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Abstract

Current causal discovery methods using Large
Language Models (LLMs) often rely on pair-
wise or iterative strategies, which fail to cap-
ture global dependencies, amplify local bi-
ases, and reduce overall accuracy. This
work introduces a unified framework for one-
step full causal graph discovery through: (1)
Prompt-based discovery with in-context learn-
ing when node metadata is available, and (2)
Causal_llm, a data-driven method for settings
without metadata. Empirical results demon-
strate that the prompt-based approach outper-
forms state-of-the-art models (GranDAG, GES,
ICA-LiNGAM) by approximately 40% in edge
accuracy on datasets like Asia and Sachs, while
maintaining strong performance on more com-
plex graphs (ALARM, HEPAR?2). Causal_llm
consistently excels across all benchmarks,
achieving 50% faster inference than reinforce-
ment learning-based methods and improving
precision by 25% in fairness-sensitive do-
mains such as legal decision-making. We also
introduce two domain-specific DAGs—one
for bias propagation and another for legal
reasoning under the Bhartiya Nyaya San-
hita—demonstrating LLMs’ capability for sys-
temic, real-world causal discovery.

1 Introduction

“LLMs are good at manipulating lan-
guage, but not at thinking.”

— Yann LeCun

Large Language Models (LLMs) have demon-
strated remarkable linguistic proficiency, yet
their ability to perform structured reason-
ing—particularly in causal discovery—remains
largely unexplored. Current methods rely on
pairwise or iterative approaches, which fragment
systemic interactions, propagate local biases,
and fail to capture higher-order dependencies.
These limitations lead to error accumulation,

computational inefficiencies, and reduced accuracy
in causal inference.
This raises a fundamental question:

Can LLMs Discover Full Causal Graphs in One
Step?

We address this challenge by introducing a uni-
fied framework that leverages:

e Prompt-based full-graph discovery: Utiliz-
ing in-context learning (ICL) when node metadata
is available (refer Section 3.1).

¢ Data-driven causal modeling (causal_llm):
Extracting causal structures directly from data
when metadata is absent (refer Section 3.2).

Empirical results demonstrate that the prompt-
based method significantly outperforms existing
causal discovery models in datasets like Asia,
Lucas, and Sachs, achieving higher true posi-
tives per nonzero (TP/NNZ) and maintaining low
false discovery rates (FDR). As the number of
nodes increases (ALARM, HEPAR?2), its per-
formance declines but remains competitive (re-
fer Section 4.4). Conversely, our data-driven
causal_llm model consistently performs well across
all datasets, excelling in large-scale and metadata-
absent settings such as DREAM and synthetic
datasets. In fairness-sensitive domains like legal
decision-making, causal_llm (DeepSeek) (refer
Appendix D.1) surpasses existing models, achiev-
ing ~ 25% higher precision in detecting true causal
edges and mitigating systemic biases.

Key Contributions

¢ Unified causal-LLM: prompt-based full-graph gen-
eration with metadata (App. Figures 6 to 8);
causal_l1lm for end-to-end data-driven inference
(Sec. 4).

¢ Cycle-free, scalable inference: no iterative/pairwise
queries, avoids spurious cycles, handles large graphs
across domains.

* Domain DAGs: Bias Formation & Propagation; Le-
gal Decision Process (BNS) (App. Figures 6 to 8,
Figure 9).
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Figure 1: Our key contributions in causal-LLM: unified one-step graph discovery (both prompt-based and data-

driven) plus two domain-specific DAG proposals.

By combining global context reasoning with

data-driven learning, our framework establishes
LLMs as powerful tools for systemic causal dis-
covery—pushing them beyond language tasks to-
ward structured, domain-aware reasoning with real-
world impact.
Organization: The paper is structured as follows:
we review related work in Section 2, present our ap-
proach in Section 3, and detail experiments, includ-
ing baselines, datasets, and metrics, in Section 4.
Major insights and key takeaways are discussed in
Section 5 and Section 6, and we conclude with a
summary and open directions in Section 7.

2 Related Works

This work investigates the causal discovery capabil-
ities of large language models (LLMs), specifically
focusing on the construction of the complete causal
graph (see Figure 2). Although prior studies have
explored general causal reasoning (Hobbhahn et al.,
2022; Zhang et al., 2023), cause-effect inference
(Zhiheng et al., 2022), and correlation-to-causation
transitions (Jin et al., 2023), they do not address
full graph discovery.

Most LLM-based approaches rely on pairwise
causal edge detection (Willig et al., 2022; Long
et al., 2023) or iterated querying across all node
pairs (Kiciman et al., 2023; Zecevi€ et al., 2023;
Kampani et al., 2024), which scale poorly due
to quadratic complexity and often introduce cy-
cles (Antonucci et al., 2023). Some mitigate this
via post-processing or causal ordering with vot-
ing (Vashishtha et al., 2023), but these are typi-
cally restricted to small graphs (<22 nodes). Some
works explore breadth-first querying for more scal-
able graph discovery (Jiralerspong et al., 2024),
or generate domain knowledge graphs from text
(Arsenyan et al., 2023), but without benchmark-
ing against ground-truth DAGs. Recent efforts
in single-shot generation (Naik et al., 2024) show
promise, yet remain limited in scope.

Crucially, these methods are prompt-based and
rely on node metadata—making them unsuitable
for purely data-driven causal discovery. Existing
work using LLMs as auxiliary tools (Ban et al.,
2023; Cohrs et al., 2024) typically generate pri-
ors—e.g., pairwise edge constraints, causal orders,
or adjacency matrices—which guide conventional
algorithms rather than enabling direct inference.
Attempts to elicit direct causal structure from data
via prompting (Zhang et al., 2023) have not suc-
ceeded.

To fill this gap, we propose and benchmark a uni-
fied framework (refer Section 3): (i) prompt-based
full-graph discovery when metadata is available,
and (i) causal_11m, a novel LLM-based method
for end-to-end causal graph inference directly from
data—evaluated on diverse datasets with up to 100
nodes.

3 Methodology

Prior works in LLLM-based causal discovery have
largely explored either: (i) prompt-based query-
ing, which relies on external metadata and human-
readable descriptions to elicit causal knowledge
from language models (Willig et al., 2022; Tu et al.,
2023; Kampani et al., 2024), or (ii) data-driven
causal discovery, grounded in statistical principles
and algorithms such as PC, GES, or ICA-LiINGAM.
However, these two strands have been treated inde-
pendently, and the literature lacks a unified frame-
work that combines both capabilities—especially
at scale.

Our work (please ref Figure 3) addresses this gap
by proposing a dual-mode framework that evalu-
ates and compares: (1) A prompt-based approach
that performs causal graph generation directly from
node metadata (refer Appendix A), enabling an
LLM to reason based on its pre-trained knowledge;
(2) A data-driven model, causal_l1m (refer Al-
gorithm 1), that learns causal structure purely from
observational data using LLMs pretrained trans-
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Figure 2: Overview of LLM-understanding research: This taxonomy categorizes studies on LLM behavior probing,
causal graph discovery, and interpretability. The causal discovery methods include prompt-driven and model-updated
approaches, highlighting pairwise, iterative, and full graph discovery techniques. Our Work (marked in green)
contributes to direct full graph discovery in both paradigms.

former architecture.

This combination allows us to assess: (a) the ability
of LLMs to perform causal discovery when meta-
data is available, and (b) their capacity to learn
graph structure from data in a scalable and gen-
eralizable way. The key motivation behind our
data-driven model is to move beyond using LLMs
solely as promptable knowledge bases (as in (Ban
et al., 2023; Cohrs et al., 2024)) toward direct end-
to-end inference from data—a path that remains
underexplored. A key question we address is: Do
we have node metadata for In-Context Learning?
If so, we employ a prompt-based method; other-
wise, we use a data-driven approach, as shown in
Equation (1).

itM(z) # ¢
otherwise

1

A {P (fo(LLM (), P(T, M(2))),
PostProcess (fa(LLM(-),x)),

Where:

e A is the Adjacency matrix.

e 1 is the Dataset.

e M(x) extracts Node Metadata from the dataset.

e 7 is the Prompt Template (refer Appendix A).

e P(T,M(x)) generates a dataset-specific

prompt.

e LLM/(-) is the Large Language Model

e Parse(+) extracts the adjacency matrix from the
LLM output.

e f,(-) is the prompt-based approach (refer Sec-
tion 3.1).

e f4(-) is the data-driven model causal_llm (refer
Algorithm 1).

e PostProcess(-) ensures DAG validity and prunes
weak edges (Algorithms 3 and 4).

The prompt-based approach leverages modern
LLMs’ extended context lengths to perform full-
graph causal discovery in a single pass, overcom-
ing dependency loss in traditional pairwise iterative
methods. It uses a carefully designed prompt (refer
Appendix A) to ensure accuracy, scalability, and in-
teroperability. The prompt defines the LLM’s role as
an intelligent causal discovery agent and sets the
dataset’s context, specifying its domain (e.g., med-
ical, financial, or biochemical). It establishes the
objective: identifying causal relationships between
features to construct a Directed Acyclic Graph
(DAG). This framing ensures clarity and focus in
the task.

The prompt incorporates detailed rules to guide
the discovery process and provides metadata for
features (nodes), including descriptions and roles.



This metadata offers essential context, enabling
the LLM to reason effectively about causal rela-
tionships.The output is structured in a standard-
ized format, listing causal edges as pairs (e.g.,
(A, B)) with detailed explanations. This format
ensures interpretability and enables automated post-
processing using regex to extract the adjacency
matrix, which precisely represents the causal struc-
ture.

This prompt-based approach is holistic and
scalable, leveraging the increasing context length
of LLMs to analyze larger datasets with higher-
order nodes. The output explanations enhance the
interpretability and reliability of the discovered
DAG, ensuring robustness and efficiency in causal
discovery.

Algorithm 1 LLM-Assisted DAG Discovery

Require: Data X € R"*? pre-trained LLM,
epochs E, sparsity weight A, threshold 7
1: Freeze LLM parameters

2: Initialize projection matrices Wi, € R%*",
Wout € Rth

3: fore + 1to £ do

4: Z < X Wiy b Project inputs into h-dim
space

5: H «+ LLM(Z) > Obtain contextual
embeddings

6: Alogits < H Woye > Compute edge logits

7: A 0(Ajogits) > Edge probabilities via
sigmoid

8:

L = —Zlog(l—Az‘j) + /\Z‘Aij’
2,7 b

> Push probabilities to zero + enforce sparsity
9: Update Wi, Wyt by backpropagating
VL
10: end for

11: Enforce Acyclicity:

1: Remove the smallest-weight edge in any
detected cycle
2: Repeat until the graph is acyclic

3: Prune Edges:
Drop edge (i, 7) if |Bi;] < 7

4: return Adjacency matrix A of the resulting
DAG
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Figure 3: Overview of our causal discovery approach:
If metadata is available, prompt-based full-graph
discovery (ICL) is applied; otherwise, data-driven
causal_llm extracts causal structures directly from the
dataset.

3.1 Prompt-based Approach
3.2 Data-Driven Approach

DAG Model: Our DAG model, causal_llm (refer
Algorithm 1), utilizes a Large Language Model
(LLM) to extract meaningful representations for
causal discovery. It consists of three components:
an input projection layer, the LLM, and an out-
put projection layer. The input projection layer
maps input data of dimension dippy to a higher-
dimensional space compatible with the LLM’s hid-
den size.The projected input, Z, is processed by
the LLM, generating contextualized hidden rep-
resentations that capture input dependencies. The
LLM produces a hidden state matrix, H, which the
output projection layer maps to a d x d causal
adjacency matrix. A sigmoid activation ensures
values in [0, 1], representing edge probabilities. By
freezing LLM parameters and training only input
and output layers, the model efficiently leverages
LLM’s feature extraction capabilities for accurate
causal discovery with minimal computational over-
head.

Model Training: The model operates in a syn-
thetic environment, where each state corresponds
to a dataset sample. Through forward passes and
loss minimization, it predicts an adjacency matrix
A € R™4 constrained to be acyclic to satisfy
DAG properties (refer Algorithm 2). The train-
ing loss comprises: (1) binary cross-entropy loss
to measure the difference between predicted edge
probabilities A;; and a null matrix, and (2) an L1
regularization term to promote sparsity. As the
model refines A, edge weights A;; update dynam-



ically, with the environment providing new states
for learning. Over multiple epochs, the decreasing
average loss indicates convergence to an optimal
causal graph that balances sparsity and essential
relationships.

Theoretical Justification of the loss function
L(A)

Let A = (A;;) with each A;; € (0,1). Define

L(A)=— log(1—Ay) + 2D |Ayl.
i, %,J

1. MAP derivation.
e Likelihood: Y;; ~ Bernoulli(1 — A;;), observe

Yij = 1. —log P(Y = 1) = =3, .log(1 —
e Prior: p(Ai;) o« e M4l gives —logp =
A A

2. Convexity & uniqueness. For a € (0,1), f(a) =
—log(1 — a) with f”(a) = 1/(1 — a)® > 0, and |a|
is convex. Thus £ is strictly convex.

3. Exact sparsity. 0|a|| o = [=1, 1] blocks small gradi-
ents unless a = 0.

Hence L is the convex MAP-estimate with exact sparsity.

Post-Processing: To ensure a valid DAG, cy-
cles are removed by iteratively deleting the lowest
weight edge in each cycle (Algorithm 3). The re-
sulting graph is further refined by pruning weak
edges using linear regression: each node is re-
gressed on its potential parents, and edges with
coefficients below a threshold 7 (set as the d-th
largest weight for d nodes) are discarded (Algo-
rithm 4). This process enhances the quality of the
adjacency matrix by eliminating spurious and low-
confidence connections.

4 Experimental Setup

4.1 Baselines

To benchmark our approach, we employ estab-
lished causal structure discovery methods, includ-
ing constraint-based approaches like the PC al-
gorithm, Functional Causal Model (FCM)-based
methods such as ICA-LiINGAM, and score-based
techniques like Greedy Equivalence Search (GES)
and RL-BIC. Additionally, we incorporate gradient-
based methods, including Gradient-Based Neural
DAG Learning (GraNDAG). These diverse algo-
rithms provide a comprehensive foundation for
evaluating our model’s performance (Zhang et al.,
2021). For details on the parameter settings of the
baseline methods, refer to Appendix F.

4.2 Metrics

We use standard metrics to evaluate causal dis-
covery algorithms (refer to Evaluation Metrics for
Causal Discovery in (Hasan et al., 2023)).

Additionally', we introduce two new metrics
designed to assess the precision of true edge identi-
fication by causal algorithms.

True Positives per Non-Zero Predictions
(TP/NNZ): This metric calculates the proportion
of true positives relative to all predicted edges (non-
zero entries). This is an indicator on the precision
of the model in detecting the true edges out of all
its edge predictions. Higher values indicate bet-
ter performance in predicting true edges without

eXCess. TP
TP/NNZ = ——
NNZ

where, TP: Number of true positives, NNZ: Num-
ber of predicted edges (non-zero entries).

Relative Performance (RP): RP compares the
TP/NNZ of a model against the best-performing
model. A lower RP indicates that the model’s per-
formance is closer to the best.

_ Best(TP/NNZ) — TP/NNZ

RP
Best(TP/NNZ)

where, Best(TP/NNZ): Best value of TP/NNZ
across models TP/NNZ: True positives per non-
zero predictions for the current model.

4.3 Datasets

Causal discovery methods analyze datasets from
real-world observations or synthetic sources. Real
data comes from medical trials, economic surveys,
and genomics experiments, while synthetic datasets
are generated using known or artificial causal struc-
tures.

In our experiments, we used both real and pub-
licly available datasets, alongside synthetic datasets
generated from domain knowledge-based Directed
Acyclic Graphs (DAGs). For publicly available
datasets, we utilize the bnlearn repository (Scu-
tari, 2009) and the Causal Discovery Toolbox
(CDT) (Kalainathan et al., 2020).

Publicly available datasets: SACHS, DREAM,
ASIA, ALARM, LUCAS, HEPAR2 (refer Ap-
pendix C.1).

Synthetic datasets: e Linear models with
Gaussian/non-Gaussian  noise  (refer  Ap-
pendix C.2.1) e Non-linear quadratic models

'refer Appendix E



with Gaussian/non-Gaussian noise (refer Ap-
pendix C.2.2) e Non-linear Gaussian process
models with Gaussian noise (refer Appendix C.2.3)

Domain Specific Dags

We have also constructed two DAGs from Domain
Expert Knowledge and used it to generate synthetic
data (refer Appendix C.2.4 ).

o A DAG representing bias formation and propaga-
tion (refer Apendix Figures 6 to 8)

o A DAG representing legal decision processes under
the Bhartiya Nyaya Sanhita (BNS) scheme (refer
Appendix Figure 9)

4.4 Results

In this section, we present dataset-wise results
comparing the performance of all baseline mod-
els against our proposed model (refer Appendix
Figure 12). This structured comparison allows us
to evaluate the effectiveness of our model across
different datasets (refer Figure 4).

PUBLICLY AVAILABLE DATASETS (see
Figure 4)
In SACHS, the prompt-based method achieves su-
perior FDR and RP, likely due to semantically rich
metadata that aligns well with LLM pretraining.
In contrast, traditional algorithms like PC exhibit
high TPR but suffer from high FDR and SHD, indi-
cating overprediction. The data-driven causal_llm
maintains balanced performance across all met-
rics, demonstrating robustness without metadata
reliance.
For ASIA, the strong performance of all prompt-
based LLMs—some matching the ground truth ex-
actly—suggests the dataset or similar structures
may have been encountered during LLM training.
Traditional methods like GES are competitive but
slightly hampered by higher FDR. Causal_llm un-
derperforms, possibly due to the dataset’s simplic-
ity and low variance.
In LUCAS, GES aligns perfectly with the ground
truth, benefiting from efficient structure scoring in
small graphs. Prompt-based models perform nearly
as well, with causal_llm offering stable, if not top-
tier, performance. GranDAG underperforms due
to limited edge predictions, struggling with sparse
structures.
For ALARM, a mid-sized graph, prompt-based
models outperform symbolic approaches by achiev-
ing better trade-offs between TPR and FDR. PC
and GES have higher TPR but also elevated FDR
and SHD, indicating noise. Causal_llm struggles
in this transitional regime, highlighting limitations

in medium-scale structures.

In HEPAR?2, as the node count increases, sym-
bolic models face combinatorial challenges and
often fail to converge. Prompt-based methods
excel across all metrics, leveraging global meta-
data. Causal_llm remains competitive, showing
resilience in node-dense settings.

In the high-dimensional DREAM dataset, most
models fail due to complexity. Causal_llm (GPT)
stands out with the best RP and TPR, demonstrat-
ing the effectiveness of LLMs in metadata-absent,
large-scale settings. GranDAG’s low SHD is under-
mined by high FDR, indicating excessive regular-
ization.

In Bias & Legal datasets (Appendix Figure 11),
prompt-based methods dominate, particularly
where node labels encode sociocultural or legal
context. Causal_llm also performs well, especially
in the implicit-to-explicit and Legal cases, revealing
its ability to capture fairness-related dependencies
directly from data.

SYNTHETIC DATASETS (see Appendix Fig-
ure 10)

For 10-node graphs, causal_llm (GPT) and
prompt-based methods excel. ICA-LINGAM
and GES perform well but are limited to low-
dimensional settings. At 40 nodes, causal_llm
(Gemini) leads on linear graphs, while ICA-
LiNGAM excels in GP settings, highlighting its
non-linear modeling capacity.

On 70-node graphs, most models degrade, but
causal_llm maintains effective detection of causal
edges, demonstrating scalability. For 100-node
graphs, causal_llm (Llama, GPT) are among the
few viable models, outperforming others by han-
dling dimensionality and noise robustly.

Overall results suggest that prompt-based
method using LL.Ms outperform data-driven ap-
proaches, especially when node metadata is avail-
able, achieving high accuracy in edge detection.
Among data-driven models, causal_llm consis-
tently performs best, particularly in larger datasets.
GES and ICA-LiNGAM excel in specific cases
(e.g., ASIA, LUCAS), but their effectiveness is
limited by high FDR and SHD. GranDAG under-
performs across datasets, often failing to capture
causal relationships. As the number of nodes in-
creases, most models decline in performance, but
causal_llm remains consistent overall.
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Figure 4: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALINGAM, GraNDAG, GES, GPT-4o,
Gemini, Llama, DeepSeek-R1 and causal_llm (with models GPT, Gemini, Llama and DeepSeek) plotted for the
publicly available datasets SACHS, ASIA, ALARM, LUCAS, HEPAR?2, and DREAMA4.

5 Discussion

In this paper, we have argued that the question of
causal understanding is equivalent to the understand-
ing of how LLM functions, that is, whether LLM
follows any causation while generating the output.
Our experimental results rigorously validate the effec-
tiveness of both the prompt-based method and the
data-driven causal_llm model, while also delineat-
ing their respective strengths and limitations. Below,
we synthesize these findings through systematic anal-
ysis:

Prompt-Based Method: Leveraging Node
Metadata for Superior Accuracy The prompt-
based approach, which utilizes node metadata,
demonstrates measurable advantages (refer Ap-
pendix Figure 12):

e Edge Accuracy: On datasets like ASIA and
LUCAS, the prompt-based method achieves an
average of ~ 40% higher edge accuracy compared
to data-driven methods, highlighting its ability to
leverage metadata for precise causal discovery.

e Fairness-Critical Domains: In fairness-
critical domains such as legal systems, the prompt-
based method improves precision in identifying
true causal edges by ~ 25%, effectively address-
ing systemic biases often overlooked by pairwise
methods.

e Limitation in Metadata-Absent Scenarios:
On datasets like DREAM41, where metadata is
unavailable, the prompt-based method cannot be
used, emphasizing its reliance on node metadata
for optimal results.

Data-Driven Approach: Competitive Perfor-
mance and Efficiency The causal_llm model,

which integrates LLMs for causal discovery purely
from data, demonstrates competitve performance
and scalability (refer Appendix Figure 12):

¢ Runtime Efficiency: On the Sachs dataset,
causal_llm achieves inference in =~ 50% less run-
time on average compared to RL-based and contin-
uous optimization-based methods, showcasing its
computational efficiency.

e Scalability: In synthetic scenarios with larger
graphs (e.g., 70-node and 100-node datasets),
causal_llm scales seamlessly, offering ~ 20%
faster inference while maintaining competitive ac-
curacy.

e Limitation in Metadata-Rich Scenarios:

While competitive, causal_llm’s performance lags
behind the prompt-based method in datasets
where metadata plays a crucial role in guiding
causal discovery.
Comparative Analysis: Strengths and Trade-
offs:The prompt-based method excels in metadata-
rich settings, delivering high accuracy and address-
ing fairness in sensitive domains (see Figure 11).
In contrast, the data-driven causal_llm model of-
fers a scalable, efficient alternative with competi-
tive performance and faster runtime. Together, they
showcase the potential of LLMs in causal discovery,
providing robust solutions for both metadata-driven
and data-only scenarios while balancing accuracy,
efficiency, and fairness.

These complementary strengths establish the
prompt-based and data-driven approaches as ef-
fective, versatile tools for modern causal discovery
(refer Appendix Figures 10 to 12), with demon-
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Figure 5: A comparative plot of the relative performance (RP metric) of LLMs (prompt-based approach and
causal_llm) on the metadata-rich datasets (SACHS, ASIA, ALARM, LUCAS, HEPAR2, and BIAS and LEGAL

datasets), in increasing order of number of nodes.

strated success across domains ranging from small
biological networks to large-scale gene regulatory
systems.

6 Key Takeaways

In this section, we compare the prompt-based ap-
proach and the data-driven approach to determine
their respective advantages (refer Figure 5).

o In datasets such as Asia, Lucas, and Sachs,
where the number of nodes is small and node meta-
data is available, the prompt-based method outper-
forms all other causal algorithms by achieving bet-
ter true positives per nonzero (TP/NNZ) and main-
taining a low false discovery rate (FDR). In the
ALARM dataset, as the number of nodes increases,
the prompt-based approach remains competitive
with other causal algorithms in terms of true posi-
tive rate (TPR) while still maintaining a low FDR,
making it a consistent method. As the number of
nodes increases further, such as in the HEPAR2
dataset, the performance of the prompt-based ap-
proach declines but it still remains competitive with
other causal models.

e In datasets like DREAM and synthetic
datasets, where node metadata is unavailable,
the prompt-based approach cannot be applied.
Despite this limitation, our data-driven method,
causal_llm, remains competitive across all datasets.
It excels particularly in large-scale datasets and
those without metadata, offering a robust alterna-
tive to state-of-the-art causal algorithms. Notably,
in the neutral to explicit dataset, causal_llm
(DeepSeek) (refer Appendix D.1) outperforms all
others, including prompt-based methods, in detect-
ing true edges, as shown by its high TP/NNZ ratio
and low false positive rate (RP), highlighting its

effectiveness across diverse scenarios.

e Therefore, when node metadata is available,
the prompt-based approach is preferred due to
its exceptional performance, while in cases where
metadata is unavailable, the data-driven model
causal_llm emerges as a consistent and reliable
choice.

7 Conclusion

Overall, the prompt-based method excels in
metadata-rich settings, ensuring high accuracy and
fairness in critical domains. The data-driven
causal_llm model emerges as a scalable and ef-
ficient alternative, delivering competitive perfor-
mance with reduced runtime. This highlights
LLMs’ capability for full graph discovery, position-
ing them as strong contenders in causal discovery
for both metadata-rich and data-only scenarios.

Limitations

Despite its strong performance, our framework has
some limitations. The prompt-based approach de-
pends heavily on prompt quality and metadata com-
pleteness, which can affect accuracy. Token lim-
its and attention constraints challenge scalability
on large graphs. In the data-driven model, freez-
ing the LLM backbone improves efficiency but
reduces adaptability to domain-specific contexts.
Real-world evaluation is limited by the absence
of ground truth, and post-processing steps involve
heuristics that may introduce variability across
datasets.
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A Prompt Used for Single-Step Full Graph Discovery

PROMPT TEMPLATE

You are an intelligent causal discovery agent tasked with mapping the causal relationships between
features in the [*Dataset Name] dataset. This dataset models [brief description of the domain,
e.g., medical conditions, social biases, biochemical signaling*]. Your goal is to identify how these
features influence one another and construct a Directed Acyclic Graph (DAG) that represents these
causal relationships.

#### *Important Rules:*

1. *Multiple Incoming Edges:* Each feature may have multiple incoming edges to reflect its
dependency on upstream causes.

2. *Root Causes:* Some features act as root causes (independent variables) that initiate the causal
chain.

3. *Intermediate Variables:* Other features act as intermediaries, propagating the effects of root
causes and influencing downstream outcomes.

4. *OQutcome Variables:* Observable outcomes should only receive causal inputs from relevant
upstream features.

5. *Acyclic Structure:* Ensure the DAG is acyclic and aligns with domain knowledge.

#i### *Features (Nodes):*

- *[Feature 1]:* [Brief description of the feature].

- *[Feature 2]:* [Brief description of the feature]. - ...

#### *Step 1: Finding the Edges*

Identify the causal relationships between the features. Focus on how upstream features influence
downstream ones. For example:

1. *Edge (Feature A — Feature B):* [Explanation of why Feature A causes Feature B].

2. *Edge (Feature C — Feature D):* [Explanation of why Feature C causes Feature D].

3. ..

#### *Step 2: Reflect Back on Each Edge*

Review each edge to ensure it aligns with domain knowledge. Refine the causal relationships if
necessary.

#### *Output Format:*

Provide a final list of edges in the following format:

1. (A, B) : Explanation of why A causes B.
2. (C, D) : Explanation of why C causes D. ...

B Algorithms

B.1 DAG Model: causal_llm

Model Architecture The architecture comprises three primary components: an input projection layer,
the Large Language Model, and an output projection layer. The input projection layer takes input
data of dimension djnpy and projects it into a higher-dimensional feature space compatible with the
LLM’s hidden size. The projected input, Xprojected» 1S then passed through the LLM, which generates
contextualized hidden representations that encapsulate the dependencies in the input. The output of the
LLM is a hidden state matrix, H. These hidden states are processed by the output projection layer, which
maps the high-dimensional representations to an d x d causal adjacency matrix, where d is the number of
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nodes in the causal graph. A sigmoid activation function is applied to ensure the adjacency matrix values
are in the range [0, 1], representing edge probabilities. By freezing the pre-trained LLM parameters and
training only the input and output layers, the model efficiently adapts to the causal discovery, leveraging
LLM’s strong feature extraction capabilities without increased computational burden to extract accurate
causal relationships from the dataset.

Algorithm 2 causal_Ilm Training and Inference

Require: din, dout
Ensure: Trained model and inferred adjacency matrix
1: M « causal_m(din, dout)
2: O + Adam(M.parameters(), Ir = 2e — 5)
3: L + BCE Loss
4: function LEARN(D, &, B, €)
5 G <+ SyntheticEnvironment(D)
6 fore =1to & do
7. £epoch < H
8: for b = 1to Bdo
9 s < G.get_next_state()

10: s <+ tensor(s)

11: a <+ o(M(s))

12: if random € then

13: a < random tensor
14: end if

15: A + Reshape(a)

16: A < RemoveCycles(A)
17: Loatch < L(A,0) + 0.01]|M]|
18: Backpropagate: O.step()
19: Store Lepoch

20: end for

21: Lavg < mean(Lepoch)

22: end for

23: if P exists then

24 Save M to P

25: end if

26: end function

27: function CAUSALMATRIX(D)

28: D <« tensor(D)

29: s < mean(D, 0)

30: Set M to eval mode

31: A — a(M(s))

32: A+—~A-(1-1)

33: A + PruneWeakEdges(A)
34: Ajfinal < RemoveCycles(A)
35: return A g

36: end function

B.2 Helper Functions

B.2.1 RemoveCycles

This functions transforms a directed graph containing loops into a Directed Acyclic Graphs(DAGS).
Starting with a weighted adjacency matrix (where entries represent connection strengths between nodes),
it first constructs the graph. It then iteratively looks for cycles, removes them by eliminating the weakest
link in each loop.To minimize structural damage, the function prioritizes removing edges with the smallest
weights, ensuring stronger, more critical connections are preserved. When multiple edges in a cycle share
the same minimal weight, it breaks ties randomly to avoid unintended bias. This process repeats until all
cycles are eliminated, producing a directed acyclic graph (DAG) that retains the original graph with most
of the relevant edges.
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Algorithm 3 RemoveCycles

Require: Adjacency matrix A € R¢*¢
Ensure: Acyclic adjacency matrix A acyclic
1: Step 1: Initialize Graph

2: Create directed graph G = (V, £) from A:
3: foralli,j € [1,d] do
4: if i # j and A[i, j] > O then
5 Add edge (i, j) with weight A[i, j] to G
6: end if
7: end for
8: Step 2: Remove Cycles
9: while G contains cycles do
10: Detect cycles: C < FindCycle(G)
11: Initialize minimum weight: Wpyix, < 00
12: Initialize candidate edges: Emin < ||
13: for all (u, v, direction) € C do
14: w < G[u][v][ ' weight']
15: if w < Wmin then
16: Emin < [(u,v)]
17: Wmin < W
18: else if w == wn, then
19: Add (u,v) to Emin
20: end if
21: end for
22: Randomly select edge: (Umin, Umin) ~ Emin
23: Remove edge: G.remove_edge(tmin, Umin)

24: Update A [tmin, Umin] < 0
25: end while
26: return A cyciic

B.2.2 PruneWeakEdges

This function is designed to refine a given graph by pruning weak connections based on regression
coefficients derived from the dataset. It begins by initializing variables, including the graph structure,
node count, and a weight matrix to store regression coefficients. For each node in the graph, the algorithm
identifies its connected nodes, extracts the corresponding features and target values from the dataset,
and performs linear regression to compute the coefficients. These coefficients, representing the strength
of connections, are stored in a weight matrix.The algorithm calculates a threshold based on the sorted
absolute values of the coefficients, ensuring that at least one strong connection per node is preserved.
Finally, edges in the graph are pruned by retaining only those connections with coefficient magnitudes
greater than or equal to the threshold.
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Algorithm 4 PruneWeakEdges

Require: Graph batch G, Dataset X € R"*¢
Ensure: Pruned graph Gpunea € {0,1}4%¢
1: Step 1: Initialize Variables
2: Number of nodes: d < len(G)
3: Initialize weight matrix: W < [] > To store regression coefficients
4: Step 2: Compute Regression Coefficients
5: fori =1toddo
6: Select column: col < |G, :]| > 0.5
7.
8
9

if > (col) == 0 then
Append zeros: W .append(04)

: Continue
10: end if
11: Extract features: Xiin < X[:, col]

12: Extract target: y < X[:, 4
13: Fit linear regression: reg.fit(Xain, y)

14: Obtain coefficients: ¢ +— reg.coef_

15: Initialize zero vector: Cpew — Og

16: Assign coefficients: cnew[col] < ¢

17: Append to weight matrix: W .append(cnew)
18: end for

19: Step 3: Calculate Threshold

20: Sort: Wgrea — sort(|W/|.flatten())

21: Determine threshold index: digx «— min(d — 1, len(Wiored) — 1)
22: Calculate threshold: th <— W ored[diax]

23: Step 4: Prune Graph

24: Prune edges: Gprned < (|[W/| > th)

25: return Gpmned

C Datasets

C.1 Publicly available datasets

Publicly available causal datasets are commonly used to benchmark algorithms in causal discovery,
machine learning, and statistical modeling. These datasets often stem from interventional experiments
across real-world domains such as biology, medicine, environment, and education. We evaluate our
method using datasets from the bnlearn repository (Scutari, 2009) and the Causal Discovery Toolbox
(CDT) (Kalainathan et al., 2020).

SACHS (Zhang et al., 2021): This dataset captures causal relationships between genes based on known
biological pathways. It has 11 nodes with well known ground truth.

DREAM (Kalainathan and Goudet, 1903): DREAM (Dialogue on Reverse Engineering Assessments
and Methods) challenges provide simulated and real biological datasets to test methods for inferring gene
regulatory networks.We have used the dataset DREAM4-1, consisting of 100 nodes.

ALARM (Beinlich et al., 1989): This dataset simulates a medical monitoring system for patient status in
intensive care, including variables such as heart rate, blood pressure, and oxygen levels.It consists of 37
nodes and is widely used in benchmarking algorithms in the medical domain.

ASIA (Lauritzen and Spiegelhalter, 1988): Asia dataset models a causal network of variables related to
lung diseases and the likelihood of visiting Asia. This is a small dataset consisting of only 8 nodes.

LUCAS (Lucas et al., 2004): LUCAS (LUng CAncer Simple) is a synthetic dataset designed for causal
discovery benchmarking in medical contexts. It simulates causal relationships related to lung cancer,
incorporating variables such as smoking habits, exposure to pollution, genetic predisposition, and disease
outcomes. The dataset consists of 11 nodes and is often used to evaluate causal structure learning
algorithms in the medical domain.

HEPAR?2 (Onisko, 2003): HEPAR?2 dataset is a probabilistic Bayesian network model representing causal
relationships in the diagnosis of liver disorders. It consists of 70 nodes and 123 edges, making it a
comprehensive benchmark for testing causal discovery algorithms in the healthcare domain.
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C.2 Synthetic datasets

We generate synthetic datasets using methods from ICA-LiNGAM (Shimizu et al., 2006) and RL-based
causal discovery (Zhu et al., 2020). These datasets, derived from both domain knowledge-based and
purely synthetic DAGs, enable us to explore diverse causal structures and benchmark our model against
state-of-the-art causal algorithms.

We generate four types of Datasets:
e Linear model with Gaussian and non-Gaussian noise
e Non-linear quadratic model with Gaussian and non-Gaussian noise
¢ Non-linear Gaussian process with Gaussian noise
¢ Bias and Legal datasets from Domain knowledge (refer Appendix C.2.4)

We employ the same initialization method used in the ICA-LiINGAM (Shimizu et al., 2006) and
RL-based causal discovery (Zhu et al., 2020) papers to generate synthetic datasets. For the Bias and Legal
datasets, we create synthetic data using a linear model with the same initialization approach.

C.2.1 Linear Model with Gaussian and Non-Gaussian Noise

To generate synthetic data, we start by creating a d x d upper triangular adjacency matrix representing the
graph structure, where the upper triangular entries are independently sampled from a Bernoulli distribution
- Bern(0.5). Next, we assign edge weights from the uniform distribution Unif([—2, —0.5] U [0.5, 2]),
forming a weight matrix, W € RZx¢,

Using this setup, we generate data samples according to

z=WTzs +n,

where n € RY represents noise. Both Gaussian and non-Gaussian noise models are used. For the
non-Gaussian case, we adopt the approach from ICA-LiNGAM (Shimizu et al., 2006) , where Gaussian
noise samples are transformed via a power non-linearity to induce non-Gaussianity. In both cases, unit
noise variances are used.

We generate n = 5000 samples and randomly permute the variables to create the final datasets. This
procedure aligns with approaches used in prior works such as NOTEARS and DAG-GNN, where the true
causal graphs are known to be identifiable (Shimizu et al., 2006; Peters and Bithlmann, 2014). We repeat
this process for d = 10, 40, 70, 100 nodes and use it benchmark against state-of-the-art causal algorithms.

C.2.2 Non-linear Quadratic Model with Gaussian and Non-Gaussian Noise

In this method, we investigate nonlinear causal relationships using quadratic functions. The graph structure
is generated by creating an upper triangular adjacency matrix, following a similar procedure as the first
method. For each node i, the parent variables xp,;) = [Ti1, Ti2, - - .7 are expanded to include both
first-order and second-order features. The coefficients for these features are either set to zero or sampled
from the uniform distribution

Unif([—1, —0.5] U [0.5, 1])

with equal probability. If a parent variable does not contribute to any feature term with a non-zero
coefficient, the corresponding edge is removed from the causal graph.

Data is generated for graphs with d = 10, 40, 70, and 100 nodes, with 5,000 samples for each case. We
consider both Gaussian and non-Gaussian noise models. For the non-Gaussian case, noise is generated by
transforming Gaussian samples using a power nonlinearity to induce non-Gaussianity. However, large
variable values can sometimes occur in the quadratic model, which can cause computational problems in
quadratic regression. Such extreme samples are treated as outliers.

This approach allows us to study the identifiability of nonlinear causal graphs across varying graph
sizes and noise models while addressing computational challenges.

C.2.3 Non-Linear Model with Gaussian Processes

This method involves studying nonlinear causal relationships in randomly generated causal graphs. Each
causal relationship f; is modeled as a nonlinear function sampled from a Gaussian process with a Radial

15



Basis Function (RBF) kernel, where the bandwidth is set to one. The use of the RBF kernel ensures
smoothness and flexibility in the functional form of f;, allowing it to model complex dependencies
between variables.

The additive noise n; in the system is drawn from a normal distribution A/(0, o%), where the noise
variance o2 is sampled uniformly across a predefined range. This variability in noise strength across
different relationships influences the complexity of causal inference. The setup adheres to conditions
under which the true causal graph is identifiable, as established by (Peters et al., 2014).

For this experiment, we adopt a framework inspired by GraN-DAG (Lachapelle et al., 2019). Specif-
ically, we generate causal graphs with 10 nodes and 40 directed edges, ensuring a dense and complex
network of dependencies. The data consists of 1,000 samples, allowing for robust statistical inference and
testing of causal discovery methods.

This setup is particularly valuable for benchmarking algorithms designed for nonlinear causal discovery,
as it captures realistic complexities while maintaining identifiability.

C.2.4 Bias and Legal DAGs

To construct the Bias dataset, we undertook an in-depth literature review on implicit bias, analyzing
the factors contributing to unconscious biases and their subtle manifestations in language. This process
guided the development of three Directed Acyclic Graphs (DAGs) that depict how bias propagates and
evolves in linguistic contexts. These diagrams were validated by domain experts.For the Legal dataset,
we collaborated with a legal expert to create a DAG that models the legal decision-making processes
under the Bhartiya Nyaya Sanhita (BNS) scheme.This DAG models the structured reasoning and causal
pathways used to determine outcomes such as murder, culpable homicide, or non-culpable homicide under
the BNS framework. The nodes in this graph represent critical legal factors and decision points in the
judicial process.After obtaining the DAG, we generate the weighted adjacency matrix by sampling the
weights randomly from the uniform distribution Unif([—2, —0.5) U (0.5, 2]). The data is then generated
in the same way as described in the first method.

Neutral to Implicitly Biased Sentences (N2I)
This DAG captures the transition from neutral language to implicitly biased sentences. The transformation
is influenced by the following factors:

e Social Identity: The speaker’s or listener’s sense of belonging to a particular group.
e Stereotype: Preconceived notions or generalized beliefs about a group.
e Stereotype Activation: The subconscious triggering of stereotypes in response to specific cues.
e Cognitive Dissonance: The discomfort from holding conflicting beliefs, which can subtly shape
language.
e Ambiguous Language: Words or phrases with multiple interpretations, leaving room for implicit bias.
e Unprotected Features: Attributes not safeguarded against discrimination, potentially amplifying bias.
e Social Desirability: The tendency to conform to socially acceptable norms, sometimes leading to veiled
biases.
o Protected Features: Characteristics shielded under anti-discrimination policies that may still influence
bias indirectly.

Neutral to Explicitly Biased Sentences (N2E))
This DAG models how neutral language transforms into overtly biased statements, driven by:

e Social Identity: The speaker’s or listener’s sense of belonging to a particular group.
e Stereotype: The direct incorporation of generalized beliefs into speech.
e Conscious Stereotyping: Deliberate application of stereotypes in communication.
e Protected Features: Characteristics (e.g., race, gender) that become focal points in biased discourse.
e Motivated Reasoning: The use of reasoning aligned with one’s goals or biases to justify explicit
statements.
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Figure 6: A DAG representing the causal pathway for a neutral sentence being transformed into an implicitly biased
sentence

Explicit Bins)

Figure 7: A DAG representing the causal pathway for a neutral sentence being transformed into an explicitly biased
sentence

Implicit to Explicitly Biased Sentences (I12E))

This DAG explains the progression from implicit to explicit bias in language.

Key factors include Social Identity, which reflects the influence of group affiliation on decision-making
and language; Stereotype, representing generalized beliefs about groups that shape perceptions and
behavior; Conscious Stereotyping, which involves the deliberate application of stereotypes; Protected
Features, referring to characteristics safeguarded under anti-discrimination policies that can still influence
biases; and Motivated Reasoning, where reasoning is aligned with personal goals or biases to justify
certain conclusions or actions.
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Figure 8: A DAG representing the causal pathway for a implicitly biased sentence being transformed into an
explicitly biased sentence

Legal decision process under BNS scheme

The key nodes in the legal reasoning DAG under the Bhartiya Nyaya Sanhita (BNS) framework include
the following: Death Established(D), which determines if a death has occurred, and Intention to Cause
Death(ID), which assesses whether there was a clear intent to cause death, along with its counterpart, No
Intention to Cause Death(!ID), for cases lacking such intent. Other critical nodes include Falls Under
Exceptions of BNS(BNS) and Does Not Fall Under Exceptions of BNS(!BNS), which evaluate whether
the act qualifies for legal exceptions. Additional nodes like Intention to Cause Bodily Injury Likely to
Cause Death(IB) and No Intention to Cause Bodily Injury Likely to Cause Death(!IB) explore intent
regarding bodily harm. The DAG also considers Knowledge That Injury Is Likely to Cause Death(KTI)
versus No Knowledge That Injury Is Likely to Cause Death(!KTI), assessing the accused’s awareness
of fatal consequences. Severity is analyzed through nodes like Injury Sufficient to Cause Death(SD)
and Injury Not Sufficient to Cause Death(!SD), as well as High Probability That Death Would Be
Caused(HP) and Not Very Likely to Cause Death(!HP), which evaluate the likelihood of fatality. Finally,
the outcomes are classified into Murder(M), Culpable Homicide(C), and Non-Culpable Homicide(NC),
based on the interplay of intent, knowledge, and other factors.

@
® ®
®
®
| @ | ®

Figure 9: A DAG representing the causal pathway for legal decision process under BNS scheme
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D Results and Analysis

In this section, we present the plots of the results for our framework: prompt-based and causal_llm,
applied to synthetic (refer Figure 10) and bias & legal (refer Figure 11) datasets. The synthetic datasets
cover varying complexities, including 10, 40, 70, and 100 nodes, with each set being evaluated under
three different types of causal relationships: linear, quadratic, and Gaussian process (GP). These datasets
serve as a benchmark for assessing the causal_Illm model’s ability to uncover causal structures across
different levels of graph complexity and non-linearity. The following plots showcase the key performance
metrics used to compare our framework with existing state-of-the-art causal discovery methods, offering a
comprehensive analysis of the model’s strengths and limitations (refer Figure 10).

—e— ICALINGAM
—o- GranDAG
—o Gts

Figure 10: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALiNGAM, GraNDAG, GES and
causal_llm (with models GPT, Gemini, Llama and DeepSeek), plotted for the synthetic datasets (10, 40, 70 and 100
nodes for linear, quadratic and Gaussian models.
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Figure 11: FDR, TPR, FPR, SHD, TP/NNZ and RP metrics for RL, PC, ICALINGAM, GraNDAG, GES, GPT-4o,
Gemini, Llama, DeepSeek-R1 and causal_llm (with models GPT, Gemini, Llama and DeepSeek), plotted for the
synthetic datasets obtained from the domain knowledge causal graphs - BIAS (N2I, N2E and 12E) and LEGAL.
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Figure 12: Performance metrics for all causal algorithms, including our causal_llm model and large language
models (LLMs) like GPT, Gemini, Llama, and DeepSeek, are evaluated and plotted, comparing their performance

on both publicly available and synthetic datasets.

20



D.1 GPT-40 vs DeepSeek: A Comparison

Among the prompt-based approaches, GPT-40 and DeepSeek consistently emerge as top-performing
models (refer Figure 5).

In the Sachs dataset, GPT-40 exhibits superior performance with a high TPR, low FDR, and the best
TP/NNZ, making it the most effective model for detecting true edges, while DeepSeek remains competi-
tive.In the Lucas dataset, DeepSeek slightly outperforms GPT-40 by achieving a better TPR, lower FDR,
and higher TP/NNZ. In the Asia dataset, both DeepSeek and GPT-40 achieve perfect metrics, producing
the exact ground truth DAG.

As node complexity increases in datasets such as ALARM and HEPAR?2, GPT-4o0 experiences a slight
decline in performance, whereas DeepSeek remains consistent, achieving a higher TPR and lower FDR,
particularly for higher-order nodes.

In conclusion, both GPT-40 and DeepSeek excel in prompt-based causal discovery. GPT-40 performs best
on lower-order datasets like Sachs, while DeepSeek outperforms in Lucas and maintains consistency in
higher-order datasets such as ALARM and HEPAR2, where GPT-40 declines slightly. DeepSeek proves
to be more robust to increasing node order, making it a reliable choice for complex causal structures.

E New Metrics
Why these Metrics?

These metrics specifically assess the proportion of predicted edges that are actually true edges, unlike traditional precision,
which accounts for both edge and non-edge predictions. In real-world datasets, ground truth causal graphs are typically
sparse, meaning true edges are rare. As a result, traditional precision can be skewed by correctly identified non-edges,
obscuring the model’s performance in detecting actual causal relationships. By focusing solely on edge predictions, these
metrics offer a more precise evaluation of the model’s ability to uncover genuine causal links.

F Parameter Settings

We used various causal discovery methods based on constraints, functional causal model (FCM) based,
score based, reinforcement learning based, and gradient based techniques, each configured with appropriate
hyperparameters.We have used parameter initialization from gcastle causal discovery package (Zhang
et al., 2021).

Parameter Settings for Baseline Causal Algorithms

Constraint-based approaches:
PC = PC(variant="original’, alpha=0.05, ci_test="fisherz’, priori_knowledge=None)

FCM-based methods:
ICA-LiNGAM = ICALINGAM(random_state=None, max_iter=1000, thresh=0.3)

Score-based techniques:
GES = GES(criterion="bic’, method="scatter’, k=0.001, N=10)

RL-BIC= RL(encoder_type: str = TransformerEncoder’, hidden_dim: int = 64, num_heads: int = 16, num_stacks:
int = 6, residual: bool = False, decoder_type: str = ’SingleLayerDecoder’, decoder_activation: str = ’tanh’,
decoder_hidden_dim: int = 16, use_bias: bool = False, use_bias_constant: bool = False, bias_initial_value: bool
= False, batch_size: int = 64, input_dimension: int = 64, normalize: bool = False, transpose: bool = False,
score_type: str = 'BIC’, reg_type: str = 'LR’, lambda_iter_num: int = 1000, lambda_flag default: bool = True,
score_bd_tight: bool = False, lambda2_update: int = 10, score_lower: float = 0, score_upper: float = 0, seed: int = §,
nb_epoch: int = 10, Ir1_start: float = 0.001, Ir1_decay_step: int = 5000, Ir1_decay_rate: float = 0.96, alpha: float =
0.99, init_baseline: float =-1, 11_graph_reg: float =0, verbose: bool = False, device_type: str="gpu’, device_ids: int = 0)

Gradient-based methods:

GraNDAG = GraNDAG(input_dim, hidden_num: int = 2, hidden_dim: int = 10, batch_size: int = 64, Ir: float =
0.001, iterations: int = 10000, model_name: str = ’NonLinGaussANM’, nonlinear: str = ’leaky-relu’, optimizer: str =
rmsprop’, h_threshold: float = le-7, device_type: str = ’cpu’, device_ids: int = 0, use_pns: bool = False, pns_thresh:
float = 0.75, num_neighbors: Any | None = None, normalize: bool = False, random_seed: int = 42, jac_thresh:
bool = True, lambda_init: float = 0, mu_init: float = 0.001, omega_lambda: float = 0.0001, omega_mu: float = 0.9,
stop_crit_win: int = 100, edge_clamp_range: float = 0.0001, norm_prod: str = *paths’, square_prod: bool = False)
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