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Abstract001

Current causal discovery methods using Large002
Language Models (LLMs) often rely on pair-003
wise or iterative strategies, which fail to cap-004
ture global dependencies, amplify local bi-005
ases, and reduce overall accuracy. This006
work introduces a unified framework for one-007
step full causal graph discovery through: (1)008
Prompt-based discovery with in-context learn-009
ing when node metadata is available, and (2)010
Causal_llm, a data-driven method for settings011
without metadata. Empirical results demon-012
strate that the prompt-based approach outper-013
forms state-of-the-art models (GranDAG, GES,014
ICA-LiNGAM) by approximately 40% in edge015
accuracy on datasets like Asia and Sachs, while016
maintaining strong performance on more com-017
plex graphs (ALARM, HEPAR2). Causal_llm018
consistently excels across all benchmarks,019
achieving 50% faster inference than reinforce-020
ment learning-based methods and improving021
precision by 25% in fairness-sensitive do-022
mains such as legal decision-making. We also023
introduce two domain-specific DAGs—one024
for bias propagation and another for legal025
reasoning under the Bhartiya Nyaya San-026
hita—demonstrating LLMs’ capability for sys-027
temic, real-world causal discovery.028

1 Introduction029

“LLMs are good at manipulating lan-030

guage, but not at thinking.”031

— Yann LeCun032

Large Language Models (LLMs) have demon-033

strated remarkable linguistic proficiency, yet034

their ability to perform structured reason-035

ing—particularly in causal discovery—remains036

largely unexplored. Current methods rely on037

pairwise or iterative approaches, which fragment038

systemic interactions, propagate local biases,039

and fail to capture higher-order dependencies.040

These limitations lead to error accumulation,041

computational inefficiencies, and reduced accuracy 042

in causal inference. 043

This raises a fundamental question: 044

Can LLMs Discover Full Causal Graphs in One 045

Step? 046

We address this challenge by introducing a uni- 047

fied framework that leverages: 048

• Prompt-based full-graph discovery: Utiliz- 049

ing in-context learning (ICL) when node metadata 050

is available (refer Section 3.1). 051

• Data-driven causal modeling (causal_llm): 052

Extracting causal structures directly from data 053

when metadata is absent (refer Section 3.2). 054

Empirical results demonstrate that the prompt- 055

based method significantly outperforms existing 056

causal discovery models in datasets like Asia, 057

Lucas, and Sachs, achieving higher true posi- 058

tives per nonzero (TP/NNZ) and maintaining low 059

false discovery rates (FDR). As the number of 060

nodes increases (ALARM, HEPAR2), its per- 061

formance declines but remains competitive (re- 062

fer Section 4.4). Conversely, our data-driven 063

causal_llm model consistently performs well across 064

all datasets, excelling in large-scale and metadata- 065

absent settings such as DREAM and synthetic 066

datasets. In fairness-sensitive domains like legal 067

decision-making, causal_llm (DeepSeek) (refer 068

Appendix D.1) surpasses existing models, achiev- 069

ing≈ 25% higher precision in detecting true causal 070

edges and mitigating systemic biases. 071

Key Contributions
• Unified causal-LLM: prompt-based full-graph gen-

eration with metadata (App. Figures 6 to 8);
causal_llm for end-to-end data-driven inference
(Sec. 4).

• Cycle-free, scalable inference: no iterative/pairwise
queries, avoids spurious cycles, handles large graphs
across domains.

• Domain DAGs: Bias Formation & Propagation; Le-
gal Decision Process (BNS) (App. Figures 6 to 8,
Figure 9).

072
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Figure 1: Our key contributions in causal-LLM: unified one-step graph discovery (both prompt-based and data-
driven) plus two domain-specific DAG proposals.

By combining global context reasoning with073

data-driven learning, our framework establishes074

LLMs as powerful tools for systemic causal dis-075

covery—pushing them beyond language tasks to-076

ward structured, domain-aware reasoning with real-077

world impact.078

Organization: The paper is structured as follows:079

we review related work in Section 2, present our ap-080

proach in Section 3, and detail experiments, includ-081

ing baselines, datasets, and metrics, in Section 4.082

Major insights and key takeaways are discussed in083

Section 5 and Section 6, and we conclude with a084

summary and open directions in Section 7.085

2 Related Works086

This work investigates the causal discovery capabil-087

ities of large language models (LLMs), specifically088

focusing on the construction of the complete causal089

graph (see Figure 2). Although prior studies have090

explored general causal reasoning (Hobbhahn et al.,091

2022; Zhang et al., 2023), cause-effect inference092

(Zhiheng et al., 2022), and correlation-to-causation093

transitions (Jin et al., 2023), they do not address094

full graph discovery.095

Most LLM-based approaches rely on pairwise096

causal edge detection (Willig et al., 2022; Long097

et al., 2023) or iterated querying across all node098

pairs (Kıcıman et al., 2023; Zečević et al., 2023;099

Kampani et al., 2024), which scale poorly due100

to quadratic complexity and often introduce cy-101

cles (Antonucci et al., 2023). Some mitigate this102

via post-processing or causal ordering with vot-103

ing (Vashishtha et al., 2023), but these are typi-104

cally restricted to small graphs (≤22 nodes). Some105

works explore breadth-first querying for more scal-106

able graph discovery (Jiralerspong et al., 2024),107

or generate domain knowledge graphs from text108

(Arsenyan et al., 2023), but without benchmark-109

ing against ground-truth DAGs. Recent efforts110

in single-shot generation (Naik et al., 2024) show111

promise, yet remain limited in scope.112

Crucially, these methods are prompt-based and 113

rely on node metadata—making them unsuitable 114

for purely data-driven causal discovery. Existing 115

work using LLMs as auxiliary tools (Ban et al., 116

2023; Cohrs et al., 2024) typically generate pri- 117

ors—e.g., pairwise edge constraints, causal orders, 118

or adjacency matrices—which guide conventional 119

algorithms rather than enabling direct inference. 120

Attempts to elicit direct causal structure from data 121

via prompting (Zhang et al., 2023) have not suc- 122

ceeded. 123

To fill this gap, we propose and benchmark a uni- 124

fied framework (refer Section 3): (i) prompt-based 125

full-graph discovery when metadata is available, 126

and (ii) causal_llm, a novel LLM-based method 127

for end-to-end causal graph inference directly from 128

data—evaluated on diverse datasets with up to 100 129

nodes. 130

3 Methodology 131

Prior works in LLM-based causal discovery have 132

largely explored either: (i) prompt-based query- 133

ing, which relies on external metadata and human- 134

readable descriptions to elicit causal knowledge 135

from language models (Willig et al., 2022; Tu et al., 136

2023; Kampani et al., 2024), or (ii) data-driven 137

causal discovery, grounded in statistical principles 138

and algorithms such as PC, GES, or ICA-LiNGAM. 139

However, these two strands have been treated inde- 140

pendently, and the literature lacks a unified frame- 141

work that combines both capabilities—especially 142

at scale. 143

Our work (please ref Figure 3) addresses this gap 144

by proposing a dual-mode framework that evalu- 145

ates and compares: (1) A prompt-based approach 146

that performs causal graph generation directly from 147

node metadata (refer Appendix A), enabling an 148

LLM to reason based on its pre-trained knowledge; 149

(2) A data-driven model, causal_llm (refer Al- 150

gorithm 1), that learns causal structure purely from 151

observational data using LLMs pretrained trans- 152
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Figure 2: Overview of LLM-understanding research: This taxonomy categorizes studies on LLM behavior probing,
causal graph discovery, and interpretability. The causal discovery methods include prompt-driven and model-updated
approaches, highlighting pairwise, iterative, and full graph discovery techniques. Our Work (marked in green)
contributes to direct full graph discovery in both paradigms.

former architecture.153

This combination allows us to assess: (a) the ability154

of LLMs to perform causal discovery when meta-155

data is available, and (b) their capacity to learn156

graph structure from data in a scalable and gen-157

eralizable way. The key motivation behind our158

data-driven model is to move beyond using LLMs159

solely as promptable knowledge bases (as in (Ban160

et al., 2023; Cohrs et al., 2024)) toward direct end-161

to-end inference from data—a path that remains162

underexplored. A key question we address is: Do163

we have node metadata for In-Context Learning?164

If so, we employ a prompt-based method; other-165

wise, we use a data-driven approach, as shown in166

Equation (1).167

A =

{
Parse (fp(LLM(·),P(T ,M(x)))) , if M(x) ̸= ϕ

PostProcess (fd(LLM(·), x)) , otherwise
(1)168

Where:169

•A is the Adjacency matrix.170

• x is the Dataset.171

•M(x) extracts Node Metadata from the dataset.172

• T is the Prompt Template (refer Appendix A).173

• P(T ,M(x)) generates a dataset-specific174

prompt.175

• LLM(·) is the Large Language Model 176

• Parse(·) extracts the adjacency matrix from the 177

LLM output. 178

• fp(·) is the prompt-based approach (refer Sec- 179

tion 3.1). 180

• fd(·) is the data-driven model causal_llm (refer 181

Algorithm 1). 182

• PostProcess(·) ensures DAG validity and prunes 183

weak edges (Algorithms 3 and 4). 184

The prompt-based approach leverages modern 185

LLMs’ extended context lengths to perform full- 186

graph causal discovery in a single pass, overcom- 187

ing dependency loss in traditional pairwise iterative 188

methods. It uses a carefully designed prompt (refer 189

Appendix A) to ensure accuracy, scalability, and in- 190

teroperability.The prompt defines the LLM’s role as 191

an intelligent causal discovery agent and sets the 192

dataset’s context, specifying its domain (e.g., med- 193

ical, financial, or biochemical). It establishes the 194

objective: identifying causal relationships between 195

features to construct a Directed Acyclic Graph 196

(DAG). This framing ensures clarity and focus in 197

the task. 198

The prompt incorporates detailed rules to guide 199

the discovery process and provides metadata for 200

features (nodes), including descriptions and roles. 201
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This metadata offers essential context, enabling202

the LLM to reason effectively about causal rela-203

tionships.The output is structured in a standard-204

ized format, listing causal edges as pairs (e.g.,205

(A,B)) with detailed explanations. This format206

ensures interpretability and enables automated post-207

processing using regex to extract the adjacency208

matrix, which precisely represents the causal struc-209

ture.210

This prompt-based approach is holistic and211

scalable, leveraging the increasing context length212

of LLMs to analyze larger datasets with higher-213

order nodes. The output explanations enhance the214

interpretability and reliability of the discovered215

DAG, ensuring robustness and efficiency in causal216

discovery.217

Algorithm 1 LLM-Assisted DAG Discovery

Require: Data X ∈ Rn×d, pre-trained LLM,
epochs E, sparsity weight λ, threshold τ

1: Freeze LLM parameters
2: Initialize projection matrices Win ∈ Rd×h,

Wout ∈ Rh×d

3: for e← 1 to E do
4: Z ← XWin ▷ Project inputs into h-dim

space
5: H ← LLM(Z) ▷ Obtain contextual

embeddings
6: Alogits ← HWout ▷ Compute edge logits
7: A← σ(Alogits) ▷ Edge probabilities via

sigmoid
8:

L = −
∑
i,j

log
(
1−Aij

)
+ λ

∑
i,j

∣∣Aij

∣∣
▷ Push probabilities to zero + enforce sparsity

9: Update Win,Wout by backpropagating
∇L

10: end for

11: Enforce Acyclicity:
1: Remove the smallest-weight edge in any

detected cycle
2: Repeat until the graph is acyclic

3: Prune Edges:

Drop edge (i, j) if |βij | < τ

4: return Adjacency matrix A of the resulting
DAG

Figure 3: Overview of our causal discovery approach:
If metadata is available, prompt-based full-graph
discovery (ICL) is applied; otherwise, data-driven
causal_llm extracts causal structures directly from the
dataset.

3.1 Prompt-based Approach 218

3.2 Data-Driven Approach 219

DAG Model: Our DAG model, causal_llm (refer 220

Algorithm 1), utilizes a Large Language Model 221

(LLM) to extract meaningful representations for 222

causal discovery. It consists of three components: 223

an input projection layer, the LLM, and an out- 224

put projection layer. The input projection layer 225

maps input data of dimension dinput to a higher- 226

dimensional space compatible with the LLM’s hid- 227

den size.The projected input, Z, is processed by 228

the LLM, generating contextualized hidden rep- 229

resentations that capture input dependencies. The 230

LLM produces a hidden state matrix, H, which the 231

output projection layer maps to a d × d causal 232

adjacency matrix. A sigmoid activation ensures 233

values in [0, 1], representing edge probabilities. By 234

freezing LLM parameters and training only input 235

and output layers, the model efficiently leverages 236

LLM’s feature extraction capabilities for accurate 237

causal discovery with minimal computational over- 238

head. 239

Model Training: The model operates in a syn- 240

thetic environment, where each state corresponds 241

to a dataset sample. Through forward passes and 242

loss minimization, it predicts an adjacency matrix 243

A ∈ Rd×d, constrained to be acyclic to satisfy 244

DAG properties (refer Algorithm 2). The train- 245

ing loss comprises: (1) binary cross-entropy loss 246

to measure the difference between predicted edge 247

probabilities Aij and a null matrix, and (2) an L1 248

regularization term to promote sparsity. As the 249

model refines A, edge weights Aij update dynam- 250
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ically, with the environment providing new states251

for learning. Over multiple epochs, the decreasing252

average loss indicates convergence to an optimal253

causal graph that balances sparsity and essential254

relationships.255

Theoretical Justification of the loss function
L(A)
Let A = (Aij) with each Aij ∈ (0, 1). Define

L(A) = −
∑
i,j

log
(
1−Aij

)
+ λ

∑
i,j

|Aij |.

1. MAP derivation.
• Likelihood: Yij ∼ Bernoulli(1 − Aij), observe
Yij = 1. − logP (Y = 1) = −

∑
i,j log(1 −

Aij).

• Prior: p(Aij) ∝ e−λ|Aij | gives − log p =
λ|Aij |.

2. Convexity & uniqueness. For a ∈ (0, 1), f(a) =
− log(1 − a) with f ′′(a) = 1/(1 − a)2 > 0, and |a|
is convex. Thus L is strictly convex.

3. Exact sparsity. ∂|a|
∣∣
0
= [−1, 1] blocks small gradi-

ents unless a = 0.
Hence L is the convex MAP-estimate with exact sparsity.

256

Post-Processing: To ensure a valid DAG, cy-257

cles are removed by iteratively deleting the lowest258

weight edge in each cycle (Algorithm 3). The re-259

sulting graph is further refined by pruning weak260

edges using linear regression: each node is re-261

gressed on its potential parents, and edges with262

coefficients below a threshold τ (set as the d-th263

largest weight for d nodes) are discarded (Algo-264

rithm 4). This process enhances the quality of the265

adjacency matrix by eliminating spurious and low-266

confidence connections.267

4 Experimental Setup268

4.1 Baselines269

To benchmark our approach, we employ estab-270

lished causal structure discovery methods, includ-271

ing constraint-based approaches like the PC al-272

gorithm, Functional Causal Model (FCM)-based273

methods such as ICA-LiNGAM, and score-based274

techniques like Greedy Equivalence Search (GES)275

and RL-BIC. Additionally, we incorporate gradient-276

based methods, including Gradient-Based Neural277

DAG Learning (GraNDAG). These diverse algo-278

rithms provide a comprehensive foundation for279

evaluating our model’s performance (Zhang et al.,280

2021). For details on the parameter settings of the281

baseline methods, refer to Appendix F.282

4.2 Metrics 283

We use standard metrics to evaluate causal dis- 284

covery algorithms (refer to Evaluation Metrics for 285

Causal Discovery in (Hasan et al., 2023)). 286

Additionally1, we introduce two new metrics 287

designed to assess the precision of true edge identi- 288

fication by causal algorithms. 289

True Positives per Non-Zero Predictions 290

(TP/NNZ): This metric calculates the proportion 291

of true positives relative to all predicted edges (non- 292

zero entries). This is an indicator on the precision 293

of the model in detecting the true edges out of all 294

its edge predictions. Higher values indicate bet- 295

ter performance in predicting true edges without 296

excess. 297

TP/NNZ =
TP

NNZ
298

where, TP: Number of true positives, NNZ: Num- 299

ber of predicted edges (non-zero entries). 300

Relative Performance (RP): RP compares the 301

TP/NNZ of a model against the best-performing 302

model. A lower RP indicates that the model’s per- 303

formance is closer to the best. 304

RP =
Best(TP/NNZ)− TP/NNZ

Best(TP/NNZ)
305

where, Best(TP/NNZ): Best value of TP/NNZ 306

across models TP/NNZ: True positives per non- 307

zero predictions for the current model. 308

4.3 Datasets 309

Causal discovery methods analyze datasets from 310

real-world observations or synthetic sources. Real 311

data comes from medical trials, economic surveys, 312

and genomics experiments, while synthetic datasets 313

are generated using known or artificial causal struc- 314

tures. 315

In our experiments, we used both real and pub- 316

licly available datasets, alongside synthetic datasets 317

generated from domain knowledge-based Directed 318

Acyclic Graphs (DAGs). For publicly available 319

datasets, we utilize the bnlearn repository (Scu- 320

tari, 2009) and the Causal Discovery Toolbox 321

(CDT) (Kalainathan et al., 2020). 322

Publicly available datasets: SACHS, DREAM, 323

ASIA, ALARM, LUCAS, HEPAR2 (refer Ap- 324

pendix C.1). 325

Synthetic datasets: • Linear models with 326

Gaussian/non-Gaussian noise (refer Ap- 327

pendix C.2.1) • Non-linear quadratic models 328

1refer Appendix E
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with Gaussian/non-Gaussian noise (refer Ap-329

pendix C.2.2) • Non-linear Gaussian process330

models with Gaussian noise (refer Appendix C.2.3)331

Domain Specific Dags

We have also constructed two DAGs from Domain
Expert Knowledge and used it to generate synthetic
data (refer Appendix C.2.4 ).
• A DAG representing bias formation and propaga-
tion (refer Apendix Figures 6 to 8)
•A DAG representing legal decision processes under
the Bhartiya Nyaya Sanhita (BNS) scheme (refer
Appendix Figure 9)

332

4.4 Results333

In this section, we present dataset-wise results334

comparing the performance of all baseline mod-335

els against our proposed model (refer Appendix336

Figure 12). This structured comparison allows us337

to evaluate the effectiveness of our model across338

different datasets (refer Figure 4).339

PUBLICLY AVAILABLE DATASETS (see340

Figure 4)341

In SACHS, the prompt-based method achieves su-342

perior FDR and RP, likely due to semantically rich343

metadata that aligns well with LLM pretraining.344

In contrast, traditional algorithms like PC exhibit345

high TPR but suffer from high FDR and SHD, indi-346

cating overprediction. The data-driven causal_llm347

maintains balanced performance across all met-348

rics, demonstrating robustness without metadata349

reliance.350

For ASIA, the strong performance of all prompt-351

based LLMs—some matching the ground truth ex-352

actly—suggests the dataset or similar structures353

may have been encountered during LLM training.354

Traditional methods like GES are competitive but355

slightly hampered by higher FDR. Causal_llm un-356

derperforms, possibly due to the dataset’s simplic-357

ity and low variance.358

In LUCAS, GES aligns perfectly with the ground359

truth, benefiting from efficient structure scoring in360

small graphs. Prompt-based models perform nearly361

as well, with causal_llm offering stable, if not top-362

tier, performance. GranDAG underperforms due363

to limited edge predictions, struggling with sparse364

structures.365

For ALARM, a mid-sized graph, prompt-based366

models outperform symbolic approaches by achiev-367

ing better trade-offs between TPR and FDR. PC368

and GES have higher TPR but also elevated FDR369

and SHD, indicating noise. Causal_llm struggles370

in this transitional regime, highlighting limitations371

in medium-scale structures. 372

In HEPAR2, as the node count increases, sym- 373

bolic models face combinatorial challenges and 374

often fail to converge. Prompt-based methods 375

excel across all metrics, leveraging global meta- 376

data. Causal_llm remains competitive, showing 377

resilience in node-dense settings. 378

In the high-dimensional DREAM dataset, most 379

models fail due to complexity. Causal_llm (GPT) 380

stands out with the best RP and TPR, demonstrat- 381

ing the effectiveness of LLMs in metadata-absent, 382

large-scale settings. GranDAG’s low SHD is under- 383

mined by high FDR, indicating excessive regular- 384

ization. 385

In Bias & Legal datasets (Appendix Figure 11), 386

prompt-based methods dominate, particularly 387

where node labels encode sociocultural or legal 388

context. Causal_llm also performs well, especially 389

in the implicit-to-explicit and Legal cases, revealing 390

its ability to capture fairness-related dependencies 391

directly from data. 392

SYNTHETIC DATASETS (see Appendix Fig- 393

ure 10) 394

For 10-node graphs, causal_llm (GPT) and 395

prompt-based methods excel. ICA-LiNGAM 396

and GES perform well but are limited to low- 397

dimensional settings. At 40 nodes, causal_llm 398

(Gemini) leads on linear graphs, while ICA- 399

LiNGAM excels in GP settings, highlighting its 400

non-linear modeling capacity. 401

On 70-node graphs, most models degrade, but 402

causal_llm maintains effective detection of causal 403

edges, demonstrating scalability. For 100-node 404

graphs, causal_llm (Llama, GPT) are among the 405

few viable models, outperforming others by han- 406

dling dimensionality and noise robustly. 407

Overall results suggest that prompt-based 408

method using LLMs outperform data-driven ap- 409

proaches, especially when node metadata is avail- 410

able, achieving high accuracy in edge detection. 411

Among data-driven models, causal_llm consis- 412

tently performs best, particularly in larger datasets. 413

GES and ICA-LiNGAM excel in specific cases 414

(e.g., ASIA, LUCAS), but their effectiveness is 415

limited by high FDR and SHD. GranDAG under- 416

performs across datasets, often failing to capture 417

causal relationships. As the number of nodes in- 418

creases, most models decline in performance, but 419

causal_llm remains consistent overall. 420
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Figure 4: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALiNGAM, GraNDAG, GES, GPT-4o,
Gemini, Llama, DeepSeek-R1 and causal_llm (with models GPT, Gemini, Llama and DeepSeek) plotted for the
publicly available datasets SACHS, ASIA, ALARM, LUCAS, HEPAR2, and DREAM4.

5 Discussion421

In this paper, we have argued that the question of
causal understanding is equivalent to the understand-
ing of how LLM functions, that is, whether LLM
follows any causation while generating the output.
Our experimental results rigorously validate the effec-
tiveness of both the prompt-based method and the
data-driven causal_llm model, while also delineat-
ing their respective strengths and limitations. Below,
we synthesize these findings through systematic anal-
ysis:

422

Prompt-Based Method: Leveraging Node423

Metadata for Superior Accuracy The prompt-424

based approach, which utilizes node metadata,425

demonstrates measurable advantages (refer Ap-426

pendix Figure 12):427

• Edge Accuracy: On datasets like ASIA and428

LUCAS, the prompt-based method achieves an429

average of ≈ 40% higher edge accuracy compared430

to data-driven methods, highlighting its ability to431

leverage metadata for precise causal discovery.432

• Fairness-Critical Domains: In fairness-433

critical domains such as legal systems, the prompt-434

based method improves precision in identifying435

true causal edges by ≈ 25%, effectively address-436

ing systemic biases often overlooked by pairwise437

methods.438

• Limitation in Metadata-Absent Scenarios:439

On datasets like DREAM41, where metadata is440

unavailable, the prompt-based method cannot be441

used, emphasizing its reliance on node metadata442

for optimal results.443

Data-Driven Approach: Competitive Perfor-444

mance and Efficiency The causal_llm model,445

which integrates LLMs for causal discovery purely 446

from data, demonstrates competitve performance 447

and scalability (refer Appendix Figure 12): 448

• Runtime Efficiency: On the Sachs dataset, 449

causal_llm achieves inference in ≈ 50% less run- 450

time on average compared to RL-based and contin- 451

uous optimization-based methods, showcasing its 452

computational efficiency. 453

• Scalability: In synthetic scenarios with larger 454

graphs (e.g., 70-node and 100-node datasets), 455

causal_llm scales seamlessly, offering ≈ 20% 456

faster inference while maintaining competitive ac- 457

curacy. 458

• Limitation in Metadata-Rich Scenarios: 459

While competitive, causal_llm’s performance lags 460

behind the prompt-based method in datasets 461

where metadata plays a crucial role in guiding 462

causal discovery. 463

Comparative Analysis: Strengths and Trade- 464

offs:The prompt-based method excels in metadata- 465

rich settings, delivering high accuracy and address- 466

ing fairness in sensitive domains (see Figure 11). 467

In contrast, the data-driven causal_llm model of- 468

fers a scalable, efficient alternative with competi- 469

tive performance and faster runtime. Together, they 470

showcase the potential of LLMs in causal discovery, 471

providing robust solutions for both metadata-driven 472

and data-only scenarios while balancing accuracy, 473

efficiency, and fairness. 474

These complementary strengths establish the 475

prompt-based and data-driven approaches as ef- 476

fective, versatile tools for modern causal discovery 477

(refer Appendix Figures 10 to 12), with demon- 478
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Figure 5: A comparative plot of the relative performance (RP metric) of LLMs (prompt-based approach and
causal_llm) on the metadata-rich datasets (SACHS, ASIA, ALARM, LUCAS, HEPAR2, and BIAS and LEGAL
datasets), in increasing order of number of nodes.

strated success across domains ranging from small479

biological networks to large-scale gene regulatory480

systems.481

6 Key Takeaways482

In this section, we compare the prompt-based ap-483

proach and the data-driven approach to determine484

their respective advantages (refer Figure 5).485

• In datasets such as Asia, Lucas, and Sachs,486

where the number of nodes is small and node meta-487

data is available, the prompt-based method outper-488

forms all other causal algorithms by achieving bet-489

ter true positives per nonzero (TP/NNZ) and main-490

taining a low false discovery rate (FDR). In the491

ALARM dataset, as the number of nodes increases,492

the prompt-based approach remains competitive493

with other causal algorithms in terms of true posi-494

tive rate (TPR) while still maintaining a low FDR,495

making it a consistent method. As the number of496

nodes increases further, such as in the HEPAR2497

dataset, the performance of the prompt-based ap-498

proach declines but it still remains competitive with499

other causal models.500

• In datasets like DREAM and synthetic501

datasets, where node metadata is unavailable,502

the prompt-based approach cannot be applied.503

Despite this limitation, our data-driven method,504

causal_llm, remains competitive across all datasets.505

It excels particularly in large-scale datasets and506

those without metadata, offering a robust alterna-507

tive to state-of-the-art causal algorithms. Notably,508

in the neutral to explicit dataset, causal_llm509

(DeepSeek) (refer Appendix D.1) outperforms all510

others, including prompt-based methods, in detect-511

ing true edges, as shown by its high TP/NNZ ratio512

and low false positive rate (RP), highlighting its513

effectiveness across diverse scenarios. 514

• Therefore, when node metadata is available, 515

the prompt-based approach is preferred due to 516

its exceptional performance, while in cases where 517

metadata is unavailable, the data-driven model 518

causal_llm emerges as a consistent and reliable 519

choice. 520

7 Conclusion 521

Overall, the prompt-based method excels in 522

metadata-rich settings, ensuring high accuracy and 523

fairness in critical domains. The data-driven 524

causal_llm model emerges as a scalable and ef- 525

ficient alternative, delivering competitive perfor- 526

mance with reduced runtime. This highlights 527

LLMs’ capability for full graph discovery, position- 528

ing them as strong contenders in causal discovery 529

for both metadata-rich and data-only scenarios. 530

Limitations 531

Despite its strong performance, our framework has 532

some limitations. The prompt-based approach de- 533

pends heavily on prompt quality and metadata com- 534

pleteness, which can affect accuracy. Token lim- 535

its and attention constraints challenge scalability 536

on large graphs. In the data-driven model, freez- 537

ing the LLM backbone improves efficiency but 538

reduces adaptability to domain-specific contexts. 539

Real-world evaluation is limited by the absence 540

of ground truth, and post-processing steps involve 541

heuristics that may introduce variability across 542

datasets. 543
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A Prompt Used for Single-Step Full Graph Discovery 674

PROMPT TEMPLATE

You are an intelligent causal discovery agent tasked with mapping the causal relationships between
features in the [*Dataset Name] dataset. This dataset models [brief description of the domain,
e.g., medical conditions, social biases, biochemical signaling*]. Your goal is to identify how these
features influence one another and construct a Directed Acyclic Graph (DAG) that represents these
causal relationships.
—
#### *Important Rules:*
1. *Multiple Incoming Edges:* Each feature may have multiple incoming edges to reflect its
dependency on upstream causes.
2. *Root Causes:* Some features act as root causes (independent variables) that initiate the causal
chain.
3. *Intermediate Variables:* Other features act as intermediaries, propagating the effects of root
causes and influencing downstream outcomes.
4. *Outcome Variables:* Observable outcomes should only receive causal inputs from relevant
upstream features.
5. *Acyclic Structure:* Ensure the DAG is acyclic and aligns with domain knowledge.
—
#### *Features (Nodes):*
- *[Feature 1]:* [Brief description of the feature].
- *[Feature 2]:* [Brief description of the feature]. - ...
—
#### *Step 1: Finding the Edges*
Identify the causal relationships between the features. Focus on how upstream features influence
downstream ones. For example:
1. *Edge (Feature A → Feature B):* [Explanation of why Feature A causes Feature B].
2. *Edge (Feature C → Feature D):* [Explanation of why Feature C causes Feature D].
3. ...
—
#### *Step 2: Reflect Back on Each Edge*
Review each edge to ensure it aligns with domain knowledge. Refine the causal relationships if
necessary.
—
#### *Output Format:*
Provide a final list of edges in the following format:

1. (A, B) : Explanation of why A causes B.
2. (C, D) : Explanation of why C causes D. ...

675

B Algorithms 676

B.1 DAG Model: causal_llm 677

Model Architecture The architecture comprises three primary components: an input projection layer, 678

the Large Language Model, and an output projection layer. The input projection layer takes input 679

data of dimension dinput and projects it into a higher-dimensional feature space compatible with the 680

LLM’s hidden size. The projected input, xprojected, is then passed through the LLM, which generates 681

contextualized hidden representations that encapsulate the dependencies in the input. The output of the 682

LLM is a hidden state matrix, H. These hidden states are processed by the output projection layer, which 683

maps the high-dimensional representations to an d× d causal adjacency matrix, where d is the number of 684
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nodes in the causal graph. A sigmoid activation function is applied to ensure the adjacency matrix values685

are in the range [0, 1], representing edge probabilities. By freezing the pre-trained LLM parameters and686

training only the input and output layers, the model efficiently adapts to the causal discovery, leveraging687

LLM’s strong feature extraction capabilities without increased computational burden to extract accurate688

causal relationships from the dataset.689

Algorithm 2 causal_llm Training and Inference
Require: din, dout
Ensure: Trained model and inferred adjacency matrix
1: M← causal_llm(din, dout)
2: O ← Adam(M.parameters(), lr = 2e− 5)
3: L ← BCE Loss
4: function LEARN(D, E , B, ϵ)
5: G ← SyntheticEnvironment(D)
6: for e = 1 to E do
7: Lepoch ← []
8: for b = 1 to B do
9: s← G.get_next_state()

10: s← tensor(s)
11: a← σ(M(s))
12: if random ϵ then
13: a← random tensor
14: end if
15: A← Reshape(a)
16: A← RemoveCycles(A)
17: Lbatch ← L(A,0) + 0.01∥M∥
18: Backpropagate: O.step()
19: Store Lepoch
20: end for
21: Lavg ← mean(Lepoch)
22: end for
23: if P exists then
24: SaveM to P
25: end if
26: end function
27: function CAUSALMATRIX(D)
28: D← tensor(D)
29: s← mean(D, 0)
30: SetM to eval mode
31: A← σ(M(s))
32: A← A · (1− I)
33: A← PruneWeakEdges(A)
34: Afinal ← RemoveCycles(A)
35: return Afinal
36: end function

B.2 Helper Functions690

B.2.1 RemoveCycles691

This functions transforms a directed graph containing loops into a Directed Acyclic Graphs(DAGs).692

Starting with a weighted adjacency matrix (where entries represent connection strengths between nodes),693

it first constructs the graph. It then iteratively looks for cycles, removes them by eliminating the weakest694

link in each loop.To minimize structural damage, the function prioritizes removing edges with the smallest695

weights, ensuring stronger, more critical connections are preserved. When multiple edges in a cycle share696

the same minimal weight, it breaks ties randomly to avoid unintended bias. This process repeats until all697

cycles are eliminated, producing a directed acyclic graph (DAG) that retains the original graph with most698

of the relevant edges.699
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Algorithm 3 RemoveCycles

Require: Adjacency matrix A ∈ Rd×d

Ensure: Acyclic adjacency matrix Aacyclic
1: Step 1: Initialize Graph
2: Create directed graph G = (V, E) from A:
3: for all i, j ∈ [1, d] do
4: if i ̸= j and A[i, j] > 0 then
5: Add edge (i, j) with weight A[i, j] to G
6: end if
7: end for
8: Step 2: Remove Cycles
9: while G contains cycles do

10: Detect cycles: C ← FindCycle(G)
11: Initialize minimum weight: wmin ←∞
12: Initialize candidate edges: Emin ← []
13: for all (u, v, direction) ∈ C do
14: w ← G[u][v][′weight′]
15: if w < wmin then
16: Emin ← [(u, v)]
17: wmin ← w
18: else if w == wmin then
19: Add (u, v) to Emin
20: end if
21: end for
22: Randomly select edge: (umin, vmin) ∼ Emin
23: Remove edge: G.remove_edge(umin, vmin)
24: Update A[umin, vmin]← 0
25: end while
26: return Aacyclic

B.2.2 PruneWeakEdges 700

This function is designed to refine a given graph by pruning weak connections based on regression 701

coefficients derived from the dataset. It begins by initializing variables, including the graph structure, 702

node count, and a weight matrix to store regression coefficients. For each node in the graph, the algorithm 703

identifies its connected nodes, extracts the corresponding features and target values from the dataset, 704

and performs linear regression to compute the coefficients. These coefficients, representing the strength 705

of connections, are stored in a weight matrix.The algorithm calculates a threshold based on the sorted 706

absolute values of the coefficients, ensuring that at least one strong connection per node is preserved. 707

Finally, edges in the graph are pruned by retaining only those connections with coefficient magnitudes 708

greater than or equal to the threshold. 709
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Algorithm 4 PruneWeakEdges

Require: Graph batch G, Dataset X ∈ Rn×d

Ensure: Pruned graph Gpruned ∈ {0, 1}d×d

1: Step 1: Initialize Variables
2: Number of nodes: d← len(G)
3: Initialize weight matrix: W← [] ▷ To store regression coefficients
4: Step 2: Compute Regression Coefficients
5: for i = 1 to d do
6: Select column: col← |G[i, :]| > 0.5
7: if

∑
(col) == 0 then

8: Append zeros: W.append(0d)
9: Continue

10: end if
11: Extract features: Xtrain ← X[:, col]
12: Extract target: y← X[:, i]
13: Fit linear regression: reg.fit(Xtrain,y)
14: Obtain coefficients: c← reg.coef_
15: Initialize zero vector: cnew ← 0d

16: Assign coefficients: cnew[col]← c
17: Append to weight matrix: W.append(cnew)
18: end for
19: Step 3: Calculate Threshold
20: Sort: Wsorted ← sort(|W|.flatten())
21: Determine threshold index: didx ← min(d− 1, len(Wsorted)− 1)
22: Calculate threshold: th←Wsorted[didx]
23: Step 4: Prune Graph
24: Prune edges: Gpruned ← (|W| ≥ th)
25: return Gpruned

C Datasets710

C.1 Publicly available datasets711

Publicly available causal datasets are commonly used to benchmark algorithms in causal discovery,712

machine learning, and statistical modeling. These datasets often stem from interventional experiments713

across real-world domains such as biology, medicine, environment, and education. We evaluate our714

method using datasets from the bnlearn repository (Scutari, 2009) and the Causal Discovery Toolbox715

(CDT) (Kalainathan et al., 2020).716

SACHS (Zhang et al., 2021): This dataset captures causal relationships between genes based on known717

biological pathways. It has 11 nodes with well known ground truth.718

DREAM (Kalainathan and Goudet, 1903): DREAM (Dialogue on Reverse Engineering Assessments719

and Methods) challenges provide simulated and real biological datasets to test methods for inferring gene720

regulatory networks.We have used the dataset DREAM4-1, consisting of 100 nodes.721

ALARM (Beinlich et al., 1989): This dataset simulates a medical monitoring system for patient status in722

intensive care, including variables such as heart rate, blood pressure, and oxygen levels.It consists of 37723

nodes and is widely used in benchmarking algorithms in the medical domain.724

ASIA (Lauritzen and Spiegelhalter, 1988): Asia dataset models a causal network of variables related to725

lung diseases and the likelihood of visiting Asia. This is a small dataset consisting of only 8 nodes.726

LUCAS (Lucas et al., 2004): LUCAS (LUng CAncer Simple) is a synthetic dataset designed for causal727

discovery benchmarking in medical contexts. It simulates causal relationships related to lung cancer,728

incorporating variables such as smoking habits, exposure to pollution, genetic predisposition, and disease729

outcomes. The dataset consists of 11 nodes and is often used to evaluate causal structure learning730

algorithms in the medical domain.731

HEPAR2 (Onisko, 2003): HEPAR2 dataset is a probabilistic Bayesian network model representing causal732

relationships in the diagnosis of liver disorders. It consists of 70 nodes and 123 edges, making it a733

comprehensive benchmark for testing causal discovery algorithms in the healthcare domain.734
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C.2 Synthetic datasets 735

We generate synthetic datasets using methods from ICA-LiNGAM (Shimizu et al., 2006) and RL-based 736

causal discovery (Zhu et al., 2020). These datasets, derived from both domain knowledge-based and 737

purely synthetic DAGs, enable us to explore diverse causal structures and benchmark our model against 738

state-of-the-art causal algorithms. 739

We generate four types of Datasets: 740

• Linear model with Gaussian and non-Gaussian noise 741

• Non-linear quadratic model with Gaussian and non-Gaussian noise 742

• Non-linear Gaussian process with Gaussian noise 743

• Bias and Legal datasets from Domain knowledge (refer Appendix C.2.4) 744

We employ the same initialization method used in the ICA-LiNGAM (Shimizu et al., 2006) and 745

RL-based causal discovery (Zhu et al., 2020) papers to generate synthetic datasets. For the Bias and Legal 746

datasets, we create synthetic data using a linear model with the same initialization approach. 747

C.2.1 Linear Model with Gaussian and Non-Gaussian Noise 748

To generate synthetic data, we start by creating a d× d upper triangular adjacency matrix representing the 749

graph structure, where the upper triangular entries are independently sampled from a Bernoulli distribution 750

- Bern(0.5). Next, we assign edge weights from the uniform distribution Unif([−2,−0.5] ∪ [0.5, 2]), 751

forming a weight matrix, W ∈ Rd×d. 752

Using this setup, we generate data samples according to 753

x = W Tx+ n, 754

where n ∈ Rd represents noise. Both Gaussian and non-Gaussian noise models are used. For the 755

non-Gaussian case, we adopt the approach from ICA-LiNGAM (Shimizu et al., 2006) , where Gaussian 756

noise samples are transformed via a power non-linearity to induce non-Gaussianity. In both cases, unit 757

noise variances are used. 758

We generate n = 5000 samples and randomly permute the variables to create the final datasets. This 759

procedure aligns with approaches used in prior works such as NOTEARS and DAG-GNN, where the true 760

causal graphs are known to be identifiable (Shimizu et al., 2006; Peters and Bühlmann, 2014). We repeat 761

this process for d = 10, 40, 70, 100 nodes and use it benchmark against state-of-the-art causal algorithms. 762

C.2.2 Non-linear Quadratic Model with Gaussian and Non-Gaussian Noise 763

In this method, we investigate nonlinear causal relationships using quadratic functions. The graph structure 764

is generated by creating an upper triangular adjacency matrix, following a similar procedure as the first 765

method. For each node i, the parent variables xpa(i) = [xi1, xi2, . . . ]
T are expanded to include both 766

first-order and second-order features. The coefficients for these features are either set to zero or sampled 767

from the uniform distribution 768

Unif([−1,−0.5] ∪ [0.5, 1]) 769

with equal probability. If a parent variable does not contribute to any feature term with a non-zero 770

coefficient, the corresponding edge is removed from the causal graph. 771

Data is generated for graphs with d = 10, 40, 70, and 100 nodes, with 5,000 samples for each case. We 772

consider both Gaussian and non-Gaussian noise models. For the non-Gaussian case, noise is generated by 773

transforming Gaussian samples using a power nonlinearity to induce non-Gaussianity. However, large 774

variable values can sometimes occur in the quadratic model, which can cause computational problems in 775

quadratic regression. Such extreme samples are treated as outliers. 776

This approach allows us to study the identifiability of nonlinear causal graphs across varying graph 777

sizes and noise models while addressing computational challenges. 778

C.2.3 Non-Linear Model with Gaussian Processes 779

This method involves studying nonlinear causal relationships in randomly generated causal graphs. Each 780

causal relationship fi is modeled as a nonlinear function sampled from a Gaussian process with a Radial 781
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Basis Function (RBF) kernel, where the bandwidth is set to one. The use of the RBF kernel ensures782

smoothness and flexibility in the functional form of fi, allowing it to model complex dependencies783

between variables.784

The additive noise ni in the system is drawn from a normal distribution N (0, σ2), where the noise785

variance σ2 is sampled uniformly across a predefined range. This variability in noise strength across786

different relationships influences the complexity of causal inference. The setup adheres to conditions787

under which the true causal graph is identifiable, as established by (Peters et al., 2014).788

For this experiment, we adopt a framework inspired by GraN-DAG (Lachapelle et al., 2019). Specif-789

ically, we generate causal graphs with 10 nodes and 40 directed edges, ensuring a dense and complex790

network of dependencies. The data consists of 1,000 samples, allowing for robust statistical inference and791

testing of causal discovery methods.792

This setup is particularly valuable for benchmarking algorithms designed for nonlinear causal discovery,793

as it captures realistic complexities while maintaining identifiability.794

C.2.4 Bias and Legal DAGs795

To construct the Bias dataset, we undertook an in-depth literature review on implicit bias, analyzing796

the factors contributing to unconscious biases and their subtle manifestations in language. This process797

guided the development of three Directed Acyclic Graphs (DAGs) that depict how bias propagates and798

evolves in linguistic contexts. These diagrams were validated by domain experts.For the Legal dataset,799

we collaborated with a legal expert to create a DAG that models the legal decision-making processes800

under the Bhartiya Nyaya Sanhita (BNS) scheme.This DAG models the structured reasoning and causal801

pathways used to determine outcomes such as murder, culpable homicide, or non-culpable homicide under802

the BNS framework. The nodes in this graph represent critical legal factors and decision points in the803

judicial process.After obtaining the DAG, we generate the weighted adjacency matrix by sampling the804

weights randomly from the uniform distribution Unif([−2,−0.5) ∪ (0.5, 2]). The data is then generated805

in the same way as described in the first method.806

Neutral to Implicitly Biased Sentences (N2I)807

This DAG captures the transition from neutral language to implicitly biased sentences. The transformation808

is influenced by the following factors:809

• Social Identity: The speaker’s or listener’s sense of belonging to a particular group.810

• Stereotype: Preconceived notions or generalized beliefs about a group.811

• Stereotype Activation: The subconscious triggering of stereotypes in response to specific cues.812

• Cognitive Dissonance: The discomfort from holding conflicting beliefs, which can subtly shape813

language.814

• Ambiguous Language: Words or phrases with multiple interpretations, leaving room for implicit bias.815

• Unprotected Features: Attributes not safeguarded against discrimination, potentially amplifying bias.816

• Social Desirability: The tendency to conform to socially acceptable norms, sometimes leading to veiled817

biases.818

• Protected Features: Characteristics shielded under anti-discrimination policies that may still influence819

bias indirectly.820

Neutral to Explicitly Biased Sentences (N2E))821

This DAG models how neutral language transforms into overtly biased statements, driven by:822

• Social Identity: The speaker’s or listener’s sense of belonging to a particular group.823

• Stereotype: The direct incorporation of generalized beliefs into speech.824

• Conscious Stereotyping: Deliberate application of stereotypes in communication.825

• Protected Features: Characteristics (e.g., race, gender) that become focal points in biased discourse.826

• Motivated Reasoning: The use of reasoning aligned with one’s goals or biases to justify explicit827

statements.828
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Figure 6: A DAG representing the causal pathway for a neutral sentence being transformed into an implicitly biased
sentence

Figure 7: A DAG representing the causal pathway for a neutral sentence being transformed into an explicitly biased
sentence

Implicit to Explicitly Biased Sentences (I2E)) 829

This DAG explains the progression from implicit to explicit bias in language. 830

Key factors include Social Identity, which reflects the influence of group affiliation on decision-making 831

and language; Stereotype, representing generalized beliefs about groups that shape perceptions and 832

behavior; Conscious Stereotyping, which involves the deliberate application of stereotypes; Protected 833

Features, referring to characteristics safeguarded under anti-discrimination policies that can still influence 834

biases; and Motivated Reasoning, where reasoning is aligned with personal goals or biases to justify 835

certain conclusions or actions. 836
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Figure 8: A DAG representing the causal pathway for a implicitly biased sentence being transformed into an
explicitly biased sentence

Legal decision process under BNS scheme837

The key nodes in the legal reasoning DAG under the Bhartiya Nyaya Sanhita (BNS) framework include838

the following: Death Established(D), which determines if a death has occurred, and Intention to Cause839

Death(ID), which assesses whether there was a clear intent to cause death, along with its counterpart, No840

Intention to Cause Death(!ID), for cases lacking such intent. Other critical nodes include Falls Under841

Exceptions of BNS(BNS) and Does Not Fall Under Exceptions of BNS(!BNS), which evaluate whether842

the act qualifies for legal exceptions. Additional nodes like Intention to Cause Bodily Injury Likely to843

Cause Death(IB) and No Intention to Cause Bodily Injury Likely to Cause Death(!IB) explore intent844

regarding bodily harm. The DAG also considers Knowledge That Injury Is Likely to Cause Death(KTI)845

versus No Knowledge That Injury Is Likely to Cause Death(!KTI), assessing the accused’s awareness846

of fatal consequences. Severity is analyzed through nodes like Injury Sufficient to Cause Death(SD)847

and Injury Not Sufficient to Cause Death(!SD), as well as High Probability That Death Would Be848

Caused(HP) and Not Very Likely to Cause Death(!HP), which evaluate the likelihood of fatality. Finally,849

the outcomes are classified into Murder(M), Culpable Homicide(C), and Non-Culpable Homicide(NC),850

based on the interplay of intent, knowledge, and other factors.851

Figure 9: A DAG representing the causal pathway for legal decision process under BNS scheme
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D Results and Analysis 852

In this section, we present the plots of the results for our framework: prompt-based and causal_llm, 853

applied to synthetic (refer Figure 10) and bias & legal (refer Figure 11) datasets. The synthetic datasets 854

cover varying complexities, including 10, 40, 70, and 100 nodes, with each set being evaluated under 855

three different types of causal relationships: linear, quadratic, and Gaussian process (GP). These datasets 856

serve as a benchmark for assessing the causal_llm model’s ability to uncover causal structures across 857

different levels of graph complexity and non-linearity. The following plots showcase the key performance 858

metrics used to compare our framework with existing state-of-the-art causal discovery methods, offering a 859

comprehensive analysis of the model’s strengths and limitations (refer Figure 10). 860

Figure 10: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALiNGAM, GraNDAG, GES and
causal_llm (with models GPT, Gemini, Llama and DeepSeek), plotted for the synthetic datasets (10, 40, 70 and 100
nodes for linear, quadratic and Gaussian models.

Figure 11: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALiNGAM, GraNDAG, GES, GPT-4o,
Gemini, Llama, DeepSeek-R1 and causal_llm (with models GPT, Gemini, Llama and DeepSeek), plotted for the
synthetic datasets obtained from the domain knowledge causal graphs - BIAS (N2I, N2E and I2E) and LEGAL.
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Figure 12: Performance metrics for all causal algorithms, including our causal_llm model and large language
models (LLMs) like GPT, Gemini, Llama, and DeepSeek, are evaluated and plotted, comparing their performance
on both publicly available and synthetic datasets.
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D.1 GPT-4o vs DeepSeek: A Comparison 861

Among the prompt-based approaches, GPT-4o and DeepSeek consistently emerge as top-performing 862

models (refer Figure 5). 863

In the Sachs dataset, GPT-4o exhibits superior performance with a high TPR, low FDR, and the best 864

TP/NNZ, making it the most effective model for detecting true edges, while DeepSeek remains competi- 865

tive.In the Lucas dataset, DeepSeek slightly outperforms GPT-4o by achieving a better TPR, lower FDR, 866

and higher TP/NNZ. In the Asia dataset, both DeepSeek and GPT-4o achieve perfect metrics, producing 867

the exact ground truth DAG. 868

As node complexity increases in datasets such as ALARM and HEPAR2, GPT-4o experiences a slight 869

decline in performance, whereas DeepSeek remains consistent, achieving a higher TPR and lower FDR, 870

particularly for higher-order nodes. 871

In conclusion, both GPT-4o and DeepSeek excel in prompt-based causal discovery. GPT-4o performs best 872

on lower-order datasets like Sachs, while DeepSeek outperforms in Lucas and maintains consistency in 873

higher-order datasets such as ALARM and HEPAR2, where GPT-4o declines slightly. DeepSeek proves 874

to be more robust to increasing node order, making it a reliable choice for complex causal structures. 875

E New Metrics 876

Why these Metrics?

These metrics specifically assess the proportion of predicted edges that are actually true edges, unlike traditional precision,
which accounts for both edge and non-edge predictions. In real-world datasets, ground truth causal graphs are typically
sparse, meaning true edges are rare. As a result, traditional precision can be skewed by correctly identified non-edges,
obscuring the model’s performance in detecting actual causal relationships. By focusing solely on edge predictions, these
metrics offer a more precise evaluation of the model’s ability to uncover genuine causal links.

877

F Parameter Settings 878

We used various causal discovery methods based on constraints, functional causal model (FCM) based, 879

score based, reinforcement learning based, and gradient based techniques, each configured with appropriate 880

hyperparameters.We have used parameter initialization from gcastle causal discovery package (Zhang 881

et al., 2021). 882

Parameter Settings for Baseline Causal Algorithms

Constraint-based approaches:
PC = PC(variant=’original’, alpha=0.05, ci_test=’fisherz’, priori_knowledge=None)

FCM-based methods:
ICA-LiNGAM = ICALiNGAM(random_state=None, max_iter=1000, thresh=0.3)

Score-based techniques:
GES = GES(criterion=’bic’, method=’scatter’, k=0.001, N=10)

RL-BIC= RL(encoder_type: str = ’TransformerEncoder’, hidden_dim: int = 64, num_heads: int = 16, num_stacks:
int = 6, residual: bool = False, decoder_type: str = ’SingleLayerDecoder’, decoder_activation: str = ’tanh’,
decoder_hidden_dim: int = 16, use_bias: bool = False, use_bias_constant: bool = False, bias_initial_value: bool
= False, batch_size: int = 64, input_dimension: int = 64, normalize: bool = False, transpose: bool = False,
score_type: str = ’BIC’, reg_type: str = ’LR’, lambda_iter_num: int = 1000, lambda_flag_default: bool = True,
score_bd_tight: bool = False, lambda2_update: int = 10, score_lower: float = 0, score_upper: float = 0, seed: int = 8,
nb_epoch: int = 10, lr1_start: float = 0.001, lr1_decay_step: int = 5000, lr1_decay_rate: float = 0.96, alpha: float =
0.99, init_baseline: float = -1, l1_graph_reg: float = 0, verbose: bool = False, device_type: str = ’gpu’, device_ids: int = 0)

Gradient-based methods:
GraNDAG = GraNDAG(input_dim, hidden_num: int = 2, hidden_dim: int = 10, batch_size: int = 64, lr: float =
0.001, iterations: int = 10000, model_name: str = ’NonLinGaussANM’, nonlinear: str = ’leaky-relu’, optimizer: str =
’rmsprop’, h_threshold: float = 1e-7, device_type: str = ’cpu’, device_ids: int = 0, use_pns: bool = False, pns_thresh:
float = 0.75, num_neighbors: Any | None = None, normalize: bool = False, random_seed: int = 42, jac_thresh:
bool = True, lambda_init: float = 0, mu_init: float = 0.001, omega_lambda: float = 0.0001, omega_mu: float = 0.9,
stop_crit_win: int = 100, edge_clamp_range: float = 0.0001, norm_prod: str = ’paths’, square_prod: bool = False)
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