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ABSTRACT

Recent advancements in imitation learning for robotic control have led to
transformer-based behavior foundation models (BFMs) that enable multi-modal,
human-like control for humanoid agents. These models generate solutions when
conditioned on high-level goals or prompts, for example, walking to a coordinate
when conditioned on the position of the robot’s pelvis. While excelling at zero-shot
generation of robust behaviors, BFMs often require meticulous prompt engineering
for specific tasks, potentially yielding suboptimal results. In this work, we intro-
duce “Task Tokens” - a method to effectively tailor BFMs to specific tasks while
preserving their flexibility. Our approach integrates naturally within the transformer
architecture of BFMs. Task Tokens trains a task-specific encoder (tokenizer), with
the original BFM remaining untouched. Our method reduces trainable parameters
per task by up to ×125 and converges up to ×6 faster compared to standard base-
lines. In addition, by keeping the original BFM unchanged, Task Tokens enables
utilizing the pre-existing encoders. This allows incorporating user-defined priors,
balancing reward design and prompt engineering. We demonstrate Task Tokens’
efficacy across various tasks, including out-of-distribution scenarios, and show
their compatibility with other prompting modalities. Our results suggest that Task
Tokens offer a promising approach for adapting BFMs to specific control tasks
while retaining their generalization capabilities.

Recent advances in imitation learning have facilitated the emergence of behavior foundation models
(BFMs) designed for humanoid control (16; 26; 12; 22). These models, generate diverse behaviors
when trained on large-scale human demonstration data. In this work, we focus on a specific type
of BFM, which we call Goal-Conditioned Behavior Foundation Models (GC-BFMs). Methods
such as Masked Trajectory Models and MaskedMimic fall into this category (27; 22). These
methods use transformer architectures that process sequences of tokenized goals — high-level
objectives such as “follow a path” or “reach with your right hand towards the object” are mapped to
embedding tokens. These tokens condition the model’s behavior generation. Specifically, we focus
on MaskedMimic, which has manifested as a particularly effective framework, demonstrating robust
zero-shot generalization (ability to handle new, unseen tasks without additional training) through its
token-based goal conditioning mechanism.

For real-world usage, BFMs must be flexible enough to solve a variety of tasks, but at the same
time specialized enough to effectively solve complex tasks. Despite MaskedMimic’s proficiency in
generating diverse motions from high-level goals, significant challenges persist in defining precise
goal specifications, or prompts, for complex tasks. Typically, an environment-specific reward can be
designed, but this is prone to potential errors in complex, long-horizon tasks. In contrast, GC-BFMs
provide a “prompt-engineering“ interface, where the user can specify high-level goals, which can
result in a more stable motion, but might be less intuitive for some tasks. Consider a game character
tasked with walking to an object and striking it. Even in this simple task, on the one hand, a common
emerging error of using reward design is that the character walks backward to the goal, but on the
other, specifying high-level goals for the striking motion to precisely hit the target is hard. This
creates a fundamental gap between the model’s ability to generate robust and natural motions and the
precise control needed for specialized tasks. A unified, flexible, and scalable paradigm for adapting
BFMs for many complex downstream tasks, while retaining the original motion robustness, is needed.

To this end, we propose Task Tokens, a novel approach that integrates goal-based control with
reward-driven optimization within GC-BFMs like MaskedMimic. Our method, illustrated in Figure 1,
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establishes a hybrid control paradigm: users provide high-level behavioral priors via goals (e.g.,
“walk toward the object while facing forward”). These goals are encoded using the pre-existing
GC-BFM. Concurrently, the system autonomously learns, via reinforcement learning, task-specific
embeddings to optimize dense rewards (e.g., “strike the target with maximum impact”). In this
setting, Task Tokens serve to refine and enhance the user-defined goals: they build upon the priors by
incorporating reward feedback, allowing the model to achieve more precise and effective behaviors
than either approach could alone. This integration leverages the inherent tokenization framework of
GC-BFMs, enabling a seamless combination of user-defined and learned conditioning tokens.

Our training paradigm preserves the pretrained BFM’s extensive behavioral knowledge. During
training, the system generates behaviors from the BFM, conditioned on both user-defined goals
and the emergent Task Tokens, optimizing the encoder to produce tokens that align behaviors with
task-specific rewards. This strategy ensures that the resulting motions remain consistent with the
motion manifold defined by the frozen BFM, ensuring robustness and multi-modality capabilities.
Inspired by parameter-efficient adaptation techniques in NLP (6; 5; 8) our method modifies the
model’s behavior through a lightweight, trainable module that leverages gradients from the frozen
BFM. This allows the Task Token encoder to guide behavior without fine-tuning the full model,
making it scalable for solving many downstream tasks.

Our experimental evaluation demonstrates that Task Tokens effectively balance MaskedMimic’s
ability to generate robust, human-like motions with the precision required for task-specific control.
This hybrid framework achieves rapid convergence and high success rates, surpassing traditional hier-
archical reinforcement learning methods in sample efficiency and requiring fewer learned parameters.
Moreover, by adhering to the BFM’s underlying motion manifold, Task Tokens conserve multi-modal
prompting capabilities and exhibit stronger generalization across diverse environmental conditions,
including variations in friction and gravity. These results demonstrate the potential of our approach
to unify goal-based and reward-driven control, enhancing behavior optimization for complex tasks.

CONTRIBUTIONS

• Task-Specific Adaptation: We propose Task Tokens, a novel and parameter-efficient
approach to adapt MaskedMimic, a Goal-Conditioned Behavior Foundation Model (GC-
BFM), to specific tasks via tokenized control, without fine-tuning the foundation model,
preserving its zero shot capabilities.

• Scalability: Our approach is parameter-efficient, requiring up to ×125 less parameters and
converges up to ×6 faster than alternative methods.

• Hybrid Control Paradigm: Our method enables a seamless combination of user-defined
high-level priors (e.g., textual or joint-based goals) with learned reward-driven optimization.

• Performance and Generalization: Task Tokens match the high task performance of full
fine-tuning, while surpassing other methods in terms of robustness to changes in environment
dynamics, such as gravity and friction.

1 RELATED WORK

Humanoid Control: Humanoid control is a challenging domain spanning both robotics and
computer animation, with the shared goal of generating realistic and robust behaviors. In the
animation community, physics simulation is used to ensure the generated motions are realistic and
enable the characters to react to dynamic changes in the environment. To achieve this, they typically
leverage imitation learning methods combined with motion capture data to learn and generate human-
like behaviors in new and unseen scenarios (15; 17; 11; 23; 3). Similar approaches are observed in
the robotics community, with the addition of sim-to-real adaptation used to ensure the controller can
overcome the imperfect modeling of the world by the simulator (25; 10; 7).

Our work builds on these foundations by preserving their flexibility and robustness while enabling
precise task-specific control.

Behavior Foundation Models: Recent advances in reinforcement learning have led to the devel-
opment of Behavior Foundation Models (BFMs) that can generate diverse behaviors for embodied
agents. PSM (1) and FB representations (24) provide a framework for learning policies conditioned
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on a target stationary distribution. These models perform remarkably well when the requested
behavior can be represented by a stationary distribution (for example, using a reward-weighted
combination of data samples). However, covering the entire space of solutions in high dimensional
control tasks remains a challenge for these models. Methods such as Adversarial Skill Embeddings
(16, ASE) and PULSE (12) overcome this limitation by constraining the policy to reproducing human
demonstrations. First, they compress a large repertoire of human reference motions into a latent
generative policy. Then using reinforcement learning they train a hierarchical controller (21) to pick
the latent (motion to perform) at each step and solve new and unseen tasks.

In this work, we focus on Goal Conditioned Behavior Foundation Models (2; 28; 22). In contrast to
the aforementioned methods, GC-BFMs can solve new and unseen tasks without specific training
by directly mapping from goals to actions. Their mode of operation can be seen as a form of
inpainting, where the model attempts to reproduce the most likely outcome given the training data for
any provided objective. However, this strength is also a limitation, as these models struggle when
presented with out-of-distribution constraints, such as those defined manually by a user or task. Our
Task Tokens approach addresses this limitation by providing a mechanism to incorporate task-specific
optimization while preserving the model’s ability to generate natural, human-like behaviors.

2 PRELIMINARIES

Our proposed method leverages MaskedMimic to effectively solve a specific distribution of humanoid
tasks by learning a “task encoder” with reinforcement learning.

2.1 REINFORCEMENT LEARNING

A Markov Decision Process (18, MDP) models sequential decision making as a tuple M =
(S,A, P,R, γ). At each time step t the agent observes a state st ∈ S and predicts an action
at ∈ A. As a result, the environment transitions to a new state st+1 based on the transition kernel P
and the agent is provided a reward rt ∼ R(st, at). The objective is to learn a policy π : S → A that
maximizes the expected discounted cumulative reward π∗ = argmaxπ∈ΠEπ [

∑
t γ

trt].

2.2 MASKEDMIMIC

MaskedMimic presents a unified framework for humanoid control, extending goal-conditioned
reinforcement learning through imitation learning. Goal-Conditioned Reinforcement Learning
(GCRL) involves augmenting the state space with a goal g, allowing a policy π(s|s, g) to map states
and desired goals to appropriate actions, effectively enabling a single policy to solve multiple tasks.
Unlike traditional GCRL approaches that learn from reward signals, MaskedMimic learns directly
from demonstration data through online distillation (19, DAgger). By combining a transformer
architecture with random masking on future goals represented as input tokens, MaskedMimic learns
to reproduce human-like behaviors from various modalities, such as future joint positions, textual
commands, and objects for interaction. When trained on vast amounts of human motion capture
data, this goal-conditioned approach allows MaskedMimic to generalize to new objectives without
additional training, all while preserving the similarity to the training data. This combination of
architecture and control scheme makes it an ideal foundation for our Task Tokens method, which
further enhances its capabilities by learning task-specific tokens to optimize for downstream tasks.

3 METHOD

BFMs excel at producing a wide range of motions, but optimizing them for specific tasks presents
significant challenges. Downstream applications often require specialized behaviors that fall outside
the common distribution of motions. Traditional approaches to achieve such behaviors involve either
time-consuming “prompt engineering” (22) or fine-tuning procedures that risk compromising the rich
prior knowledge encoded in the BFM.
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GC-BFM
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"A person 
kicking"

Prior Token
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Prior Token

Task Token

State TokenState Token

(MaskedMimic)

Figure 1: Task Tokens: Our approach combines three input sources: (1) Prior Tokens: optional
tokens enabling user-defined behavioral priors from text prompts or joint conditions, (2) Task Token:
generated by our learned Task Encoder that processes the current goal observation git, and (3) State
Token: representing the current environment state sit. The prior and state tokens are generated using
the pre-trained encoders from the GC-BFM model. The frozen GC-BFM integrates these inputs to
produce natural, task-optimized actions ait. During training, the policy gradient objective is computed
with respect to the BFM’s actions, with gradients flowing through the frozen GC-BFM to the Task
Encoder, enabling task-specific optimization without modifying the foundation model’s parameters.

3.1 TASK TOKENS

The transformer-based architecture of MaskedMimic provides a natural mechanism for integrating
new task-specific information. By design, transformers process sequences of tokens, allowing for
flexible input composition. Task Tokens can be applicable to any transformer-based BFM capable
of attending over arbitrary token sequences. The only requirement is that the model can integrate
additional tokens into its input, allowing the Task Encoder to optimize task-specific signals while
the BFM itself remains frozen. This enables us to seamlessly incorporate additional tokens without
modifying the core network structure.

Our method, Task Tokens (Figure 1), leverages the tokenized nature of the BFMs’ objectives. We
propose to train a dedicated task encoder to produce specialized token representations for each new
task. This task token encapsulates the unique requirements and constraints of the target behavior,
providing a concise yet informative signal that can guide the foundation model toward task-specific
outputs while preserving its general behavioral priors.

3.2 TASK ENCODER

The Task Encoder processes observations that define the current task goal git, represented in the
agent’s egocentric reference frame and predicts a Task Token τ it ∈ R512. These observations vary
by task – for instance, in a steering task, they include the target direction of movement ∈ R2, facing
direction ∈ R2, and desired speed ∈ R, resulting in git ∈ R5. As MaskedMimic is trained to reach
future-pose goals, the task encoder is also provided with proprioceptive information. This aligns the
encoder with the pre-trained representations, ensuring it can provide meaningful target objectives
(see ablation studies in Section C).

We implement the task encoder as a feed-forward neural network. Its output—the Task Token—is
concatenated with tokens from other encoders in the BFM’s input space. This creates a token
“sentence” where the task encoder’s outputs represent specialized “words” that guide the model
towards achieving the specific task while maintaining natural motion.
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Direction Steering Reach Strike Long Jump

Figure 2: Multi-task adaptation. Task Tokens is an effective approach to adapt BFMs to new
downstream tasks, while preserving its prior knowledge. Task Tokens can be used alongside other
prompting modalities to generate personalized and robust motions to solve new tasks.

3.3 TRAINING

To optimize the Task Encoder for new downstream tasks, we use Proximal Policy Optimization (20,
PPO). During training, the BFM predicts action probabilities based on the combined input tokens
(including the learned task token). We compute the PPO objective with respect to the task-specific
reward and the BFM’s action probabilities. This approach ensures the BFM provides meaningful
gradients for updating the task encoder parameters, while the BFM itself remains frozen. This design
choice is fundamental – while fine-tuning the entire model might yield higher task-specific returns, it
would compromise the BFM’s prior knowledge, resulting in less natural and robust motions.

Leveraging MaskedMimic’s token-based architecture, Task Tokens require only ~200K parameters
per task—compared to ~20M for conventional methods—making them a highly parameter-efficient
solution.

4 RESULTS

We evaluate the effectiveness of our Task Tokens approach through a comprehensive set of experi-
ments. We examine four critical aspects of our method to validate its performance and applicabil-
ity. First, we assess the capability of Task Tokens to effectively adapt MaskedMimic for various
downstream applications, demonstrating significant improvements in task-specific performance and
efficiency (Section 4.1) over the original zero-shot method. Second, we analyze whether the resulting
controller preserves the robustness characteristics inherent to the original Behavioral Frequency
Modulation (BFM) framework, confirming that stability under variable conditions remains consistent
(Section 4.2). Third, we investigate the natural and human-like quality of the generated motions
through a human study (Section 4.3). Finally, we explore the synergy of Task Tokens and other
prompting modalities, combining effects that further demonstrate the versatility of our method
(Section 4.4). These experiments collectively demonstrate that our approach successfully balances
task-specific adaptation with the preservation of desirable properties from the foundation model,
while requiring significantly less parameters than other baselines.

We provide accompanying video visualizations for all experiments in
sites.google.com/view/task-tokens-iclr-2026, and the code to reproduce
all results can be found in the supplementary material.

Tasks: We evaluate our approach on a diverse set of humanoid control tasks, all simulated in Isaac
Gym (14). For all experiments, we simulate the SMPL humanoid (9) which consists of 69 degrees
of freedom. We focus on the following tasks: Reach, the agent must reach a randomly placed goal
with its right hand; Direction, the agent must walk in a randomly chosen direction; Steering, this
task combines walking and orienting toward (look-at) random directions; Strike, here the agent must
reach and strike a target placed at a random location; and Long Jump, based on the SMPL-Olympics
benchmark (13), the objective is to run and jump as far as possible from a target location. Sample
images are shown in Figure 2, full technical details can be found in Section A.

Baselines and Evaluation We compare our Task Tokens approach against several competitive
baselines: Pure RL, a policy trained directly using PPO without leveraging any foundation model;
MaskedMimic Fine-Tune, using the reward signal to optimize all of the MaskedMimic model
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Table 1: Downstream tasks adaptation. We compare the success rates on the various tasks. While
the reward provides a proxy for the policy to learn, the success metric measures the actual task
outcome. For example, in Strike this is whether the target object is knocked down. We report the
mean and standard deviation of the success rate across 5 random training seeds, except J.C. only
which uses zero-shot MaskedMimic and thus reports no variance.

Method Reach Direction Steering Long Jump Strike

Task Tokens (ours) 94.88 ± 1.99 99.26 ± 0.79 88.69 ± 4.04 99.75 ± 0.57 76.61 ± 3.49
MaskedMimic (J.C. only) 24.77 2.19 3.83 - -
MaskedMimic Fine-Tune 93.70 ± 4.59 99.10 ± 1.29 87.44 ± 6.79 47.36 ± 54.78 83.07 ± 5.71
PULSE 83.96 ± 2.20 97.60 ± 0.62 40.72 ± 7.64 99.37 ± 1.40 83.18 ± 2.67
AMP 57.14 ± 4.80 5.14 ± 0.68 4.28 ± 1.42 76.59 ± 43.42 52.21 ± 47.58
PPO 89.90 ± 3.25 97.74 ± 1.40 32.64 ± 40.21 61.91 ± 52.26 81.36 ± 1.41

Figure 3: Convergence for Strike. Task Tokens is sample efficient, adapting to new tasks in under
50M steps. Fine-tuning converges similarly, likely due to its higher capacity, leading to overfitting.

without freezing; MaskedMimic (J.C. only), the original MaskedMimic model using only joint
conditioning (J.C.) as the prompting mechanism. We use the J.C. defined in the original MaskedMimic
for the Reach, Direction, and Steering tasks. In addition, we compare against two state-of-the-art
humanoid control baselines: PULSE, a hierarchical approach that re-uses a latent space of skills
from motion capture data; and AMP (17), which uses a discriminator to ensure motion quality while
optimizing for task performance. Task Tokens is used with joint conditioning on the relative tasks.
Long Jump and Strike pose a great challenge in this sense, thus J.C. is not available for them neither
in Task Tokens nor in MaskedMimic.

For all experiments, we report the mean and standard deviation of the success rate across 5 random
seeds, representing the variance across independently trained models. Trend lines in the figures
indicate the mean performance, with shaded regions denoting one standard deviation across these 5
random seeds. An exception is the J.C. Only model, for which no variance is reported as it represents
the performance of a single, re-used MaskedMimic base model evaluated without task-specific
retraining. Success rate definitions for each task are listed in Section A, and technical details on the
training and evaluation setups are available in Section B.

4.1 TASK ADAPTATION

We first show that we can use Task Tokens to effectively adapt MaskedMimic to downstream tasks.
For each downstream task, we train a unique task encoder. In the Reach, Direction, and Steering
environments, we also use the joint conditioning presented in MaskedMimic (we test the effect of
this choice in Section C). Visualizations of the resulting motions can be seen in Figure 2.

We present the numerical results in Table 1. The results show that Task Tokens obtains a high score
across the majority of environments, with PULSE, MaskedMimic Fine-Tune, and PureRL obtaining
higher scores on the Strike task. Moreover, in Figure 3, we present the evaluated success rate during
training. Here, we observe that Task Tokens converges within approximately 50 million steps, while
PULSE reaches the same performance around 300 million steps. To achieve these results, Task
Tokens requires training an encoder with ~200k parameters, whereas PULSE and MaskedMimic
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Figure 4: Out-of-distribution perturbations. We test the success rate on the steering task when
changing the ground friction (on the left) and gravity (on the right). Task tokens (both with and
without J.C.) exhibit improved robustness.

Fine-Tune require 9.3M and 25M parameters, higher by factors of ×46.5 and ×125 respectively. This
efficiency is critical in real-world settings where training large models is expensive. Our approach
scales to many tasks with minimal additional overhead. These results show that Task Tokens can
effectively and efficiently be used to adapt BFMs, like MaskedMimic, to new unseen tasks.

4.2 OOD GENERALIZATION

The premise of using MaskedMimic is that it has been pre-trained on vast amounts of data and
scenarios, which in turn should result in more robust behavior to new and unseen tasks. To test this,
we compare on out-of-distribution (OOD) perturbations, not seen during training both in the original
BFM and in Task Tokens. We consider changes in both gravity and ground friction.

Indeed, the results, Figure 4, show that by utilizing a BFM, Task Tokens demonstrate highly improved
robustness to the new and unseen scenarios. First, it performs almost as well as fully fine-tuning
MaskedMimic on the baseline task (no perturbations), outperforming all other baselines. Then, it
performs significantly better compared to the baselines as the perturbation increases. Notably, Task
Tokens exhibit an order of magnitude higher success rate in very low friction scenarios (e.g., ×0.4)
and very large gravity (e.g. ×1.5).

As can be seen in the gravity perturbations, fine-tuning the model seems to harm its built-in robustness,
leading to worse performance at higher gravity when compared to our minimal intervention approach.

4.3 HUMAN STUDY

In some scenarios, such as animation, it is of interest to adapt and generate new behaviors (solutions
to tasks) while preserving motion quality. We evaluate the realism of the generated motions by
performing a preliminary human study. In our study, we presented ~100 anonymous participants with
video triplets. The participants were required to choose the motion that looked more human-looking.
We provide additional details in Section D.

Table 2 describes the percentage of times Task Tokens outperformed each alternative. First, we can
see that Task Tokens outperforms MaskedMimic (J.C. only) and MaskedMimic Fine-Tune. This
suggests that the user-designed conditions are out-of-distribution for the base MaskedMimic model,
and fine-tuning is a less effective way to adapt it compared to Task Tokens in terms of motion quality.
In addition, we observe that despite Task Tokens resulting in faster convergence, fewer parameters,
and better performance, PULSE scores higher in terms of human-likeness of the motion. It is likely
due to the fact that PULSE constrains the high-level representation to stay closer to the prior, whereas
MaskedMimic doesn’t. Incorporating such a constraint with Task Tokens might improve the motion
quality even further. We leave this investigation to future work.
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Table 2: Human study, Task Tokens win rate. We report the percentage by which Task Tokens was
deemed more human-like. Higher values means Task Tokens was deemed more human-like.

Wins v.s. Algorithm Direction Steering Reach Strike Long Jump

MaskedMimic (J.C. only) 95% ± 2% 75% ± 6% 53% ± 5% - -
MaskedMimic Fine-Tune 99% ± 1% 90% ± 4% 85% ± 6% 85% ± 5% 94% ± 2%
MaskedMimic F.T. + J.C. 96% ± 3% 89% ± 5% 82% ± 6% - -
PULSE 15% ± 5% 46% ± 6% 36% ± 9% 24% ± 5% 39% ± 5%
AMP 92% ± 3% 84% ± 4% 70% ± 6% 68% ± 6% 96% ± 3%
PPO 99% ± 2% 93% ± 4% 89% ± 5% 82% ± 4% 94% ± 3%

(a) Without J.C. (b) With J.C.

Figure 5: Multi-modal prompting. When trained on the direction task, the policy often learns to
walk backwards. Task Tokens enable adding human-defined priors through additional tokens. By
combining orientation priors, the BFM is instructed to face the movement direction.

From the results above, we infer that Task Tokens offer a good balance in the tradeoff between
efficiency, motion quality, and robustness.

4.4 MULTI-MODAL PROMPTING

While some objectives are easy to define through target goals, others are easier to define through
rewards. Here, we show how Task Tokens can be trained alongside human-constructed priors (tokens)
to achieve more desirable behaviors. We showcase two scenarios, one in the Direction task and
another in Strike.

The Direction task provides a reward for moving in the right direction but does not consider the
humanoid’s orientation. As a result, the policy may converge to walking backwards. While this
behavior achieves high reward and success metrics, it is an unwanted behavior. In Figure 5 we show
that by combining human-designed priors, providing a target height and orientation for the head, the
training converges to an upright forward-moving motion.

An additional challenge is Strike. In this task, the agent needs to hit a target. An emergent behavior is
walking backwards toward the target and then performing a “whirlwind” motion, where the agent
swirls in circles to hit the target with its hand. In Figure 6 we showcase a combination of 2 prior
modalities. First, conditioning on the orientation (similar to the Direction task) the agent is instructed
to face the target during the locomotion phase. Then, once close to the target, the agent is guided to
strike the target with its foot using a textual objective “a person performs a kick”.

Notably, we observed that fine-tuning the entire model leads to the well-known catastrophic forgetting
phenomenon (4), impairing its ability to retain and integrate such multi-modal prompts. In contrast,
Task Tokens preserve the pre-trained prompting capabilities by keeping the foundation model frozen,
enabling coherent integration of learned and human-specified behaviors. PULSE, in comparison,
does not support multi-modal prompts at all, as it lacks the mechanism to condition on diverse inputs
beyond goal embeddings.

5 LIMITATIONS AND FUTURE WORK

While Task Tokens offer an efficient and effective mechanism for adapting Behavior Foundation
Models (BFMs) to downstream tasks, this work also illuminates several promising avenues for
future exploration. The performance of Task Tokens is inherently linked to the expressivity and
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Figure 6: Incorporating user priors: Joint and text-based goals can be provided alongside the
task-specific task tokens. Here, the user-defined objectives guide the motion style, ensuring the
character faces the object while walking upright, and strikes it using a kick.

coverage of the underlying pretrained BFM. Future work could thus investigate methods to identify or
mitigate gaps in BFM knowledge for target tasks. To enhance the naturalness of generated behaviors,
especially for humanoids, future work could explore incorporating methods that better enforce a
human-likeness prior within the BFM, such as discriminative methods.

Our current experimental validation has primarily demonstrated the efficacy of Task Tokens with
the MaskedMimic architecture. Further research is therefore needed to empirically verify and adapt
the methodology across a broader spectrum of GC-BFM architectures, which would solidify the
approach’s generality. Additionally, while the design of task-specific reward functions and observation
spaces currently requires domain expertise, future research could explore methods to (semi-)automate
this process, potentially lowering the barrier to entry.

A crucial next step involves investigating the transferability of Task Token-adapted policies to real-
world robotic systems, a process that will require addressing inherent sim-to-real challenges. Another
key future direction involves extending validation to genuinely robotic tasks beyond simple animation,
encompassing complex agentic behaviors that require high-level decision-making in unpredictable
environments, thus rigorously testing Task Token efficacy for robust real-world interaction.

The current approach trains a separate, lightweight task encoder for each task. Scaling this to multi-
task or lifelong learning scenarios by exploring shared, compositional, or continually learned Task
Token encoders presents an interesting challenge. Investigating whether the agent correctly utilizes
task information, for instance by examining attention maps associated with the Task Token, could
offer valuable insights. such analysis would help verify the mechanism’s effectiveness and potentially
guide improvements in task encoder design.

Finally, investigating more sophisticated architectures for the Task Encoder itself, beyond the current
feed-forward network, could unlock further performance gains. Addressing these areas will further
enhance the Task Tokens framework and advance the development of more versatile, adaptable, and
capable humanoid agents.

6 SUMMARY

This work introduces Task Tokens, a novel approach for enhancing MaskedMimic as a Goal-
Conditioned Behavior Foundation Model (GC-BFM). Our method enables a hybrid control paradigm:
users provide high-level behavioral priors, which are augmented by task-specific embeddings learned
via a Task Encoder trained with reinforcement learning. The encoder maps observations to goal
tokens, optimizing dense rewards while keeping the BFM’s robustness and multi-modal capabilities.

Experimental results demonstrate that Task Tokens effectively balance efficiency, task precision, and
robustness. They achieve rapid convergence and high success rates, surpassing existing methods
with superior generalization on OOD cases. This is accomplished while maintaining multi-modal
prompting capabilities and exhibiting unmatched parameter efficiency. Human studies further confirm
the human-likeness of the generated movements. However, despite these benefits, the approach relies
on the quality of the underlying BFM and is currently restricted to simulated environments.

By enabling more flexible and parameter-efficient adaptation of BFMs to specific tasks, this work
presents a promising avenue for creating nuanced, responsive, and controllable humanoid agents. This
could lead to more realistic character animations and capable humanoid robots capable of tailored
behaviors across a wide range of tasks, balancing prompt engineering with reward design.
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A ENVIRONMENTS TECHNICAL DETAILS

The controllers operate at 30 Hz, and the simulation runs at 120 Hz.

The tasks are designed to test the versatility and adaptability of the models across a range of real-world
scenarios, each adding layers of complexity to the control problem.

(a) Direction (b) Steering (c) Reach (d) Strike (e) Long Jump

Figure 7: Visual samples from the tasks.

Direction: This task involves directing the character to move in a specific direction. We test the
model’s ability to control basic locomotion and alignment with a target direction. We measure success
by the humanoid’s speed in the target direction not deviating from the target speed by more than 20%
in the measurement period.

Steering: This task requires the humanoid to move in a specific direction while also ensuring that
it faces some orientation with its pelvis. This tests more nuanced proceeding motion of the model,
creating more diverse scenarios. Success is defined by the character not deviating from the target
direction speed by more than 20% while also not deviating from the direction of facing by a sum
greater than 45◦.

Reach: For this scenario, we task the humanoid with reaching a specified coordinate with the right
hand. This requires precision of movement to achieve the specific target. The success is measured by
reaching a distance within 20cm between the right hand’s position and the target position.

Strike: Here we challenge the model to make the character walk toward a target and, once within
range, perform an action to knock down the target. This task tests the model’s ability to handle
both locomotion and more intricate, task-oriented behaviors, involving precise timing and spatial
awareness. Success is then defined by the target falling to its side in some orientation and not
deviating from it by more than ~78◦.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Long Jump The character is tasked with committing a run in a meter-wide corridor, then jumping
over a line after 20 meters, not touching the ground after crossing the jump start line. Success is
defined by achieving a jumping distance greater than 1.5 meters.

B TRAINING AND EVALUATION DETAILS

Each experiment seed was trained for 4000 epochs on 1024 parallel environments, totaling approxi-
mately 120 million frames. This results in roughly 1–2 GPU-days per seed. PULSE was also trained
on 120 million frames, but using only 128 parallel environments. All experiments were run on a
single NVIDIA A100 or V100 GPU per seed.

In the main Task Tokens results, we used a Task Encoder implemented as an MLP with hidden layers
of size [512, 512, 512], and a critic MLP with layers of size [1024, 1024, 1024]. We additionally
concatenated the current positions of the head and pelvis joints to the Task Encoder input, which led
to slightly more human-like motion.

All reported results reflect the mean and standard deviation of the success rate across the 5 random
training seeds. In performance plots, the trend line shows the mean, and shaded areas represent
one standard deviation across seeds. Note that the J.C. Only baseline does not report variance as it
corresponds to the performance of the single, re-used MaskedMimic base model evaluated without
task-specific retraining.

Each reported result corresponds to the final model checkpoint after 4000 training epochs. Note that
success rates in training and evaluation may differ due to differences in episode termination criteria.

For training, we used the original published hyperparameters of PULSE. All other methods were
trained using MaskedMimic’s published hyperparameters. Please refer to the respective publications
for additional implementation details.

C ABLATION STUDY

We experimented with several variables, constructing the Task Encoder. The results are shown in
Table 3.

C.1 MASKEDMIMIC ADAPTATION PARADIGM

Table 3: Algorithm training scheme ablations. While fine-tuning the whole MaskedMimic model
can produce performing results, we’ve shown it lacks the human-like abilities of Task Tokens.

Method Reach Direction Steering Long Jump Strike

Task Tokens (ours) 95.37 ± 1.80 96.89 ± 4.33 83.66 ± 5.66 99.75 ± 0.57 76.61 ± 3.49
Task Tokens (ours) + J.C. 94.88 ± 1.99 99.26 ± 0.79 88.69 ± 4.04 - -
MaskedMimic (J.C. only) 24.77 2.19 3.83 - -
MaskedMimic F.T. 93.70 ± 4.59 99.10 ± 1.29 87.44 ± 6.79 47.36 ± 54.78 83.07 ± 5.71
MaskedMimic F.T. + J.C. 92.88 ± 3.42 98.86 ± 0.32 96.41 ± 4.94 - -

Results in Table 3 demonstrate superior performance when using J.C. when available. It is worth
noting that F.T. + J.C. means fine-tuning while using the joint priors and does not imply preserving
the multi-modal prompting capabilities.

C.2 TASK ENCODER ARCHITECTURE

We further present some architectural changes made to the Tak Encoder and their effect on output
performance, listed in Table 4. Bigger MLP denotes using [512, 512, 512] size MLP encoder versus
[256, 256] and Using Current Pose denotes whether the current positions of the head and pelvis are
concatenated to the input alongside the task goal. When using joint conditioning, the performance
stays high for every choice except when using a smaller encoder with current pose information. This
result replicates when not using joint conditioning.
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Table 4: Task Encoder architectural ablations.

Method Bigger MLP Using Current Pose Steering Success Rate

Task Tokens (ours) + J.C. True True 87.77 ± 7.14
Task Tokens (ours) + J.C. True False 87.58 ± 7.02
Task Tokens (ours) + J.C. False False 86.88 ± 6.65
Task Tokens (ours) False False 84.28 ± 7.72
Task Tokens (ours) True False 83.30 ± 10.06
Task Tokens (ours) + J.C. False True 79.47 ± 4.71
Task Tokens (ours) True True 78.59 ± 8.93
Task Tokens (ours) False True 66.31 ± 13.11

D HUMAN STUDY TECHNICAL DETAILS

To assess the quality of the motions generated by our method we conducted a human study. The
participants were met with this description before filling out the form:

In this study, you will watch three short videos side by side each time.
These videos show different ways a character moves to complete a task.
Your job is to decide which movement looks the most human-like.
Each video is labeled A, B, or C — the labels are shuffled every time. Just
pick the one you think does the best job.
Don’t worry — there’s no right or wrong answer! We just want your
opinion.

We used Google Forms to create 3 forms, each containing 40 questions - 8 questions for each of the
tasks listed in Section A. In each question, we showed 3 videos side-by-side of 3 randomly sampled
sequences generated by the algorithms. We ensured that Task Tokens was presented every time. Joint
conditioning was used when applicable, i.e. for Direction, Steering and Reach tasks. The participants
were asked to choose which algorithm looks most human-like for the task described in the question.
An example

To ensure no bias, we shuffled the order of algorithms in every question and captured the
videos from similar angles. The number of participants was 96: 20, 24, 52 for the forms re-
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spectively. We analyzed the winning rate for each environment as winning percentageAenv =
# Task Tokens chosen

#Task Tokens chosen+#Algorithm A chosen . None of the participants received any compensation for par-
ticipation.
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