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Abstract

Inference from tabular data, collections of continuous and categorical variables organized
into matrices, is a foundation for modern technology and science. Yet, in contrast to the
explosive changes in the rest of AI, the best practice for these predictive tasks has been rel-
atively unchanged and is still primarily based on variations of Gradient Boosted Decision
Trees (GBDTs). Very recently, there has been renewed interest in developing state-of-the-
art methods for tabular data based on recent developments in feature learning methods.
In this work, we introduce xRFM, an algorithm that combines feature learning kernel ma-
chines with a tree structure to scale to essentially unlimited amounts of training data. On the
TALENT benchmark, we show that xRFM achieves best performance across 100 regres-
sion datasets and is competitive across 200 classification datasets, outperforming GBDTs.

1 Introduction

Tabular data – collections of continuous and categorical variables organized into matrices – underlies all
aspects of modern commerce and science from airplane engines to biology labs to bagel shops. Yet, while
Machine Learning and AI for language and vision have seen unprecedented progress, the primary methodolo-
gies of prediction from tabular data have been relatively static, dominated by variations of Gradient Boosted
Decision Trees (GBDTs), such as XGBoost [6]. Nevertheless, hundreds of tabular datasets have been assem-
bled to form extensive regression and classification benchmarks [5, 13, 10, 25, 9], and, recently, there has
been renewed interest in building state-of-the-art predictive models for tabular data [14, 15, 12].

In this work, we introduce xRFM, a tabular predictive model that combines recent advances in feature learning
kernel machines with an adaptive tree structure, making it effective, scalable, and interpretable. xRFM builds
upon the Recursive Feature Machine (RFM) algorithm from [20], which enabled feature learning (a form
of supervised dimensionality reduction) in general machine learning models. Given training data, xRFM
first builds a binary tree structure to split data into subsets based on features relevant for prediction within
each split. When splits reach a certain size, we train a leaf RFM (a hyper-parameter and compute optimized
version of RFM).

In practice, we show xRFM has the best performance across 100 tabular regression tasks and is competitive
with state-of-the-art on 200 tabular classification tasks from the TALENT benchmark [25]. On the TabArena-
Lite benchmark [9], we show xRFM empirically achieves one of the best tradeoffs (is on the empirical Pareto
frontier) between performance and inference time among all methods in regression and is again competitive
on classification. We show that xRFM achieves similar results on the largest datasets from the meta-test
benchmark [15], where directly solving standard kernel machines becomes intractable on standard GPUs.
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Figure 1: Overview of xRFM training and inference procedures. (A) xRFM is trained by splitting the data
along the median projections (denoted c1, c2) onto computed split directions (denoted v1, v2). Data is split
repeatedly into leaves, which contain at most C training samples. Leaf RFMs are trained on the data at each
leaf. (B) During inference, test data is routed to the appropriate leaf RFM based on split directions. The
prediction is generated by the selected leaf RFM.

2 Preliminaries

We review kernel machines and kernel-RFM, which we use to build xRFM.

Kernel machines A kernel machine is a non-parametric machine learning model [23, 2]. The idea behind
kernel machines is that one can train a nonlinear predictive model by first transforming input data with a
fixed, nonlinear feature map and then performing linear regression on the transformed data. Kernel machines
make this procedure computationally tractable even for infinite dimensional feature maps by using kernel
functions (inner products of feature mapped data). We describe kernel machines in the context of supervised
learning below. Let X ∈ Rn×d denote training inputs with x(i)T denoting the example in the ith row of X
for i ∈ [n] and y ∈ Rn×c denote training labels. Let K : Rd × Rd → R denote a kernel function (a positive
semi-definite, symmetric function). Given a regularization parameter λ ≥ 0, a kernel machine trained on the
data (X, y) is a predictor, f̂ : Rd → Rc, of the form: f̂(x) = K(x,X)α; α = (K(X,X) + λI)−1y ;
where the notation K(x,X) ∈ R1×n denotes an n-dimensional row vector with K(x,X)i = K(x, x(i)) and
K(X,X) ∈ Rn×n denotes a matrix with K(X,X)ij = K(x(i), x(j)). A typical kernel functions used in
practice is, e.g., the Gaussian kernel (K(x, z) = exp(−∥x− z∥22)/L2).

Recursive Feature Machines (RFMs) The ability to learn task-relevant features from data is key to build-
ing effective predictors [7, 11, 1]. RFM, introduced in [20], is an algorithm that enables feature learning
in general machine learning models through a mathematical object known as the Average Gradient Outer
Product (AGOP). Given a predictive model f̂ : Rd → R and data S = {x(1), . . . , x(n)} ⊂ Rd, the AGOP is
defined as AGOP(f̂ , S) = 1

n

∑n
i=1∇f̂(x(i))∇f̂(x(i))T ∈ Rd×d where∇f̂(x(i)) denotes the gradient of f̂ at

the point x(i). The AGOP is an estimate of the (un-centered) covariance of the gradients of f̂ and intuitively
captures the subspace along which the predictor highly varies [24, 16]. The RFM algorithm involves iterating
between training a predictive model and using the AGOP of the trained model to select features and linearly
transform input data.

In the case of kernel machines, which have no native mechanism for feature learning, RFM enables feature
learning by adapting the kernel to the data. We describe the kernel-RFM algorithm below. Following the
notation in the previous section, let (X, y) denote training inputs and labels, let K denote the kernel function,
and λ denote the regularization parameter. Letting M1 = I and c > 0, kernel-RFM repeats the following two
steps for T iterations: (Step 1) Compute f̂t(x) = K(Mtx,XMt)αt and αt = [K(XMt, XMt) + λI]−1y,

(Step 2) Compute Mt+1 =
[
AGOP(f̂t(Mtx), X)

]c
. We provide additional details on the hyperparamters of

this algorithm in Appendix B.2.
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Figure 2: Performance and runtime of xRFM on the TALENT (Plots A-C) and TabArena-Lite benchmarks
(Plots D-F). The x-axes are the average over all datasets of the training plus inference time per 1000 samples
for just the best hyperparameter configuration (meaning if a dataset has n samples, we compute the training
and inference time on the n samples divide the total time by n/1000).

3 xRFM algorithm overview

We now describe our algorithm xRFM, which consists of the following two components (Fig. 1): (1) An
improved kernel-RFM, termed leaf RFM, that is trained on the subset of data, and (2) A binary tree that
splits the data into subsets, termed leaves, of a maximum size (leaf size) that is independent of the number
of training samples. Leaf RFMs are then trained on the subset at each leaf. The splits stratify data based on
features relevant for prediction. We detail these two components below.

Leaf RFM Here, we describe the changes we made to the original kernel RFM algorithm from [20] to pro-
duce leaf RFMs. The kernel RFM model was primarily built using kernels that were invariant to orthonormal
transformations of data. Such invariance does not effectively leverage a special property of tabular data – the
fact that each coordinate can be independently meaningful. To account for this, we introduce the following
modifications: (1) We tune over a more general class of kernels Kp,q(x, x

′) = exp(−∥x− x′∥qp/Lq) that are
positive definite for 0 < q ≤ p ≤ 2 [22, Theorems 1, 5], and (2) we tune over using the full AGOP and just
the diagonal of the AGOP.

In addition to the above changes, we also implemented optimizations to speed up computations for categorical
variables and an adaptive approach for tuning bandwidth separately for data on each leaf. Additional details
and the selected hyperparameter search spaces are provided in Appendix B.

Tree-based data partitioning We now explain how xRFM builds a binary tree to partition data. First,
given a dataset S with n samples, we subsample m points and train a leaf RFM (called a split model) on
this subsample. We extract the top eigenvector, v, of the AGOP from the split model and create two subsets
of the n datapoints: S1 = {x ∈ S ; vTx > Median(vT z for z ∈ S)} and S2 = {x ∈ S ; vTx ≤
Median(vT z for z ∈ S)}. We repeat this procedure on S1 and S2 and their corresponding children until all
leaves are less than a maximum leaf size C. We finally train a leaf RFM on each of these leaves. This
procedure is illustrated in Fig. 1A and detailed in the ‘TreePartition’ procedure of Algorithm B.2.

A key advantage of our split approach is that it groups together data points based on the features most relevant
for prediction, as is captured by the top eigenvector of the AGOP. Prior works have also split data using the
random forest procedure. For example, the authors of [14] train TabPFN-v2 on the samples routed to a given
leaf of a tree in a random forest. The procedure in xRFM differs as it stratifies samples by projection onto a
direction rather than individual coordinates and produces only one balanced tree instead of a forest.
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Figure 3: Performance comparison across the 17 large datasets from meta-test (70,000-500,000 samples).
(A, B) Percentage improvement over MLP error on (A) regression and (B) classification datasets. Average
percentage improvement is denoted as a diamond. Points denote individual dataset results (points are jittered
for visibility).

4 xRFM results
We now apply xRFM to three tabular data benchmarks: the TALENT benchmark [25], the TabArena-Lite
benchmark [9], and large datasets from the meta-test benchmark [15]. We use TALENT and TabArena-
Lite to evaluate xRFM on datasets of various sizes between 500 and 150, 000 training samples. We use the
meta-test benchmark to evaluate xRFM on larger datasets with at least 70, 000 and up to 500, 000 samples (a
setting in which direct linear solvers become intractable, taking more than 40GB VRAM). We describe the
performance measures used for these benchmarks in Appendix B.

Results on the TALENT and TabArena-Lite benchmarks. The TALENT benchmark consists of 300 total
datasets comparing 31 different supervised learning algorithms [25]. Among these 31 algorithms are strong,
widely used predictive models including Gradient Boosted Decision Tree (GBDT) variants (like XGBoost,
CatBoost, LightGBM), hyper-parameter optimized neural networks (RealMLP), and recent transformer-
based foundation models (TabPFN-v2). TabArena-Lite contains 51 total datasets comparing 15 different
supervised learning algorithms including many of those in TALENT.

xRFM is the best performing method on TALENT regression tasks according to all aggregation metrics over
RMSEs on individual datasets (Fig. 2A). It is also the fastest method per configuration, although TabPFN-
v2 does not incur a 100× overhead for hyperparameter tuning. xRFM is also competitive on classification
datasets (Fig. 2B, C). We also compare the performance (in Elo) and inference time of xRFM using the
TabArena-Lite benchmark (Fig. 2). In particular, when compared to all default and tuned methods for this
benchmark, tuned xRFM is among the top three methods for regression while being orders of magnitude
faster for inference. Indeed, xRFM lies along the empirical Pareto frontier, meaning that there is no method
that dominates xRFM in both performance and inference time for these tasks (Fig. 2D). For classification
tasks, xRFM is near the empirical Pareto frontier (Fig. 2E, F).

Results on large datasets from the meta-test benchmark. To analyze xRFM performance on large
datasets beyond those in TALENT and TabArena, we consider the 17 largest datasets in the meta-test bench-
mark from [15] (Table C.6). We compare the performance of xRFM to other models with results reported in
the literature (Fig. 3). On this benchmark, xRFM is best on regression tasks, and second best on classification
tasks. All results are presented in Tables C.6, C.7.

Interpretability with xRFM An advantage of xRFM is that it immediately provides a means of identifying
features relevant for prediction (without stacking on any additional interpretability methods). Namely, we
can extract learned AGOPs of leaf RFMs and visualize the features they select. We show examples of this
interpretability in Appendix A.

5 Discussion

Overall, we have shown that xRFM is an effective algorithm for inference from tabular data that scales to
essentially unlimited data sizes and achieves performance exceeding or comparable to the current state-of-
the-art. It combines the advantages of tree-based methods with the power and elegance of feature-learning
kernel machines. We envision that xRFM will be used for both high-performing predictive modeling and
uncovering heterogeneous structure in large-scale tabular data.
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A Features learned by xRFM on tabular data

We use two approaches for identifying features selected by the AGOP. The first is to identify the elements
along the diagonal of the AGOP with highest magnitude. By definition, these entries indicate how much a leaf
RFM’s predictions vary when perturbing a given coordinate. As such, they are a natural measure of feature
importance. The second approach is to examine the loadings onto the top eigenvectors of the AGOP. This
approach allows us to identify joint effects of feature perturbations on the prediction. Namely, if coordinate
i of the top eigenvector is positive and coordinate j is negative, then increasing one of these features and
decreasing the other changes the prediction.

We use both approaches above to understand what features are learned by xRFM on tabular data from scikit-
learn and meta-test (Fig. A.1). As examples, we study the AGOPs for four such datasets: (1) California
housing - a regression task for predicting the average price of a house, (2) Covertype - a multiclass classifica-
tion task for identifying the dominant tree species in a given location, (3) NYC Taxi Tipping - a regression task
for predicting the dollar tip amount in a taxi ride, and (4) Breast cancer - a classification task for identifying
malignancy from features of biopsy images.

As the California housing and breast cancer datasets contain fewer than 50k samples (the parameter we used
for leaf size), we visualize a single AGOP. For covertype, we visualize one of the AGOPs from a leaf RFM
(for this dataset, the leaf RFM AGOPs generally indicate the same pattern), and for taxi tipping we visualize
several leaf RFM AGOPs. Upon visualization, it is apparent that AGOPs indicate low rank structure: either
they highlight a subset of coordinates relevant for prediction (Fig. A.1A, B) or they have a decay in the
eigenvalue spectrum (Fig. A.1C).

In Fig. A.1A and B, we list feature names for the features with highest diagonal AGOP entries (darker shades
of red indicate higher values). In all cases, we find that AGOP identifies sensible features for prediction.
For the California housing dataset, xRFM identifies longitude, or east-west location, as the most important
feature for predicting the average price of a house. Given that beach fronts (and major cities) in California
are typically located to the west, the importance of house longitude is consistent with the hypothesis that
homes closer to the beach are more expensive on average. For the Covertype prediction dataset, the example
AGOP from a leaf RFM shows that elevation, distance to roadways, and distance to firepoints are the most
important features. This finding is consistent with the hypothesis that elevations with different climates and
the existence of fires / roadways can significantly affect viability of different tree species. For the taxi tipping
dataset, we observe that leaf RFMs identify varying local features. For example, one leaf RFM (denoted
Taxi Tipping 1 in Fig. A.1B) selected pickup location as an important feature, while this feature was less
important for a different leaf RFM (Taxi Tipping 3). Furthermore, fare code and the MTA tax have varying
feature relationships at each leaf: in leaf RFM 1 and 2, the fare code and MTA tax has neutral or synergistic

6



A.

B.

California	Housing Covertype

Latitude

Longitude

Average 
Occupation

1
2
3

Legend

1:	Elevation

2:	Distance to 
Roadways

3:	Distance to 
Firepoints

C.

Fare Code
Pickup 

Location

MTA tax

Breast	Cancer

Compactness
(error)

Number of concave 
points (mean)

Coordinate

Va
lu
e

Top	Eigenvector	of	Breast	Cancer	AGOP

Taxi	Tipping	(3)Taxi	Tipping	(2)Taxi	Tipping	(1)

Figure A.1: Interpreting xRFM through the AGOP of its constituent Leaf RFM models. (A) Examining the
most important features for xRFM trained on California Housing (price prediction) and Covertype (dominant
tree species prediction) datasets, based on the magnitude of diagonal entries. (B) Examining the features
identified across three different Leaf RFM models for the NYC Taxi Tipping dataset. (C) Examining features
learned for Breast Cancer detection from processed FNA imaging. The spectrum of this AGOP is plotted
and the top eigenvector is shown in a bar plot. The most positive and negative entries of this eigenvector are
boxed.

effects on the prediction value, while for leaf RFM 3, increasing fare code has the opposite effect on prediction
as increasing MTA tax (shown as a blue square in Fig. A.1B).

For the breast cancer dataset, the most important feature found by xRFM is the average number of concave
points in the biopsy image, which has been shown to be a significant indicator of malignancy [19]. When
examining the top eigenvector of the AGOP, we find that standard error in the compactness measurements
of cell nuclei is the feature with highest importance that has an opposite effect on the malignancy label as
concavity (Fig. A.1C). This finding suggests that benign cells have less uniform compactness than malignant
cells.

B Methods

B.1 Code availability

Code for xRFM (following a scikit-learn-style API) is available at: https://github.com/dmbeaglehole/
xRFM.

B.2 Additional leaf-RFM modifications

Typical choices of the T and c parameters for kernel-RFM in practice are T ≤ 10 and c ∈ { 14 , 1
2} [20, 3, 4,

18]. (In practice, we return the ft with best validation performance rather than returning fT .) When training
labels, y, are multi-dimensional, we use the Jacobian of f̂ instead of the gradient in Step (2) (i.e., averaging
the AGOP over output dimensions). Kernel-RFM is particularly effective at identifying low dimensional
subspaces (or subsets of variables) relevant for prediction [21, 26], making it a useful interpretability tool.

Below, we provide further detail on the RFM modifications we made to implement leaf RFM.

(1) We tune over a more general class of kernels Kp,q(x, x
′) = exp(−∥x − x′∥qp/Lq) that are positive

definite for 0 < q ≤ p ≤ 2 [22, Theorems 1, 5]. We typically search over p ∈ U(0.7, 1.4) and
p ∈ {q, 2} (Table B.1).

(2) We tune over using the full AGOP and just the diagonal of the AGOP. The latter is known to be a
theoretically grounded approach for coordinate selection [26], and introduces an axis-aligned bias
that has been observed to match the structure of tabular data [13].
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We also make the following changes to improve leaf RFM runtime on tabular data and to allow xRFM to
adapt to the variance of input variables at each leaf:

(3) We speed up computation for kernels with q = 1 on categorical variables taking c values by precom-
puting possible kernel entries as follows. We restrict the AGOP matrix to be block diagonal with a
block for the c× c entries corresponding to the categorical variable. Letting Mc ∈ Rc×c denote this
block and ei ∈ {0, 1}c denote the one-hot embedding of the categorical variable when it takes on
value i, we precompute M

1/2
c (ei − ej) for all i, j ∈ [c].

(4) We tune over whether or not to use adaptive bandwidth, which involves separately scaling L at each
leaf RFM by (Median(∥x− x′∥p)))−1 for x ̸= x′ at every leaf independently. Adaptive scaling
allows xRFM to adapt to the variance of covariates at different leaves.

B.3 Metrics

Performance evaluation measures. When measuring performance on these datasets, we use Root Mean
Square Error (RMSE) for regression tasks (as is used in TALENT), and we use classification error (1 −
classification accuracy) for classification tasks. For TabArena-Lite, binary classification performance for
individual datasets are measured by AUROC, while multi-class datasets are evaluted with log-loss. To mea-
sure performance on aggregate over TALENT, we consider the following aggregation metrics on individ-
ual dataset performance measures: Shifted Geometric Mean, Arithmetic Mean, and Normalized Arithmetic
Mean. TabArena-Lite uses Elo [8], a rating system that calculates the relative skill levels of each method
based on the probability of winning when pairs of methods are compared on individual datasets (see [9] for
how Elo is estimated in this benchmark).

Following [15], we report the shifted geometric mean of the error, which is the geometric mean of the error
after shifting by a small value to prevent over-sensitivity to datasets with small errors. This metric is defined
as follows.

Definition 1. For a given set of errors on a benchmark ε1, . . . , εN , the shifted geometric mean (SGMε) with
parameter ε takes value:

SGMε = exp

(
1

N

N∑

i=1

log(ε+ εi)

)
.

In this work, as in [15], we use ε = 0.01.

For regression tasks, we use normalized Root-mean-square-error (nRMSE), which is defined as follows.

Definition 2. The normalized Root-mean-square-error is defined as,

nRMSE = σ−1
y

√√√√ 1

N

N∑

i=1

(
yi − ŷi

)2
, where σy =

√√√√ 1

N

N∑

i=1

(yi − ȳ)2

When we refer to other normalized metrics, such as those used in Table C.1, Table C.2, Table C.3, Table C.4,
Table C.5, we are min-max normalizing errors across methods for each dataset (see below).

Definition 3. The normalized error Ẽj for method j on a given dataset, where the un-normalized error is
Ej , has the form:

Ẽj =
Ej − Emin

Emax − Emin
, Emin = min

k
Ek, Emax = max

k
Ek .

B.4 Hyperparameters

Data pre-processing. For the TALENT benchmark, each method’s hyperparameters are tuned after fixing a
single data normalization and categorical encoding scheme. For xRFM, kernel ridge regression, and standard
kernel RFM, we one-hot encode categorical features and z-score input coordinates separately. For meta-test,
methods also tune over choice of ordinal or one-hot encoding of categorical variables. On meta-test, we also
normalize data by z-scoring input coordinates separately prior to tuning xRFM parameters.
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Hyperparameter TALENT TabArena-Lite Meta-test

Bandwidth logU(1, 200) logU(0.5, 200) logU(0.4, 80)
Bandwidth Mode {constant} {constant} {constant, adaptive}
Categorical Transformations {one hot} {one hot} {ordinal encoding, one hot}
Diagonal {False, True} {False, True} {False, True}
Early Stop Multiplier 1.1 1.1 1.1
Exponent q U(0.7, 1.4) U(0.7, 1.4) U(0.7, 1.3)
Kernel Type {80%: Kp,q , 20%K2,q} {80%: Kp,q , 20%K2,q} {80%: Kp,q , 20%K2,q}
p (when kernel type is Kp,q) U(q, q + 0.8(2− q)) U(q, q + 0.8(2− q)) U(q, q + 0.8(2− q))
Normalization {standard} {standard} {standard}
Regularization logU(10−6, 1) logU(10−6, 10) logU(10−5, 50)
Refill size (Nval) 1500 1500 1500

Table B.1: Search spaces for xRFM on the TALENT (Figure 2), TabArena-Lite (Figure 2), and Meta-test
benchmarks (Figure 3).

Details of various methods. For scaling kernel ridge regression and the standard kernel RFM to large TAL-
ENT datasets, we used Eigenpro-2 (EP2) [17] that was initialized with the coefficients obtained from directly
solving RFM on a random sample of 70,000 points. To tune the optimization hyperparameters for EP2, we
tuned the model parameters for 100 trials on a random 70,000 sample subset, then for the final run, we used
the tuned hyperparameters (and for kernel RFM the AGOP from the best iteration). For TabPFN-v2, we used
the code provided from the benchmark github (https://github.com/LAMDA-Tabular/TALENT), which
subsampled to 10,000 samples to avoid out-of-memory issues. The provided code did not apply TabPFN-v2
to datasets with more than 10 classes. For efficient Lq

p kernel computations on GPU we used the KerMac
library (https://github.com/Kernel-Machines/kermac).

B.5 Algorithmic details

Note on AGOP computation For computing gradients of the predictor on training data (for AGOP com-
putation), we omit the contribution to the gradient from the kernel evaluation between each training point and
itself. This is because the kernel function is often not differentiable (e.g. Laplace kernels) when evaluated for
two identical points.
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Algorithm B.1 Leaf RFM

Require:
• x(1), . . . , x(n) ∈ Rd, y ∈ Rn×c : Train data
• Xval ∈ Rm×d, yval ∈ Rm×c : Validation data
• K(·, ·;L, p): Kernel parametrized by bandwidth L ∈ R+ and exponent p ∈ (0, 2]
• τ ∈ Z+: Number of iterations
• λ ∈ R+: Ridge parameter
• ε ∈ R+: Stability parameter
• use diag: Boolean indicating whether to use diagonal of AGOP only
• adapt bandwidth: Boolean indicating whether to adapt bandwidth

M0 ← Id×d

X = [x(1), . . . , x(n)]⊤ ∈ Rn×d

if adapt bandwidth then
L← AdaptBandwidth(L) ▷ Adapt bandwidth if enabled

end if
for t = 0, . . . , τ − 1 do

if use diag then
XM ← X ⊙ diag(Mt)

1/2

Solve αt such that (K(XM , XM ) + λI)αt = y
f (t)(x) = K(x⊙ diag(Mt)

1/2, XM )αt ▷ ⊙ denotes element-wise multiplication
else

XM ← XM
1/2
t

Solve αt such that (K(XM , XM ) + λI)αt = y

f (t)(x) = K(M
1/2
t x,XM )αt

end if
Compute Et ← Error(f (t), Xval, yval) ▷ Validate model
Mt+1 ← 1

n

∑n
i=1∇xf

(t)(x(i))∇xf
(t)(x(i))⊤ ∈ Rd×d ▷ Feature matrix (AGOP) computation

Mt+1 ←Mt+1/(ε+maxi,j Mt+1[i, j]) ▷ Normalize feature matrix
end for
t∗ ← argmint Et

return αt∗ ,Mt∗ ▷ KRR coefficients: αt∗ , feature matrix: Mt∗ from best iteration on val. set
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Algorithm B.2 TreePartition

Require:
• D = {(x(1), y(1)), . . . , (x(n), y(n))} : Full dataset with x(i) ∈ Rd, y(i) ∈ Rc

• K(·, ·;L, p): Kernel parametrized by bandwidth L ∈ R+ and exponent p ∈ (0, 2]
• N ∈ Z+: Number of sample points for Leaf RFM
• L ∈ Z+: Maximum leaf size
• λ ∈ R+: Ridge parameter

function TREEPARTITION(D)
if |D| ≤ L then

return Leaf node with dataset D
end if
Sample N points S = {(x(a1), y(a1)), . . . , (x(aN ), y(aN ))} from D
Xs = [x(a1), . . . , x(aN )]⊤ ∈ RN×d

ys = [y(a1), . . . , y(aN )]⊤ ∈ RN×c

Solve α such that (K(Xs, Xs) + λI)α = y ▷ Fit Leaf RFM on sampled data
Define predictor f(x) = K(x,Xs)α

Compute AGOP: M ← 1
N

∑N
i=1∇xf(x

(ai))∇xf(x
(ai))⊤ ∈ Rd×d

Extract top eigenvector v1 of M ▷ Principal direction
Project all data points: p(i) ← v⊤1 x

(i) for i = 1, . . . , |D|
Compute median projection: m← Median({p(1), . . . , p(|D|)})
Split dataset:
Dleft ← {(x(i), y(i)) ∈ D : v⊤1 x

(i) ≤ m}
Dright ← {(x(i), y(i)) ∈ D : v⊤1 x

(i) > m}
left child← TreePartition(Dleft) ▷ Recursive call
right child← TreePartition(Dright) ▷ Recursive call

return Internal node with splitting vector v1, threshold m, and children
end function

Algorithm B.3 Route (find the leaf that contains a point)

Require:
• T : a (possibly trained) tree whose internal nodes store

– splitting vector v1 ∈ Rd

– threshold m ∈ R
• x ∈ Rd : query point

function ROUTE(x, T )
r ← T .root ▷ Initialize current node r from the tree
while r is an internal node do

if v⊤1 x ≤ r.threshold then ▷ Check if projection is less than (median) threshold
r ← r.left child

else
r ← r.right child

end if
end while
return r ▷ r is now the leaf node that contains x

end function
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Algorithm B.4 xRFM (training)

Require:
• Dtrain, Dval : training and validation sets
• K(·,·;L, p) : kernel (bandwidth L, exponent p)
• TreeHyp = {N, Lmax, λsplit} : hyper-parameters for TREEPARTITION
• LeafHyp = {τ, λleaf, ε, use diag} : hyper-parameters for LEAFRFM

function XRFM-FIT(Dtrain,Dval)
T ← TREEPARTITION(Dtrain, K, TreeHyp) ▷ Alg. B.2
for all leaf node ℓ ∈ LEAVES(T ) do
Dtrain

ℓ ← data stored in ℓ
Dval

ℓ ←
{
(x, y)∈Dval : ROUTE(x, T ) = ℓ

}

(αℓ,Mℓ)← LEAFRFM(Dtrain
ℓ ,Dval

ℓ , K, LeafHyp) ▷ Alg. B.1
Define predictor fℓ(x) according to (αℓ,Mℓ) and store it in ℓ

end for
return T ▷ Tree whose leaves now carry trained predictors

end function

Algorithm B.5 xRFM (inference)

Require:
• T : trained tree returned by XRFM-FIT (Alg. B.4)
• x ∈ Rd : test point

function XRFM-PREDICT(T , x)
ℓ← ROUTE(x, T ) ▷ Alg. B.3
ŷ ← fℓ(x) ▷ Leaf predictor stored in ℓ
return ŷ

end function
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C All results

Method Rank Score Norm. Score Top-1 (%) Top-3 (%) Top-5 (%) Top-8 (%) SGMε

xRFM 4.70 0.311 0.036 20.0 56.0 69.0 84.0 0.311
PFN-v2 6.55 0.323 0.067 20.0 45.0 57.0 72.0 0.323
CatBoost 7.79 0.336 0.053 7.00 24.0 41.0 68.0 0.336
RealMLP 8.20 0.329 0.076 8.00 21.0 37.0 60.0 0.329
ModernNCA 9.39 0.365 0.097 14.0 30.0 38.0 57.0 0.365
LightGBM 9.91 0.353 0.062 6.00 16.0 34.0 52.0 0.353
XGBoost 10.6 0.355 0.071 2.00 12.0 32.0 47.0 0.355
TabR 10.7 0.365 0.133 5.00 20.0 34.0 46.0 0.365
FTT 12.0 0.388 0.149 3.00 11.0 17.0 33.0 0.388
Laplace KRR 12.3 0.373 0.102 3.00 11.0 21.0 35.0 0.373
MLP-PLR 12.7 0.381 0.142 0.0 8.00 15.0 34.0 0.381
Excelformer 12.7 0.399 0.157 0.0 2.00 9.00 28.0 0.399
PTARL 13.1 0.390 0.114 2.00 6.00 9.00 20.0 0.390
RandomForest 13.3 0.389 0.088 5.00 12.0 22.0 35.0 0.389
AutoInt 14.3 0.399 0.158 1.00 2.00 6.00 12.0 0.399
Node 14.4 0.451 0.195 0.0 6.00 18.0 31.0 0.451
MLP 15.2 0.418 0.167 1.00 3.00 4.00 11.0 0.418
DCN2 15.3 0.473 0.227 0.0 2.00 10.0 20.0 0.473
ResNet 15.6 0.426 0.175 0.0 4.00 8.00 15.0 0.426
Tangos 16.3 0.432 0.173 0.0 1.00 4.00 9.00 0.432
SNN 17.2 0.419 0.174 0.0 2.00 4.00 8.00 0.419
kNN 19.1 0.459 0.190 2.00 4.00 4.00 11.0 0.459
TabNet 21.5 0.475 0.227 0.0 0.0 0.0 0.0 0.475
GrowNet 23.0 0.619 0.323 0.0 0.0 0.0 0.0 0.619
SVM 23.2 0.612 0.346 0.0 0.0 1.00 1.00 0.612
TabTransformer 26.4 1.07 0.750 1.00 1.00 2.00 3.00 1.07
SwitchTab 26.9 1.29 0.745 0.0 0.0 0.0 1.00 1.29
Danets 27.2 1.12 0.830 0.0 1.00 1.00 3.00 1.12

Table C.1: Full TALENT Regression results across 100 datasets. Rank is the average rank among the ordered
methods over all datasets. Score is the metric we use to compare methods in Figure 2, in this case SGMϵ.
Normalized score is the arithmetic mean of the normalized nRMSE. Top-X (%) is the percentage of datasets
for which that method is in the top X ranks. The final column is the shifted geometric mean error (SGMε).
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Method Rank Score Norm. Score Top-1 (%) Top-3 (%) Top-5 (%) Top-8 (%) SGMε

PFN-v2 7.15 0.823 0.935 25.0 51.5 63.2 70.6 0.108
xRFM 7.60 0.825 0.933 11.8 29.4 48.5 66.2 0.107
RealMLP 7.64 0.823 0.918 10.3 20.6 48.5 66.2 0.107
TabR 7.98 0.828 0.932 8.82 27.9 41.2 60.3 0.106
ModernNCA 8.88 0.825 0.912 10.3 30.9 44.1 61.8 0.106
CatBoost 10.3 0.819 0.905 1.47 19.1 36.8 51.5 0.117
LightGBM 11.7 0.813 0.883 5.88 22.1 33.8 44.1 0.125
XGBoost 12.1 0.815 0.886 4.41 19.1 26.5 41.2 0.124
ResNet 12.3 0.807 0.879 0.0 4.41 16.2 36.8 0.127
FTT 12.8 0.810 0.868 0.0 5.88 10.3 29.4 0.125
MLP-PLR 13.2 0.815 0.881 0.0 7.35 11.8 25.0 0.119
Laplace KRR 13.5 0.804 0.864 5.88 16.2 20.6 33.8 0.133
DCN2 14.0 0.806 0.865 1.47 4.41 10.3 26.5 0.127
MLP 14.2 0.805 0.864 0.0 4.41 8.82 19.1 0.131
SNN 14.9 0.805 0.858 0.0 0.0 4.41 8.82 0.129
AutoInt 15.7 0.804 0.858 0.0 0.0 1.47 7.35 0.130
RandomForest 15.7 0.797 0.831 5.88 8.82 13.2 27.9 0.137
Excelformer 16.1 0.805 0.853 0.0 0.0 4.41 17.6 0.127
Tangos 16.5 0.797 0.844 0.0 1.47 4.41 13.2 0.133
TabCaps 16.5 0.797 0.837 0.0 1.47 5.88 13.2 0.134
Danets 17.7 0.795 0.829 0.0 1.47 2.94 5.88 0.137
PTARL 19.1 0.796 0.808 0.0 1.47 1.47 4.41 0.139
kNN 20.1 0.786 0.772 2.94 7.35 10.3 14.7 0.152
LogReg 20.2 0.767 0.755 1.47 4.41 7.35 13.2 0.162
TabTransformer 21.5 0.771 0.739 0.0 1.47 1.47 2.94 0.155
Node 22.0 0.767 0.742 0.0 4.41 7.35 10.3 0.173
SVM 23.4 0.750 0.697 2.94 5.88 5.88 8.82 0.182
GrowNet 24.4 0.691 0.596 0.0 0.0 2.94 5.88 0.216
SwitchTab 25.0 0.748 0.674 0.0 1.47 1.47 2.94 0.187
TabNet 26.0 0.753 0.615 0.0 0.0 0.0 0.0 0.183
NaiveBayes 29.4 0.609 0.327 0.0 0.0 0.0 0.0 0.321
NCM 30.5 0.627 0.278 0.0 0.0 1.47 1.47 0.326

Table C.2: Full TALENT Multiclass classification (≤ 10 classes) results. Rank is the average rank among the
ordered methods over all datasets. (Normalized) Score is the metric we use to compare methods in Figure 2.
In this case score is the mean classification accuracy (1 minus the error in Figure 2). Top-X (%) is the
percentage of datasets for which that method is in the top X ranks. The final column is the shifted geometric
mean error (SGMε).
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Method Rank Score Norm. Score Top-1 (%) Top-3 (%) Top-5 (%) Top-8 (%) SGMε

RealMLP 3.75 0.730 0.964 8.33 50.0 91.7 91.7 0.164
xRFM 5.46 0.718 0.949 25.0 50.0 66.7 83.3 0.183
TabR 6.00 0.720 0.948 16.7 50.0 50.0 66.7 0.172
ResNet 6.33 0.720 0.949 0.0 16.7 50.0 83.3 0.178
ModernNCA 6.83 0.713 0.913 33.3 41.7 50.0 83.3 0.168
FTT 8.79 0.709 0.919 0.0 8.33 25.0 50.0 0.187
MLP-PLR 8.79 0.712 0.925 0.0 0.0 25.0 50.0 0.185
MLP 9.58 0.710 0.922 0.0 0.0 8.33 41.7 0.190
Laplace KRR 10.8 0.679 0.889 0.0 16.7 41.7 50.0 0.218
DCN2 11.2 0.707 0.915 0.0 8.33 8.33 8.33 0.193
AutoInt 12.2 0.701 0.899 0.0 0.0 0.0 16.7 0.194
SNN 12.2 0.704 0.906 0.0 0.0 0.0 33.3 0.197
CatBoost 12.8 0.679 0.842 8.33 25.0 33.3 33.3 0.218
Danets 15.9 0.687 0.882 0.0 0.0 0.0 0.0 0.215
Tangos 16.1 0.660 0.823 0.0 8.33 8.33 16.7 0.225
XGBoost 16.2 0.678 0.874 8.33 8.33 8.33 25.0 0.236
Excelformer 16.6 0.675 0.851 0.0 0.0 0.0 16.7 0.217
TabCaps 16.8 0.670 0.853 0.0 0.0 0.0 0.0 0.231
LightGBM 16.9 0.668 0.850 0.0 0.0 0.0 16.7 0.261
PTARL 18.7 0.656 0.823 0.0 0.0 0.0 0.0 0.233
kNN 20.2 0.637 0.800 0.0 0.0 0.0 8.33 0.273
RandomForest 20.7 0.620 0.782 0.0 8.33 8.33 8.33 0.311
TabTransformer 20.8 0.582 0.702 0.0 0.0 8.33 8.33 0.307
LogReg 22.0 0.538 0.622 0.0 0.0 0.0 0.0 0.338
SVM 25.1 0.486 0.523 0.0 8.33 8.33 8.33 0.385
SwitchTab 25.2 0.525 0.603 0.0 0.0 0.0 0.0 0.372
Node 26.2 0.536 0.611 0.0 0.0 0.0 0.0 0.402
GrowNet 26.2 0.402 0.477 0.0 0.0 0.0 0.0 0.565
TabNet 26.3 0.486 0.516 0.0 0.0 0.0 0.0 0.368
NaiveBayes 29.5 0.410 0.380 0.0 0.0 0.0 0.0 0.545
NCM 30.2 0.399 0.339 0.0 0.0 0.0 0.0 0.552

Table C.3: Full TALENT Multiclass classification (> 10 classes) results. Rank is the average rank among the
ordered methods over all datasets. (Normalized) Score is the metric we use to compare methods in Figure 2.
In this case score is the mean classification accuracy (1 minus the error in Figure 2). Top-X (%) is the
percentage of datasets for which that method is in the top X ranks. The final column is the shifted geometric
mean error (SGMε).
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Method Rank Score Norm. Score Top-1 (%) Top-3 (%) Top-5 (%) Top-8 (%) SGMε

xRFM 5.96 0.845 0.981 29.6 55.6 59.3 74.1 0.119
RealMLP 7.44 0.839 0.951 7.41 14.8 29.6 77.8 0.125
TabR 7.83 0.844 0.970 18.5 33.3 55.6 70.4 0.116
ModernNCA 9.69 0.843 0.963 3.70 29.6 40.7 59.3 0.120
CatBoost 10.2 0.827 0.891 7.41 25.9 33.3 55.6 0.128
LightGBM 10.5 0.826 0.884 7.41 18.5 40.7 55.6 0.128
PFN-v2 10.9 0.834 0.923 7.41 22.2 25.9 48.1 0.129
MLP-PLR 11.2 0.827 0.890 0.0 0.0 18.5 40.7 0.131
XGBoost 12.1 0.824 0.875 3.70 18.5 33.3 51.9 0.129
FTT 12.4 0.829 0.900 0.0 11.1 18.5 29.6 0.135
MLP 12.7 0.833 0.915 0.0 7.41 14.8 29.6 0.130
ResNet 13.3 0.834 0.920 0.0 3.70 7.41 29.6 0.130
DCN2 13.4 0.832 0.919 0.0 3.70 3.70 22.2 0.130
PTARL 13.4 0.831 0.911 0.0 3.70 7.41 14.8 0.131
AutoInt 13.7 0.831 0.911 0.0 0.0 3.70 11.1 0.130
Excelformer 14.7 0.821 0.858 3.70 7.41 7.41 11.1 0.143
SNN 14.8 0.831 0.912 0.0 3.70 7.41 18.5 0.131
Laplace KRR 17.0 0.826 0.879 3.70 11.1 14.8 14.8 0.138
Danets 17.4 0.827 0.887 0.0 0.0 0.0 0.0 0.133
TabCaps 18.4 0.822 0.862 0.0 3.70 7.41 7.41 0.136
TabTransformer 19.2 0.816 0.796 0.0 3.70 7.41 18.5 0.160
RandomForest 19.6 0.806 0.772 0.0 3.70 7.41 18.5 0.144
Node 20.1 0.793 0.724 3.70 3.70 3.70 7.41 0.151
LogReg 20.5 0.807 0.778 0.0 3.70 18.5 25.9 0.159
Tangos 20.7 0.811 0.798 0.0 0.0 3.70 3.70 0.139
SVM 21.8 0.802 0.754 0.0 0.0 3.70 18.5 0.162
GrowNet 22.7 0.804 0.771 0.0 0.0 0.0 3.70 0.160
TabNet 23.2 0.814 0.818 0.0 0.0 0.0 0.0 0.142
kNN 24.3 0.787 0.673 0.0 0.0 0.0 7.41 0.166
SwitchTab 27.3 0.786 0.670 0.0 0.0 0.0 0.0 0.163
NaiveBayes 30.2 0.678 0.154 0.0 0.0 0.0 0.0 0.283
NCM 31.3 0.679 0.174 0.0 0.0 0.0 0.0 0.281

Table C.4: Full TALENT Binary classification (> 10, 000 samples) results. Rank is the average rank among
the ordered methods over all datasets. (Normalized) Score is the metric we use to compare methods in
Figure 2. In this case score is the mean classification accuracy (1 minus the error in Figure 2). Top-X (%)
is the percentage of datasets for which that method is in the top X ranks. The final column is the shifted
geometric mean error (SGMε).
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Method Rank Score Norm. Score Top-1 (%) Top-3 (%) Top-5 (%) Top-8 (%) SGMε

PFN-v2 5.02 0.864 0.947 26.9 59.1 72.0 80.6 0.104
xRFM 8.75 0.856 0.893 7.53 29.0 49.5 63.4 0.111
ModernNCA 10.3 0.856 0.886 11.8 22.6 31.2 50.5 0.111
CatBoost 10.3 0.845 0.867 4.30 23.7 34.4 54.8 0.119
LightGBM 10.4 0.845 0.869 7.53 18.3 35.5 54.8 0.119
TabR 10.5 0.851 0.873 4.30 17.2 30.1 43.0 0.116
XGBoost 11.4 0.844 0.851 5.38 18.3 35.5 49.5 0.120
RealMLP 11.7 0.850 0.864 1.08 7.53 18.3 35.5 0.116
FTT 13.3 0.836 0.813 1.08 6.45 17.2 32.3 0.124
MLP-PLR 14.2 0.838 0.817 0.0 3.23 11.8 29.0 0.124
RandomForest 14.3 0.836 0.824 3.23 10.8 19.4 33.3 0.129
AutoInt 15.2 0.834 0.803 0.0 3.23 5.38 16.1 0.129
Tangos 15.4 0.834 0.800 0.0 3.23 7.53 16.1 0.131
DCN2 15.5 0.839 0.816 1.08 2.15 9.68 21.5 0.127
Laplace KRR 15.7 0.836 0.801 1.08 16.1 20.4 26.9 0.133
MLP 16.0 0.836 0.797 1.08 3.23 8.60 17.2 0.132
ResNet 16.1 0.839 0.811 1.08 3.23 8.60 19.4 0.129
TabCaps 16.2 0.835 0.804 1.08 3.23 5.38 14.0 0.130
Excelformer 16.6 0.830 0.778 0.0 1.08 7.53 16.1 0.131
SNN 16.6 0.836 0.800 1.08 3.23 4.30 7.53 0.129
Node 17.0 0.824 0.757 0.0 5.38 15.1 25.8 0.137
PTARL 17.0 0.830 0.780 0.0 1.08 3.23 8.60 0.134
Danets 18.0 0.829 0.759 0.0 3.23 6.45 14.0 0.137
TabTransformer 19.7 0.820 0.715 1.08 1.08 6.45 12.9 0.148
LogReg 20.1 0.819 0.723 3.23 9.68 12.9 17.2 0.146
kNN 20.8 0.811 0.677 5.38 10.8 14.0 18.3 0.158
SVM 21.6 0.816 0.698 2.15 3.23 6.45 10.8 0.150
GrowNet 22.2 0.817 0.714 0.0 0.0 0.0 2.15 0.151
SwitchTab 24.0 0.809 0.675 0.0 0.0 0.0 0.0 0.156
TabNet 25.8 0.802 0.633 0.0 0.0 0.0 1.08 0.157
NaiveBayes 28.6 0.695 0.281 1.08 2.15 3.23 4.30 0.253
NCM 29.9 0.723 0.230 0.0 0.0 0.0 2.15 0.257

Table C.5: Full TALENT Binary classification (≤ 10, 000 samples) results. Rank is the average rank among
the ordered methods over all datasets. (Normalized) Score is the metric we use to compare methods in
Figure 2. In this case score is the mean classification accuracy (1 minus the error in Figure 2). Top-X (%)
is the percentage of datasets for which that method is in the top X ranks. The final column is the shifted
geometric mean error (SGMε).

Dataset xRFM XGB CatBoost LGBM RealMLP MLP-PLR MLP-RTDL ResNet-RTDL
Airlines DepDelay 10M 0.9818 0.9813 0.9796 0.9798 0.9786 0.9795 0.9824 0.9818
Allstate Claims Severity 0.6489 0.6547 0.6510 0.6530 0.6495 0.6537 0.6557 0.6537
black friday 0.6881 0.6807 0.6792 0.6787 0.6859 0.6862 0.6929 0.6892
Buzzinsocialmedia Twitter 0.2080 0.2134 0.3147 0.2789 0.2566 0.2553 0.2840 0.2906
nyc-taxi-green-dec-2016 0.5834 0.6649 0.6567 0.6489 0.6142 0.6523 0.6657 0.6365
wave energy 0.0020 0.0918 0.0499 0.0821 0.0024 0.0073 0.0254 0.0434
Yolanda 0.7816 0.8012 0.8094 0.7970 0.7869 0.7897 0.7927 0.7856

Table C.6: Meta-test regression datasets with more than 70,000 samples. Error reported is nRMSE averaged
over five train/test splits using pytabkit.
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Dataset xRFM XGB CatBoost LGBM RealMLP MLP-PLR MLP-RTDL ResNet-RTDL
airlines 0.3341 0.3292 0.3315 0.3287 0.3344 0.3342 0.3342 0.3339
covertype 0.0257 0.0420 0.0612 0.0333 0.0280 0.0364 0.0404 0.0385
Higgs 0.2640 0.2576 0.2576 0.2549 0.2473 0.2528 0.2515 0.2435
jannis 0.2701 0.2799 0.2816 0.2779 0.2702 0.2764 0.2865 0.2795
MiniBooNE 0.0539 0.0529 0.0538 0.0525 0.0484 0.0504 0.0503 0.0488
numerai28.6 0.4778 0.4812 0.4790 0.4782 0.4800 0.4775 0.4771 0.4800
porto-seguro 0.0380 0.0380 0.0381 0.0381 0.0380 0.0380 0.0380 0.0380
dionis 0.0926 0.1219 0.1041 0.1076 0.0887 0.1257 0.1110 0.0907
Fashion-MNIST 0.0889 0.0928 0.0969 0.0895 0.0913 0.1064 0.1041 0.1011
kick 0.0972 0.0965 0.0956 0.0964 0.0976 0.0978 0.0979 0.0970

Table C.7: Meta-test classification datasets with greater than 70,000 samples. Error reported is classification
error averaged over five train/test splits using pytabkit.
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Model Elo (↑) Norm. Avg. Harm. #wins (↑) Improva- Train time Predict time
score (↑) rank (↓) mean bility (↓) per 1K [s] per 1K [s]

rank (↓)

AutoGluon 1.3 (4h) 1779 0.673 5.2 3.2 1 3.6% 1734.20 7.06
RealMLP (T+E) 1721 0.660 6.6 5.4 0 3.1% 6860.54 7.68
ModernNCA (T+E) 1626 0.622 9.2 2.6 3 5.4% 3811.43 7.58
LightGBM (T+E) 1602 0.478 10.1 7.5 0 6.0% 686.46 5.48
TabDPT (D) 1575 0.515 10.9 3.8 2 3.9% 16.97 8.70
xRFM (T+E) 1563 0.492 11.5 5.3 1 5.1% 365.57 0.72
CatBoost (T+E) 1558 0.435 11.8 8.9 0 5.7% 2895.38 1.32
TabM (T+E) 1529 0.439 12.8 8.5 0 4.3% 4228.53 1.19
CatBoost (T) 1515 0.406 13.3 6.8 0 5.9% 2895.38 0.07
xRFM (T) 1504 0.406 13.8 9.7 0 5.7% 365.57 0.09
LightGBM (T) 1498 0.354 13.9 10.2 0 6.8% 686.46 0.74
XGBoost (T+E) 1470 0.328 15.2 13.9 0 6.7% 848.99 2.38
XGBoost (T) 1470 0.325 15.2 13.3 0 6.7% 848.99 0.47
ModernNCA (D) 1457 0.323 15.6 11.0 0 8.1% 16.07 0.29
TabM (T) 1453 0.311 16.0 12.6 0 5.2% 4228.53 0.13
RealMLP (T) 1439 0.306 16.6 13.3 0 5.9% 6860.54 0.32
CatBoost (D) 1419 0.278 17.4 12.0 0 7.9% 8.35 0.09
ModernNCA (T) 1411 0.347 17.6 6.7 0 7.9% 3811.43 0.45
TabPFNv2 (T+E) 1377 0.410 19.1 2.7 4 4.9% 3805.62 10.41
TabM (D) 1361 0.232 20.1 16.5 0 6.9% 13.90 0.12
TabPFNv2 (T) 1314 0.281 22.1 6.9 0 6.4% 3805.62 0.26
TorchMLP (T+E) 1301 0.141 22.7 19.1 0 8.1% 4452.11 0.85
ExtraTrees (T+E) 1297 0.169 23.1 16.9 0 11.1% 161.73 0.78
RealMLP (D) 1274 0.085 24.0 21.6 0 8.2% 23.30 1.44
ExtraTrees (T) 1273 0.174 24.0 16.7 0 11.4% 161.73 0.12
TabPFNv2 (D) 1264 0.262 24.3 7.7 0 7.6% 2.78 0.32
TorchMLP (T) 1245 0.124 25.2 20.8 0 8.7% 4452.11 0.09
xRFM (D) 1236 0.149 25.8 8.6 1 11.7% 1.65 0.08
LightGBM (D) 1231 0.069 25.9 24.5 0 9.7% 2.03 0.30
XGBoost (D) 1195 0.104 27.4 24.5 0 10.4% 2.15 0.18
RandomForest (T+E) 1193 0.056 27.5 25.5 0 12.1% 526.17 0.77
RandomForest (T) 1142 0.046 29.9 27.5 0 12.8% 526.17 0.12
EBM (T+E) 1133 0.122 30.0 16.4 0 14.7% 2124.78 0.12
ExtraTrees (D) 1117 0.056 30.6 27.7 0 13.0% 0.42 0.06
FastaiMLP (T+E) 1086 0.005 31.8 30.6 0 13.1% 527.21 2.83
EBM (T) 1076 0.131 32.2 9.4 1 15.3% 2124.78 0.01
TorchMLP (D) 1075 0.015 32.4 30.3 0 12.9% 20.50 0.08
FastaiMLP (T) 1046 0.000 33.3 32.3 0 13.6% 527.21 0.31
EBM (D) 1009 0.071 34.7 30.3 0 16.0% 7.25 0.04
TabICL (D) 1006 0.000 34.8 34.2 0 14.2% 0.63 0.06
RandomForest (D) 1000 0.000 34.8 34.2 0 14.2% 0.63 0.06
FastaiMLP (D) 916 0.000 37.2 36.5 0 17.8% 3.08 0.29
KNN (T+E) 533 0.000 43.8 43.6 0 37.3% 2.25 0.15
Linear (T+E) 485 0.000 44.3 44.2 0 35.5% 46.50 0.14
KNN (T) 434 0.000 44.9 44.7 0 38.0% 2.25 0.03
Linear (T) 426 0.000 44.9 44.8 0 35.7% 46.50 0.04
Linear (D) 312 0.000 46.0 46.0 0 38.1% 1.16 0.08
KNN (D) 263 0.000 46.5 46.2 0 41.6% 0.04 0.02

Table C.8: Full regression results on TabArena-Lite.
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Model Elo (↑) Norm. Avg. Harm. #wins (↑) Improva- Train time Predict time
score (↑) rank (↓) mean bility (↓) per 1K [s] per 1K [s]

rank (↓)

AutoGluon 1.3 (4h) 1521 0.586 9.0 3.0 2 9.7% 4917.81 4.05
CatBoost (T) 1441 0.439 12.5 9.6 0 11.9% 3307.58 0.14
CatBoost (T+E) 1441 0.446 12.4 9.4 0 11.1% 3307.58 1.18
TabPFNv2 (T+E) 1419 0.518 13.5 4.2 1 13.8% 2584.13 12.37
LightGBM (T+E) 1418 0.393 13.2 7.5 0 13.6% 1280.01 4.08
LightGBM (T) 1405 0.381 13.9 6.9 0 13.6% 1280.01 1.05
TabM (T+E) 1387 0.405 14.8 9.7 0 15.7% 5568.31 1.78
XGBoost (T+E) 1377 0.310 15.2 13.3 0 14.0% 2029.77 4.11
TabM (T) 1373 0.401 15.5 9.1 0 16.0% 5568.31 0.37
XGBoost (T) 1373 0.317 15.6 13.1 0 13.7% 2029.77 1.04
RealMLP (T+E) 1359 0.337 16.2 5.3 1 16.8% 6866.35 10.40
TabPFNv2 (D) 1358 0.361 16.4 4.7 1 12.5% 5.48 0.35
xRFM (T+E) 1357 0.369 16.2 7.0 0 14.8% 515.01 1.68
TabPFNv2 (T) 1346 0.366 17.0 6.5 0 14.9% 2584.13 0.41
ModernNCA (T+E) 1345 0.302 16.9 10.4 0 15.3% 6684.65 9.59
ModernNCA (T) 1332 0.248 17.8 12.4 0 15.6% 6684.65 0.75
RealMLP (T) 1304 0.253 19.1 15.5 0 18.4% 6866.35 0.92
CatBoost (D) 1296 0.201 19.2 16.9 0 16.1% 43.10 0.25
TabICL (D) 1293 0.325 19.9 4.5 1 20.5% 11.51 1.95
TabM (D) 1293 0.284 19.9 9.4 0 19.7% 17.09 0.15
ExtraTrees (T+E) 1286 0.289 20.2 11.0 0 17.7% 728.32 2.44
xRFM (T) 1283 0.273 20.4 5.2 1 16.4% 515.01 0.20
ExtraTrees (T) 1265 0.262 21.2 11.2 0 17.3% 728.32 0.36
RandomForest (T+E) 1260 0.321 20.9 6.1 0 15.9% 729.17 1.83
TorchMLP (T+E) 1260 0.188 21.2 17.5 0 19.6% 3646.83 2.16
TorchMLP (T) 1218 0.156 23.9 17.8 0 21.6% 3646.83 0.19
RandomForest (T) 1190 0.241 24.9 12.1 0 17.6% 729.17 0.33
XGBoost (D) 1188 0.102 24.9 21.5 0 18.1% 4.93 0.59
TabDPT (D) 1186 0.259 25.2 4.7 1 23.3% 33.52 20.75
FastaiMLP (T+E) 1182 0.205 25.2 12.1 0 24.2% 2721.87 12.59
LightGBM (D) 1180 0.158 25.4 19.6 0 21.3% 5.12 0.44
EBM (T+E) 1168 0.166 26.0 17.1 0 24.6% 1471.12 0.27
EBM (T) 1144 0.160 27.4 19.0 0 24.9% 1471.12 0.03
xRFM (D) 1129 0.094 28.4 22.1 0 23.9% 2.22 0.20
ModernNCA (D) 1110 0.051 29.1 26.8 0 25.9% 17.24 0.57
FastaiMLP (T) 1100 0.104 29.6 20.3 0 25.8% 2721.87 1.08
RealMLP (D) 1049 0.071 32.0 24.5 0 26.3% 26.02 4.18
EBM (D) 1046 0.095 32.0 24.3 0 27.7% 6.16 0.08
RandomForest (D) 1000 0.000 33.9 32.0 0 33.3% 0.74 0.15
TorchMLP (D) 972 0.004 35.0 33.6 0 28.5% 14.37 0.36
FastaiMLP (D) 952 0.038 35.9 31.9 0 33.4% 8.37 0.66
ExtraTrees (D) 862 0.013 38.6 35.1 0 39.1% 0.76 0.15
Linear (T+E) 752 0.000 41.8 41.5 0 45.6% 170.51 0.20
Linear (T) 718 0.000 42.3 41.9 0 45.8% 170.51 0.13
KNN (T+E) 714 0.000 42.4 41.0 0 52.5% 2.99 0.17
Linear (D) 689 0.000 42.9 42.7 0 46.9% 3.89 0.16
KNN (D) 544 0.000 45.4 45.1 0 69.5% 0.33 0.05
KNN (T) 541 0.000 45.6 45.5 0 58.3% 2.99 0.06

Table C.9: Full multiclass results on TabArena-Lite.
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Model Elo (↑) Norm. Avg. Harm. #wins (↑) Improva- Train time Predict time
score (↑) rank (↓) mean bility (↓) per 1K [s] per 1K [s]

rank (↓)

AutoGluon 1.3 (4h) 1779 0.673 5.2 3.2 1 3.6% 1734.20 7.06
RealMLP (T+E) 1721 0.660 6.6 5.4 0 3.1% 6860.54 7.68
ModernNCA (T+E) 1626 0.622 9.2 2.6 3 5.4% 3811.43 7.58
LightGBM (T+E) 1602 0.478 10.1 7.5 0 6.0% 686.46 5.48
TabDPT (D) 1575 0.515 10.9 3.8 2 3.9% 16.97 8.70
xRFM (T+E) 1563 0.492 11.5 5.3 1 5.1% 365.57 0.72
CatBoost (T+E) 1558 0.435 11.8 8.9 0 5.7% 2895.38 1.32
TabM (T+E) 1529 0.439 12.8 8.5 0 4.3% 4228.53 1.19
CatBoost (T) 1515 0.406 13.3 6.8 0 5.9% 2895.38 0.07
xRFM (T) 1504 0.406 13.8 9.7 0 5.7% 365.57 0.09
LightGBM (T) 1498 0.354 13.9 10.2 0 6.8% 686.46 0.74
XGBoost (T+E) 1470 0.328 15.2 13.9 0 6.7% 848.99 2.38
XGBoost (T) 1470 0.325 15.2 13.3 0 6.7% 848.99 0.47
ModernNCA (D) 1457 0.323 15.6 11.0 0 8.1% 16.07 0.29
TabM (T) 1453 0.311 16.0 12.6 0 5.2% 4228.53 0.13
RealMLP (T) 1439 0.306 16.6 13.3 0 5.9% 6860.54 0.32
CatBoost (D) 1419 0.278 17.4 12.0 0 7.9% 8.35 0.09
ModernNCA (T) 1411 0.347 17.6 6.7 0 7.9% 3811.43 0.45
TabPFNv2 (T+E) 1377 0.410 19.1 2.7 4 4.9% 3805.62 10.41
TabM (D) 1361 0.232 20.1 16.5 0 6.9% 13.90 0.12
TabPFNv2 (T) 1314 0.281 22.1 6.9 0 6.4% 3805.62 0.26
TorchMLP (T+E) 1301 0.141 22.7 19.1 0 8.1% 4452.11 0.85
ExtraTrees (T+E) 1297 0.169 23.1 16.9 0 11.1% 161.73 0.78
RealMLP (D) 1274 0.085 24.0 21.6 0 8.2% 23.30 1.44
ExtraTrees (T) 1273 0.174 24.0 16.7 0 11.4% 161.73 0.12
TabPFNv2 (D) 1264 0.262 24.3 7.7 0 7.6% 2.78 0.32
TorchMLP (T) 1245 0.124 25.2 20.8 0 8.7% 4452.11 0.09
xRFM (D) 1236 0.149 25.8 8.6 1 11.7% 1.65 0.08
LightGBM (D) 1231 0.069 25.9 24.5 0 9.7% 2.03 0.30
XGBoost (D) 1195 0.104 27.4 24.5 0 10.4% 2.15 0.18
RandomForest (T+E) 1193 0.056 27.5 25.5 0 12.1% 526.17 0.77
RandomForest (T) 1142 0.046 29.9 27.5 0 12.8% 526.17 0.12
EBM (T+E) 1133 0.122 30.0 16.4 0 14.7% 2124.78 0.12
ExtraTrees (D) 1117 0.056 30.6 27.7 0 13.0% 0.42 0.06
FastaiMLP (T+E) 1086 0.005 31.8 30.6 0 13.1% 527.21 2.83
EBM (T) 1076 0.131 32.2 9.4 1 15.3% 2124.78 0.01
TorchMLP (D) 1075 0.015 32.4 30.3 0 12.9% 20.50 0.08
FastaiMLP (T) 1046 0.000 33.3 32.3 0 13.6% 527.21 0.31
EBM (D) 1009 0.071 34.7 30.3 0 16.0% 7.25 0.04
TabICL (D) 1006 0.000 34.8 34.2 0 14.2% 0.63 0.06
RandomForest (D) 1000 0.000 34.8 34.2 0 14.2% 0.63 0.06
FastaiMLP (D) 916 0.000 37.2 36.5 0 17.8% 3.08 0.29
KNN (T+E) 533 0.000 43.8 43.6 0 37.3% 2.25 0.15
Linear (T+E) 485 0.000 44.3 44.2 0 35.5% 46.50 0.14
KNN (T) 434 0.000 44.9 44.7 0 38.0% 2.25 0.03
Linear (T) 426 0.000 44.9 44.8 0 35.7% 46.50 0.04
Linear (D) 312 0.000 46.0 46.0 0 38.1% 1.16 0.08
KNN (D) 263 0.000 46.5 46.2 0 41.6% 0.04 0.02

Table C.10: Full binary classification results on TabArena.
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Figure C.1: Runtime comparison as a function of the number of training samples on the covertype dataset.
Here, L1 kernel refers to the Lp

p kernel.

f(x) =

⎧
⎨
⎩

|x0| (x1 + x3 + x5), x0 > 0

−|x0| (x9 + x11 + x13), otherwise

Task:

AGOP matrices:
Leaf	1	AGOP Leaf	2	AGOP

x ∼ Normal(0, I);

Figure C.2: Training xRFM on synthetic data where splitting on the top AGOP direction enables xRFM to
learn locally relevant features.
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