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Abstract

Summarizing long stories is a challenging task001
due to their narrative complexity and the con-002
text length limits of language models. We pro-003
pose a method that integrates knowledge graph004
retrieval with the summarization process to pro-005
vide global context. We construct a knowledge006
graph containing entity descriptions and rela-007
tions from the entire story, then retrieve rele-008
vant information from it to aid summary gen-009
eration. Additionally, we propose a novel met-010
ric, KGScore, which evaluates summaries by011
comparing the similarity of knowledge graphs012
extracted from generated and reference sum-013
maries. Experimental results demonstrate that014
our knowledge graph retrieval method outper-015
forms the baselines in terms of our KGScore016
metric and that KGScore is a reliable measure017
of factual consistency.018

1 Introduction019

Language models based on the transformer archi-020

tecture (Vaswani et al., 2017) have been success-021

fully trained to summarize short texts (Liu and022

Lapata, 2019; Zhang et al., 2020a, 2022a). How-023

ever, understanding and summarizing longer docu-024

ments, such as entire books, remains a challenge,025

largely due to the context length limit imposed by026

the quadratic complexity of the attention mecha-027

nism (Cao and Wang, 2023). Furthermore, stories028

pose unique problems as their summaries are highly029

abstractive in nature and require the navigation of030

a mix of narration and dialogue, with complex de-031

pendencies interspersed throughout the text (Kryś-032

ciński et al., 2021). The difficulty is amplified033

by the fact that narrative texts often employ the034

technique of “show, don’t tell”: instead of explicit035

descriptions or stating of facts, the author relies on036

implicit information conveyed through dialogue or037

character actions. As a result, long stories, with038

their dual hurdles of extensive length and narrative039

intricacy, present a particularly daunting task for040

summarization. 041

Previous research on the topic ranges from 042

divide-and-conquer strategies that produce a sum- 043

mary of summaries from split-up story seg- 044

ments (Wu et al., 2021; Kashyap, 2022), to ap- 045

proaches that generate an abstractive summary of 046

extractive samples (Hardy et al., 2022). The ability 047

of these methods to produce factually consistent 048

summaries is limited by the lack of a global con- 049

text. 050

We propose the use of knowledge graphs to 051

address this issue. Knowledge graphs represent 052

descriptions of entities and relationships between 053

them in a structured form and have been used to 054

successfully improve performance on a variety of 055

natural language generation tasks (Fan et al., 2019; 056

Andrus et al., 2022). We frame the problem as 057

a chapter summarization task, where the model is 058

given the chapter text and a knowledge graph of the 059

entire book. The model retrieves information from 060

the knowledge graph to augment its understanding 061

of the story and generate a chapter summary. 062

To generate the knowledge graph, we split the 063

book text into small chunks and instruct a large lan- 064

guage model to identify named entities in the text, 065

which become the nodes of the graph. We then 066

extract the graph edges by prompting the model to 067

generate entity descriptions and relations. We addi- 068

tionally follow a series of steps to ensure that the 069

information in the knowledge graph is accurate and 070

relevant. During summarization, the knowledge 071

graph edges are ranked based on their semantic 072

similarity to a set of keywords, then retrieved and 073

prepended to the chapter text in linearized form to 074

be given to the summarization model. 075

We also propose a new metric for evaluating gen- 076

erated summaries, which we name KGScore. It is 077

designed to address the limitations of existing met- 078

rics in evaluating factual consistency. The metric 079

computes precision, recall, and F1 scores based on 080

the cosine similarity of knowledge graph edge em- 081
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beddings extracted from generated and reference082

summaries.083

We evaluate the effectiveness of our approach084

through experiments on the BookSum Chapters085

dataset (Kryściński et al., 2021), which contains086

chapter texts and their summaries. We find that our087

proposed method outperforms the baseline in terms088

of our KGScore metric. Through an additional089

experiment, we also verify that KGScore is a valid090

measure of factuality.091

2 Related Work092

2.1 Long Document Summarization093

Summarizing long documents using transformer-094

based language models is challenging because of095

the quadratic computational and memory require-096

ments. Existing approaches to overcoming this097

problem can be broadly classified into three cate-098

gories: divide and conquer, efficient attention, and099

extractive-abstractive summarization.100

The divide-and-conquer strategy breaks down101

the task of summarizing a long document into102

smaller tasks of summarizing short sections of the103

document that can fit into a language model’s con-104

text. Summaries for each section are combined to105

produce the summary for the full document (Gid-106

iotis and Tsoumakas, 2020; Zhang et al., 2022b).107

This segmentation can result in reduced coherence108

due to a lack of global context. To address this109

problem, Cao and Wang (2023) introduce an exter-110

nal memory mechanism. Pang et al. (2023) propose111

a variant form of divide and conquer, where they112

combine a bottom-up pass using local self-attention113

on chunks of text with a top-down correction step114

to capture long-range dependencies.115

There have also been efforts to improve the at-116

tention mechanism itself instead of working around117

its limitations, reducing the time and memory com-118

plexities to subquadratic levels for long sequences.119

This makes it feasible to fit long inputs into the120

model (Huang et al., 2021). On top of this, Phang121

et al. (2022) incorporate a pretraining step on long122

texts to further improve performance.123

Extractive-abstractive summarization is a group124

of methods consisting of two steps: extracting rele-125

vant parts of the input document, then using a lan-126

guage model to generate an abstractive summary127

from the extracted snippets (Pilault et al., 2020;128

Zhao et al., 2020). Large language models such as129

OpenAI’s ChatGPT have been used for the abstrac-130

tive step (Lu et al., 2023).131

Solutions for the more specific problem of sum- 132

marizing long stories have also been explored. Wu 133

et al. (2021) and Kashyap (2022) use techniques 134

based on divide and conquer, while Hardy et al. 135

(2022) propose an extractive-abstractive approach. 136

Our method can be considered a form of divide and 137

conquer; we additionally incorporate knowledge 138

graphs as a way of providing global context. 139

2.2 Knowledge Graphs for Text Generation 140

Knowledge graphs can be used with text-generation 141

tasks to supplement models with additional infor- 142

mation. Here, we discuss knowledge graphs ex- 143

tracted on the fly from input documents. Prior 144

research, such as ASGARD (Huang et al., 2020), 145

typically employs graph attention to encode the 146

graph data (Zhu et al., 2021; Chen et al., 2023). 147

They focus on tasks that involve synthesizing infor- 148

mation from multiple documents (Fan et al., 2019), 149

including the summarization of multiple news arti- 150

cles (Lakshika et al., 2020). 151

The application of these methods has largely 152

been confined to factual content, such as news arti- 153

cles or academic papers, and not stories. While the 154

Stanford OpenIE system (Angeli et al., 2015) is a 155

popular choice for extracting relational data from 156

documents to construct knowledge graphs, rule- 157

based systems like this often struggle to generate 158

meaningful knowledge graphs from narrative texts. 159

Andrus et al. (2022) do use the OpenIE system for 160

story completion and question answering tasks, but 161

integrate it with GPT-3 (Brown et al., 2020). In our 162

approach, we forgo the OpenIE system entirely, di- 163

rectly using a large language model for knowledge 164

graph construction. 165

2.3 Metrics for Summarization Evaluation 166

One of the most commonly used metrics for eval- 167

uating summaries is ROUGE (Lin, 2004), which 168

measures the overlap of n-grams between gener- 169

ated and reference summaries. BERTScore (Zhang 170

et al., 2020b) is another widely-used metric and 171

involves computing the similarity of contextual em- 172

beddings. Many of these existing metrics have been 173

shown to correlate poorly with human judgments 174

of quality (Novikova et al., 2017), especially for 175

assessing factuality (Maynez et al., 2020). 176

Methods have been proposed to evaluate the fac- 177

tual consistency of generated summaries (Kryscin- 178

ski et al., 2020; Xie et al., 2021), including QuestE- 179

val (Scialom et al., 2021), which uses question gen- 180

eration and answering for this purpose. However, 181
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these methods are often impractical to use with182

long documents as they involve the use of models183

with limited context sizes. Our proposed metric184

bypasses this limitation by adopting a source-free185

approach that compares the generated summary186

with the reference summary instead of the original187

document.188

Some recent metrics make use of large language189

models such as ChatGPT and GPT-4 (OpenAI,190

2023), guiding a model through prompts to pro-191

duce evaluations (Gao et al., 2023; Liu et al., 2023).192

While our metric also incorporates a large language193

model as part of the process, we do not rely on it194

fully; its use is limited to the knowledge graph195

extraction step.196

Metrics specifically targeting summaries of long197

documents, including long stories, have also been198

proposed. LongDocFACTScore (Bishop et al.,199

2023) is a framework that enables the exten-200

sion of any preexisting metric to accommodate201

long documents. SNaC (Goyal et al., 2022)202

and BooookScore (Chang et al., 2023) are both203

reference-free and source-free metrics that identify204

errors by focusing exclusively on the content of205

the generated summaries. Our metric is source-206

free but not reference-free; it compares predicted207

summaries with reference summaries.208

3 Methods209

3.1 Chapter Summarization Task210

The task is formulated as follows. Given the full211

text of a book B = {C1, C2, . . . , Cn} consisting of212

n chapters, and a chapter index k (1 ≤ k ≤ n),213

the model M must learn to generate the chapter214

summary Yk corresponding to the chapter text Ck:215

M : (B, k) → Yk (1 ≤ k ≤ n) (1)216

The model may utilize information from all parts217

of the book as needed. However, we assume that218

the full book text is too long to be given to the219

model as input in its original form, while individual220

chapters are not. This task can be considered the221

first half of a divide-and-conquer approach, where222

the chapters are segments of the book that can fit223

into the model’s context size. The second half of224

the process would be to combine the generated225

summaries for each chapter into a summary for the226

full book, but we do not focus on that part here.227

3.2 Summarization with Knowledge Graph 228

Retrieval 229

In our method, we generate a knowledge graph con- 230

taining information from the entire book text. Each 231

node in the graph represents a named entity in the 232

story, such as a character, organization, or location, 233

and each directed edge represents a <subject, pred- 234

icate, object> triple (e.g., <Romeo, is in love with, 235

Juliet>), where the source node and target node 236

correspond to the subject and object, respectively. 237

As an exception, in self-loops (i.e., edges with the 238

same source and target node), the object is ignored 239

and the edge represents a <subject, predicate> pair 240

(an entity description or an action with no object; 241

e.g., <Romeo, is in love>). Multiple edges with 242

different predicates can exist between a single (sub- 243

ject, object) pair. Figure 1a shows an example of a 244

generated knowledge graph. 245

During training and inference, we retrieve infor- 246

mation from the knowledge graph and provide it to 247

the summarization model along with the full chap- 248

ter text. This additional information acts as global 249

context that is lacking when only the chapter text 250

is provided. For example, if a character that was 251

introduced in a previous chapter reappears in the 252

current chapter, it could be difficult for the model 253

to determine the identity of the character by only 254

examining the current chapter. Information from 255

previous chapters would be helpful global context 256

that helps the model “remember” who the charac- 257

ter was, and any details about the character in the 258

generated summary would be more likely to be 259

correct. 260

3.3 Book Knowledge Graph Generation 261

Knowledge Extraction We use a large language 262

model to extract the knowledge graph nodes and 263

edges from the book text. We split the text at para- 264

graph boundaries so that each segment, when in- 265

serted into the prompt, fits into the model’s con- 266

text size. The prompt begins with an instruction 267

to identify named entities and knowledge graph 268

edges. This is followed by an example containing 269

a story excerpt and lists of corresponding entities 270

and edges. Finally, the book segment of interest 271

is given as the task for the model. The complete 272

prompt can be found in Appendix E. For our exper- 273

iments, we use OpenAI’s gpt-3.5-turbo-0613 274

model. 275

Names Graph Before building the knowledge 276

graph, we parse the named entities from the model 277
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Romeo

Juliet

Old Capulet
Capulet

enters orchard of (7)

attending party in disguise (5)

wealthy (2)

daughter of (3)father of (16)

falling in love with (5)

gives ring to (13)

received a ring from (14)

attending party (5)

hosting a party (5)

(a) Knowledge graph.

<subject>Romeo
<predicate>attending party in disguise

<object>Juliet
<predicate>falling in love with
<predicate>received a ring from

<object>Capulet
<predicate>enters orchard of

<subject>Juliet
<predicate>attending party

<object>Romeo
<predicate>gives ring to

<object>Capulet
<predicate>daughter of

<subject>Capulet
<predicate>hosting a party
<predicate>wealthy

<object>Juliet
<predicate>father of

(b) Linearized knowledge graph.

Figure 1: (a) Part of a knowledge graph generated from William Shakespeare’s Romeo and Juliet, with three named
entities. “Old Capulet/Capulet” is a single entity with two names. The numbers in parentheses following the
predicates are chapter numbers. (b) The same graph in linearized form.

responses to generate a names graph. The model re-278

turns a list of names (aliases or name variations) for279

each entity that appears in a given story segment.280

The purpose of the names graph is to consolidate281

this information and keep track of names that re-282

fer to the same entity over the span of the entire283

book. For example, names A and B could be iden-284

tified as aliases of an entity in one section of the285

book, while the same is done for names B and C in286

a different section; the names graph will indicate287

that names A, B, and C are all names of the same288

entity. A node is created for each distinct name,289

and undirected edges are created between nodes290

that represent names of the same entity. By repeat-291

ing this process, we obtain a graph of all identified292

names in the book. If two nodes are connected (i.e.,293

there exists a path of edges between them), their294

names refer to the same entity.295

Knowledge Graph Initialization We initialize the296

knowledge graph by giving each name in the names297

graph its own node in the knowledge graph, regard-298

less of whether they belong to the same entity. We299

parse the knowledge graph edges from the model300

responses and perform a processing step to ensure301

that both the subject and object are named entities.302

If there is no object, we repeat the subject as the303

object to create a self-loop. Each processed edge304

is added to the knowledge graph as a directed edge305

from the subject node to the object node.306

Node Merging At this point, the knowledge graph307

may contain multiple nodes representing the same308

entity under different names. In this step, we merge 309

these nodes into one node to obtain a graph with 310

one node per entity, with each node having a list 311

of names for its entity. For each edge in the names 312

graph (connecting two names that refer to a single 313

entity), we identify the nodes in the knowledge 314

graph that contain the names that the edge connects. 315

If the names belong to two different nodes, we 316

merge the nodes by combining their name lists and 317

transferring the edges of one node to the other. 318

One problem is that the names graph occasion- 319

ally contains incorrect connections (i.e., edges be- 320

tween names of distinct entities). We employ two 321

heuristics to prevent the merging of entity nodes 322

when this occurs. First, if the two nodes have an 323

edge between them (representing a <subject, predi- 324

cate, object> triple), we do not merge the nodes. It 325

is unlikely that a triple would have the same entity 326

as the subject and object while also referring to it 327

using different names. Second, we check the de- 328

gree (the number of edges entering or leaving the 329

node) of each of the two nodes, excluding any self- 330

loops from the count. We do not merge the nodes 331

if both edge counts exceed a maximum threshold 332

value. The reasoning is that if both nodes have a 333

high degree, they are both important entities and 334

are likely to be different. In our experiments, we 335

set the threshold to 3. 336

Node Removal The final step is to remove nodes 337

in the knowledge graph with a degree that is less 338

than a minimum threshold value (excluding self- 339

loops). This ensures that only the most relevant 340
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entities remain in the graph. This can also eliminate341

erroneously identified entities. The removal of a342

node and its edges can affect the edge counts of343

other nodes, so we repeat the process of counting344

and removing until no more nodes are removed.345

We use a minimum degree of 2 in our experiments.346

3.4 Knowledge Graph Edge Retrieval347

Edge Ranking Instead of providing the entire348

knowledge graph to the model with the chapter349

text, we retrieve a subset of the graph that would350

be the most helpful for generating a summary. We351

experimentally select a set of keywords and corre-352

sponding weights to score and rank the knowledge353

graph edges. Each keyword is designed to focus354

on an important narrative aspect, such as charac-355

ter relationships (with the “relation” keyword) and356

events (“happen”). The full set of keywords and357

weights can be found in Appendix A.358

For a book knowledge graph G and the set of359

nodes Nk of entities mentioned in the current chap-360

ter text Ck, we obtain the induced subgraph G[Nk]361

that only contains the nodes in Nk and edges be-362

tween them. We further judge that future informa-363

tion is mostly unnecessary for generating a chapter364

summary and remove edges from G[Nk] that were365

extracted from later in the story than the current366

chapter. We define the remaining set of edges as367

Ek.368

We use Sentence-BERT (Reimers and Gurevych,369

2019) to compute similarity scores between embed-370

dings for each keyword in the set of keywords Q371

and the predicate portion of each <subject, predi-372

cate, object> edge in Ek. Let sij = cos_sim(pi, qj)373

be the cosine similarity score between the embed-374

ding of the i-th predicate pi (1 ≤ i ≤ |Ek|) and the375

embedding of the j-th keyword qj (1 ≤ j ≤ |Q|).376

Then the normalized similarity score s̃ij is com-377

puted as:378

s̃ij =
sij − µj

σj
(2)379

where µj and σj are the mean and standard devia-380

tion, respectively, of the scores for the j-th keyword381

across all edges. This normalization is required to382

fairly weight the scores, as some keywords may383

have generally higher or lower scores than others.384

The weighted score Wij for each edge and keyword385

is then:386

Wij = s̃ij · wj (3)387

where wj is the weight associated with the j-th388

keyword. The final aggregated score Si for the i-th389

edge is the sum of its weighted scores across all 390

keywords: 391

Si =
∑
j

Wij (4) 392

This score is used to rank the edges in Ek. 393

Edge Linearization We provide the retrieved 394

knowledge graph edges to the summarization 395

model as a linearized string of text prepended be- 396

fore the chapter text. Starting from the highest- 397

ranked edge (i.e., the edge with the highest score), 398

we gather edges in Ek until the context length limit 399

is reached, taking into account the length of the 400

chapter text. We then arrange the gathered edges by 401

their subject entities so that edges with a common 402

subject are grouped together. In each group, we cat- 403

egorize the edges by their objects. Additionally, we 404

sort the subjects and objects by the total number of 405

appearances in the chapter text in decreasing order. 406

This puts entities important to the chapter near the 407

front of the linearized text. Self-loops, which are 408

treated as edges with no object, are placed before 409

other edges with the same subject. 410

The linearization format depends on the level 411

of access that is available for the summarization 412

model. For models that are able to be finetuned 413

for the task, we use a format that includes three 414

new special tokens: <subject>, <object>, and 415

<predicate>. The model is expected to learn the 416

meaning of these tokens during the finetuning pro- 417

cess. Each group of edges sharing a subject is 418

preceded by the <subject> token and the name of 419

the subject. If the entity has multiple names, the 420

name that appears the most frequently in the chap- 421

ter text is used. Inside each group, every new object 422

is marked by the <object> token and the object 423

name (again, the most commonly used name). This 424

part is omitted for edges with no object. Finally, a 425

<predicate> token and the predicate text are ap- 426

pended for each predicate. An example is shown in 427

Figure 1b. The input to the summarization model 428

is the string of linearized edges, followed by an ad- 429

ditional <chapter> special token and the chapter 430

text. 431

If the summarization model is one that must 432

be used without finetuning (e.g., a model that can 433

only be accessed through an inference API), the 434

linearization format simply consists of each edge 435

on its own line, with the subject, predicate, and 436

object separated by a single space and semicolon 437

(e.g., Juliet; gives ring to; Romeo); no ad- 438

ditional special tokens are used. The subjects and 439
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objects for each edge are always specified, even440

when they are the same as those in the previous441

edge. The intent is to present the edge information442

in a format that the model can understand without443

further training.444

3.5 Knowledge Graph Similarity Metric445

(KGScore)446

Existing metrics such as ROUGE and BERTScore447

may not be good measures of the quality of abstrac-448

tive summaries (Novikova et al., 2017), especially449

when it comes to factuality and faithfulness to the450

original text (Maynez et al., 2020). As we believe451

the main role of the knowledge graphs is to provide452

global context and enhance factual consistency, a453

metric that explicitly checks for adherence to es-454

tablished facts would be helpful for evaluating the455

effect of the knowledge graphs. For stories, many456

of these facts have to do with character descrip-457

tions, actions taken by characters, and relationships458

between them, all of which can be represented in a459

knowledge graph.460

We propose a novel metric that we call KGScore,461

which measures the quality of a summary by462

computing the similarity between two knowledge463

graphs. Let Gg and Gr represent knowledge graphs464

extracted from a generated and reference summary,465

respectively. They contain edges Eg and Er. For466

an edge eg ∈ Eg with subject seg and object oeg ,467

let Er,eg be the subset of edges in Er that have the468

same subject ser and object oer as eg:469

Er,eg = {er ∈ Er | ser = seg ∧ oer = oeg} (5)470

E′
g is the subset of edges in Eg for which Er,eg is471

not empty:472

E′
g = {eg ∈ Eg | Er,eg ̸= ∅} (6)473

Then the precision KGScore PKG is defined as fol-474

lows:475

PKG =
1

|Eg|
∑

eg∈E′
g

max
er∈Er,eg

cos_sim(peg , per)

(7)476

where cos_sim(peg , per) is the cosine similarity be-477

tween the embeddings of the predicates of eg and478

er. The precision score is roughly equivalent to479

a measure of the proportion of the information in480

the generated summary graph that also exists in481

the reference summary graph. For the recall score482

RKG, the direction is reversed: 483

RKG =
1

|Er|
∑

er∈E′
r

max
eg∈Eg,er

cos_sim(peg , per)

(8) 484

where Eg,er and E′
r are defined in the same way as 485

Er,eg and E′
g, but with the roles of the two graphs 486

swapped. Finally, the F1 score FKG is the harmonic 487

mean of the precision and recall scores: 488

FKG =
2 · PKG ·RKG

PKG +RKG
(9) 489

To generate the two knowledge graphs Gg and 490

Gr, we follow a process similar to the one for book 491

knowledge graph generation, with some modifica- 492

tions. Instead of using a single prompt and model to 493

identify both named entities and knowledge graph 494

edges, we split the process into two steps. 495

First, we use spaCy (Montani et al., 2023) to find 496

named entities in the reference summary (we use 497

version 3.7.3 of the en-core-web-trf pipeline). 498

This is faster than the previous approach of using 499

a large language model, but it is limited in that 500

it cannot identify aliases or name variations. We 501

consider this an acceptable compromise, as sum- 502

maries are generally short and it is unlikely that 503

multiple names are used for a single character. Con- 504

sequently, we skip the steps of generating a names 505

graph and merging nodes that represent the same 506

entity. 507

For the next part of the process, we opt for a 508

locally run model instead of an OpenAI model and 509

pair it with the Guidance library1 to constrain the 510

model output to text that can be parsed into valid 511

knowledge graph edges. This is to increase ac- 512

curacy and lower costs at the expense of longer 513

generation times. More specifically, we use Mix- 514

tral 8x7B (Jiang et al., 2024), a mixture-of-experts 515

model with 13 billion active parameters. The 516

prompt includes the named entities from the refer- 517

ence summary, as well as three few-shot examples 518

of extracting edges from summaries, formatted as 519

a multi-turn conversation. The full prompt is in 520

Appendix F. We use the same entities for both the 521

reference and generated summaries to maximize 522

the overlap between entities in the two sets of edges, 523

which is important for computing reliable KGScore 524

values. We omit the original final step of removing 525

nodes with few edges because the number of edges 526

is generally small for a summary. 527

1https://github.com/guidance-ai/guidance
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4 Experiments528

4.1 Dataset529

For our experiments, we choose the BookSum530

Chapters dataset (Kryściński et al., 2021), which531

contains chapter texts and their summaries from532

over 200 English-language books, including nov-533

els, plays, and short stories. We filter the dataset534

to improve its quality and better align it with our535

purposes, and we are left with 7255 examples in536

the training set and 1155 examples in the validation537

set; details are in Appendix B.538

4.2 Effectiveness of Knowledge Graph539

Retrieval540

To verify the effectiveness of our knowledge graph541

retrieval method, we finetune two LongT5 (Guo542

et al., 2022) models for summarization on the543

filtered BookSum Chapters dataset: a baseline544

model trained with only the chapter texts as in-545

put (LongT5-No-KG) and a model trained using546

our proposed method (LongT5-KG). Finetuning547

details and parameters are included in Appendix C.548

We additionally apply our method to OpenAI’s549

gpt-4-1106-preview model with no finetuning,550

using the simple edge linearization format as de-551

scribed in Section 3.4. We employ Chain of Den-552

sity (Adams et al., 2023), an iterative prompting553

technique that produces entity-dense summaries,554

to maximize the effect of the entity information555

contained in the knowledge graph edges. We label556

the baseline results without our knowledge graph557

retrieval method as GPT-4-No-KG and the results558

from our method as GPT-4-KG.559

The results are summarized in Table 1. Due560

to resource constraints, we randomly select 100561

chapters from the test set of the BookSum Chap-562

ters dataset and report evaluation results on this563

smaller subset. Results for three sets of metrics are564

included: ROUGE, BERTScore, and our proposed565

KGScore. Details on the evaluation procedure566

are in Appendix D. For the LongT5 models, the567

model using our knowledge graph retrieval method568

(LongT5-KG) achieves higher scores across all met-569

rics compared to its baseline counterpart (LongT5-570

No-KG). For the GPT-4 results, our method out-571

performs the baseline in terms of KGScore while572

receiving slightly lower scores for ROUGE and573

BERTScore.574

4.3 Validity of KGScore 575

We perform an additional experiment to verify the 576

hypothesis that our proposed KGScore metric is 577

a valid measure of factual consistency. We filter 578

the training set of the BookSum Chapters dataset 579

for summaries whose word counts fall within the 580

range of 300 to 450 words, then gather pairs of sum- 581

maries of the same book chapter. We select the 100 582

most similar summary pairs and use them as the 583

baseline dataset for our experiment. Although all of 584

these summaries are human written, we randomly 585

select one summary from each pair as a “predic- 586

tion” (“generated”) summary and the other as a 587

“reference” summary for the purpose of calculating 588

evaluation metrics. 589

Next, we create a modified version of the dataset 590

by identifying the named entities in each predic- 591

tion summary using spaCy (Montani et al., 2023) 592

and shuffling their locations, ensuring that entities 593

only get swapped with other entities of the same 594

type (e.g., person or location). Much of the fac- 595

tual information included in this new summary is 596

likely to be inaccurate. While the baseline dataset 597

consists of pairs of summaries containing similar 598

information (as they are summaries of the same 599

chapter), the altered prediction summaries in the 600

entity-shuffled dataset factually deviate from the 601

reference summaries. Therefore, a reliable factu- 602

ality metric should produce a significantly lower 603

score for the entity-shuffled dataset in comparison 604

to the baseline dataset. 605

The results of evaluating the two datasets on 606

ROUGE, BERTScore, and KGScore are shown in 607

Table 2. The decrease in metric values from the 608

baseline to the entity-shuffled dataset is substan- 609

tially greater in KGScore compared to ROUGE 610

and BERTScore, which exhibit relatively small re- 611

ductions. 612

5 Analysis 613

Combining and examining the results of the exper- 614

iment in Section 4.2, where our knowledge graph 615

retrieval method attains better KGScore results than 616

the baselines, and the results of the entity shuffle ex- 617

periment in Section 4.3, which show that KGScore 618

is significantly more sensitive to variations in fac- 619

tual accuracy than ROUGE and BERTScore, we 620

claim that our method successfully improves fac- 621

tual consistency in summaries as intended. This 622

improvement may not always be detectable through 623

traditional metrics, as evident in the GPT-4 re- 624
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Model ROUGE-1 ROUGE-2 ROUGE-L BERTScore F1 PKG RKG FKG

LongT5-No-KG 28.80 5.48 13.96 53.82 22.54 15.69 17.73
LongT5-KG 30.07 5.91 14.51 54.58 23.07 16.59 18.34

GPT-4-No-KG 25.06 3.76 14.03 56.28 23.26 18.67 20.00
GPT-4-KG 24.14 3.60 13.76 55.96 25.57 20.17 21.75

Table 1: Evaluation results on a subset of the BookSum Chapters test set. PKG, RKG, and FKG are average KGScore
values as defined in Section 3.5. The best scores among each model category (LongT5 and GPT-4) are in bold.

ROUGE-1 ROUGE-2 ROUGE-L BERTScore F1 PKG RKG FKG

Baseline 50.45 13.15 23.51 63.62 26.03 24.67 24.93
Shuffled entities 50.34 11.79 21.59 60.44 16.10 14.33 14.78

Change (%) -0.2 -10.3 -8.1 -5.0 -38.1 -41.9 -40.7

Table 2: Results of the entity shuffle experiment. PKG, RKG, and FKG are average KGScore values as defined in
Section 3.5. Changes in metric values after the entity shuffling are shown, with KGScore results in bold.

sults, where the application of our method leads625

to slightly worse ROUGE and BERTScore values626

than the baseline.627

5.1 KGScore Trends628

In Tables 1 and 2, the precision KGScore (PKG) is629

higher than the recall KGScore (RKG) in all cases.630

This is because the named entities are identified631

from the reference summary and used for extracting632

knowledge graph edges in both the reference and633

generated summaries, as described in Section 3.5.634

All entities contained in the edges can be found in635

the reference texts, while some are missing in the636

generated texts. This imbalance could be removed637

by gathering named entities from both summaries,638

but this could potentially introduce incorrectly hal-639

lucinated entities from the generated summaries.640

Another related observation is that the KGScore641

values are low overall, ranging in the 10s and 20s642

out of a theoretical maximum of 100 (%). This643

could also be the symptom of an entity-matching644

problem, as a single entity may sometimes appear645

under different names in the prediction and ref-646

erence summaries. Adding a step in the metric647

computation process to identify these cases could648

help, but if overly eager deductions are made about649

which names refer to the same entity, a new prob-650

lem could arise where entities that should be kept651

separate are merged into one.652

5.2 Qualitative Evaluation653

To verify the interpretation that our knowledge654

graph retrieval method improves factual consis-655

tency among entities, we qualitatively evaluate a656

small sample of generated chapter summaries. Ex- 657

amples of these summaries are in Appendix G. 658

For the finetuned LongT5 models, we find that 659

the summaries generated by both the LongT5-No- 660

KG model and the LongT5-KG model are of low 661

quality. They are similar to extractive summaries, 662

repeating large sections of story text verbatim, and 663

they often contain errors. This basic deficiency in 664

summarization performance makes it difficult to 665

determine the effects of using our method. 666

In comparison, we perceive the GPT-4 sum- 667

maries to be higher-quality, which is corrobo- 668

rated by the higher KGScore values in Table 1. 669

It is interesting to note that the ROUGE-1 and 670

ROUGE-2 scores are much lower than those of 671

the LongT5 models; this could be another indica- 672

tion that ROUGE does not align well with human 673

judgments. 674

Although GPT-4-KG receives better KGScore 675

results than GPT-4-No-KG, we find it challenging 676

to identify specific examples of retrieved knowl- 677

edge graph edges improving summary quality. It 678

could be that the degree of improvement in this 679

case is too subtle for humans to readily notice. 680

6 Conclusion 681

We present a method of summarizing long stories 682

that employs knowledge graph retrieval to provide 683

global context. We also propose a novel metric, 684

KGScore, which evaluates summaries based on 685

knowledge graph similarity. Experimental results 686

indicate that our approach may enhance factual con- 687

sistency and that our KGScore metric is an effective 688

measure of it. 689
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Limitations690

Besides the improvement in KGScore, we have not691

presented additional evidence that our knowledge692

graph retrieval method enhances summary quality,693

such as a large-scale human evaluation.694

The LongT5 model chosen for finetuning is a695

relatively old model with limited performance, as696

described in Section 5.2. More recent models, such697

as LLaMA 2 (Touvron et al., 2023), could be better698

suited for future experiments.699

It can be argued that the observed score improve-700

ments using our method are not very significant. To701

achieve greater improvements, methods to more ef-702

fectively provide information to the summarization703

model through the knowledge graph edges could be704

explored. For example, providing temporal infor-705

mation along with the edges, either in the form of706

chapter numbers or relative positions in the story,707

could be beneficial. The model can then gain a708

sense of time by placing events and details in re-709

lation to each other and the current chapter. This710

can be especially helpful if significant changes oc-711

cur to an entity over the course of the story (e.g.,712

a death or a relocation). Another potential point713

of enhancement could lie in the way the retrieved714

edges are provided to the model. For instance, in-715

stead of simply prepending a linearized string to716

the context, a graph neural network could be used717

to process the knowledge graph information.718

Ethics Statement719

We do not anticipate any ethical issues. Our work720

deals with producing summaries of existing sto-721

ries, so malicious applications would be limited,722

although the generated summaries could be inaccu-723

rate or reflect harmful content in the source text.724

All tools used are open source, including the725

scripts to download the BookSum Chapters dataset,726

which are released under the BSD 3-Clause Li-727

cense. Considering the nature of the dataset, which728

consists of book texts and their summaries, its con-729

tent was not inspected for offensive material or per-730

sonally identifiable information. Where specified,731

usage of tools and datasets was done in accordance732

with their intended use.733
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A Keywords for Edge Retrieval 1011

Table 3 lists the keywords and weights for knowl- 1012

edge graph edge retrieval. The weight for each 1013

keyword is empirically chosen based on the per- 1014

ceived effectiveness at retrieving useful edges. 1015
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Keyword Weight

relation 30
happen 15
conflict 10
desire 10
emotion 10
role 10
think 5
location 5
personality 5

Table 3: Keywords and weights for knowledge graph
edge retrieval.

B BookSum Chapters Dataset Filtering1016

We remove books that are found in both the train-1017

ing set and either the validation or test sets (book1018

IDs 1130, 1526, 1783, and 1798). We also exclude1019

books that are not narrative texts (61, 1232, 1404,1020

3207, 3420, 3755, 4320, 7370, 11224, 13434, and1021

34901) and books that are collections of multiple1022

stories (221, 416, 610, 1429, and 15859). For some1023

summaries, the script provided to build the Book-1024

Sum dataset either fails to download the summary1025

(because it is no longer available on the web) or1026

downloads an incomplete version of it (empty or1027

just a few words); we do not use those. Finally,1028

in order to accommodate the context length limit1029

of our model, we set chapter length and summary1030

length limits of 16384 and 1024 tokens, respec-1031

tively, and only use text pairs that fall under both1032

limits.1033

C LongT5 Finetuning1034

We use the Hugging Face Transformers li-1035

brary (Wolf et al., 2020) and begin finetun-1036

ing from the pretrained long-t5-tglobal-base1037

checkpoint2, which has 250 million parameters.1038

For computing similarity scores with Sentence-1039

BERT, we use the all-MiniLM-L6-v2 model3. We1040

train on 8 NVIDIA A100 GPUs for approximately1041

70 hours total for the two models, using the fol-1042

lowing parameters: Adam optimizer (Kingma and1043

Ba, 2015), cosine learning rate scheduling with1044

2e-4 maximum learning rate and 1 epoch linear1045

warm-up, batch size 128, 48 epochs. The hyper-1046

parameters were selected manually without tuning1047

due to resource constraints.1048

2https://huggingface.co/google/long-t5-tglobal-base
3https://huggingface.co/sentence-transformers/all-

MiniLM-L6-v2

D Evaluation 1049

For the finetuned LongT5 models, we eval- 1050

uate the checkpoints with the lowest valida- 1051

tion losses during training, with 4 beams and 1052

no_repeat_ngram_size set to 3. We use ver- 1053

sion 0.1.2 of the rouge-score Python pack- 1054

age4 and version 0.3.13 of the bert-score pack- 1055

age5 for ROUGE and BERTScore, respectively, 1056

with microsoft/deberta-xlarge-mnli6 as the 1057

BERTScore model. 1058

4https://pypi.org/project/rouge-score
5https://pypi.org/project/bert-score
6https://huggingface.co/microsoft/deberta-xlarge-mnli
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E Prompt for Book Knowledge Graph Generation 1059

Read part of a story, then identify named entities and generate knowledge graph edges. 1060

1061

[Begin story excerpt] 1062

“Christmas won’t be Christmas without any presents,” grumbled Jo. “It’s so dreadful to be poor!” sighed 1063

Meg, looking out the window at the snow-covered streets of Concord. “I don’t think it’s fair for some 1064

girls to have plenty of pretty things, and other girls nothing at all,” added little Amy, with an injured sniff. 1065

“We’ve got Father and Mother, and each other,” said Beth contentedly from her corner. The four young 1066

faces brightened at the cheerful words, but darkened again as Jo said sadly, “We haven’t got Father, and 1067

shall not have him for a long time.” She didn’t say “perhaps never,” but each silently added it, thinking of 1068

Father far away, where the fighting was. 1069

As young readers like to know ‘how people look’, we will take this moment to give them a little sketch of 1070

the four sisters. Margaret March, the eldest of the four, was sixteen, and very pretty, with large eyes, 1071

plenty of soft brown hair, a sweet mouth, and white hands. Fifteen-year-old Jo March was very tall, thin, 1072

and brown, and never seemed to know what to do with her long limbs. Elizabeth, or Beth, as everyone 1073

called her, was a rosy, smooth-haired, bright-eyed girl of thirteen, with a shy manner, a timid voice, and a 1074

peaceful expression which was seldom disturbed. Amy, the youngest, was a regular snow maiden, with 1075

blue eyes, and yellow hair curling on her shoulders. 1076

The clock struck six and, having swept up the hearth, Beth put a pair of slippers down to warm. Somehow 1077

the sight of the old shoes had a good effect upon the girls, for Mother was coming, and everyone 1078

brightened to welcome her. Jo sat up to hold the slippers nearer to the blaze. “They are quite worn out. 1079

Marmee must have a new pair.” “I thought I’d get her some with my dollar,” said Beth. “No, I shall!” 1080

cried Amy. “I’ll tell you what we’ll do,” said Beth, “let’s each get her something for Christmas, and not 1081

get anything for ourselves.” “Let Marmee think we are getting things for ourselves, and then surprise her. 1082

We must go shopping tomorrow afternoon,” said Jo, marching up and down. 1083

“Glad to find you so merry, my girls,” said a cheery voice at the door, and the girls turned to welcome a 1084

tall, motherly lady. She was not elegantly dressed, but the girls thought the gray cloak and unfashionable 1085

bonnet covered the most splendid mother in the world. As they gathered about the table, Mrs. March said, 1086

with a particularly happy face, “I’ve got a treat for you after supper.” A quick, bright smile went round 1087

like a streak of sunshine. Beth clapped her hands, and Jo tossed up her napkin, crying, “A letter! A letter! 1088

Three cheers for Father!” “Yes, a nice long letter. He is well, and he sends all sorts of loving wishes for 1089

Christmas, and an especial message to you girls,” said Mrs. March, patting her pocket as if she had got a 1090

treasure there. “I think it was so splendid in Father to go as chaplain when he was too old to be drafted, 1091

and not strong enough for a soldier,” said Meg warmly, proud of her father’s work with the Union Army. 1092

[End story excerpt] 1093

1094

Named entities (include all aliases and name variations): 1095

Jo / Jo March 1096

Meg / Margaret / Margaret March 1097

Amy 1098

Beth / Elizabeth 1099

March sisters 1100

Mrs. March / Marmee / Mother 1101

Father 1102

Concord 1103

Union Army 1104

1105

Knowledge graph edges (select up to 15 most important, `subject(s); predicate; [object(s)]` format, named 1106

entities only, predicate: five words max): 1107

1. Jo, Meg, Amy, Beth; in; March sisters 1108

2. March sisters; daughters of; Mrs. March, Father 1109
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3. Mrs. March; mother of; March sisters1110

4. Father; father of; March sisters1111

5. March sisters, Mrs. March; living in; Concord1112

6. Father; away fighting in war1113

7. Father; chaplain in; Union Army1114

8. Meg; sixteen years old1115

9. Jo; fifteen years old1116

10. Beth; thirteen years old1117

11. Beth; shy1118

12. Amy; youngest among; March sisters1119

13. March sisters; complained about not getting presents1120

14. March sisters; decided to buy presents for; Mrs. March1121

15. Mrs. March; brought home a letter from; Father1122

1123

[Begin story excerpt]1124

{story excerpt}1125

[End story excerpt]1126

F Prompt for Summary Knowledge Graph Generation1127

Your task is to create a list of knowledge graph edges from a chapter summary. Here are the rules you1128

must follow:1129

- A knowledge graph edge is in the format “<subject(s)>; [None] or <object(s)>; <predicate>”.1130

- Subjects and objects must be named entities.1131

- If there are multiple subjects or objects, separate them with commas.1132

- Predicates describe a relationship or action between the subjects and objects.1133

- Predicates should not contain names.1134

- Keep the predicates short (four words max).1135

- If the knowledge graph edge is a description or action of a single entity with no object, use “[None]” in1136

place of the object(s).1137

- Only include information explicitly provided in the summary.1138

- Find a diverse set of edges, never repeating similar edges.1139

- Order the edges by importance rather than appearance in the summary, with the most important edges first.1140

1141

Summary:1142

The trio continues their arduous journey toward Canyon B, 300 km east of their home colony. Tensions1143

rise as Janek and AC-293 clash over the best route to take. The Narrator, who has been silent for the1144

past few days, finally speaks up and suggests that they take a shortcut through the mountains. Janek1145

and AC-293 are skeptical, but they agree to try it. The Narrator leads them through a narrow pass, and1146

they soon find themselves in an open valley. The Martian landscape is breathtaking, and the trio sets1147

up camp for the night. The next morning, they continue their journey through the valley. Suddenly,1148

they hear a loud noise and see a cloud of dust rising in the distance. They realize that a sandstorm1149

is approaching, and they must find shelter quickly. They spot a cave in the distance and rush toward1150

it. In the haste, Janek trips and falls, injuring his leg. The Narrator and AC-293 help him to his1151

feet, and they make it to the cave just in time. They wait out the storm and emerge the next morning1152

to find that their rover has been buried in sand. They dig it out and continue their journey toward Canyon B.1153

1154

- Narrator, Janek, AC-293; Canyon B; continues journey toward1155

- Janek; AC-293; argues with1156

- AC-293; Janek; argues with1157

- Narrator; [None]; suggests shortcut through mountains1158

- Narrator, Janek, AC-293; [None]; camps in valley1159
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- Narrator, Janek, AC-293; [None]; notices approaching sandstorm 1160

- Narrator, Janek, AC-293; [None]; rushes toward cave 1161

- Janek; [None]; falls and injures leg 1162

- Narrator, AC-293; Janek; helps to feet 1163

- Narrator, Janek, AC-293; [None]; waits out storm 1164

- Narrator, Janek, AC-293; [None]; digs out rover 1165

- Janek, AC-293; [None]; skeptical of shortcut 1166

- Janek, AC-293; [None]; agrees to shortcut 1167

- Narrator; [None]; leads through narrow pass 1168

- Narrator, Janek, AC-293; [None]; makes it to cave 1169

- Canyon B; [None]; east of home colony 1170

1171

Summary: 1172

This chapter focuses on the dazzling Grand Acorn Gala at Furrington Grove. Sir Reginald, the host of 1173

the gala, is a wealthy hedgehog who has a reputation for being a bit of a snob. He is also a collector 1174

of rare artifacts, and he has invited the guests to bring their own treasures to the gala. Xander, a young 1175

fox, and his father, Yorick, are among the guests. Yorick is a famous explorer, and he has brought a 1176

rare artifact to the gala, a golden leaf. Xander is eager to show off his father’s treasure, but when he 1177

approaches Sir Reginald, the host dismisses the golden leaf as common and uninteresting. Undeterred, 1178

Xander explores the gala and encounters Penelope, a wise owl, who shares a secret about the golden 1179

leaf: it was once part of a magical tree that grew in the forest. Xander is intrigued by the story, and he 1180

decides to investigate further. He discovers that the tree was destroyed by a terrible storm, and the golden 1181

leaf was the only thing that survived. Xander is determined to find the tree and restore it to its former glory. 1182

1183

- Sir Reginald; Grand Acorn Gala; host of 1184

- Sir Reginald; [None]; artifact collector 1185

- Xander; [None]; young fox 1186

- Yorick; Xander; father of 1187

- Yorick; [None]; brings golden leaf 1188

- Sir Reginald; [None]; dismisses golden leaf 1189

- Penelope; Xander; shares secret with 1190

- Xander; [None]; investigates golden leaf 1191

- Xander; [None]; wants to restore tree 1192

- Yorick; [None]; famous explorer 1193

- Xander; Sir Reginald; approaches 1194

- Xander; Penelope; encounters 1195

- Penelope; [None]; wise owl 1196

- Sir Reginald; [None]; wealthy 1197

- Sir Reginald; [None]; snob 1198

- Grand Acorn Gala; Furrington Grove; takes place at 1199

1200

Summary: 1201

In this chapter, Amelia, a seasoned investigator with the Justice & Integrity Taskforce, dives into a 1202

high-stakes art theft case at the Metropolitan Museum of Art in New York City. The missing painting 1203

leads her to Marco Santos, an enigmatic artist tied to the Paris Art Collective. Crossing the Atlantic, 1204

Amelia unravels a web of clues in the underground European art scene, exposing the ruthless European 1205

Art Syndicate behind the theft. As Amelia delves deeper, she unearths Marco’s troubled past, connecting 1206

him to his controversial exhibitions at the Louvre and the Tate Modern. An unexpected alliance forms 1207

between them as they race to unveil the truth behind the theft. They are not the sole seekers of the stolen 1208

masterpiece, however. Dr. Harold Blackwood, CEO of Blackwood Enterprises, lurks in the shadows, 1209

manipulating the chaos for his personal gain. With a cunning mind and powerful connections, Blackwood 1210

poses a hidden threat. His motives remain veiled in mystery as he holds secret meetings in Paris, London, 1211
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and New York. Amelia and Marco navigate a treacherous path, not only against the European Art1212

Syndicate but also against the calculated machinations of Dr. Harold Blackwood, who seeks to outsmart1213

them and claim the stolen artwork for himself.1214

1215

- Amelia; Metropolitan Museum of Art; investigates theft at1216

- European Art Syndicate; [None]; behind theft1217

- Amelia; European Art Syndicate; exposes1218

- Amelia; Marco Santos; forms alliance with1219

- Marco Santos; Amelia; forms alliance with1220

- Amelia, Marco Santos; [None]; races for truth1221

- Dr. Harold Blackwood; Amelia, Marco Santos; tries to outsmart1222

- Dr. Harold Blackwood; [None]; seeks stolen artwork1223

- Amelia; Justice & Integrity Taskforce; investigator at1224

- Marco Santos; [None]; enigmatic artist1225

- Marco Santos; Paris Art Collective; has ties to1226

- Amelia; Marco Santos; discovers past of1227

- Marco Santos; Louvre, Tate Modern; held controversial exhibition at1228

- European Art Syndicate; [None]; ruthless1229

- Dr. Harold Blackwood; Blackwood Enterprises; CEO of1230

- Dr. Harold Blackwood; [None]; cunning1231

- Dr. Harold Blackwood; Paris, London, New York; holds meetings in1232

- Metropolitan Museum of Art; New York City; located in1233

1234

Summary:1235

{summary}1236

G Examples of Generated Summaries1237

The following are summaries generated from Chapter 8 of Tess of the d’Urbervilles by Thomas Hardy.1238

KGScore F1 values (FKG) are also provided. The reference summary is omitted due to copyright.1239

LongT5-No-KG (FKG = 35.54):1240

Having mounted beside her, Alec d’Urberville drove rapidly along the crest of the first hill, chatting1241

compliments to Tess as they went, the cart with her box being left far behind. Rising still, an immense1242

landscape stretched around them on every side; behind, the green valley of her birth, before, a gray country1243

of which she knew nothing except from her first brief visit to Trantridge.1244

LongT5-KG (FKG = 35.51):1245

D’Urberville and Tess are on their way to Trantridge. She is afraid that she will be thrown out of the1246

carriage if she touches his arm. She tries to hold on to him, but he insists that she never touch his arm1247

again. They reach the summit of another declivity, and he asks her to put one kiss on those holmberry1248

lips, or even on that warmed cheek, and she will stop. He says that he will break both their necks, but1249

she refuses to move. He tells her that she is mighty sensitive for a cottage girl, and that she should be1250

made sorry for the kiss he has given her. She says that she would not have come if he had known. He1251

swore at her, and then he hems her in between the gig and the hedge. He laughs heartily at the sight of his1252

misdemeanour, and says he would never do it any more against his will now.1253

GPT-4-No-KG (FKG = 26.82):1254

Tess, in white muslin, dreads Alec’s driving and his horse Tib’s temperament. Her defiance peaks when1255

she wipes away Alec’s forced kiss with her handkerchief. Despite her involuntary hold on him during1256

their descent near Melbury Down and Wingreen, she asserts her resolve, opting to walk to Trantridge, her1257

strategic silence marking her commitment to her family’s welfare.1258
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GPT-4-KG (FKG = 31.32): 1259

The emotional stakes are high as Tess’s big tear and flushed face betray her distress during the tumultuous 1260

ride with d’Urberville, whose injured tone and passionate outbursts oscillate between anger and feigned 1261

concern. Tess’s strategic silence and defiance, coupled with her evasion of his kiss, underscore her 1262

determination to resist his control. D’Urberville’s laugh at her resistance and his role as a passionate 1263

companion add complexity to their dynamic. As they near Trantridge, Tess’s resolve is clear, despite the 1264

emotional toll of the journey. 1265
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