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Abstract

Post Training Quantization (PTQ) is widely adopted due to its high compression capacity
and speed with minimal impact on accuracy. However, we observed that disparate impacts
are exacerbated by quantization, especially for minority groups. Our analysis explains that
in the course of quantization there is a chain of factors attributed to a disparate impact
across groups during forward and backward passes. We explore how the changes in weights
and activations induced by quantization cause cascaded impacts in the network, resulting
in logits with lower variance, increased loss, and compromised group accuracies. We extend
our study to verify the influence of these impacts on group gradient norms and eigenvalues
of the Hessian matrix, providing insights into the state of the network from an optimization
point of view. To mitigate these effects, we propose integrating mixed precision Quantization
Aware Training (QAT) with dataset sampling methods and weighted loss functions, therefore
providing fair deployment of quantized neural networks.

1 Introduction

With the onset of edge devices running deep neural networks for various tasks ranging across several do-
mains, the demand for faster computation and model lightness has become more pronounced. To aid this,
compression methods such as pruning Han et al. (2015a) and quantization Hubara et al. (2016) have taken
the lead, producing little to no loss of accuracy with considerable memory and speed gains. Nevertheless,
these methods do not account for the possible disparate impact they cause, and have been shown to have
adverse effects on minority groups and exacerbate the shortcomings of their dense, counterpart model Hooker
et al. (2019).

In a streamline of model compression, Tran et al. (2022) recognized that magnitude pruning can exacerbate
unfairness among classes. While pruning and quantization share a common objective of compressing a
model, they are different in their approaches. Pruning involves removing weights or components that are
insignificant according to a defined criterion. Whereas, quantization focuses on reducing the precision of
the bits used to represent the weights and activations of the neural network. Notably, Kuzmin et al. (2023)
demonstrated that quantization outperforms pruning-based strategies when similar model sizes and resource
footprints are considered. Furthermore, quantization is prominent for Large Language Models (LLMs) due
to their large parameter sizes and requirement for reduced energy consumption Kim et al. (2023); Frantar
et al. (2022); Dettmers & Zettlemoyer (2023).

We observed that quantization can exacerbate disparity of a model, especially for the minority group, as
we show in Fig. 1. The leftmost chart is pre-quantization. As the precision is reduced, the disparity is
exacerbated further. When the model is quantized to int2, the disparity is extreme. In this paper, we
identify the factors that impact the disparity and optimization state in the forward and backward passes,
respectively.

Post Training Quantization (PTQ) modifies the weights of the network while setting several weights to abso-
lute zeros, thereby, inducing sparsity, which together brings in disparate impacts of a model. Consequently,
the logits suffer from a reduction in variance, similar to using high temperature scaling, while undergoing
magnitude changes that lead to misclassifications. These factors finally alter the softmax probabilities and
skew their distributions closer to the decision boundary towards low confidence regions, causing higher loss
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Figure 1: Accuracy for groups according to different quantization precisions on UTKFace dataset.

and group disparity. Additionally, PTQ shifts the model to a worse position in the optimization space, with
larger gradient norms and eigenvalues of the Hessian matrix for minority classes, implying a potential for
further optimization.

To combat these problems, we leverage the simplicity of dataset sampling methods to overcome the dataset
imbalance, combine it with a weighted cross-entropy loss function to deal with example difficulty, and use
mixed-precision Quantization Aware Training (QAT) to withstand the degradation of model performance
due to low precision representations.

Our contributions are summarized as:

1. We observed and showed that quantization can exacerbate disparity of a model, especially for mi-
nority groups.

2. We identified the factors of PTQ that cause disparity: change in weights, increased sparsity, changes
in logits, and reduced variance of softmax probabilities. These are cascaded factors in the forward
pass.

3. We examine the degradation caused to the model’s state in the optimization space, using gradient
norms and eigenvalues of the Hessian matrix of a quantized model.

4. We proposed a mitigating quantization approach that incorporates sampling methods and weighted
loss functions for improved fairness.

2 Related Work

2.1 Quantization

This competent method contributes to a significant body of work in model compression with the introduction
of compatible hardware, giving rise to diverse methodologies such as PTQ and QAT. PTQ is a domain where
quantization is performed after the model is fully trained on a dataset without further retraining Banner
et al. (2019); Zhao et al. (2019); Choukroun et al. (2019); Wang et al. (2020); Li et al. (2021); Lee et al.
(2022). Whereas, QAT learns quantized weights in the training phase or during retraining Chen et al. (2023);
Huang et al. (2023); Bhalgat et al. (2020); Esser et al. (2020); Nagel et al. (2022). Frantar & Alistarh (2022)
attempt to compress a network using both pruning and quantization. These methods, however, only focus
on reducing the bit precision while maintaining the accuracy of the original model with little to no fairness
control.

2.2 Mixed-Precision Quantization

Mixed-precision quantization is widely used, because low-precision PTQ tends to have pitfalls in accuracy.
Wu et al. (2018) uses neural architecture search to find suitable precisions for different layers. A mixed-
precision integer-only inference for faster computation was explored by Yao et al. (2021). Dong et al. (2019)
uses Hessian spectrums of the network layers to determine the precision of the layers.
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2.3 Algorithmic Bias and Fairness

There are pressing concerns considering the surge of neural network-based models for everyday use. In the
context of neural networks, adversarial learning methods Wadsworth et al. (2018); Xu et al. (2021) are often
used to achieve fairness. Du et al. (2021) de-bias the classification head to improve the fairness of networks.
However, most fair learning algorithms suffer from tradeoffs, for e.g., Zhao & Gordon (2022) prove that one
such tradeoff exists between statistical parity and model accuracy when learning fair representations. Several
studies measure algorithmic bias using standard datasets Amini et al. (2019) or synthetic datasets Liang et al.
(2023). These studies consider a fully trained neural network that is not compressed. However, in this work,
we dive into the fairness of compressed neural networks via quantization through the lens of the changes
and impacts occurring in the model due to quantization. In Tran et al. (2022), the authors recognized that
pruning may have a disparate impact on model accuracy and attribute it to changes in the gradient norms
and eigenvalues of the Hessian matrix. In the context of quantization with imbalanced class distribution,
Chen et al. (2022) proposed HomoVar loss to balance classes during quantization. Using skip-connections
and Dirichlet distribution, Zhou et al. (2023) create a framework for mixed-precision quantization to dampen
disparity.

However, these prior works do not explain the causes of the disparate impact of quantization, especially from
the perspective of the impact factors inside the network.

3 Problem Formulation

Consider a classification task involving a dataset D with M input samples X = {x1, x2, · · · , xi, · · · , xM }
and corresponding classes Y = {y1, y2, · · · , yi, · · · , yM } where yi ∈ G groups (classes). The objective is to
learn a classifier fθ with parameters θ ∈ RK , where K is the number of parameters in the network. The
risk function obtained by using cross-entropy as the loss function to measure the discrepancy between the
predicted and actual labels under empirical risk minimization (ERM) Vapnik (1991) is:

L(θ; D) = − 1
M

M∑
i=1

G∑
g=1

yig · log(pθ(xi))g (1)

where pθ(xi) = σ(fθ(xi)) and σ(zg) = ezg∑
j

ezj
. The best solution to this optimization problem is given by,

θo = argmin
θ

L(θ; D). Note that this definition pertains to an uncompressed model. Subsequently, let θq be

the weights of a quantized network such that θq = T (θo), where T is a quantization function and q is the
number of bits used to represent the weights of the network. For example, if the network was quantized to
use 8-bit representations, the network parameters are denoted by θ8. Let θ̃q denote the dequantized weights
obtained by scaling θq to floating point numbers, θ̃q = S.θq, where S is the set of scaling factors. As a result,
the risk functions for the original and compressed models are given by L(θo; Dg) and L(θ̃q; Dg), respectively.

3.1 Fairness Analysis

Visualizing fairness via changes to a loss function is challenging due to its multidimensional nature. Con-
sequently, we rely on its correlation with model accuracy and observe its changes across groups. Among
the differences, the largest discrepancy can represent how unfair the model actually is. In light of this, we
propose Fairness Violation Observed (FVO):

FVO(θ; D) = max
g,g′∈G

|Acc(θ, Dg) − Acc(θ, Dg′)| (2)

where Acc(θ, Dg) and Acc(θ, Dg′) represent the accuracy of groups g and g′ for parameters θ ∈ {θo, θ̃q}.

Why FVO? FVO is interpretable and generalizes well to multi-class tasks. Further, minimizing FVO inherently
captures equalized odds Hardt et al. (2016) when accuracy differences arise from varying true positive and
false positive rates across groups. Other advantages include:
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1. FVO is not limited to specific pair of groups and applies to the overall set of groups involved.

2. It directly relates to accuracy, which is an interpretable metric for computer vision tasks.

3. It is practical for situations seeking to balance model performance with fairness

3.2 What is the Best Model?

A model with low FVO indicates that the performances across all groups are similar. However, it does not
guarantee that the model performs well overall. That is because, in particular, when all the groups have
low accuracies, the model may end up with worse overall performance. In order to choose a model that is
both fair and accurate, we consider both FVO and the overall accuracy, OA, together. Thus, when comparing
different approaches for fairness, our preference aligns with the model that maximizes OA and minimizes FVO:

max
OA

min
FVO

fθ,D (3)

Setup For the investigations presented in this paper, we use per tensor uniform post-training quantization
(PTQ) Nagel et al. (2021) for weights, based on the implementation in Banner et al. (2019) for integer
quantization. In particular, for fp16 experiments, we used half-precision computation from the PyTorch
library. Note that the integer weights are scaled to floating points during inference. The following experiments
are on UTKFace dataset Zhang Zhifei & Hairong (2017) with the task of classifying the ethnicity using a
ResNet18 architecture, where the weights are quantized to 16, 8, 4, and 2 bits. The original network’s
precision is 32 bits.

Figure 2: The impact flow of quantization.

4 Factors Impacting Fairness

The impact of quantization occurs through multiple stages, as shown in Fig. 2. During the forward pass,
the effect of the changes in weights propagates throughout the network and leads to changes in logits, whose
behavior is reflected in the softmax probabilities and, therefore, the loss. To better understand and visualize
the effects of higher loss on the network weights, we use backpropagation without actually updating the
weights, motivated by the second order Taylor Series expansion of the loss function at point xc,

L(x) = L(xc) + ∇L(xc) · (x − xc) + 1
2(x − xc)T H(x − xc) (4)

Here, ∇L represents the gradient G. Now, for every group and precision, we study the gradient norm ||GL
g ||

and the largest eigenvalue of the hessian matrix λmax(HL
g ) for the loss function L. The gradient norm helps

us understand how far away the solution is from a better state in the solution space. Whereas, eigenvalues
of the Hessian matrix provide crucial information about the steepness in the loss surface. Quoting from
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Figure 3: Changes in weights due to quantization

Tran et al. (2022), the maximum of the eigenvalues indicates how well the solution can separate the groups.
Keskar et al. (2017); Li et al. (2018) support that top eigenvalues of the Hessian matrix aid in understanding
the loss landscape. We next look at each stage of the impact flow in detail.

4.1 Changes in the Weights

The root cause of the impact flow of quantization is the change in weights of the network. The absolute
difference in the weights is defined as

Absolute difference in the weights =
K∑

k=1
|θ̃q,k − θo,k| (5)

However, the impact does not only include the absolute difference, but also involves the fraction of “zero”
weights induced by quantization. While the former quantifies how much the weights have deviated from the
original values, the latter is indicative of the loss of information due to sparsity defined by

Sparsity = 1
K

K∑
k=1

I(θ.,k = 0) (6)

where I denotes the indicator function, θ. ∈ {θo, θq}. The absolute difference is controlled by the reduction
in the precision of the weights. For example, θ4 has 28 lesser bits to represent the weights in comparison
to θ32, which persists even after scaling by S. Whereas, sparsity increases when the weights are pushed to
the ’0 bin’ during quantization which continues to remain as 0s even after scaling. While achieving higher
compression, this effect is similar to (unstructured weight) magnitude pruning Han et al. (2015b); Zhu &
Gupta (2017); Frankle & Carbin (2019), where some of the weights of the network are changed to 0.

Fig. 3 illustrates an increase in both absolute difference in weights and sparsity as precision reduces. On
the other hand, Fig. 4 shows the weight distribution of θ̃q for different precisions, indicating a distribution
shift towards the center with reducing precision. Clearly, reducing the precision increases the sparsity of the
network, therefore, making it more like a pruned network (by weight magnitude). As shown in Tran et al.
(2022), increasing the pruning ratio, i.e., increasing sparsity, has a disparate impact on the accuracy of the
model. With higher sparsity in a quantized model, disparity worsens, analogous to the impact of sparsity in
a pruned model. These combined changes affect the logits of the network, which we analyze next.

4.2 The Effect on Logits and Probabilities

The logits undergo two transformations as a result of quantization. First, the numerical values undergo a
significant change, causing distinct differences in the magnitudes and resulting in different highest values
among the logits. At lower precisions, this shift can cause the highest values to occupy incorrect positions

5



Under review as submission to TMLR

(a) fp32 (b) int8

(c) int4 (d) int2

Figure 4: Weight Distributions

in the logit vector, consequently leading to inaccurate predictions. Second, the variance between the logits
is affected, resulting in different loss values.

We study the change in numerical values using cosine distance, defined as,

CD(A, B) = 1 − A · B

∥A∥ · ∥B∥
(7)

where A and B are two vectors of equal length. Let the average cosine distance between f
θ̃q

and fθo
across

the samples of a group be,

Average cosine distance = 1
|G|

|G|∑
i

CD(f
θ̃q

(xi), fθo
(xi)) (8)

Fig. 5a shows that the angle between different quantization levels is largest for the minority class Others and
the least for the majority class White. CD captures the changes that occur in the logits due to quantization,
however, norm based metrics fail to capture it, as observed in Fig. 5b and Fig. 5c. Note that we are not
able to show θ2 and θ3 as they produce null vector logits for some images which makes cosine distance
inapplicable.

The mean variance among logits within each group, represented as,

Mean variance of logits = 1
|G|

|G|∑
i

Var(fθ(xi)) (9)

decreases with decreasing precision, as observed in Figure 5d. Notably, the group White exhibits the high-
est variance, while the Others group demonstrates the least variance. This reduction indicates that the
separability of groups worsened due to quantization.

These changes in logits subsequently induce both a reduction in variance and a distribution difference in the
softmax probabilities. At lower precisions, there is a substantial decrease in variance across all groups, with
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(a) Cosine Distance between logits. Darker shade implies higher distance.

(b) L1 Distance between logits for different quantization levels across classes - UTKFace. Note
that L1 does not capture the dissimilarity as finely as cosine distance.

(c) L2 Distance between logits for different quantization levels across classes - UTKFace. Note
that L2 is worse in comparison to both L1 and CD, therefore, indicating that the shift due to
quantization is better observed through an angle based measure than a norm based measure.

(d) Decrease in precision leads to reduction in variance in logits

Figure 5: Logits analysis

the Others group being affected the most, as illustrated in Fig. 6a. This reduced variance is analogous to the
output-softening nature of the high-temperature scaling, which softens the logits of the network. Further,
the disruption in the softmax probability distribution links to the inability of the precision to capture the
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(a) Reduced variance in logits has a persistent presence in softmax probabilities

(b) The probability distribution of the distance to decision boundary (softmax probability).
Notice the distribution shift of Others to the left and eventually disappears as precision
reduces.

Figure 6: The effect on Softmax probabilities

original model’s behavior. The softmax probability can be viewed as a Distance To the Decision Boundary
(DTDB). We define DTDBi,g as the softmax probability obtained for each sample i belonging to group
g, and that is plotted in Fig. 6b. If DTDBi,g > DTDBi,g′ , then group g is farther away from the decision
boundary than g′, which implies an easier classification. Fig. 6b shows a strong leftward shift of distribution
for Others unlike White, indicating that reduced precision induces uncertainty in the model for minority
classes.

4.3 Contribution to Loss and Accuracy

The reduced variance in softmax probabilities, together with the changed values, adversely affect the loss
and accuracy of the model as depicted in Fig. 7. The per-group loss is highest for Others and least for
White. In addition, it is reflected as a direct impact on the accuracy of the model, as observed in Fig. 1.
These circumstances indicate a clear, unfavorable movement of the model in the optimization space for all
the classes, due to quantization, with the most affected being Others. In order to better understand this
degraded position, we backpropagate the loss and observe how the gradient norm and Hessian are affected.

4.4 Observing Unfairness through Gradient norms

The gradient norm provides insight into the convergence of the optimization problem, indicating the prox-
imity of the solution in the optimization space to a local minima Zhao et al. (2022). We find the group
gradient norm for a quantized network using the gradients obtained by passing the test set (without weight
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Figure 7: Higher group loss for Others due to PTQ

updates) and evaluating the ℓ2 norm, given by,

G(θ̃q; Dg) =

√√√√ K∑
k=1

(
∂L(θ̃q; Dg)

∂θ̃q,k

)2

(10)

This measure also signifies the extent of gradient updates necessary for the model to improve its prediction.
Next, we examine factors that exhibit a correlation with the gradient norm.

Consider the situation when D is passed as a single batch for gradient updates. Initially, the averaged
gradients are dominated by classes with a higher number of samples. This effect persists even when there are
mini batches, although lower in impact. Therefore, the gradients are also controlled by the class distributions
and batch size. In addition, the initial gradients are heavily dependent on the initialization of θ. However,
the effects of batch size (if moderate) and initialization dampen as the network trains further. We therefore
look at the effects of per group sample counts of the test set on the gradient norm. Fig. 8a shows an
inverse trend between the gradient norm and group sizes for θ4. Notice the huge disparity between the
Gradient norm of White and Others. We argue that this occurs due to the initial dominance of the majority
classes in the gradients which are inverted at some point during training and are reflected post training and
quantization. It further reflects an inverse trend with the accuracy of the model as observed in Fig. 8b.

(a) Gradient norm vs. group
size

(b) Gradient norm vs.
accuracy

Figure 8: Trends of gradients against group size (normalized) and accuracy on an Int4-quantized model for
ResNet18
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(a) The largest Hessian eigenvalue (λmax) is inverse to
accuracy and average prediction probability

(b) The largest Hessian eigenvalue (λmax) aligns with
the gradient norm

Figure 9: The largest Hessian eigenvalue for different groups

4.5 Reflection of unfairness on the Hessian

λmax(H l
g) helps explain the steepness of the loss surface at that point in the solution space for a particular

group. Fig. 9a shows that λmax and accuracy move in opposite directions, indicating a larger λmax for the
minority group. This implies that the steepness is the highest for Others, and a corresponding update to the
weight would cause a higher reduction in the loss as compared to any other group. To capture the average
of the highest softmax prediction probabilities across the groups, we define average prediction probability,

Avg. prediction prob. = 1
|G|

|G|∑
i

max(σ(fθ(xi))) (11)

We also observe in Fig. 9a that the average prediction probability is lowest for the group with the highest
λmax and vice versa. Fig 9b shows gradient norm and λmax moving toward the same direction, indicating
that quantization induces a combined effect on them.

4.5.1 Comparisons for Different Quantization Precisions

The trend across groups is similar for all quantization levels (same color across different groups) in Fig. 10.
However, for different quantization levels within a group, we observe that for fp32 and fp16, log(λmax) is
almost equal, but for the integer precisions, the overall trend is increasing. One would expect that when we
quantize with lower bits, the ability to be closer to the original weight degrades and the solution ends up at
an inferior point in space. However, it need not be true that the steepness of the inferior point is bad too.
Fig. 10 therefore indicates that the scope for improvement is close to this order, int2 > int4 > int8, in
most cases.

4.6 Example Difficulty

When sub-sampling for majority classes to create a balanced dataset, we observed that during training, the
per-group accuracy was initially lower for the group Others, compared to the other classes. The model
then reaches equal training accuracy for every class towards the end, yet performs poorly on the test set
for Others. Given the scenario that the number of images used to train is nearly the same, the above two
observations explain that the data in the test set for Others is rather difficult for the network to classify
correctly. We attribute this lack of generalizability to the relatively complex facial features in the Others
class, such as color, age, hair, and structure, which contribute to example difficulty. Example difficulty,
however, has an impact during both forward and backward passes. In the forward pass, the network has
already been trained better for the lower difficulty samples, which in addition, during the back pass, has a
continuing effect.
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Figure 10: log(λmax) for different groups and precisions

Figure 11: Comparison between mitigation solutions for Resnet18.

5 Mitigation Solutions: Fair Quantization

In this section, we look at what improves the fairness of a quantized model. We first begin with methods that
make an fp32 model fairer, followed by using QAT as a possible solution to quantization’s disparity. Finally
we combine the former and latter to achieve the same with lesser data. The results performed against the
UTKFace dataset are presented in this section. Please refer to the Appendix for the results of other datasets.

5.1 A Fairer Base Model

Under and over-sampling (U-O) the majority and minority classes, respectively, reduces the per-group differ-
ences in the gradient norm during training. However, capturing the example difficulty from Sec. 4.6 involves
weighting the harder classes higher than the rest, so that the solution is not biased only towards getting the
easier samples right, during the beginning of the optimization. Let WCR denote the weighted cross entropy
loss function given by,

L(θ; D) = − 1
M

M∑
i=1

G∑
g=1

ag · yig · log(pθ(xi))g (12)

where ag is the weight for group g. We choose WCR with weights ([0.1, 0.1, 0.1, 0.1, 0.6]) such that Others has
the highest weight and the rest of the classes are given equal weight. Next, we train a fairer model θf using
both U-O and WCR.

5.2 Mixed-precision QAT

In PTQ, there is no retraining to allow for the weights to be re-adjusted to the change in environment.
However, in QAT, the losses are calculated and the weights are updated in accordance with the changing

11



Under review as submission to TMLR

Figure 12: Tradeoffs of overall accuracy vs. FVO for int4.

weights and activations. This provides an opportunity to control the changes in group accuracies, unlike
PTQ. We take into account the possible oscillations that occur in weights during QAT and adopt the oscillation
dampening method in Nagel et al. (2022) to avoid it. We also use mixed precision (MPQAT) for ResNet18,
where the first and last layers use 8 bits and the activation are 32 bits according to Bhalgat et al. (2020).
L(θ̃q; D) is minimized as a result of QAT. This dampens the adverse effects of quantizing both weights
without training, together with lowering the information loss in layers that are critical for classification.

5.3 Fair QAT

Combining U-O, WCR, and MPQAT reduces the disparate impact of Quantization for ResNet18, as observed in
Fig. 11. In fact, MPQAT alone also reduces FVO. Here, PTQ has acceptable FVO for higher precisions, provided
the original model is relatively fair. But, for lower precisions, that does not hold. We next visualize OA and
FVO together in Fig. 12 showing that our method achieves both the highest OA and lowest FVO. This would
provide an informed decision for the potential users to make in consideration of the tradeoffs between overall
accuracy and fairness.

6 Discussion

Other aspects of quantization. In our analysis, the focus was solely on weight quantization without
activation quantization. Since activation quantization further worsens the network accuracy, the results
would either resemble that of weight quantization or expand the disparity that we observed. For many
quantization precisions, QAT has lower FVO than the Fair QAT, which shows that QAT alone is sufficient
to mitigate the disparate impact. The best hyperparameters for QAT were known for int4, but were
unknown for the other precisions. We therefore used the same (that of int4) hyperparameters for all
precisions. However, this should not be interpreted as to refrain the potential of other hyperparameters.
The aforementioned WCR weights were chosen as a result of the example difficulty observed for the Others
class. The weights are consistent for the rest of the classes, as the difficulties are nearly equal.

7 Conclusion

The disparate impact caused by PTQ is explained by an impact flow that passes across stages in the forward
pass, whose effects can be visualized as a shift of the model to a sub-optimal state in the optimization
landscape, using gradient norms and eigenvalues of the Hessian matrix. However, we show that utilizing
simple methods, such as undersampling, oversampling, and adjusting weights in WCR, leads to fairer models.
When QAT is used in conjunction, it gives a class of fairer quantized models with a little compromise in
overall accuracy.
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A Appendix

A.1 Analysis on CelebA dataset

We created a subset of the CelebA dataset with images of Blond Male, Blond Female, Black Hair Male,
Black Hair Female. The Blond Male class is the minority class with only 1749 images. We sampled 8000
images each from the other classes. Following this, there is a test split of 20%.

We observe exacerbated disparity in the CelebA dataset in Fig. 13. The accuracy of group Blond Male
greatly suffers due to quantization.

Figure 13: Accuracy for groups for different quantization precisions on CelebA dataset.

Figure 14: Absolute difference and the number of zeroes for quantized models. Notice the consistency with
the UTKFace results

When the model is quantized, both the absolute difference and the sparsity (the number of zero parameters)
are aligned with the results of the UTKFace dataset, indicating that the impact of quantization is consistent
in multiple datasets. This phenomenon is observed in Fig. 14.

As a result of quantization, the logits are again affected adversely leading to a reduction in their variances,
as observed in Fig. 15.

Next, we observe that the angular distance to the original logits worsens for the minority group in Fig. 16.

Furthermore, the effect on the softmax probabilities is persistent for the minorty class as seen in Fig. 17a.
Therefore, the group losses increase in Fig. 17b.

The effect of quantization is also seen on the distribution of the minority group, where there is a strong
leftward shift, in Fig. 18.
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Figure 15: The variance between logits follows a downward trend across decreasing precisions.

Figure 16: Cosine distance between logits of different precisions per class. The Blond Male group has the
highest impact.

In the backward pass, in Fig. 19a and Fig. 19b, the trends are consistent with Fig. 8a and Fig. 8b on the
UTKFace datset, where the minority class with the least count has the highest gradient norm with the lowest
group accuracy and vice versa.

Again, in Fig. 20a, the gradient norm and λmax move along the same direction. We then see an inverse trend
between the accuracy and λmax and average prediction probability in Fig. 20b. Next, in Fig. 21, λmax has
a trend consistent with that observed in UTKFace experiments for θ4.

A.2 Fair Quantization on CelebA dataset

We compare the effectiveness of the solutions in Fig. 22 and observe that QAT+FVO+WCR performs the best
with least FVO and highest overall accuracy for an int4 quantized model.

A.3 Experiment Setup

SGD with momentum and LR scheduler were commonly used across all four models. Specific details for the
models are,

• Original model: Cross-Entropy (CE) loss

• Fair original model: Weighted-CE loss, balanced data

• QAT model: CE loss, QAT

• Fair QAT model: Weighted-CE loss, balanced data, QAT
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(a) Reduction in variance between the softmax prob-
abilities as a result of the changes to the logits. (b) Group Loss worsens for the minority group.

Figure 17: Softmax probabilities and group losses

Figure 18: The probability distribution of the distance to decision boundary (softmax probability). Notice
the distribution shift of Blond Male to the left and eventually disappears as precision reduces, consistent
with the trend of the minority class in UTKFace.

(a) Inverse relationship between gradi-
ent norm and class count for θ4

(b) Nearly inverse trend between group
accuracy and gradient norm.

Figure 19: The changes in gradient norms
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(a) λmax (normalized) nearly aligns
with Gradient norm (normalized) for
a precision of θ4

(b) Inverse trends between
λmax(normalized), average pre-
diction probability and accuracy.

Figure 20: Differences in Hessian

Figure 21: Overall increasing trend for λmax at lower precisions.

Figure 22: Trade off between overall accuracy and FVO for different methods for int4 quantized model on
CelebA dataset.
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