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ABSTRACT

Adversarial training has proven to be effective in enhancing the robustness of neu-
ral networks. However, previous methods typically focus on a single adversarial
training strategy and do not consider the characteristics of models trained by dif-
ferent strategies. Upon revisiting these methods, we have observed that different
adversarial training methods exhibit distinct levels of robustness for sample in-
stances. For instance, a model trained by AT may correctly classify a sample in-
stance that is misclassified by a model trained by TRADES, and vice versa. Moti-
vated by this observation, we propose a Collaborative Adversarial Training (CAT)
framework to enhance the robustness of neural networks. CAT utilizes different
adversarial training methods to train robust models and facilitate the interaction of
these models to leverage their combined knowledge during the training process.
Extensive experiments conducted on various networks and datasets validate the
effectiveness of our method.

1 INTRODUCTION

With the advancements in deep learning, Deep Neural Networks (DNNs) have been widely applied
to various visual tasks, such as image classification (He et al., 2016), object detection (Redmon
et al., 2016), and semantic segmentation (Pal & Pal, 1993). These networks have achieved state-of-
the-art performance. However, recent research has revealed that DNNs are vulnerable to adversarial
perturbations (Goodfellow et al., 2014). A carefully crafted adversarial perturbation by a malicious
agent can easily deceive the neural network, which raises security concerns, particularly in security-
critical areas like autonomous driving (Chen et al., 2019). To address the vulnerability of DNNs,
various methods have been proposed, including adversarial training (Madry et al., 2017), defensive
distillation (Papernot et al., 2016), feature denoising (Xie et al., 2019), and neural network prun-
ing (Madaan et al., 2020). Among them, Adversarial Training (AT) is considered the most effective
method for improving adversarial robustness. AT can be viewed as a data augmentation strategy
that trains neural networks using adversarial examples crafted from natural examples. Typically, AT
is formulated as a min-maximization problem, where the inner maximization generates adversarial
examples, and the outer minimization optimizes the model’s parameters based on the adversarial
examples generated during the inner maximization process. However, previous approaches have
primarily focused on enhancing a model’s adversarial accuracy, without considering the distinctive
characteristics of different methods. This prompts us to question whether models trained by different
adversarial training methods perform similarly on individual instances.

In the analysis of various adversarial training methods, we discovered classification inconsistencies
among models trained by different techniques, as illustrated in Fig. 1. For instance, when con-
sidering AT (Madry et al., 2017) and TRADES (Zhang et al., 2019), the network trained with AT
may correctly classify a given adversarial example, while the network trained with TRADES mis-
classifies it, and vice versa. Consequently, we can deduce that although AT and TRADES exhibit
similar numerical adversarial accuracy, they behave differently on individual instances, implying
that models trained by different methods acquire diverse knowledge. This leads us to question:

Do two networks learn better if they collaborate?

Motivated by this observation, we propose the Collaborative Adversarial Training (CAT) framework
to enhance the robustness of neural networks. As illustrated in Fig. 2, our framework simultaneously
trains two separate deep neural networks using different adversarial training methods. Specifically,
adversarial examples generated by one network are utilized as input for the other network, enabling
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(a) AT and ALP (b) AT and TRADES (c) ALP and TRADES

Figure 1: Confusion matrices of models trained by different methods with ResNet-18 on the
CIFAR-10 test dataset (better seen with color). We set the diagonal value as 0 for better illustration.
Confusion exists in models trained by any two methods, especially for blocks from class 3 to class
7. The value of the prediction discrepancy is 18.98%, 22.54%, and 21.05% respectively.

the exchange of knowledge to guide their respective learning processes. By facilitating collabo-
rative learning, we improve the overall robustness of the neural networks. Extensive experiments
conducted on various datasets (CIFAR, Tiny-ImageNet) and neural networks (VGG, MobileNet,
ResNet) demonstrate the effectiveness of our approach. Under the Auto-Attack benchmark, CAT
achieves state-of-the-art robustness on CIFAR-10 without the need for additional synthetic or real
data. Furthermore, we provide a comprehensive property analysis of CAT to deepen our understand-
ing of its mechanisms. In summary, our contributions are threefold:

• We observe that models trained by different adversarial training methods exhibit distinct
characteristics for individual sample instances.

• We introduce Collaborative Adversarial Training (CAT), a novel framework that trains neu-
ral networks simultaneously using different adversarial training methods.

• Extensive experiments on diverse datasets and networks demonstrate the effectiveness of
CAT. CAT achieves new state-of-the-art performance without the need for additional data.

2 RELATED WORK

2.1 ADVERSARIAL ATTACK

White-box Attack: Goodfellow (Goodfellow et al., 2014) proposes FGSM to efficiently craft ad-
versarial examples, which can be generated in just one step. Madry proposes PGD to generate
adversarial examples, which is the most efficient way of using the first-order information of the
network. MI-FGSM (Dong et al., 2018) combines momentum into the iterative process to help the
model escape from local optimal points. And the adversarial examples generated by this method are
also more transferable. Boundary-based attacks such as deepfool (Moosavi-Dezfooli et al., 2016)
and CW (Carlini & Wagner, 2017) also make the model more challenging. Recently, the ensem-
ble approach of diverse attack methods (Auto-Attack), consisting of APGD-CE (Croce & Hein,
2020b), APGD-DLR (Croce & Hein, 2020b), FAB (Croce & Hein, 2020a) and Square Attack (An-
driushchenko et al., 2020), become a benchmark for testing model robustness.

Black-box Attack: Block-box attacks can be categorized into transfer-based and query-based at-
tacks. Transfer-based methods attack the target model by using the transferability of adversarial
examples, i.e., the adversarial examples generated on the surrogate model can be transferred to
fool the target model. There are many ways to explore the transferability of adversarial examples
for black-box attacks. Dong (Dong et al., 2018) combines momentum with an iterative approach
to obtain better transferability. Scale-invariance (Lin et al., 2019) boosts the transferability of ad-
versarial examples by transforming the inputs on multiple scales. Square Attack (Andriushchenko
et al., 2020) approximates model’s decision boundary based on a randomized search scheme to be
the most efficient query-based attack method.
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2.2 ADVERSARIAL ROBUSTNESS

Adversarial attacks present a significant threat to DNNs. For this reason, many methods have been
proposed to defend against adversarial examples, including denoising (Xie et al., 2019), adversarial
training (Madry et al., 2017), data aumentation (Rebuffi et al., 2021), and input purification (Naseer
et al., 2020). ANP (Madaan et al., 2020) finds the vulnerability of latent features and uses pruning
to improve robustness. Madry uses PGD to generate adversarial examples for adversarial training,
which is also the most effective way to defend against adversarial examples. A large body of work
uses new regularization or objective functions to improve the effectiveness of standard adversarial
training. Adversarial logit pairing (Kannan et al., 2018) improves robustness by encouraging the
logits of normal and adversarial examples to be closer together. TRADES (Zhang et al., 2019) uses
KL divergence to regularize the output of adversarial and pure examples.

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is commonly used for model compression and was first used by Hin-
ton (Hinton et al., 2015) to distill knowledge from a well-trained teacher network to a student net-
work. KD can significantly improve the accuracy of student models. There have been many later
works to improve the effectiveness of KD (Romero et al., 2014). In recent years, KD has been
extended to other areas. Goldblum (Goldblum et al., 2020) analyzes the application of knowledge
distillation to adversarial robustness and proposes ARD to transfer knowledge from a large teacher
model with better robustness to a small student model. ARD can produce a student network with
better robustness than training from scratch. In this paper, we propose a more effective collaborative
training framework to improve the robustness of the network.

3 PROPOSED METHOD

In this section, we use the methods of Adversarial Training (AT) and TRADES as examples to
introduce Collaborative Adversarial Training (CAT). We provide a brief overview of the training
objective functions of AT and TRADES, followed by a detailed introduction of CAT.

3.1 PRELIMINARY

Adversarial training can be formulated as a min-maximization problem. It utilizes Projected Gra-
dient Descent (PGD) to generate adversarial examples for the internal maximization process, while
the external minimization optimizes the model parameters using the PGD-generated adversarial ex-
amples and the ground-truth label y. The objective function of AT is defined as:

min
θ

E(x,y)∈Ddata
(argmax

δ
L(fθ(x

adv
AT ), y)), (1)

xadv
AT = x+ δ, (2)

where Ddata represents the distribution of training data, x and y denote the training data and cor-
responding labels from Ddata. fθ represents a neural network parameterized by θ. L denotes the
standard cross-entropy loss commonly used in image classification tasks. δ represents the adversarial
perturbations generated by PGD.

Neural networks trained by AT can achieve a certain level of robustness, but this often comes at
the cost of decreased accuracy on natural examples. To address this problem, TRADES constraints
the distribution distance of adversarial and natural features, introducing a new training objective
function. It is formulated as follows:

min
θ′

E(x,y)∈Ddata
L(gθ′(x), y) + λDKL(gθ′(x), gθ′(xadv

TRADES)), (3)

where, xadv
TRADES represents the adversarial data corresponding to the natural data x, and DKL rep-

resents the Kullback-Leibler (KL) divergence used to align the natural logits and adversarial logits.
The trade-off between the natural accuracy and distribution distance is balanced by the parameter λ.
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Figure 2: The framework of CAT, performing adversarial training collaboratively. Given a
batch of natural examples, the two networks f and g are attacked separately to generate adversarial
examples u and v. Then u and v are fed into both networks to obtain the corresponding logits.
We then use the logits obtained from the peer networks to guide the learning of its network, i.e.,
gu → fu, fv → gv . The process is called knowledge interaction.

3.2 COLLABORATIVE ADVERSARIAL TRAINING

Motivated by the observation that models trained by different methods acquire distinct knowledge.
Collaborative Adversarial Training (CAT) aims to enhance robustness by facilitating knowledge
sharing and interaction among neural networks trained by different methods through collaborative
learning. The framework is illustrated in Fig. 2. CAT utilizes the knowledge of a peer network,
which is trained by a different method, to guide the learning process of a given network.

Specifically, the adversarial data generated by the network trained by Adversarial Training (AT) are
fed into the peer network trained by TRADES, obtaining the corresponding logit. This logit is then
used to guide the network training by AT, which is formulated as:

L1 = DKL(f(x
adv
f ), ĝ(xadv

f )), (4)

where, f represents the network trained by AT, g represents the network trained by TRADES, and
ĝ(xadv

f ) denotes the logit obtained from the network trained by TRADES. ·̂ denotes that we take the
logit as a constant. xadv

f represents the adversarial data generated by f using PGD.

Similarly, to enable collaborative learning, we feed the adversarial examples generated by the
TRADES network to the AT network to obtain the corresponding logit. This logit is used to guide
the network training by TRADES. The loss can be formulated as:

L2 = DKL(g(x
adv
g ), f̂(xadv

g )). (5)

Experimentally, models trained solely using collaborative loss tend to collapse due to the lack of
supervision for guiding the knowledge-sharing process. To address this problem, we introduce
supervision by combining the respective training objective functions of the two networks with the
collaborative learning objective function. Therefore, the training objective function for collaborative
adversarial training based on AT and TRADES can be formulated as:

Ltotal = αLTRADES + (1− α)L2 + αLAT + (1− α)L1, (6)

where α is a trade-off parameter balancing the guidance of peer network knowledge and the original
objective function. LTRADES represents the training objective of TRADES as defined in Eq. (3),
and LAT represents the training objective of AT as defined in Eq. (1). The first two terms in Eq. (6)
are used to train model g, while the last two terms are used to train model f .

The decision boundaries learned by different adversarial training methods can vary. However, under
the guidance of peer network knowledge, as described in Eq. (4) and Eq. (5), the two networks
trained by different methods continuously optimize the classification decision boundaries through
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Figure 3: Adversarial robustness using different hyperparameters of CAT. From left to right, the
results of Clean acc, FGSM acc, PGD acc, and AA acc are shown. model f and model g represent
the results of using TRADES and AT in the CAT training framework, respectively.

collaborative learning. As a result, both networks learn improved decision boundaries compared to
learning in isolation, leading to enhanced adversarial robustness.

Collaborative Adversarial Training (CAT) is a generalized adversarial training method that can be
applied to any two adversarial methods. Moreover, CAT can incorporate any number of different ad-
versarial training methods for collaborative learning. The results of using CAT with three adversarial
training methods are reported in Sec. 5.3.

Difference from ensemble methods: A similar work with our CAT is ensemble learning. The main
distinction between collaborative adversarial learning and ensemble methods lies in the learning
process. Collaborative learning involves multiple models that learn from each other, while ensemble
methods involve multiple models that are combined to produce a single output. During testing, each
model trained through collaborative learning makes individual predictions, as they have interacted
with each other’s knowledge during the training phase. Ensemble methods involve multiple models
all the time. For more details, please refer to Appendix B.

4 EXPERIMENTS

In this section, we conduct extensive experiments on popular benchmark datasets to demonstrate the
effectiveness of CAT. First, we briefly introduce the experiment setup and implementation details.
Then, ablation studies are done to choose the best hyperparameters and CAT methods. Finally,
according to the best CAT methods, we report the white-box and black-box adversarial robustness
on two popular benchmark datasets.

Training setup: Our overall training parameters refer to Madaan et al. (2020). Specifically, we use
SGD (momentum 0.9, batch size 128) to train ResNet18 for 200 epochs on the CIFAR-10 dataset
with weight decay 5e-4 and initial learning rate 0.1 which is divided by 10 at 100-th and 150-th
epoch, respectively. For the internal maximization process, we use PGD10 adversarial attack to
solve, with a random start, step size 2.0/255, and perturbation size 8.0/255.

Evaluation setup: We report the clean accuracy on natural examples and the adversarial accu-
racy on adversarial examples. For adversarial accuracy, we report both white-box and black-box
robustness, following the widely used protocols in the adversarial research field. For the white-box
attack, we consider three basic attack methods: FGSM (Goodfellow et al., 2014), PGD (Madry et al.,
2017), and CW∞ (Carlini & Wagner, 2017) optimized by PGD20, and a stronger ensemble attack
method named AutoAttack (AA) (Croce & Hein, 2020b). For the black-box attacks, we consider
both transfer-based attacks and query-based attacks.

4.1 ABLATION STUDY

4.1.1 HYPERPARAMETER

CAT improves adversarial robustness through the learning of collaboration, which requires both the
knowledge of peer networks and the guidance of the ground truth label. The balance of these two
items is traded off by a hyperparameter α. We execute collaborative training by TRADES and AT
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Table 1: The white-box robustness of different CAT methods on CIFAR-10. We report the results
of the best checkpoint and last checkpoint. ResNet-18 is the basic network in CAT framework.

Method Best Checkpoint Last Checkpoint
Clean FGSM PGD20 CW∞ AA Clean FGSM PGD20 CW∞ AA

CATAT−TRADES
83.74 59.69 54.44 52.60 50.52 84.45 60.03 53.01 52.01 49.30
83.55 59.78 54.52 52.58 50.86 84.12 59.69 52.82 51.88 49.39

CATAT−ALP
84.66 59.94 53.11 51.90 49.74 84.71 59.84 50.77 50.53 47.80
85.21 60.21 53.02 52.13 49.96 85.27 59.75 51.10 50.69 47.91

CATTRADES−ALP
83.91 59.76 54.44 52.56 51.02 84.67 59.85 52.51 51.43 49.31
84.75 59.76 54.17 52.72 50.85 85.27 59.82 52.56 51.83 49.64

Table 2: The white-box robustness of CAT on CIFAR-10 and CIFAR-100. We report the results
of the best checkpoint and last checkpoint. ResNet-18 is the basic network in CAT framework.

Dataset Method Best Checkpoint Last Checkpoint
Clean FGSM PGD20 CW∞ AA Clean FGSM PGD20 CW∞ AA

CIFAR-10

Natural 94.65 19.26 0.0 0.0 0.0 94.65 19.26 0.0 0.0 0.0
AT 82.82 57.57 51.76 50.05 47.55 84.53 53.90 43.56 44.19 41.57

TRADES 83.17 59.22 52.63 50.79 49.21 83.04 57.46 49.81 49.01 47.03
ALP 83.85 57.20 51.88 50.11 48.48 84.64 55.35 44.96 44.54 42.62

CAT 83.91 59.76 54.44 52.56 51.02 84.67 59.85 52.51 51.43 49.31
84.75 59.76 54.17 52.72 50.85 85.27 59.82 52.56 51.83 49.64

CIFAR-100

Natural 75.55 9.48 0.0 0.0 0.0 75.39 9.57 0.0 0.0 0.0
AT 57.42 31.90 28.78 27.27 24.88 57.34 26.77 21.24 21.50 19.59

TRADES 56.98 31.72 29.04 25.30 24.23 55.08 30.40 26.81 24.78 23.68
ALP 61.01 31.41 26.78 25.68 23.51 58.4 27.97 22.63 21.87 20.42

CAT 61.31 35.83 33.09 29.17 27.17 61.78 35.84 32.76 29.48 27.29
62.53 36.05 32.92 29.16 26.90 62.52 35.79 32.51 29.24 26.73

as the base method and experiment with different values of α. The experiment results are illustrated
in Fig. 3. From the figure, we can conclude that if α is too high, i.e., little knowledge is extracted
from the peer network, the effect is about the same as training with AT and trades alone. If α is
too small, i.e., overly focused on the knowledge obtained from the peer network, The network is
vulnerable and will collapse when α = 0, which is not shown. Since Auto-Attack is currently
the most powerful integrated attack method, we choose hyperparameters α based primarily on the
robustness of the network against AA. In the following experiments, α is set for 0.05 by default.

4.1.2 DIFFERENT CAT METHODS

As described in Sec. 3.2, any two adversarial training methods can be incorporated into the CAT
framework and learned collaboratively. Considering that different adversarial training methods
have distinct properties, the performance of different CAT methods may also vary. For this rea-
son, we consider three collaborative adversarial training methods, i.e., AT-TRADES, AT-ALP, and
TRADES-ALP. Due to the fact that CAT uses two models for collaborative training, we report the
results for both networks. Tab. 1 shows the performance of CAT using different adversarial train-
ing methods. CAT achieves good robustness against four attack methods in all settings. We again
mainly consider the performance of AA and choose TRADES-ALP as the base method for CAT.
Without a further statement, CAT represents CATTRADES−ALP in the following sections. Further,
we analyze the correlation between discrepancy and performance after collaborative learning, which
is delayed to Sec. 5.2. The results of CAT in other settings are delayed to Appendices A.4 and A.5
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Table 3: The black-box robustness of CAT on CIFAR-10 and CIFAR-100. We only report the
results of the best checkpoint. ResNet-18 is the basic network in CAT framework.

Method CIFAR-10 CIFAR-100
FGSM PGD20 PGD40 CW∞ Square FGSM PGD20 PGD40 CW∞ Square

AT 64.54 61.70 61.57 61.42 56.16 39.15 37.56 37.46 38.85 30.11
TRADES 65.63 63.57 63.57 63.23 55.97 39.06 37.73 37.79 38.86 28.72

ALP 64.95 62.38 62.32 61.78 55.78 40.29 38.97 38.85 40.03 29.85

CAT 65.73 63.65 63.78 63.24 57.55 42.26 40.76 40.76 41.78 33.04
66.06 63.91 63.88 63.26 57.95 42.81 41.55 41.42 42.42 33.30

4.2 ADVERSARIAL ROBUSTNESS

4.2.1 WHITE-BOX ROBUSTNESS

For FGSM, PGD, CW∞, AA, the attack perturbations are all 8.0/255 and the step size for PGD,
CW∞ are 2/25, with 20 iterations. We report the results of both the best and the last checkpoint.
The best checkpoint result of the training phase is selected based on the model’s PGD defense for
the test dataset (attack step size 2.0/255, iteration number 10, perturbation size 8.0/255).

Tab. 2 shows the adversarial accuracy of the networks trained by different methods on CIFAR-10
and CIFAR-100 against the four attacks. We also report the accuracy of the model for natural ex-
amples. From the table, we can obtain the following conclusions: (1) CAT obtains good robustness
against all four attacks on both datasets. For example, for the strongest AA attack method, CAT
can obtain 2% improvement. (2) CAT obtains high adversarial robustness while ensuring accuracy
for natural examples. Although there is still a big gap compared to 94.65% of the standard training
strategy, there is a nearly 1% improvement in the accuracy of the natural examples compared to
the other three methods. (3) The robustness of both networks is significantly improved in the CAT
training framework, which is higher than separately trained ones (51.02% vs 49.21% and 50.85% vs
48.48%). (4) The difference in accuracy between the two networks trained in the CAT framework is
smaller than separately trained ones, which demonstrates that the two networks do well in collabora-
tive learning. The robustness difference on CIFAR-10 between the two networks of TRADES-ALP
against AA in the CAT training framework is 0.17%, while the difference is 0.73% under separate
training. The same conclusion can be drawn from the results on CIFAR-100.

To investigate the generalizability of CAT, we conducted experiments with VGG-16 and MobileNet
on CIFAR-10. The results are delayed to Appendices A.1 and A.2. Further, we conduct adversarial
training with ResNet-18 on Tiny-ImageNet to explore the CAT on a large dataset, which is delayed
to Appendix A.3. The robustness improvement holds true for all experiments.

4.2.2 BLACK-BOX ROBUSTNESS

For black-box attacks, we consider both transfer-based and query-based attacks. For the transfer-
based attack, we use the standard adversarial training of ResNet-34 as the surrogate model, trained
with the same parameters as described in Sec. 4. First, we perform the attack on the surrogate model
to generate adversarial examples and then transfer them to the target network to get corresponding
robustness. Here, we consider four attacks: FGSM, PGD20, PGD40, and CW∞, with the same
attack parameters as Sec. 4.2.1. For query-based attacks, we consider the Square attack, which is
more efficient. Tab. 3 shows the results, and CAT achieves the best performance. CAT can bring
1.79% and 3.19% robustness improvement against Square attack, for CIFAR-10 and CIFAR-100
respectively. Similarly, the improvement on CIFAR-100 is more significant than CIFAR-10.

4.3 COMPARISION TO SOTA

We use WideResNet-34-10 (Zagoruyko & Komodakis, 2016) networks for CAT to compare with
previous sota methods. Tab. 4 shows the accuracy of the different methods for natural examples
and the robustness against Auto-Attack. The robustness of both networks trained with CAT outper-
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Table 4: Quantitative comparison with pre-
vious methods. WideResNet-34-10 is used in
CAT. * denotes WideResNet-34-20, and † de-
notes WideResNet-40-8. AWP is equipped to
get better robustness.

Method Clean AA

Bag of Tricks for AT 86.28 53.84
HE* 85.14 53.74

Overfitting in AT* 85.34 53.42
Overfitting in AT 85.18 53.14

Self-Adaptive Training 83.48 53.34
FAT 84.52 53.51

TRADES 84.92 53.08
LLR† 86.28 52.84

LBGAT+TRADES (α = 0)* 88.70 53.57
LBGAT+TRADES (α = 0) 88.22 52.86
LBGAT+TRADES (α = 6) 81.98 53.14

LAS-AT 86.23 53.58
LAS-AWP 87.74 55.52

CAT 86.22 54.11
86.51 54.20

CAT+AWP 86.74 56.43
87.01 56.61

Table 5: Quantitative comparison with KD-
AT methods. A WideResNet-34-10 and a
ResNet-18 network are used in CAT to have a
fair comparison with distillation methods. Time
denotes training time (s) per epoch.

Method Stage Time Clean AA

ARD 2 2720 83.93 49.19
IAD 2 2723 83.24 49.10

RSLAD 2 2723 83.38 51.49
RSLAD+AWP 2 - 81.26 51.62

CAT 1 2516 84.39 51.72

0 25 50 75 100 125 150 175 200

10

15

20

25

30

35

40

45

50

CAT1
CAT2
TRADES
ALP
AT

120 130 140 150 160 170 180 190 200

42

44

46

48

50

CAT1
CAT2
TRADES
ALP
AT

Table 6: Robust accuracy of AT, ALP,
TRADES, and CAT on CIFAR-10 during the
adversarial training process. CAT can allevi-
ate the problem of overfitting.

forms the previous methods. Surprisingly, CAT with a smaller network even outperforms previous
methods. AWP further boosts the robustness of CAT with a 2.41% improvement.

4.4 COMPARISION TO KD-AT

In general, the robustness of large models is higher than that of small models under the same train-
ing settings. For example, WideResNet-34-10 trained by TRADES can achieve 53.08% robustness
against AA, while the robustness of ResNet-18 is only 49.21%. Researchers use knowledge distilla-
tion to distill the robustness of large models to small models and obtain remarkable results. We call
these methods as KD-AT, which involves a teacher and a student network. Considering that CAT
also involves two models, we compare CAT with previous KD-AT methods. To give a fair com-
parison, we use two different-size networks for CAT training, the same as the teacher and student
network used in KD-AT. Note that, unlike the KD method where the teacher is trained in advance,
CAT trains both the large model and the small model simultaneously. In other words, we extend
previous offline distillation (2 stages) to an online way (1 stage) and achieve better performance
with lower computation resources. Illustration comparison is shown in Appendix B.

Tab. 5 shows the results of KD-AT and CAT, where ARD (Goldblum et al., 2020), IAD (Zhu et al.,
2021), and RSLAD (Zi et al., 2021) use WideResNet-34-10 trained by TRADES as teacher. CAT
is collaboratively trained by two networks of different sizes. It can be seen that our method obtains
high adversarial robustness and also obtains high clean accuracy. Meanwhile, CAT is more efficient
than previous KD-AT methods, as shown in the 3-rd column. More importantly, The robustness of
CAT is higher than RSLAD equipped with AWP.

5 PROPERTY ANALYSIS

5.1 ALLEVIATE OVERFITTING

Overfitting in adversarial training is first proposed by Rice et al. (2020), which shows the test ro-
bustness decreases after peak robustness. Overfitting is one of the most concerning problems in
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Table 7: The correlation between white-
box robustness after CAT and prediction
discrepancy (PD) of different methods on
CIFAR-10. ResNet-18 networks are used.

Method PGD20 PD

CATAT−ALP 53.11 18.98%

CATTRADES−ALP 54.44 21.05%

CATAT−TRADES 54.52 22.54%

Table 8: The white-box robustness of CAT with
three networks on CIFAR-10. Resnet-18 networks
are used. T-A is short for TRADES-ALP. A-A-T is
short for AT-ALP-TRADES

Method Clean FGSM PGD20 CW∞ AA

CATT−A 84.75 59.76 54.17 52.72 50.85

CATA−A−T

84.50 60.17 54.64 52.98 51.28
84.62 60.25 54.87 53.04 51.42
84.29 60.24 55.04 53.38 51.74

adversarial training. Here, we investigated the overfitting problem in CAT with VGG-16. Results
are illustrated in Tab. 6. CAT can alleviate the overfitting problem that widely occurs in previous
adversarial methods. Moreover, the performance for CAT has not saturated, and high performance
is expected with longer epoch training.

5.2 CORRELATION OF DISCREPANCY AND CAT

To deepen the understanding of our CAT, we analyze the correlation between the discrepancy of
different adversarial training methods and their adversarial robustness after CAT. First, we compute
the prediction intersection between different methods, formulated as:

intersection =
1

N

∑
xi∈D

I(f(xi), g(xi)), (7)

where D is the datasets, and I is an indicator function, which is 1 when f(xi) = g(xi) and 0
otherwise. Prediction discrepancy equals 1 minus intersection. The larger this value is, the greater
the discrepancy. Then, we report the adversarial robustness of CAT trained in different settings.
Results are reported in Tab. 7. A conclusion can be drawn that the greater the discrepancy between
different methods is, the higher the adversarial robustness after CAT.

5.3 CAT OF THREE MODELS WITH THREE METHODS

CAT is a generalized method, which can use any number of different adversarial training methods
for collaborative learning. To show the generalizability of CAT, we conducted an experiment on
CAT by collaborating on three adversarial training methods. The results are reported in Tab. 8. The
robustness improvement is more significant than CAT trained with two adversarial-trained methods.
Collaborating three methods can bring 0.9% improvement against Auto-Attack, which shows the
generalizability of CAT.

6 CONCLUSION

In this paper, we first analyze the properties of different adversarial training methods and find that
networks trained by different methods perform differently on sample instances, i.e., the network can
correctly classify examples that are misclassified by other networks. Based on this observation, we
propose a collaborative adversarial training framework to improve the robustness of both networks.
CAT aims to guide network learning using true label supervision together with the knowledge mas-
tered in peer networks, which is different from its own knowledge. Extensive experiments on dif-
ferent datasets and networks demonstrate the effectiveness of CAT. Furthermore, property analysis
is conducted to get a better understanding of CAT. Broadly, CAT can be easily extended to multiple
networks for collaborative adversarial training. We hope that CAT brings a new perspective to the
study of adversarial training.
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Method Clean FGSM PGD20 CW∞ AA

AT 78.31 53.11 48.39 46.32 43.69
TRADES 79.11 53.75 48.28 45.93 44.63

ALP 80.23 52.18 47.30 45.23 43.68

CAT 79.23 54.47 49.43 47.19 45.48
80.12 54.48 48.30 47.23 45.33

Table 9: The white-box robustness results (ac-
curacy (%)) of CAT on CIFAR-10. We report
the results of the best checkpoint. VGG-16 net-
works are used in CAT framework.

Method Clean FGSM PGD20 CW∞ AA

AT 76.24 50.27 44.99 43.03 40.10
TRADES 75.84 49.65 45.26 42.04 41.08

ALP 79.46 50.14 43.95 42.08 40.01

CAT 80.14 51.25 46.38 44.24 42.20
79.86 51.28 46.22 44.05 42.16

Table 10: The white-box robustness results (ac-
curacy (%)) of CAT on CIFAR-10. We report
the results of the best checkpoint. MobileNet
networks are used in CAT framework.

Method Clean PGD50 CW∞ AA

AT 43.98 19.98 17.60 13.78
TRADES 39.16 15.74 12.92 12.32

ALP 39.85 17.28 15.34 12.98

CAT 44.35 20.86 19.43 14.96
44.76 21.02 19.64 15.63

Table 11: The white-box robustness results (accuracy (%)) of CAT on Tiny-ImageNet. We report
the results of the best checkpoint. Two ResNet-18 networks are used in CAT framework.

A MORE EXPERIMENTAL RESULTS

A.1 VGG-16 RESULTS ON CIFAR-10

The white-box robustness of VGG-16 (Simonyan & Zisserman, 2014) models trained by AT, ALP,
TRADES, and CAT are reported in Tab. 9. The setting for VGG-16 is the same as ResNet-18 models,
i.e., α = 1.0/20 and β = 1.0/20. The improvement for CAT with VGG-16 models is as consistent
with ResNet-18 models. CAT can boost model’s robustness under AutoAttack with 2.0 points.

A.2 MOBILENET RESULTS ON CIFAR-10

Similar to the above VGG-16 models, we report the while-box robustness of MobileNet (Howard
et al., 2017) on CIFAR-10 datasets under various attacks in Tab. 10. The experiment set is the
same as the previous setting. We can see that CAT brings 1.0 improvement for MobileNet under
AutoAttack, which is the most powerful adversarial attack method.

A.3 RESNET-18 RESULTS ON TINY-IMAGENET

For the large-scale ImageNet dataset, just as all the baseline methods did not report the results, we
are also unable to evaluate on ImageNet due to the very high training cost. To investigate the perfor-
mance of CAT in large datasets, we conduct the experiment of white-box robustness of ResNet-18
on Tiny-ImageNet, which also is a widely used dataset in adversarial training. The results are shown
in Tab. 11. Surprisingly, CAT shows impressive robustness on the large-scale dataset. The improve-
ment is as significant as ResNet-18 in small datasets like CIFAR-10 and CIFAR-100.

A.4 CAT OF ONE MODEL WITH VARIOUS ATTACKS

For CAT, we use two networks and two different attack methods for each network to perform adver-
sarial training. An interesting baseline is one network with two different attack methods. Therefore,
we use PGD and CW as our attack methods and one ResNet-18 as our network. The results are
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Method Best Checkpoint
Clean FGSM PGD20 CW∞ AA

AT 82.82 57.57 51.76 50.05 47.55

CATT−A
83.91 59.76 54.44 52.56 51.02
84.75 59.76 54.17 52.72 50.85

CATP−C 82.09 56.48 52.48 49.28 48.06

CATT−T
81.94 58.85 54.19 51.52 50.30
82.13 58.77 54.02 51.56 50.14

Table 12: The white-box robustness results (accuracy (%)) of CAT on CIFAR-10. We report the
results of the best checkpoint. P-C denotes one network trained by PGD and CW. T-A is short
for TRADES-ALP, denoting two networks with TRADES and ALP. T-T is short for TRADES-
TRADES, denoting two networks with TRADES and TRADES.
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Figure 4: Three types of distillation. (a) displays traditional knowledge distillation, which involves
two-stage optimization and a large-scale teacher model. (b) and (c) illustrate online learning, i.e.,
collaborative learning and ensemble learning, which do not involve teacher models.

reported in Tab. 12 (CATP−C entry). The improvement for this setting is not significant as the
previous setting, but it still, boosts the model’s robustness against all four attacks.

A.5 CAT OF TWO MODELS WITH SAME METHODS

Another interesting baseline is two networks trained by the same adversarial training methods, i.e.,
two ResNet-18 networks are both trained by TRADES. We denote this setting as CATT−T . The
results are reported in Tab. 12. The improvement for this setting is not significant as the previous
setting, but it still, boosts the model’s robustness against all four attacks. However, the improvement
is more significant than just using one network. A conclusion can be drawn that two networks are
important for CAT to achieve better adversarial robustness.

B DISCUSSION

In this section, we illustrate three types of distillation methods, shown in Fig. 4. Traditional knowl-
edge distillation has a two-stage optimization, which is pre-training the large-scale teacher model
and distilling students with pre-trained teachers in the first stage. RSLAD (Zi et al., 2021) is im-
plemented in this paradigm. Two-stage optimization brings a large computation cost. Compared to
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RSLAD, CAT is based on collaborative learning and only needs one-stage optimization with two
student models.
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