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Abstract In recent years, interest in synthetic data

has grown, particularly in the context of pre-training

the image modality to support a range of computer

vision tasks, including object classification, medical

imaging etc. Previous work has demonstrated that

synthetic samples, automatically produced by various

generative processes, can replace real counterparts

and yield strong visual representations. This approach

resolves issues associated with real data such as

collection and labeling costs, copyright and privacy.

We extend this trend to the video domain applying

it to the task of action recognition. Employing frac-

tal geometry, we present methods to automatically

produce large-scale datasets of short synthetic video

clips, which can be utilized for pre-training neural

models. The generated video clips are characterized

by notable variety, stemmed by the innate ability of

fractals to generate complex multi-scale structures.

To narrow the domain gap, we further identify key

properties of real videos and carefully emulate them

during pre-training. Through thorough ablations, we

determine the attributes that strengthen downstream

results and offer general guidelines for pre-training

with synthetic videos. The proposed approach is eval-

uated by fine-tuning pre-trained models on established

action recognition datasets HMDB51 and UCF101 as

well as four other video benchmarks related to group
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action recognition, fine-grained action recognition

and dynamic scenes. Compared to standard Kinetics

pre-training, our reported results come close and are

even superior on a portion of downstream datasets.

Code and samples of synthetic videos are available at

https://github.com/davidsvy/fractal_video.

Keywords Fractal Geometry; Synthetic Data; Action

Recognition; Domain Adaptation

1 Introduction

Contemporary computer vision models require enor-

mous amounts of data for training. Beginning with Im-

ageNet [63] which consists of 1.4 million labeled images,

the scale of vision datasets has been rapidly increasing,
reaching tens of millions to a billion of samples [27,77,

25]. Regarding such datasets, multiple issues emerge.

First, data collection and annotation is arduous and ex-

pensive. Second, it has been noted that vision datasets

may inherit human biases [66,8,75,79] and contain in-

appropriate content [7]. Third, the depiction of humans

in these datasets poses questions of privacy [4]. Lastly,

ownership concerns limit many datasets to noncommer-

cial usage only.

Hence, the computer vision society has recently ex-

hibited growing interest in synthetic datasets that miti-

gate the aforementioned shortcomings. Amongst them,

noteworthy is the seminal work of [42] who proposed

to pre-train 2D CNNs with automatically generated

images of fractals [6]. Although their results are infe-

rior compared to standard ImageNet pre-training, they

significantly surpass training from scratch. Subsequent

work has either enhanced their approach [5,2,41], alle-

viating the gap in downstream results between real and

synthetic data or extended it to other domains [78].

https://github.com/davidsvy/fractal_video
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Fig. 1: Overview of the proposed approach. Aiming to pre-train neural models, we utilize fractal geometry and

automatically construct large-scale datasets of short synthetic video clips (Sec. 2.2). We additionally narrow the

domain gap between real and synthetic videos by identifying key properties of the former and emulating them

during pre-training (Sec. 2.3). The transferability of the proposed datasets and transformations is experimentally

assessed by fine-tuning the pre-trained models on real action recognition benchmarks (Sec. 3)

Such datasets offer several advantages. They are con-

structed automatically and thus, do not require a col-

lection or an annotation stage. They are also not bound

by copyright limitations. Moreover, there are no ques-

tions regarding biases, inappropriate content or privacy,

as no human subjects are depicted.

The present work extends the ideas of [42] to the

domain of video. Specifically, we seek to automatically

produce synthetic datasets that are suitable for pre-

training neural networks for the task of action recogni-

tion. Automatic action recognition is of paramount im-

portance as it enables accurate detection and interpre-

tation of human actions from video or sensor data. This

technology has broad applications across various sec-

tors, including surveillance, healthcare, robotics, sports

analysis, and human-computer interaction. The signif-

icance of action recognition is additionally outlined by

the sheer amount of videos available on the internet.

With over 500 hours of video uploaded to YouTube ev-

ery minute, there is an immediate need for robust algo-

rithms that can help organize, summarize and retrieve

this massive amount of data.

Our approach is summarized in Fig. 1, where the

two involved stages are depicted: 1) the pre-training

stage and 2) the fine-tuning stage. The former includes

the generation of fractal-based videos, followed by their

appropriate augmentation to simulate human actions,

as well as the training procedure to capture as much

relevant information as possible. The latter includes a

straightforward fine-tuning pipeline in order to adapt

the pre-trained network to real action recognition

datasets.

The main contributions of this paper are:

– Using fractal geometry [6], as well as other gener-

ative processes, we propose a pipeline that can au-

tomatically construct large-scale datasets of short

synthetic video clips. These datasets are employed

for pre-training neural networks for the task of ac-

tion recognition instead of the typical large-scale

Kinetics [10,43] dataset. Both supervised and self-

supervised learning is applicable and explored in the

experimental section.

– Starting from the observation of real video samples,

we pinpointed their fundamental attributes such a

periodic motion, random background, camera dis-

placement etc. These attributes are carefully emu-

lated during pre-training, significantly reducing the

domain gap between synthetic and real videos.

– Experimentally, we analyze downstream perfor-

mance as a function of the training objective

and the properties of the synthetic dataset. We

determine beneficial attributes and offer general

guidelines for pre-training with synthetic videos.

– We conduct error analysis of the pre-trained models’

predictions and detect common patterns. As such,

we propose tailored modifications to the synthetic

data that may further boost downstream results in

future work.

2 Proposed Methodology

2.1 Preliminaries: Fractal Images

Before exploring the video modality, it is necessary to

first examine the simpler domain of images. Following

[42], who produce synthetic image datasets to pre-train

2D CNNs, fractals generated via the Iterated Function

Systems (IFS) technique [6] are chosen as the back-

bone of our work. Specifically, the IFS fractals possess

a set of appealing properties, including an easily imple-
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Fig. 2: Examples of rendered 2D IFS attractors. A subset of linear samples exhibits unsatisfactory geometry, being

either too sparse or too dense. Adding nonlinearity significantly alters the distribution of produced images and

boosts overall diversity.

mentable rendering algorithm as well as the possibility

of producing a near-limitless supply of diverse images

by randomly sampling parameters.

2.1.1 Classic IFS

Following Barnsley [6], a 2D IFS can be defined as a

set of N > 1 affine transformations Fi : R2 7→ R2. Each

Fi is represented by a matrix Ai ∈ R2×2 and a vector

bi ∈ R2:

Fi(x;Ai, bi) = Aix+ bi =

[
ai bi
di ei

]
x+

[
ci
fi

]
The complete parameter matrix will be referred to

as W ∈ RN×6. Additionally, it is necessary for each

mapping to be contractive with respect to the Euclidean

distance d(·, ·):

d(Fi(x), Fi(y)) ≤ ki · d(x, y), 0 < ki < 1

This constraint prevents divergence and ensures

that, after successive applications of the mapping,

points get progressively closer together. Furthermore,

if the affine transformations are extended to be applied

to whole subsets of the plane instead of single points,

then their union F is a contractive mapping with

respect to the Hausdorff distance on the space of

nonempty compact sets [6]. If F is iteratively applied,

starting from an arbitrary initial set, the iterations

will converge to a unique fixed set of points which is

referred to as the attractor of the IFS [35]. Since we

are working with the 2D Euclidean plane, the resultant

attractor is an image.

An approximation of the attractor (Fig. 2) can be

rendered with the chaos game algorithm [6]. At first,

this algorithm initializes the output image as zeros and

samples a starting 2D point. At each iteration, one of

the N functions is sampled from the IFS and applied to

the said point. The probability of selecting each func-

tion is:

pi =
|det(Ai)|∑N
j=1 |det(Aj)|

Given that the coordinates of the point are real

numbers, they are quantized to a discrete pixel. The

output image value corresponding to this this pixel is

then incremented by one. After completing a specified

number of iterations, the output, which is a 2D his-

togram, is normalized, producing a grayscale image.

To construct a dataset of fractal images, [42] orig-

inally proposed to sample parameters independently

from U(−1, 1). However, a subsequent work [2] observed

that this strategy often results in images with degen-

erate geometry, being either too sparse or too dense.

As a solution, it is suggested to decompose each weight
matrix into A = RθΣRϕD, omitting the index i for

brevity. The decomposed matrices are:

– Rx is a rotation matrix parameterized by angle x.

– Σ is a diagonal matrix containing the singular values

σ1 and σ2 ordered by decreasing magnitude.

– D is a diagonal matrix with elements d1, d2 ∈
{−1, 1}, acting as a reflection matrix.

As such, a “well-behaved” A can be sampled by ap-

propriately sampling the decomposed parameters {θ, ϕ
, σ1, σ2, d1, d2}. Notably, [2] empirically deduce that

the geometry of the resultant attractor depends on the

quantity a =
∑N

i=1(σi,1 + 2σi,2), with unsatisfactory

behavior being minimized when:

al =
1

2
(5 +N) ≤ a ≤ au =

1

2
(6 +N)

Towards satisfying the inequality, the authors of [2]

also propose an iterative algorithm for sampling param-
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Naive Interpolation

Decomposed Interpolation
Fig. 3: An example of the the proposed animation method compared to naive interpolation (Sec. 2.2). The latter

often results in undesired sparseness in the intermediate frames. The former mitigates this issue. More samples

are displayed in Fig. 10 and 11 of Appendix B.

eters that fulfill the specified inequality. Their method-

ology is adopted throughout the present work.

2.1.2 Fractal Flame

The Fractal Flame Algorithm [20] is an extension to the

ordinary IFS designed to generate more aesthetically

pleasing images, which are often employed as desktop

backgrounds. Although multiple modifications to the

IFS are introduced, only one is of interest for this work:

nonlinearity. In particular, after the application of the

affine function F , an additional nonlinear function G :

R2 7→ R2, can be applied to the coordinates. The latter

is referred to as variation. The authors of [20] provide

49 such variations, e.g:

– G6(x, y) = r(sin(θ + r))

– G16(x, y) =
2

r+1 (y, x)

Here r and θ are polar coordinates. As seen in Fig. 2,

such images differ significantly from the ordinary IFS.

Thus, the inclusion of nonlinear functions significantly

boosts the overall diversity of generated samples. At

the time of writing this document, no other work has

explored fractal flames in the context of deep learning.

2.2 Synthetic Videos based on Fractal Geometry

Animation can be simply achieved by sampling param-

eters for two fractal images, the first and last frame.

The only constraint is the number of functionsN , which

must be shared. To produce motion, parameters of the

two images are linearly interpolated. As the order of

functions in an IFS is arbitrary, we sort them by their

probabilities pi. The result is a smooth sequence of T

IFS images which can be rendered separately to pro-

duce a video. Nonetheless, although the beginning and

end of the resultant clips are satisfactory, the intermedi-

ate attractors are not, often exhibiting evident sparse-

ness (Fig. 3). We consider this behavior inappropriate

for producing large-scale synthetic datasets. Therefore,

an alternative solution is required.

Instead of directly interpolating IFS parameters,

we propose to alleviate detrimental sparseness by

employing matrix decomposition (Sec. 2.1.1). Specif-

ically, each parameter matrix Ai can be decomposed

into sub-matrices. The approach is to first interpolate

each pair of sub-matrices separately and subsequently

multiply them to obtain the final parameters of each

frame. This method is adapted from [2] and [9] and

examples are displayed in Fig. 3. The complete proce-

dure is described in detail in Algorithm 1. Regarding

notation, zeros(x) is a matrix of shape x filled with

zeros, diag(x, y) is a diagonal 2D matrix with x, y as

elements, interp(x, y, z) denotes linear interpolation

between x and y of length z, rot matrix(x) is a 2D

rotation matrix parameterized by angle x and the

symbols : and . . . have the same functionality as in

numpy.

It is noteworthy that fractal geometry can gener-

ate videos in an alternative manner: by constructing

a point cloud with a 3D IFS. Specifically, by extract-

ing 2D slices at different coordinates within this point

cloud, a sequence of images can be produced. However,

this approach is not pursued due to its higher compu-

tational demands and incompatibility with certain key

modifications introduced in Sec. 2.3.

2.3 Domain Adaptation

Previous work on images [5] concludes that down-

stream performance is boosted if synthetic and real

data share structural properties. Likewise, large-scale

studies on pre-training [14,45,67] deduce that its
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Algorithm 1 sample-video-decomposed(): Sample

IFS parameters for an animation by interpolating each

sub-matrix separately.

Output: Sequence of parameters: W ∈ RT×N×6

1: Sample N ∼ U({3, . . . , 8}) ▷ # functions

2: Sample T ∼ U({18, . . . , 20}) ▷ # frames

3: D ← zeros(N, 2, 2) ∈ ZN×2×2 ▷ Initialize matrices

4: Σ ← zeros(T,N, 2, 2) ∈ RT×N×2×2

5: Rθ ← zeros(T,N, 2, 2) ∈ RT×N×2×2

6: Rϕ ← zeros(T,N, 2, 2) ∈ RT×N×2×2

7: b← zeros(T,N, 2) ∈ RT×N×2

8: for n = 1 to N do

9: Sample d1, d2 ∼ U ({−1, 1})
10: D[n, . . .]← diag(d1, d2) ∈ Z2×2

11: Sample σ1
1 , σ

1
2 ▷ see Appendix A of [2]

12: Sample σT
1 , σ

T
2

13: Σ1, ΣT ← diag(σ1
1 , σ

1
2), diag(σ

T
1 , σ

T
2 ) ∈ R2×2

14: Σ[:, n, . . .]← interp
(
Σ1, ΣT , T

)
∈ RT×2×2

15: Sample θ1, θT , ϕ1, ϕT ∼ U(0, 2π)

16: θ, ϕ← interp(θ1, θT , T ), interp(ϕ1, ϕT , T )

17: for t = 1 to T do

18: Rθ[t, n, . . .]← rot matrix (θ[t]) ∈ R2×2

19: Rϕ[t, n, . . .]← rot matrix (ϕ[t]) ∈ R2×2

20: end for

21: Sample b1, bT ∼ U (−1, 1) ∈ R2

22: b[:, n, :]← interp(b1, bT , T ) ∈ RT×2

23: end for

24: A← RθΣRϕD ∈ RT×N×2×2 ▷ Compose A

25: W ← reshape(concat(A, expand(b))) ∈ RT×N×6

26: return W

effectiveness significantly deteriorates if the source and

target domains differ. As such, it can be assumed that

obtaining satisfactory video models requires narrowing

the domain gap between synthetic videos and samples

from action recognition benchmarks. To do so, this

section lists manually observed characteristics of real

action recognition data [65,46] as well as methods

to emulate them within the synthetic pre-training

framework (Fig. 5). Amongst these techniques, non-

linear motion and amplified diversity can only be

applied offline, requiring the construction of a new

video with modifications to Alg. 1. On the contrary,

the rest are implemented as online augmentations,

further promoting the diversity of the generated videos

on-the-fly. It should be noted that in the context of

our work, domain adaptation refers to the proposed

set of heuristic augmentations which simulate mostly

motion-related properties of real videos.

Nonlinear Motion. Our synthesis method pro-

duces simple forward motion. However, the real human
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Fig. 4: Examples of the proposed nonlinear interpola-

tion curves. The objective is to approximate the com-

plexity of real human motion.

counterpart is more complex. To this end, more intri-

cate interpolation functions (Fig. 4) can be included in

the rendering process (Alg. 1):

– Sinusoidal Interpolation. Periodic activity such

as exercise can be simulated with a noisy sine func-

tion.

– Sharp Interpolation. Quick and sudden activity

such as boxing can be approximated by a linear in-

terpolant with a significantly sharper slope. The lin-

ear interpolant is placed in random timestep while

the rest of the curve is padded.

– Random Interpolation. Other activity without

clear patterns can be simulated with a random

waveform. To produce such a waveform, a sequence

of real numbers is initially sampled from U(0, 1) and

then smoothened via 1D quadratic interpolation.

Moreover, human motion is inherently composite,

i.e. intricate motions consist of multiple simple ones.

For instance, running is comprised of a periodic move-

ment of the legs as well as a different periodic movement

of the arms. This can be approximated by assigning a

different interpolant to each IFS function pair. As a

result, the produced shape will execute multiple mo-

tions simultaneously. However, doing so unrestrictedly

often results in oscillations that lack the structured flow

found in real human motion. To this end, interpolation

functions will be sampled under constraints. Initially,

the set of chosen interpolants is initialized as the lin-

ear interpolant. Next, one or two different nonlinear

interpolants are added to the set. Lastly, each of the

N IFS function pairs receives a randomly sampled in-

terpolant from the set or a single interpolant is applied

to all IFS functions. The N resultant interpolants re-

place the interp operation in Alg. 1. The outcome is a

shape that moves in more fluid and constrained manner

compared to naive sampling of interpolants.
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Diversity. It has been demonstrated that diver-

sity of synthetic images during pre-training leads to

stronger visual representations [5]. In the context of

fractal animations, this property can be boosted by

adding nonlinearity to the image rendering algorithm

(Section 2.1.2). In pursuit of reducing the domain gap,

only variations 4, 14, 16, 17, 20, 27 and 29 (Appendix of

[20]) are selectively employed. These were chosen due

to their distinct and well-defined shape and contours, a

characteristic present in real videos.

Random Background. Real videos consist of two

essential components: foreground (person performing

an action) and background (environment surrounding

the person). In its simplest form, the background is

completely static. Although in synthetic videos this

property is absent, it can be straightforwardly approx-

imated following [72,18]. For each video xi within a

batch, a static frame is sampled from a different video

xj and mixed with every frame of xi via weighted sum:

x̃i = (1− a)xi + axj [f ]

Here, f ∼ U({1, . . . , T} and a ∼ U(0.25, 0.55). In

practise, to cover the entirety of the canvas, Nback = 2

static frames are sampled and are next aggregated with

the maximum operation. Furthermore, a random rect-

angle is cropped from the resultant image and interpo-

lated to input dimensions.

It has been assumed that the background remains

motionless. However, real videos often include dynamic

elements such as bystanders or water waves. This can

be addressed with a modification to the previous ap-

proach. Specifically, the given video is mixed not with a

single static frame but with a sequence of frames sam-

pled from a different video. Compared to foreground,

the magnitude of the background motion should be

smaller. Thus, within this sequence, the frame index

can either be incremented by one, remain the same, or

decrease by one at each timestep. Additionally, the dif-

ference between the maximum and minimum frame in-

dices is constrained. For each video in a batch, the type

of background is determined by a Bernoulli trial with

probability 0.8. Success results in static background,

whereas failure in dynamic.

Foreground Scaling and Placement. In syn-

thetic videos, fractal shapes cover the majority of the

canvas and are usually positioned around its center.

On the contrary, in real videos, position and size of the

foreground significantly vary. To address this contra-

diction, synthetic videos are downsampled in the two

spatial dimensions with scales sh, sw ∼ U(smin, smax)

and placed in a random position of an empty canvas.

We set smin = 0.3 and smax = 1.0.

Static
Background

Group
Activity

Perspective

Zoom

Background
Displacement

Camera
Displacement

Foreground
Displacement

Fig. 5: Examples of the proposed domain adaptation

methods. The purpose of these augmentations is to nar-

row the domain gap between real and synthetic videos.

Group Activity. Videos that display groups per-

forming similar activities (e.g. aerobics) can be approx-

imated with a modification to the previous augmenta-

tion. Specifically, after the interpolation step, the syn-

thetic video is copied resulting in Nclone = 2 clones

with each one receiving a different mild augmentation.

Augmentations, which render the copies asynchronous,

include random rotation, horizontal flipping and tem-

poral offset. As previously, each copy is then placed in

a random location of the canvas. We set smin = 0.2 and

smax = 0.7 to reduce overlap between copies.

Perspective. Real cameras record objects from any

angle in 3D, whereas fractals are rendered in 2D. As a

compromise, minor angle variance can be induced us-

ing a random perspective transformation1. This aug-

mentation is expected to amplify the model’s spatial

perception.

Relative Displacement. Aside from the previ-

ously mentioned motion, real videos contain additional

relative motion between the foreground, the back-

ground and the camera:

– Foreground Displacement. This occurs when

camera is static and individuals perform actions

1 We employ the RandomPerspective transform from
torchvision.
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while simultaneously walking or running. As such,

in the captured video, the position of the foreground

is shifted while the background remains unaffected.

– Background Displacement. This is observed

when the human target is displaced and the camera

follows it. Consequently, the position of the human

subject remains virtually stationary, while the

background undergoes an equal displacement in

the opposite direction. A notable example is the

camera that follows athletes in a running track.

– Camera Displacement. In this case, the position

of the human target remains unchanged but the fo-

cus of the camera is being shifted. In the resultant

video, both foreground and background are rela-

tively displaced in the opposite direction of the cam-

era’s movement.

Invariance to such movements can be boosted with

simple transformations. For background displacement,

a static background frame is initially enlarged and then

a sequence of crops with dimensions of the original

video is created. The sequence is then mixed with the

foreground. As the centers of the crops are consecutive

points on a 2D line, the result is displacement towards

a fixed direction. For camera displacement, the process

is similar, with the exception that crops are taken after

mixing the foreground with an unaltered background.

Lastly, for foreground displacement, the foreground is

initially reduced in size and then each frame is placed

at a different position inside the background.

Camera Zoom. For implementation, the video is

initially interpolated to larger spatial dimensions. This

is followed by central cropping which is applied with

different scale for each frame. Increasing and decreas-
ing the scale results in zooming out and zooming in

respectively. As a final step, each cropped frame is in-

terpolated back to the original spatial dimensions of

the video. This implementation differs from the previ-

ously proposed camera displacement. The latter alters

the position the displayed shapes between consecutive

frames. The former alters their size.

Camera Shake. Videos captured by hand-held de-

vices often contain shaking. This phenomenon can be

approximately synthesized following [61]. Specifically,

the displacement in each dimension is modelled as:

dt =

n∑
i=1

1

i
sin(2πfit+ ϕ) + ηt, t = 1, 2, . . . , T

Here, n is the number of components, T is the du-

ration of the video in frames, fi is the frequency of

each component, ϕ denotes the phase and η is the noise

component. These parameters are sampled as follows:

Fig. 6: Examples of the proposed mutation scheme.

Each row displays a separate video. All videos belong

to the same category, but exhibit differences due to ran-

domly sampled noise, which is injected into the param-

eters.

n ∼ U({2, . . . 5}), fi ∼ U(0.1, 1.2), ϕi ∼ U(0, 2π), ηt ∼
U(−0.3, 0.3). To apply the shaking effect, two displace-

ment sequences are sampled. Afterwards, the video is

enlarged and each frame is cropped. The position of

the crop is determined by the two displacement values.

This operation can be considered as an extension of the

camera displacement augmentation, as it replaces the

simple forward camera motion with a complex oscilla-

tion.

2.3.1 Automatic Construction of Categories

Algorithm 1 describes a method to sample parameters

for a fractal video. Repeatedly executing this algorithm

results in a dataset where each video is unique and no
information exists about correlation of different sam-

ples. Therefore, in the context of machine learning, such

a dataset is only suitable for unsupervised learning.

For a supervised classification objective, synthetic

videos must be divided into categories (Fig. 6). These

can be automatically constructed by adapting the ap-

proach of [42]. Specifically, given a predefined number

of categories C, we initially sample parameters for C

distinct fractal videos. This is achieved by executing

Alg. 1 modified with nonlinear motion and diversity

domain adaptations (Sec. 2.3). As such, each category

c is represented by a parameter matrix Wc ∈ RTc×Nc×6

as well as a variation index varc. Here, Tc is the number

of frames in the video, Nc the number of IFS functions

and varc determines the type of nonlinear function uti-

lized in rendering the video (Sec. 2.1.2).

To produce a new video belonging to class c, we

mutate the respective parametersWc with the auxiliary

“noise” matrices ma and mb. The parameter matrix of

the final video is calculated as follows:



8 Davyd Svyezhentsev1 et al.

Perlin Noise

Octopus

Dead Leaves

Fig. 7: Examples of alternative synthetic videos. Com-

pared to fractals, these videos are less diverse, whereas

perlin noise and dead leaves additionally lack distinct

contours.

W̃c = ma ⊙Wc +mb

Here, ma ∈ RTc×1×6 is the scaling component of

the noise, which consists of 6 random curves that are

sampled in the same manner as the random nonlinear

interpolant (Sec. 2.3). The curves are bound between

[−0.35, 0.35]. On the other hand, mb ∈ R1×Nc×6 is the

bias component, which is sampled from U(−0.2, 0.2).
Lastly, ⊙ denotes elementwise multiplication. With

this mutation scheme, we achieve variance within the

same class and increased difficulty during supervised

pre-training. However, it is noteworthy that the pro-

duced categories are randomly sampled and therefore,

unlike real datasets such as Kinetics [10,43], possess

no interpretable information (i.e., each class does not

represent an actual human action).

2.4 Alternative Synthetic Videos

Despite their appealing properties (Sec. 2.1), it is not

evident that fractal animations are appropriate for

training strong visual representations for the task of

action recognition. Hence, this section presents alter-

native generative processes of video (Fig. 7), which

will be compared against fractals during experiments.

Each generative process produces videos with different

characteristics and the objective of the upcoming

experiments is to determine which attributes are

favorable for downstream results.

Perlin Noise. Adapting the approach of [39], we

can generate videos of perlin noise [58,59], a variant of

random texture. The label of each video is defined by

three frequencies: two spatial and one temporal. These

determine the rate of change in their respective dimen-

sions. Unlike fractals, these videos are nebulous, lack-

ing distinct shape and contours. With regard to the

proposed domain adaptation techniques, perlin noise is

not compatible with diversity and nonlinear motion.

Octopus. By sampling two 1D waveforms, one can

construct a random 2D curve. To create an animation,

two such curves can be sampled and their coordinates

interpolated as has been shown for IFS. This process

is repeated N times and the resulting curves are con-

joined at a fixed point. As the outcome consists of thin

curves, thickness is increased by applying Gaussian blur

followed by the operation of morphological closing [71].

These videos will be referred to as “octopus” due to

similarity to the mollusk. We additionally apply col-

orization, interior removal via the morphological gra-

dient [71] and addition of geometrical shapes. Octopus

videos resemble fractals due to their distinct contours,

but are less diverse. These videos are not suitable for

the proposed diversity amplification technique.

Dead Leaves. Dead leaves [62,47] is a simple im-

age model that emulates statistics of natural images,

such as the 1/|f |a power spectrum. Such images can

be constructed by randomly filling a canvas with ge-

ometric shapes, such as circles and regular polygons.

More recently, dead Leaves have been employed in deep

learning as synthetic images for pre-training [5] and it

was deduced that stronger representations are obtained

when the said shapes vary in terms of size, color and

number edges. To extend this generative process to the

video domain, a 2D curve is sampled for each shape.

Throughout the video, the shape traverses this curve.

Lastly, dead leaves lack distinct contours, while being

incompatible with diversity enhancement.

2.5 Training Objective

So far, we have described the proposed method and the

respective training procedure. However, the proposed

training relies on supervised learning over a pre-defined

number of categories, arbitrary generated by our sam-

pling procedure. Despite the non-intuitive formalization

of classes (non-intuitive in the sense that the defined

distinct categories are arbitrarily selected and do not

correspond to a human-related action), such a super-

vised learning approach is expected to provide good vi-

sual embeddings. On the other hand, one may wonder

what happens if we do not define such distinct classes

and treat our problem as a self-supervised paradigm.

To this end, for pre-training, aside from the supervised

objective from Sec. 2.3.1, we additionally explore al-

gorithms from the self-supervised learning (SSL) liter-

ature, which do not require annotation. During SSL

training, a pretext task is designed for a deep learn-

ing algorithm to solve and pseudolabels for the pretext

task are automatically constructed based on attributes
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of the input. Specifically we employ the SSL frameworks

SimCLR [12], MoCoV2 [13] and BYOL [29].

SimCLR. Given a batch of size B, SimCLR applies

heavy augmentation twice resulting in 2B input sam-

ples. For each positive pair (i, j) originating from the

same sample, the other 2(B−1) instances are treated as

negatives. The contrastive prediction loss is calculated

as:

Li,j = − log
exp(sim(zi, zj)/T )∑2B

m=1
m ̸=i

exp(sim(zi, zm)/T )

Here, zi is the model output for the instances i,

sim(·, ·) is cosine similarity and T is the temperature

hyperparameter. SimCLR requires two forward and two

backward passes per training step. Furthermore, large

batch size is preferred for training as it leads to in-

creased difficulty and improved downstream results. As

such, SimCLR is computationally heavier than super-

vised classification.

MoCoV2. MoCoV2 similarly employs a con-

trastive approach resulting in two views per input: q

and k+. However, unlike before, k+ is produced by

a non-differentiable model which is updated as an

exponential moving average of the original. Moreover,

k+ is added to circular queue of size K. The loss

function maximizes the similarity between q and k+
while minimizing it between q and all other instances

in the queue:

L = − log
exp(q · k+/T )∑K
i=1 exp(q · ki/T )

In terms of resources, MoCoV2 requires two forward

and one backward pass, while the dependency on large

batch size is alleviated due to the queue. Hence Mo-

CoV2 is more lightweight than SimCLR but still more

demanding than supervised classification.

BYOL. Lastly, BYOL does not utilize negative

pairs. In a manner akin to MoCoV2, BYOL employs

two neural networks named online and target, with

only the former one being differentiable. As before,

two views of the input are constructed: q and k. Both

views are fed through both encoders resulting in four

output representations in total. The training objective

is to simply maximize the cosine similarity between all

matching representations:

qo, ko = encoder online(q), encoder online(k)

qt, kt = encoder target(k), encoder target(q)

L = 2− 2 ∗ (sim(qo, kt) + sim(ko, qt))

Computationally, each training step requires four

forward and two backward passes, rendering it the most

demanding framework in the present work. Nonetheless,

unlike SimCLR, large batch sizes are not required.

3 Experiments

3.1 Implementation Details

Datasets. The proposed pre-training framework is

evaluated by fine-tuning the model on 6 small-scale

video classification datasets:

– HMDB51 [46] and UCF101 [65], established action

recognition benchmarks.

– DIVING48 [48], a collection of videos from diving

competitions.

– EGTEA GAZE+ [49], which consists of first person

cooking videos.

– VOLLEYBALL [36], a group action recognition

dataset.

– YUP++ [24], which consists of videos depicting dy-

namic scenes that are not relevant to action recog-

nition.

Indicative examples from these datasets are dis-

played in Fig. 8. The datasets exhibit significant

differences and were chosen to maximize overall

diversity. An official train-validation split is provided

for each dataset. Thus, after pre-training, we fine-tune

models on the training set and report the top-1 accu-

racy on the validation set of the downstream datasets.

Synthetic videos are rendered with spatial resolution

of 256 × 256 and temporal length which is sampled

from U({18, . . . , 20}). For fractals, 50% of videos are

rendered with nonlinearities (Sec. 2.1.2).

Model Architecture. Temporal Shift Module

(TSM) [50] is employed for all experiments with

ResNet-50 [31] utilized as backbone. While preserving

the efficiency of 2D CNNs, TSM can achieve results

equivalent to 3D CNNs in action recognition tasks.

Specifically, TSM efficiently exchanges information

between neighboring frames by moving the feature

map along the temporal dimension. Despite being com-

putationally cheap, this operation possesses a strong

spatio-temporal modeling ability. Solid accuracy can

be achieved with as few as 8 input frames. Such

short length significantly alleviates both the CPU and

GPU bottlenecks. The former is evidenced by reduced

dataloading whereas the latter by a reduced amount of

computation within the neural network itself. Unless

specified otherwise, pre-training is done from scratch

and does not utilize any off-the-shelf checkpoints.
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HMDB51

UCF101

DIVING48

EGTEA GAZE+

VOLLEYBALL

YUP++

Fig. 8: Frames taken from the evaluated downstream datasets. Note the variance of the displayed background in

all datasets aside from VOLLEYBALL and DIVING48.

Training. Only RGB frames are employed as model

input in this work. Unless specified otherwise, the spa-

tial resolution of the model input is 112 × 112. The

clip consists of 8 strided frames. This allows us to de-

code only a fragment of the video file reducing dat-

aloading latency. The stride of the input is 2 frames for

pre-training, 4 for fine-tuning VOLLEYBALL and 6 for

fine-tuning all other downstream datasets. During each

training epoch, one such clip is produced from every

video by sampling the index of the first frame from the

uniform distribution. During validation, 10 such clips

are uniformly selected from a video and separately fed

into the model. The final output is the average of soft-

max scores.

The number of training epochs is 25 and 100 for

pre-training and fine-tuning respectively. The number

of warmup epochs for the learning rate scheduler is 3

and 10 respectively. The networks are optimized using

AdamW [52] with β1 = 0.9 and β2 = 0.999. Cosine

scheduling [51] is employed. The true learning rate is

scaled according to the batch size: lrtrue = bs
bsbase

lr,

where the batch size and base batch size are set to 32

and 32 respectively. The default learning rate is initial-

ized at 1 ·10−6, increases to 8 ·10−4 during warmup and

eventually falls to 1 · 10−5 at the end of training. The

default weight decay is set to 1 · 10−2. Exceptions are

the VOLLEYBALL dataset where the learning rates

are 2.5 · 10−6, 2.5 · 10−3 and 2.5 · 10−5 and weight de-

cay is set to 1 · 10−1 as well as DIVING48 where the

learning rates are 1.5 · 10−6, 1.5 · 10−3 and 1.5 · 10−5.

Augmentation. For fine-tuning, augmentation

consists of random cropping with bicubic interpolation,

horizontal flip, Randaugment [16] and Gaussian blur.

For cropping, scale is sampled from U(0.2, 1.0) and

ratio from U(0.75, 1.33). Augmentations are applied

in the same order as they are listed. As an exception,

for VOLLEYBALL we use area interpolation and omit

horizontal flip and Gaussian blur.
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Method Kept HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Scratch - 31.5 70.3 4.7 50.5 53.8 43.7

Initial - 41.4 72.7 24.3 49.8 80.6 52.3

Background Yes 47.4 74.2 23.0 47.1 77.6 56.4

Motion Yes 47.3 75.7 21.7 48.6 79.2 59.5

Diversity Yes 50.4 77.8 24.9 49.8 80.8 63.1

Scale + Shake Yes 52.8 78.0 26.0 50.7 80.8 61.9

Shift Yes 54.5 79.6 29.5 50.8 80.9 65.1

Zoom Yes 54.3 80.2 30.8 52.0 81.4 65.2

Perspective No 53.3 78.7 25.0 50.0 80.7 62.6

Group No 53.3 79.7 30.3 51.9 81.9 66.0

Table 1: Experiment 1 - Effectiveness of domain adaptation. In the majority of cases, emulation of a property

boosts accuracy if the downstream dataset includes it (green color) and deteriorates accuracy if it does not (red

color).

For pre-training, we retain the same augmentations

with the addition of the proposed domain adaptation

techniques. Within the aforementioned order, these are

applied between horizontal flip and Randaugment. We

employ a curriculum and linearly increase the inten-

sity of domain augmentations for the first 5 epochs. All

domain augmentations are applied with a probability

of 0.3 with the exception of Background, Scale, Per-

spective and Group whose probabilities are 1.0, 1.0, 0.8

and 0.15 respectively. To accelerate computation, each

domain adaptation method is applied in parallel and

identically to all of its selected samples inside a batch.

Background Randomization, Scale and Group are ex-

ceptions that are applied independently for each sam-

ple.

3.2 Experimental Results

After each experiment, we retain the configuration with

highest accuracy on HMDB51 and UCF101, the focus

of our work. Highest accuracy is indicated with bold

font in the provided tables.

Experiment 1 - Domain Adaptation. Here we

evaluate the proposed domain adaptation techniques,

which are inserted sequentially into the pre-training

framework. A technique will be discarded if improve-

ment is not achieved for HMDB51 and UCF101.

All pre-training is done with the MoCoV2 [13]

self-supervised framework, due to its computational

efficiency. The pre-training dataset consists of 100K

unlabeled fractal videos.

From Table 1 it can be observed that, aside from a

few exceptions (orange color), emulation of a property is

beneficial for datasets that include it (green color) and

detrimental for datasets that do not (red color). Hence,

it can be inferred that self-supervised pre-training is

more effective when the source and target domains are

similar. As such, synthetic datasets should be maxi-

mally customized to mirror the properties of the target

downstream dataset. This observation is in complete

agreement with previous work [14,45,67]. A notable ex-

ample is background randomization which increases ac-

curacy for HMDB51 and UCF101, but decreases it for

DIVING48 and VOLLEYBALL. For the former, back-

ground is not relevant for the category of the video and

varies in each sample. However, for the latter, the back-

ground in all samples is similar and it can be assumed

that neural models take it into account during classifi-

cation.

Additionally, the only modification that results in

non-trivial improvement across all benchmarks is am-

plified diversity of synthetic videos (blue color). This is

again in line with previous work on the image modality

[5]. One the contrary, the only modification that results

in overall deterioration is random perspective (yellow

color). It is noteworthy that compared to training from

scratch, considerable improvement in results is attained

across all datasets except EGTEA. This shortcoming is

further investigated in Sec. 3.3.

Experiment 2 - Alternative Synthetic Data.

We investigate pre-training with alternative synthetic

datasets from Section 2.3.1. Each dataset exhibits dif-

ferent characteristics and the aim is to determine the

ones that are favorable for downstream results.

Based on Table 2, fractal videos lead to superior

results across all benchmarks compared to alternatives.

Thus it can be deduced that fractals possess more

appropriate properties for downstream tasks. Specifi-

cally, compared to the octopus dataset, fractals exhibit

more diversity. On the other hand, what differentiates

fractals from dead leaves and perlin noise is distinct

contours. As distinct contours are an attribute of
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Dataset HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Octopus 50.9 76.5 25.5 49.1 80.7 58.3

Dead Leaves 39.9 70.2 15.8 47.3 75.7 50.2

Perlin Noise 42.4 72.5 21.4 50.1 76.4 58.2

Fractal 54.3 80.2 30.8 52.0 81.4 65.2

Table 2: Experiment 2 - Evaluation of different synthetic datasets. Fractal videos outperform all alternatives. The

characteristics that render them superior are diversity and distinct contours.

Objective HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

MoCoV2 54.3 80.2 30.8 52.0 81.4 65.2

SimCLR 57.5 81.3 34.3 54.7 83.2 70.2

BYOL 52.0 78.1 26.1 52.0 80.4 66.0

Supervised 61.5 84.9 38.5 54.8 82.7 73.6

Table 3: Experiment 3 - Exploration of different training objectives. Pre-training through supervised classification

yields superior results compared to SSL. A plausible rationale is that supervision is more resistant to the domain

gap between real and synthetic videos.

real videos, it is safe to assume that including them

in a synthetic dataset bridges the domain gap. The

importance of this trait is further highlighted by the

fact that octopus videos outperform both perlin noise

and dead leaves. As such, the verdict of this experiment

is identical to the previous one: to obtain stronger

visual representations, synthetic video datasets have

to exhibit diversity and mimic characteristics present

in target data.

Experiment 3 - Training Objective. So far,

MoCoV2 [13] has been exclusively employed for

pre-training. This decision was made due to its

computational efficiency. Thus, with the intention

of maximizing downstream performance, this section

explores alternative training objectives: self-supervised

frameworks SimCLR [12] and BYOL [29] (Sec. 2.5)

as well as a supervised classification objective (Sec.

2.3.1). For the former, the unlabeled fractal dataset

from previous experiments is reused. For the latter, a

new dataset is constructed with 500 classes and 200

samples per class, resulting in 100K training videos in

total.

As seen in Table 3, the supervised objective con-

fidently outperforms alternatives. At first glance this

is perhaps surprising as the categories are sampled

randomly and therefore lack meaningful information

present in real classification datasets. A possible

explanation relies on the fact that self-supervised

frameworks have been shown to be especially vulner-

able to the domain gap between source and target

datasets [14,45,67]. Therefore, it can be assumed that

the supervised pre-training objective is more resilient

to the difference in domains and therefore results in

representations that are transferred more robustly to a

wide range of downstream tasks.

On a different note, compared to supervised train-

ing, self-supervised counterparts require multiple for-

ward passes per step and benefit from larger batch size

and increased number of epochs. Hence, it is likely that

our SSL models are undertrained and allocating more

resources would considerably improve downstream re-

sults. Regardless, supervised training performs well un-

der resource constraints and therefore is a more cost-

effective solution. A last observation involving the ex-

amined SSL frameworks is that SimCLR outperforms

MoCoV2, which in turn outperforms BYOL. This is in

complete contrast with ImageNet pre-training, where
the order is reversed [29].

Experiment 4 - Dataset Size. This segment in-

vestigates how transferability to downstream tasks is

impacted by two statistical characteristics of the syn-

thetic classification dataset: the number of classes and

the number of instances per class. The experiment is

divided into two stages. In the first stage, the number

of classes is fixed to 500 as in the previous experiment,

while the instances are varied at 100, 200, and 400 per

class. In the second stage, the number of instances is

fixed to the optimal value determined in the first stage,

while classes are varied at 250, 500 and 1000. To en-

sure fairness, each dataset is a superset for all smaller

ones. For the largest of the assessed datasets, we addi-

tionally evaluate the perspective transform (Sec. 2.3),

which previously led to deteriorated results in Experi-

ment 1.

Observing Table 4, it can be deduced that down-

stream performance is almost a monotonically increas-
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#Instance/#Total HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

100/50K 56.5 81.8 35.8 52.6 82.6 69.3

200/100K 61.5 84.9 38.5 54.8 82.7 73.6

400/200K 61.5 86.0 40.8 53.8 83.0 75.1

Table 4: Experiment 4A - Impact of the number of instances per category on downstream accuracy.

#Classes/#Total HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

250/100K 60.3 85.3 38.1 53.5 84.1 75.6

500/200K 61.5 86.0 40.8 53.8 83.0 75.1

1000/400K 62.4 87.3 41.2 56.1 84.0 76.0

1000/400K + Perspective 65.4 87.6 40.3 56.0 83.1 72.7

Table 5: Experiment 4B - Impact of the number of categories on downstream accuracy.

ing function of the number of instances per class. Judg-

ing by Table 5, the same conclusion can be reached

for the number of classes. This behavior is not surpris-

ing as increasing the number of training videos exposes

the model to more spatio-temporal patterns and ren-

ders the learnt representations more transferable to new

tasks.

Regarding the perspective augmentation, in Table 5

accuracy is boosted for for action recognition datasets

HMDB51 and UCF101. This is in contrast with Exper-

iment 1 where performance drops. The difference be-

tween these experiments is the training objective: the

former employs a supervised objective while the latter

utilizes the self-supervised framework MoCoV2 [13]. As

such, it is possible that the exact impact of the pro-

posed domain adaptation techniques is dependant on

the training objective.

Experiment 5 - Higher Resolution & Larger

Scale. Given that all previous experiments have been

conducted with a low spatial resolution of 112, we now

increase it to 224. Furthermore, to align with the stan-

dards set by prior works on synthetic data, we expand

the size of our synthetic dataset from 400K to 2M (5K

classes and 400 instances per class). These datasets

are referred to as Fractal-400K and Fractal-2M respec-

tively. Additionally, we compare the results of fractal

pre-training to the Kinetics counterpart [10,43], which

is the established approach for pre-training in action

recognition tasks. To this end, we employ an off-the-

shelf checkpoint from [50] that has also undergone train-

ing with a resolution of 224. Fine-tuning after Kinet-

ics utilizes different hyperparameters which are docu-

mented in Appendix A.

As evidenced by Table 6, increasing the resolution

of fractals from 112 to 224 leads to nontrivial im-

provement across all benchmarks. This is reasonable

as real videos often contain details such as small

objects, which cannot be displayed adequately with

lower resolution. Moreover, increasing the size of the

synthetic pre-training dataset, leads to considerable

accuracy improvements for all small-resource datasets.

This suggests that saturation has not yet been reached

and further increases in the synthetic dataset size are

likely to yield further gains. Additionally, it can be

observed that synthetic pre-training surpasses Kinetics

on the benchmarks DIVING48 and VOLLEYBALL.

As seen in Fig. 8, in the former, all videos display

swimming pools and their surroundings such audience

seats while the latter is exclusively set in volleyball

courts. As such, the attribute that distinguishes the

datasets where fractals surpass Kinetics is a small

variance of the displayed background.

Nonetheless, synthetic data still lags behind Kinet-

ics on the majority of evaluated benchmarks. However,

it has to be reminded that the fractals were constructed

automatically and therefore mitigate collection and an-

notation costs required for Kinetics.

Experiment 6 - Larger Datasets

To provide a more robust analysis and offer

greater utility for our proposed approach, we further

conduct experiments involving significantly larger

benchmarks Something-Something V2 (SSv2) [28] and

Mini-Kinetics-200 [76]. Compared to most previously

evaluated datasets, SSv2 is more dependant on motion

rather than appearance. On the other hand, Mini-

Kinetics-200 is a subset of Kinetics-400, containing

approximately one third of the data. In the added

experiments, we compare pre-training with fractals

to training from scratch as well as ImageNet weight

initialization, which is the standard approach for these

two datasets. Aside from TSM, results are additionally

provided for the I3D architecture [11]. I3D differs

significantly from TSM, as the former is a 3D CNN

while the latter is a 2D one. As such, we believe that
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Pre-training Res HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Scratch 112 31.5 70.3 4.7 50.5 53.8 43.7

Fractal-400K 112 65.4 87.6 40.3 56.0 83.1 72.7

Scratch 224 35.1 76.9 10.6 53.4 55.7 48.3

Fractal-400K 224 66.5 90.8 41.2 59.9 87.6 78.2

Fractal-2M 224 68.2 91.9 43.7 60.6 88.1 79.6

Kinetics 224 70.1 95.3 40.9 64.4 84.8 86.9

Table 6: Experiment 5 - Effectiveness of higher spatial resolution & increased dataset size. Increasing the resolution

boosts accuracy across all benchmarks and so does expanding the synthetic dataset. An interesting observation

is that DIVING48 and VOLLEYBALL, where synthetic data surpasses Kinetics, exhibit the smallest variance of

background among the evaluated datasets.

Model Pre-training SSv2 Mini-Kinetics-200

TSM Scratch 55.8 67.8

TSM ImageNet 58.8 76.4

TSM Fractal-400K 59.7 77.0

TSM Fractal-2M 59.9 77.5

I3D Scratch 44.5 54.1

I3D ImageNet 51.2 72.1

I3D Fractal-400K 52.6 73.4

Table 7: Experiment 6 - Impact of pre-training on larger datasets SSv2 and Mini-Kinetics-200. Fractal videos

outperform pre-training with static ImageNet images, but the overall benefit of pre-training is limited.

these models should be sufficient to demonstrate the

generalizability of our approach.

As shown in Table 7, fractals generally outperform

ImageNet across both models. Hence, it can be deduced

that, compared to ImageNet, our proposed synthetic

data can produce more powerful neural representations

for motion-related datasets such as SSv2. A possible

explanation is that synthetic videos contain temporal

patterns, while ImageNet is composed of static images.

However, the accuracy improvement after pre-training

is significantly less perceptible compared to previous

experiments. This can be justified by the size of these

two datasets, which is clearly larger than all the pre-

vious datasets. As the size of the downstream dataset

increases, the models can develop more robust and gen-

eralized features without the need for pre-training. This

behavior is similarly confirmed by the difference be-

tween HMDB51 & UCF101 in previous experiments.

While both contain videos of similar nature, the latter

is twice as large but achieves half the accuracy increase

from pre-training compared to the former (∼15 & 30%).

Finally, it is evident that increasing the quantity of syn-

thetic videos has a significantly smaller impact on larger

datasets compared to low-resource datasets. This obser-

vation aligns with our earlier explanations.

3.3 Manual Error Analysis

Upon manual inspection of miss-classified samples from

downstream datasets, a recurring characteristic can be

distinguished. In particular, models pre-trained with

fractals struggle with videos whose label is dictated not

by global information which covers the entire screen but

by small details which occupy only a few pixels. A no-

table instance is small objects that are handled by hu-

mans. Examples are categories “Throw”, “Swing Base-

ball”, “Brush Teeth” and “Hammering” from datasets

HMDB51 and UCF101. Likewise, the same holds for the

entirety of EGTEA which displays cooking tools and in-

gredients. This justifies the ineffectiveness of synthetic

pre-training: only a 6% accuracy gain is achieved com-

pared to training from scratch. Another case involves fa-

cial expressions and motion of the mouth, as evidenced

by categories “Smoke”, “Eat”, “Drink”, “Smile” and

“Laugh” from HMDB51. Similarly, models are unsuc-

cessful with limb movement. This is demonstrated again

by EGTEA as well as the HMDB51 classes “Clap”,

“Wave”, “Punch” and “Kick”. Frames from the afore-

mentioned examples are displayed in Appendix Fig. 9.

This deficiency in not unexpected. In our proposed

synthetic datasets, the label, which is necessary for the

training objective, depends exclusively on the overall

displayed fractal formation. Cases where the label is de-
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Throw - Draw Sword Punch - Hug

Talk - Smoke Throw Hammer - Throw Discus

Shoot Gun - Shoot Bow Smoke - Laugh

Play Violin - Play Flute YoYo - Juggle Balls

Fig. 9: Frames from misclassified videos. Blue color indicates ground truth, whereas red color indicates the model’s

incorrect prediction. In such videos the label is often determined by subtle details that cover a small percentage

of the overall pixels. As such, the model fails to differentiate between similar categories.

termined by local details are nonexistent. Consequently,

the proposed pre-training does not adequately prepare

CNNs for the aforementioned real-world instances. This

shortfall should be addressed by designing alternative

generative processes in future work. Specifically, mirror-

ing the conditions observed in real-world data, the con-

structed synthetic datasets should incorporate videos

where the label is conditioned on a small percentage of

pixels.

4 Related Work

Formula-driven synthetic data in computer

vision. The work of [42] employed fractal geometry

to automatically generate large-scale labeled image

datasets to pre-train image models. Although their

reported metrics are inferior to ImageNet pre-training

[63], they evidently surpass training from scratch.

Subsequent work has proposed a more intuitive

augmentation policy [2] and demonstrated that the

framework is compatible with different neural architec-

tures [57]. More recently, [40] designed an alternative

image synthesis method which results in representa-

tions that exceed ImageNet pre-training on specific

model architectures. As an orthogonal approach, it

has been demonstrated [5] that synthetic data results

in strong representations only when certain conditions

are met, such as replicating the attributes of real

data. Thus, the design of synthetic data should be

approached with meticulous care.

Synthetic data has also been utilized in other tasks.

In particular, [78] pre-trained neural networks for point

clouds with a synthetic datasets of 3D fractals. In the

context of action recognition, [39] pre-trained neural

models with 3D perlin noise [58,59]. Such videos are

relevant to our work and thus serve as a baseline in

later experiments. Additionally, [80] construct synthetic

images of palm prints with the help of Bezier curves

[22].

Lastly, on a relevant note, synthetic data can alter-

natively be created with neural models such as Gener-

ative Adversarial Networks [26] and Diffusion Models

[33]. Indeed, it has been demonstrated that datasets of

such synthetic images paired with unsupervised train-

ing objectives can produce impressive results that are

on par or even superior to pre-training with real data

[21,68]. This methodology have also been shown to ben-

efit greatly from scaling the synthetic data. However,

compared to the formula driven counterpart, this ap-

proach is computationally more expensive and requires
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large amounts of real-world samples, suffering from the

same limitations pertaining to real world datasets.

Video Diffusion Models. Diffusion models [33]

are an emerging approach that has demonstrated im-

pressive results in generation of images. More recently,

diffusion has been extended to the domain of video [34],

exhibiting very promising results and great potential in

many fields. This methodology bears similarity to the

present work as it can also produce large datasets of

synthetic videos.

However, despite the remarkable amount of new

research, video diffusion models are not yet sufficiently

mature [34,55], posing multiple challenges that still

need to be fully overcome. In the case of text-to-video

models, a notable difficulty is the maintenance of

temporal consistency. It has been observed that both

the appearance and position of objects change wildly

between video frames. This shortcoming has been con-

strained thanks to recent work, but not yet eliminated.

Additionally, compared to our video synthesis meth-

ods, diffusion is typically significantly more demanding

both in terms of resources and real-world training

data. As such, video diffusion will not be investigated

in the present work but remains an exciting prospect

for future research.

Action Recognition. Contemporary action recog-

nition models are first pre-trained on large-scale generic

curated video datasets such as Kinetics [10,43], Mo-

ments in Time [56] or YouTube 8M [1]. This process

utilizes a supervised training objective. Alternatively,

strong representations can also be obtained by utiliz-

ing the vast amount of available unlabelled videos and

employing an unsupervised training objective [23]. Sub-

sequently, transfer learning is employed and the mod-

els are fine-tuned on smaller specialized datasets such

as UCF101 [65], ActivityNet [32] and HMDB51 [46].

Omitting the first step significantly deteriorates down-

stream results. As such, this paper seeks to replace real

large-scale video datasets with synthetic and automati-

cally generated ones. Regarding neural architecture, the

most common approaches are 2D [64,74] and 3D [11,

30,70] CNNs. However, recently, Vision Transformers

[69,73] have also begun to receive increased popularity.

Applications of Fractals. Owing to their aes-

thetic qualities, 2D fractals have been utilized in art

[20,19]. Furthermore, fractals are prominent in the

field of image compression [38]. It is noteworthy that

fractal geometry plays a significant role in domains

outside of imaging including signal analysis [53,44,17],

speech recognition [54,60,81] and telecommunications

[3]. Lastly, due to their resemblance to biological

structures, fractals have been employed in medical

simulation [15,37].

5 Discussion and Conclusion

The present work automatically constructs synthetic

datasets of short video clips. Such videos can be utilized

for pre-training neural networks for the task of action

recognition. Compared to real data, this approach elim-

inates the necessity for manual dataset collection and

annotation. Additionally, in pursuit of minimizing the

domain gap between real and synthetic videos, we in-

troduce a set of heuristic domain adaptation techniques

which mimic characteristics present in real data. The

overall objective of our work is to determine proper-

ties of synthetic data as well as general guidelines that

strengthen downstream performance. Observing exper-

imental results, the following conclusions are reached:

– Diversity of synthetic videos is a key factor for

obtaining stronger visual representations and can

boost results regardless of the characteristics of

the downstream dataset. This is in agreement with

previous work [5].

– Reducing the domain gap between real and syn-

thetic videos also strengths downstream results.

This can be achieved by emulating structural and

motion-related properties of former during pre-

training. Strict realism is not necessary and rough

approximations of the said properties are sufficient.

A few examples are background randomization,

periodic motion and camera shaking.

– Supervised pre-training is a more cost-effective

solution compared to self-supervised counterparts,

achieving superior results under limited resources.

– Increasing the dataset size or spatial resolution con-

sistently improves transferability.

It has to be noted that video action recognition is a

field where access to video data on the scale of millions

is currently relatively straightforward. In this regard,

synthetic videos are unnecessary. However, we firmly

believe that our findings are generalizable and can be

transferred to other domains and tasks where available

samples are scarce. A notable example could be med-

ical video understanding, which could greatly benefit

from synthetic data since obtaining real-world counter-

parts can be very expensive. Nonetheless, the proposed

methodology suffers from multiple limitations and im-

provements are expected to be added in future work.

Specifically:

– On the majority of evaluated benchmarks, synthetic

pre-training lags behind Kinetics. We hypothesize

that the gap in performance can be reduced, but

not eliminated, by further increasing the quantity

of synthetic training samples.
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– Models pre-trained with synthetic data underper-

form in the detection of details, such as tools or fa-

cial expressions. As such, our proposed approach is

not effective for datasets such as EGTEA GAZE+.

Future work should mitigate this by constructing

synthetic categories that are conditioned on a lo-

cal cues and not global information, mirroring real

data.

– All synthetic videos produced in this work are of

short length and depict a single motion. Thus, our

framework is not suitable for applications involving

longer videos, where the ability to model contextual

relation between distant frames is required.

– Another limitation of our study is the lack of

benchmarking against established works such as

[23], something crucial for situating our contri-

butions within the existing literature. However,

it is important to consider that pre-training with

synthetic video is a nascent research direction.

Our study is among the earliest investigations.

Consequently, it is reasonable to expect that our

synthetic data will underperform compared to [23]

or similar works using real-world data. Therefore,

at this stage, we believe it is more appropriate

to benchmark our work against other studies on

synthetic videos rather than real-world datasets.

To this end, we conduct experiments with data

from [39], which is the most relevant study to ours.

Furthermore, focusing on understanding the prop-

erties of synthetic videos that enhance downstream

performance is more practical at this point. By

doing so, we hope to provide guidelines for future

research to create more effective synthetic videos

for training neural networks.
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Hyperparameter HMDB51 UCF101 DIVING48 EGTEA VOLLEY YUP

Weight Decay 1 · 10−1 1 · 10−1 4 · 10−1 4 · 10−1 4 · 10−1 4 · 10−1

LR-Init 1 · 10−8 1 · 10−8 2 · 10−7 2.5 · 10−8 5 · 10−8 5 · 10−8

LR-Peak 1 · 10−5 1 · 10−5 2 · 10−4 2.5 · 10−5 5 · 10−5 5 · 10−5

LR-Final 1 · 10−7 1 · 10−7 2 · 10−6 2.5 · 10−7 5 · 10−7 5 · 10−7

Table 8: Hyperparameters used for fine-tuning the Kinetics checkpoint.

Appendices

A Kinetics Fine-tuning Hyperparameters

Table 8 lists the hyperparameters that were used to fine-tune
the Kinetics checkpoint from [50] in the final experiment.

B Supplementary Visual Material

This section features additional visualizations of concepts de-
scribed in the main document. Specifically:

– Fig. 10 contains examples of synthetic videos produced
with Algorithm 1 using standard IFS.

– Fig. 11 contains examples of synthetic videos produced
with Algorithm 1 using nonlinear IFS.
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Fig. 10: Examples of videos produced with Algorithm 1 using standard IFS. Each row displays frames from a

different video.
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Fig. 11: Examples of videos produced with Algorithm 1 using nonlinear IFS. Each row displays frames from a

different video. Note the differences between Fig. 10.


