the bounds in equation (32) should be replaced by the
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following:
B2 ≤ κEs∼ρ∗t

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥

1

]
= κEs∼ρ∗

[
ρ∗t (s)

ρ∗(s)
·
∥∥π∗t (·|s)− π∗t+1(·|s)

∥∥
1

]

≤ κ

√√√√Es∼ρ∗
[(

ρ∗t (s)

ρ∗(s)

)2
]
· Es∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥2

1

]
≤ κCρ ·

√
Es∼ρ∗

[∥∥π∗t (·|s)− π∗t+1(·|s)
∥∥2

1

]
Assumption 8

= κCρW
(
Γλ1 (µt−1),Γλ1 (µt)

)
≤ κCρd1 ‖µt−1 − µt‖H . Assumption 6 (50)

Lemma 7 should be replaced by the following lemma.

Lemma 10. Under the setting of Theorem 2, for each t ≥ 0, we have

σt+1
µ ≤

(
1− βtd

)
σtµ + d2

√
Cρβt

(
σt+1
π

)1/4
,

where d = 1− d1d2 − d3 > 0.

The proof of Lemma 10 is similar to that of Lemma 7. The only different step is the term
D
(
Γλ1 (µt), πt+1

)
in equation (38) should be replaced byW

(
Γλ1 (µt), πt+1

)
,which can be bounded

as follows:

W
(
Γλ1 (µt), πt+1

)
=

√
Es∼ρ∗

[∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥2

1

]
=

√
Es∼ρ∗t

[
ρ∗(s)

ρ∗t (s)

∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥2

1

]

≤

{
Es∼ρ∗t

[∣∣∣∣ρ∗(s)ρ∗t (s)

∣∣∣∣2
]
· Es∼ρ∗t

[∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥4

1

]}1/4

(i)

.
√
Cρ ·

{
Es∼ρ∗t

[∥∥π∗t+1(·|s)− πt+1(·|s)
∥∥2

1

]}1/4

(ii)

.
√
Cρ
{
Es∼ρ∗t

[
DKL

(
π∗t+1(·|s)‖πt+1(·|s)

)]}1/4
. (51)

where step (i) holds by Assumption 8 and the fact that ‖ν − ν′‖1 ≤ 2,∀ν, ν′ ∈ ∆(A), and step (ii)
follows Pinsker’s inequality.

We now turn to the proof of Theorem 2.

We first establish the convergence for σtπ by following the exactly same steps from equation (21) up
to equation (25). We restate the bound on 1

T

∑T−1
t=0 σtπ in (25) as follows:

1

T

T−1∑
t=0

σtπ ≤
1

Tλα
σ0
π +

C1β

λα
+

2ε

λ
+
Q2

max

2λ
α+

2η

λα
. (52)

When choosing α = O(T−4/9), β = O(T−8/9) and η = O(T−1), we have C1 = O(log T ).
Therefore, we obtain

1

T

T−1∑
t=0

σtπ .
log T

λT 4/9
+

2ε

λ
. (53)

If we let T be a random number sampled uniformly from {1, . . . , T}, then the above equation can
be written equivalently as

ET

[
σT
π

]
.

log T

λT 4/9
+

2ε

λ
. (54)
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We now proceed to bound the average embedded mean-field state 1
T

∑T−1
t=0 σtµ. Lemma 10 implies

σtµ ≤
1

dβt

(
σtµ − σt+1

µ

)
+
d2

√
Cρ

d

(
σt+1
π

)1/4
. (55)

With βt ≡ β = O(T−8/9), averaging equation (55) over iteration t = 0, . . . , T − 1, we obtain

1

T

T−1∑
t=0

σtµ ≤
1

dβT

(
σ0
µ − σTµ

)
+
d2

√
Cρ

dT

T−1∑
t=0

(
σt+1
π

)1/4
≤

σ0
µ

dβT
+
d2

√
Cρ

dT

T−1∑
t=0

(
σt+1
π

)1/4
(i)

≤
σ0
µ

dβT
+
d2

√
Cρ

d

√√√√ 1

T

T−1∑
t=0

√
σt+1
π

(ii)

≤
σ0
µ

dβT
+
d2

√
Cρ

d

(
1

T

T−1∑
t=0

σt+1
π

)1/4

where steps (i) and (ii) follow from Cauchy-Schwarz inequality.

From equation (53), we have

1

T

T−1∑
t=0

σtµ .
σ0
µ

d
T−1/9 +

d2

√
Cρ

d

(
log T

λT 4/9
+

2ε

λ

)1/4

.

(
log T

λT 4/9
+

2ε

λ

)1/4

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε1/4

)
.

This equation, together with Jensen’s inequality, proves equation (49) in Theorem 2.

Turning to equation (48) in Theorem 2, we have

1

T

T∑
t=1

W (πt, π
∗
t ) = ET [W (πT, π

∗
T)]

= ET

√
Es∼ρ∗

[
‖π∗T(·|s)− πT(·|s)‖2

1

]
(i)

≤

√
ETEs∼ρ∗T−1

[
ρ∗(s)

ρ∗T−1(s)
‖π∗T(·|s)− πT(·|s)‖2

1

]
(ii)

≤

{
ETEs∼ρ∗T−1

[∣∣∣∣ ρ∗(s)

ρ∗T−1(s)

∣∣∣∣2
]
· ETEs∼ρ∗T−1

[
‖π∗T(·|s)− πT(·|s)‖41

]}1/4

(iii)

.
{
C

2

ρ · ETEs∼ρ∗T−1

[
‖π∗T(·|s)− πT(·|s)‖21

]}1/4

(iv)

.
√
Cρ ·

{
ETEs∼ρ∗T−1

[DKL (π∗T(·|s)‖πT(·|s))]
}1/4

=

√
Cρ ·

{
ET

[
σT
π

]}1/4

(v)

.
1

λ1/4

(
(log T )1/4

T 1/9
+ ε1/4

)
,

where step (i) holds due to Jensen’s inequality, step (ii) follows from Cauchy-Schwarz inequality,
step (iii) follows from Assumption 8 and the fact that ‖ν − ν′‖1 ≤ 2,∀ν, ν′ ∈ ∆(A), step (iv)
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comes from Pinsker’s inequality, and step (v) follows from the bound in equation (54). The above
equation, together with Jensen’s inequality, proves equation (48). We have completed the proof of
Theorem 2.

The proof of Corollary 2 is the same as that of Corollary 1 and is omitted here.
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