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Abstract. We investigate the problem of learning continuous vector
representations of knowledge graphs for predicting missing links. Recent
results suggest that using a Hermitian inner product on complex-valued
embeddings or convolutions on real-valued embeddings can be effective
means for predicting missing links. We bring these insights together and
propose ConEx—a multiplicative composition of a 2D convolution with a
Hermitian inner product on complex-valued embeddings. ConEx utilizes
the Hadamard product to compose a 2D convolution followed by an affine
transformation with a Hermitian inner product in C. This combination
endows ConEx with the capability of (1) controlling the impact of the
convolution on the Hermitian inner product of embeddings, and (2)
degenerating into ComplEx if such a degeneration is necessary to further
minimize the incurred training loss. We evaluated our approach on five of
the most commonly used benchmark datasets. Our experimental results
suggest that ConEx outperforms state-of-the-art models on four of the five
datasets w.r.t. Hits@1 and MRR even without extensive hyperparameter
optimization. Our results also indicate that the generalization performance
of state-of-the-art models can be further increased by applying ensemble
learning. We provide an open-source implementation of our approach,
including training and evaluation scripts as well as pretrained models.1

1 Introduction

Knowledge Graphs (KGs) represent structured collections of facts modelled in
the form of typed relationships between entities [13]. These collections of facts
have been used in a wide range of applications, including web search [10], cancer
research [29], and even entertainment [21]. However, most KGs on the Web are
far from being complete [24]. For instance, the birth places of 71% of the people
in Freebase and 66% of the people in DBpedia are not found in the respective
KGs. In addition, more than 58% of the scientists in DBpedia are not linked
to the predicate that describes what they are known for [20]. Link prediction
on KGs refers to identifying such missing information [9]. Knowledge Graph
Embedding (KGE) models have been particularly successful at tackling the link
prediction task [24].

We investigate the use of a 2D convolution in the complex space C to tackle
the link prediction task. We are especially interested in an effective composition

1 github.com/dice-group/Convolutional-Complex-Knowledge-Graph-Embeddings
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of the non-symmetric property of Hermitian products with the parameter sharing
property of a 2D convolution. Previously, Trouillon et al. [35] showed the expres-
siveness of a Hermitian product on complex-valued embeddings Re(〈eh, er, et〉),
where eh, er, and et stand for the embeddings of head entity, relation and tail
entity, respectively; et is the complex conjugate of et. The Hermitian product
used in [35] is not symmetric and can be used to model antisymmetric rela-
tions since Re(〈eh, er, et〉) 6= Re(〈et, er, eh〉). Dettmers et al. [9] and Nguyen
et al. [23] indicated the effectiveness of using a 2D convolution followed by an
affine transformation to predict missing links. Additionally, Balažević et al. [3]
showed that 1D relation-specific convolution filters can be an effective means
to tackle the link prediction task. Chen et al. [6] suggested applying a 2D con-
volution followed by two capsule layers on quaternion-valued embeddings. In
turn, the results of a recent work [28] highlighted the importance of extensive
hyperparameter optimization and new training strategies (see Table 1). The
paper showed that the link prediction performances of previous state-of-the-art
models (e.g., RESCAL, ComplEx and DistMult [26,35,37]) increased by up to
10% absolute on benchmark datasets, provided that new training strategies are
applied. Based on these considerations, we propose ConEx—a multiplicative
composition of a 2D convolution operation with a Hermitian inner product of
complex-valued embedding vectors. By virtue of its novel architecture, ConEx
is able to control the impact of a 2D convolution on predicted scores, i.e., by
endowing ComplEx with two more degrees of freedom (see Section 4). Ergo,
ConEx is able to degenerate to ComplEx if such a degeneration is necessary to
further reduce the incurred training loss.

We evaluated ConEx on five of the most commonly used benchmark datasets
(WN18, WN18RR, FB15K, FB15K-237 and YAGO3-10). We used the findings
of [28] on using Bayesian optimization to select a small sample of hyperparameter
values for our experiments. Hence, we did not need to perform an extensive
hyperparameter optimization throughout our experiments and fixed the seed
for the pseudo-random generator to 1. In our experiments, we followed the
standard training strategy commonly used in the literature [4,3]. Overall, our
results suggest that ConEx outperforms state-of-the-art models on four out
of five benchmark datasets w.r.t. Hits@N and Mean Reciprocal Rank (MRR).
ConEx outperforms ComplEx and ConvE on all benchmark datasets in all
metrics. Results of our statistical hypothesis testing indicates that the superior
performance of ConEx is statistically significant. Our ablation study suggests
that the dropout technique and the label smoothing have the highest impact on
the performance of ConEx. Furthermore, our results on the YAGO3-10 dataset
supports the findings of Ruffinelli et al. [28] as training DistMult and ComplEx
with new techniques resulted in increasing their MRR performances by absolute
20% and 19%, respectively. Finally, our results suggest that the generalization
performance of models can be further improved by applying ensemble learning.
In particular, ensembling ConEx leads to a new state-of-the-art performance on
WN18RR and FB15K-237.
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2 Related work

A wide range of works have investigated KGE to address various tasks such as type
prediction, relation prediction, link prediction, question answering, item recom-
mendation and knowledge graph completion [8,7,26,14]. We refer to [24,36,5,16,27]
for recent surveys and give a brief overview of selected KGE techniques. Table 1
shows scoring functions of state-of-the-art KGE models.

RESCAL [26] is a bilinear model that computes a three-way factorization of
a third-order adjacency tensor representing the input KG. RESCAL captures
various types of relations in the input KG but is limited in its scalability as it has
quadratic complexity in the factorization rank [33]. DistMult [37] can be seen as
an efficient extension of RESCAL with a diagonal matrix per relation to reduce
the complexity of RESCAL [4]. DistMult performs poorly on antisymmetric
relations while performing well on symmetric relations [33]. Note that through
applying the reciprocal data augmentation technique, this incapability of DistMult
is alleviated [28]. TuckER [4] performs a Tucker decomposition on the binary
tensor representing the input KG, which enables multi-task learning through
parameter sharing between different relations via the core tensor.

Table 1: State-of-the-art KGE models with training strategies. e denotes embed-
dings, e ∈ C corresponds to the complex conjugate of e.. ∗ denotes a convolution
operation with ω kernel. f denotes rectified linear unit function. ⊗, ◦, · denote
the Hamilton, the Hadamard and an inner product, respectively. In ConvE,
the reshaping operation is omitted. The tensor product along the n-th mode is
denoted by ×n and the core tensor is represented by W. MSE, MR, BCE and
CE denote mean squared error, margin ranking, binary cross entropy and cross
entropy loss functions. NegSamp and AdvNegSamp stand for negative sampling
and adversarial sampling.
Model Scoring Function VectorSpace Loss Training Optimizer Regularizer

RESCAL [26] eh · Wr · et eh, et ∈ R MSE Full ALS L2
DistMult [37] 〈eh, er, et〉 eh, er, et ∈ R MR NegSamp Adagrad Weighted L2
ComplEx [35] Re(〈eh, er, et〉) eh, er, et ∈ C BCE NegSamp Adagrad Weighted L2
ConvE [9] f(vec(f([eh; er] ∗ ω))W) · et eh, er, et ∈ R BCE KvsAll Adam Dropout, BatchNorm
TuckER [4] W ×1 eh ×2 er ×3 et eh, er, et ∈ R BCE KvsAll Adam Dropout, BatchNorm
RotatE [31] − ‖ eh ◦ er − et ‖ eh, er, et ∈ C CE AdvNegSamp Adam -
QuatE [38] eh ⊗ e/r · et eh, er, et ∈ H CE AdvNegSamp Adagrad Weighted L2

ConEx conv(eh, er) ◦ Re(〈eh, er, et〉) eh, er, et ∈ C BCE KvsAll Adam Dropout, BatchNorm

ComplEx [35] extends DistMult by learning representations in a complex
vector space. ComplEx is able to infer both symmetric and antisymmetric relations
via a Hermitian inner product of embeddings that involves the conjugate-transpose
of one of the two input vectors. ComplEx yields state-of-the-art performance on
the link prediction task while leveraging linear space and time complexity of the
dot products. Trouillon et. al. [34] showed that ComplEx is equivalent to HolE [25].
Inspired by Euler’s identity, RotatE [31] employs a rotational model taking
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predicates as rotations from subjects to objects in complex space via the element-
wise Hadamard product [16]. RotatE performs well on composition/transitive
relations while ComplEx performs poorly [31]. QuatE [38] extends the complex-
valued space into hypercomplex by a quaternion with three imaginary components,
where the Hamilton product is used as compositional operator for hypercomplex
valued-representations.

ConvE [9] applies a 2D convolution to model the interactions between entities
and relations. Through interactions captured by 2D convolution, ConvE yields a
state-of-art performance in link prediction. ConvKB extends ConvE by omitting
the reshaping operation in the encoding of representations in the convolution
operation [23]. Similarly, HypER extends ConvE by applying relation-specific
convolution filters as opposed to applying filters from concatenated subject and
relation vectors [3].

3 Preliminaries and Notation

3.1 Knowledge Graphs

Let E and R represent the set of entities and relations, respectively. Then, a KG
G = {(h, r, t) ∈ E ×R×E} can be formalised as a set of triples where each triple
contains two entities h, t ∈ E and a relation r ∈ R. A relation r in G is

– symmetric if (h, r, t) ⇐⇒ (t, r, h) for all pairs of entities h, t ∈ E ,

– anti-symmetric if (h, r, t) ∈ G ⇒ (t, r, h) 6∈ G for all h 6= t, and

– transitive/composite if (h, r, t) ∈ G ∧ (t, r, y) ∈ G ⇒ (h, r, y) ∈ G for all
h, t, y ∈ E [31,18].

The inverse of a relation r, denoted r−1, is a relation such that for any two
entities h and t, (h, r, t) ∈ G ⇐⇒ (t, r−1, h) ∈ G.

3.2 Link Prediction

The link prediction refers to predicting whether unseen triples (i.e., triples not
found in G) are true [16]. The task is often formalised by learning a scoring
function φ : E ×R× E 7→ R [24,16] ideally characterized by φ(h, r, t) > φ(x, y, z)
if (h, r, t) is true and (x, y, z) is not.

4 Convolutional Complex Knowledge Graph Embeddings

Inspired by the previous works ComplEx [35] and ConvE [9], we dub our approach
ConEx (convolutional complex knowledge graph embeddings).
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Motivation. Sun et. al. [31] suggested that ComplEx is not able to model
triples with transitive relations since ComplEx does not perform well on datasets
containing many transitive relations (see Table 5 and Section 4.6 in [31]). Moti-
vated by this consideration, we propose ConEx, which applies the Hadamard
product to compose a 2D convolution followed by an affine transformation with
a Hermitian inner product in C. By virtue of the proposed architecture (see
Equation (1)), ConEx is endowed with the capability of

1. leveraging a 2D convolution and

2. degenerating to ComplEx if such degeneration is necessary to further minimize
the incurred training loss.

ConEx benefits from the parameter sharing and equivariant representation
properties of convolutions [11]. The parameter sharing property of the convolution
operation allows ConEx to achieve parameter efficiency, while the equivariant
representation allows ConEx to effectively integrate interactions captured in the
stacked complex-valued embeddings of entities and relations into computation
of scores. This implies that small interactions in the embeddings have small
impacts on the predicted scores2. The rationale behind this architecture is to
increase the expressiveness of our model without increasing the number of its
parameters. As previously stated in [35], this nontrivial endeavour is the keystone
of embedding models. Ergo, we aim to overcome the shortcomings of ComplEx
in modelling triples containing transitive relations through combining it with a
2D convolutions followed by an affine transformation on C.

Approach. Given a triple (h, r, t), ConEx : C3d 7→ R computes its score as

ConEx(h, r, t) = conv(eh, er) ◦ Re(〈eh, er, et〉), (1)

where conv(·, ·) : C2d 7→ Cd is defined as

conv(eh, er) = f
(

vec(f([eh, er] ∗ ω)) ·W + b
)
, (2)

where f(·) denotes the rectified linear unit function (ReLU), vec(·) stands for a
flattening operation, ∗ is the convolution operation, ω stands for kernels/filters in
the convolution, and (W,b) characterize an affine transformation. By virtue of its
novel structure, ConEx is enriched with the capability of controlling the impact
of a 2D convolution and Hermitian inner product on the predicted scores. Ergo,
the gradients of loss (see Equation (6)) w.r.t. embeddings can be propagated
in two ways, namely, via conv(eh, er) or Re(〈eh, er, et〉). Equation (1) can be

2 We refer to [11] for further details of properties of convolutions.
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equivalently expressed by expanding its real and imaginary parts:

ConEx(h, r, t) =

d∑
k=1

Re(γ)kRe(eh)kRe(er)kRe(et)k (3)

= 〈Re(γ),Re(eh),Re(er),Re(et)〉
+ 〈Re(γ),Re(eh), Im(er), Im(et)〉
+ 〈Im(γ), Im(eh),Re(er), Im(et)〉
− 〈Im(γ), Im(eh), Im(er),Re(et)〉 (4)

where et is the conjugate of et and γ denotes the output of conv(eh, er) for
brevity. Such multiplicative inclusion of conv(·, ·) equips ConEx with two more
degrees of freedom due the Re(γ) and Im(γ) parts.

Connection to ComplEx. During the optimization, conv(·, ·) is allowed to
reduce its range into γ ∈ C such that Re(γ) = 1∧ Im(γ) = 1 . This allows ConEx
to degenerate into ComplEx as shown in Equation (5):

ConEx(h, r, t) = γ ◦ ComplEx(h, r, t). (5)

This multiplicative inclusion of conv(·, ·) is motivated by the scaling parameter in
the batch normalization (see section 3 in [15]). Consequently, ConEx is allowed
use a 2D convolution followed by an affine transformation as a scaling factor in
the computation of scores.

Training. We train our approach by following a standard setting [9,4]. Similarly,
we applied the standard data augmentation technique, the KvsAll training
procedure3. After the data augmentation technique for a given pair (h, r), we
compute scores for all x ∈ E with φ(h, r, x). We then apply the logistic sigmoid
function σ(φ((h, r, t))) to obtain predicted probabilities of entities. ConEx is
trained to minimize the binary cross entropy loss function L that determines the
incurred loss on a given pair (h, r) as defined in the following:

L = − 1

|E|

|E|∑
i=1

(y(i)log(ŷ(i)) + (1− y(i))log(1− ŷ(i))), (6)

where ŷ ∈ R|E| is the vector of predicted probabilities and y ∈ [0, 1]|E| is the
binary label vector.

5 Experiments

5.1 Datasets

We used five of the most commonly used benchmark datasets (WN18, WN18RR,
FB15K, FB15K-237 and YAGO3-10). An overview of the datasets is provided

3 Note that the KvsAll strategy is called 1-N scoring in [9]. Here, we follow the
terminology of [28].
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in Table 2. WN18 and WN18RR are subsets of Wordnet, which describes lexical
and semantic hierarchies between concepts and involves symmetric and anti-
symmetric relation types, while FB15K, FB15K-237 are subsets of Freebase,
which involves mainly symmetric, antisymmetric and composite relation
types [31]. We refer to [9] for further details pertaining to the benchmark datasets.

Table 2: Overview of datasets in terms of number of entities, number of relations,
and node degrees in the train split along with the number of triples in each split
of the dataset.

Dataset |E| |R| Degr. (M±SD) |GTrain| |GValidation| |GTest|
YAGO3-10 123,182 37 9.6±8.7 1,079,040 5,000 5,000
FB15K 14,951 1,345 32.46±69.46 483,142 50,000 59,071
WN18 40,943 18 3.49±7.74 141,442 5,000 5,000
FB15K-237 14,541 237 19.7±30 272,115 17,535 20,466
WN18RR 40,943 11 2.2±3.6 86,835 3,034 3,134

5.2 Evaluation Metrics

We used the filtered MRR and Hits@N to evaluate link prediction performances,
as in previous works [31,35,9,4]. We refer to [28] for details pertaining to metrics.

5.3 Experimental Setup

We selected the hyperparameters of ConEx based on the MRR score obtained
on the validation set of WN18RR. Hence, we evaluated the link prediction
performance of ConEx on FB15K-237, YAGO3-10, WN18 and FB15K by using
the best hyperparameter configuration found on WN18RR. This decision stems
from the fact that we aim to reduce the impact of extensive hyperparameter
optimization on the reported results and the CO2 emission caused through
relying on the findings of previously works [28]. Strubell et al. [30] highlighted
the substantial energy consumption of performing extensive hyperparameter
optimization. Moreover, Ruffinelli et al. [28] showed that model configurations can
be found by exploring relatively few random samples from a large hyperparameter
space. With these considerations, we determined the ranges of hyperparameters
for the grid search algorithm optimizer based on their best hyperparameter setting
for ConvE (see Table 8 in [28]). Specifically, the ranges of the hyperparameters
were defined as follows: d: {100, 200}; dropout rate:{.3, .4} for the input; dropout
rate: {.4, .5} for the feature map; label smoothing: {.1} and the number of output
channels in the convolution operation: {16, 32}; the batch size: {1024}; the
learning rate: {.001}. After determining the best hyperparameters based on the
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MRR on the validation dataset; we retrained ConEx with these hyperparameters
on the combination of train and valid sets as applied in [17].

Motivated by the experimental setups for ResNet [12] and AlexNet [19], we
were interested in quantifying the impact of ensemble learning on the link predic-
tion performances. Ensemble learning refers to learning a weighted combination of
learning algorithms. In our case, we generated ensembles of models by averaging
the predictions of said models.4 To this end, we re-evaluated state-of-the-art
models, including TucKER, DistMult and ComplEx on the combination of train
and validation sets of benchmark datasets. Therewith, we were also able to
quantify the impact of training state-of-the-art models on the combination of
train and validation sets. Moreover, we noticed that link prediction performances
of DistMult and ComplEx, on the YAGO3-10 dataset were reported without
employing new training strategies (KvsAll, the reciprocal data augmentation,
the batch normalization, and the ADAM optimizer). Hence, we trained DistMult,
ComplEx on YAGO3-10 with these strategies.

5.4 Implementation Details and Reproducibility

We implemented and evaluated our approach in the framework provided by [4,2].
Throughout our experiments, the seed for the pseudo-random generator was
fixed to 1. To alleviate the hardware requirements for the reproducibility of our
results and to foster further reproducible research, we provide hyperparameter
optimization, training and evaluation scripts along with pretrained models at the
project page.

6 Results

Table 3, Table 4 and Table 10 report the link prediction performances of ConEx
on five benchmark datasets. Overall, ConEx outperforms state-of-the-art models
on four out of five datasets. In particular, ConEx outperforms ComplEx and
ConvE on all five datasets. This supports our original hypothesis, i.e., that the
composition of a 2D convolution with a Hermitian inner product improves the
prediction of relations in complex spaces. We used the Wilcoxon signed-rank test
to measure the statistical significance of our link prediction results. Moreover,
we performed an ablation study (see Table 8) to obtain confidence intervals for
prediction performances of ConEx. These results are shown in the Appendix.
Bold and underlined entries denote best and second-best results in all tables.

ConEx outperforms all state-of-the-art models on WN18 and FB15K (see Ta-
ble 10 in the Appendix), whereas such distinct superiority is not observed on
WN18RR and FB15K-237. Table 3 shows that ConEx outperforms many state-
of-the-art models, including RotatE, ConvE, HypER, ComplEx, NKGE, in all
metrics on WN18RR and FB15K-237. This is an important result for two reasons:

4 Ergo, the weights for models were set to 1 (see the section 16.6 in [22] for more
details.)
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Table 3: Link prediction results on WN18RR and FB15K-237. Results are obtained
from corresponding papers. ‡ represents recently reported results of corresponding
models.

WN18RR FB15K-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult [9] .430 .490 .440 .390 .241 .419 .263 .155
ComplEx [9] .440 .510 .460 .410 .247 .428 .275 .158
ConvE [9] .430 .520 .440 .400 .335 .501 .356 .237

RESCAL† [28] .467 .517 .480 .439 .357 .541 .393 .263

DistMult† [28] .452 .530 .466 .413 .343 .531 .378 .250

ComplEx† [28] .475 .547 .490 .438 .348 .536 .384 .253

ConvE† [28] .442 .504 .451 .411 .339 .521 .369 .248
HypER [3] .465 .522 .477 .436 .341 .520 .376 .252
NKGE [38] .450 .526 .465 .421 .330 .510 .365 .241
RotatE [31] .476 .571 .492 .428 .338 .533 .375 .241
TuckER [4] .470 .526 .482 .443 .358 .544 .394 .266
QuatE [38] .482 .572 .499 .436 .366 .556 .401 .271

DistMult .439 .527 .455 .399 .353 .539 .390 .260
ComplEx .453 .546 .473 .408 .332 .509 .366 .244
TuckER .466 .515 .476 .441 .363 .553 .400 .268

ConEx .481 .550 .493 .448 .366 .555 .403 .271

(1) ConEx requires significantly fewer parameters to yield such superior results
(e.g., ConEx only requires 26.63M parameters on WN18RR, while RotatE relies
on 40.95M parameters), and (2) we did not tune the hyperparameters of ConEx
on FB15K-237.Furthermore, the results reported in Table 3 corroborate the
findings of Ruffinelli et al. [28]: training DistMult and ComplEx with KvsAll, the
reciprocal data augmentation, the batch normalization, and the ADAM optimizer
leads to a significant improvement, particularly on FB15K-237.

During our experiments, we observed that many state-of-the-art models are not
evaluated on YAGO3-10. This may stem from the fact that the size of YAGO3-10
prohibits performing extensive hyperparameter optimization even with the current
state-of-the-art hardware systems. Note that YAGO3-10 involves 8.23 and 8.47
times more entities than FB15K and FB15K-237, respectively. Table 4 indicates
that DistMult and ComplEx perform particularly well on YAGO3-10, provided
that KvsAll, the reciprocal data augmentation, the batch normalization, and
the ADAM optimizer are employed. These results support findings of Ruffinelli
et al. [28]. During training, we observed that the training loss of DistMult and
ComplEx seemed to converge within 400 epochs, whereas the training loss of
TuckER seemed to continue decreasing. Ergo, we conjecture that TuckER is
more likely to benefit from increasing the number of epochs than DistMult and
ComplEx. Table 4 shows that the superior performance of ConEx against state-



10 Caglar Demir and Axel-Cyrille Ngonga Ngomo

Table 4: Link prediction results on YAGO3-10. Results are obtained from corre-
sponding papers.

YAGO3-10

MRR Hits@10 Hits@3 Hits@1

DistMult [9] .340 .540 .380 .240
ComplEx [9] .360 .550 .400 .260
ConvE [9] .440 .620 .490 .350
HypER [3] .533 .678 .580 .455
RotatE [31] .495 .670 .550 .402

DistMult .543 .683 .590 .466
ComplEx .547 .690 .594 .468
TuckER .427 .609 .476 .331

ConEx .553 .696 .601 .474

of-the-art models including DistMult, ComplEx, HypER can be maintained on
the largest benchmark dataset for the link prediction.

Delving into the link prediction results, we observed an inconsistency in the
test splits of WN18RR and FB15K-237. Specifically, the test splits of WN18RR
and FB15K-237 contain many out-of-vocabulary entities5. For instance, 6% of the
test set on WN18RR involves out-of-vocabulary entities. During our experiments,
we did not remove such triples to obtain fair comparisons on both datasets.
To quantify the impact of unseen entities on link prediction performances, we
conducted an additional experiment.

Link Prediction per Relation. Table 5 reports the link prediction per relation
performances on WN18RR. Overall, models perform particularly well on triples
containing symmetric relations such as also see and similar to. Compared
to RotatE, DistMult, ComplEx and TuckER, ConEx performs well on triples
containing transitive relations such as hypernym and has part. Allen et al. [1]
ranked the complexity of type of relations as R > S > C in the link prediction
task. Based on this ranking, superior performance of ConEx becomes more
apparent as the complexity of relations increases.

Ensemble Learning. Table 6 reports the link prediction performances of
ensembles based on pairs of models. These results suggest that ensemble learning
can be applied as an effective means to boost the generalization performance
of existing approaches including ConEx. These results may also indicate that
models may be further improved through optimizing the impact of each model
on the ensembles, e.g., by learning two scalars α and β in

(
αConEx(s, p, o) +

βTuckER(s, p, o)
)

instead of averaging predicted scores.

5 github.com/TimDettmers/ConvE/issues/66

github.com/TimDettmers/ConvE/issues/66
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Table 5: MRR link prediction on each relation of WN18RR. Results of RotatE
are taken from [38]. The complexity of type of relations in the link prediction
task is defined as R > S > C [1].

Relation Name Type RotatE DistMult ComplEx TuckER ConEx

hypernym S .148 .102 .106 .121 .149

instance hypernym S .318 .218 .292 .375 .393

member meronym C .232 .129 .181 .181 .171

synset domain topic of C .341 .226 .266 .344 .373

has part C .184 .143 .181 .171 .192

member of domain usage C .318 .225 .280 .213 .318

member of domain region C .200 .095 .267 .284 .354

derivationally related form R .947 .982 .984 .985 .986

also see R .585 .639 .557 .658 .647

verb group R .943 1.00 1.00 1.00 1.00

similar to R 1.00 1.00 1.00 1.00 1.00

Table 6: Link prediction results of ensembled models on WN18RR and FB15K-
237. Second rows denote link prediction results without triples containing out-of-
vocabulary entities. ConEx-ConEx stands for ensembling two ConEx trained
with the dropout rate 0.4 and 0.5 on the feature map.

WN18RR FB15K-237

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult-ComplEx .446 .545 .467 .398 .359 .546 .397 .265
.475 .579 .497 .426 .359 .546 .397 .265

DistMult-TuckER .446 .533 .461 .405 .371 .563 .410 .275
.476 .569 .492 .433 .371 .563 .411 .275

ConEx-DistMult .454 .545 .471 .410 .371 .563 .409 .275
.484 .580 .501 .439 .367 .556 .403 .272

ConEx-ComplEx .470 .554 .487 .428 .370 .559 .407 .276
.501 .589 .518 .456 .360 .547 .397 .267

ConEx-TuckER .483 .549 .494 .449 .375 .568 .414 .278
.514 .583 .526 .479 .375 .568 .414 .278

ConEx-ConEx .485 .559 .495 .450 .376 .569 .415 .279
.517 .594 .526 .479 .376 .570 .415 .279

Parameter Analysis. Table 7 indicates the robustness of ConEx against the
overfitting problem. Increasing the number of parameters in ConEx does not lead
to a significant decrease in the generalization performance. In particular, ConEx
achieves similar generalization performance, with p = 26.63M and p = 70.66M ,
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Table 7: Influence of different hyperparameter configurations for ConEx on
WN18RR. d, c and p stand for the dimensions of embeddings in C, number of
output channels in 2D convolutions and number of free parameters in millions,
respectively.

WN18RR

d c p MRR Hits@10 Hits@3 Hits@1

300 64 70.66M .475 .540 .490 .442
250 64 52.49M .475 .541 .488 .441
300 32 47.62M .480 .548 .491 .447
250 32 36.39M .479 .545 .490 .446
300 16 36.10M .479 .550 .494 .445
250 16 28.48M .477 .544 .489 .443
200 32 26.63M .481 .550 .493 .447
100 32 10.75M .474 .533 .480 .440
100 16 9.47M .476 .536 .486 .441
50 32 4.74M .448 .530 .477 .401

as the difference between MRR scores are less than absolute 1%. This cannot be
explained with convolutions playing no role as ConEx would then degrade back
to ComplEx and achieve the same results (which is clearly not the case in our
experiments).

7 Discussion

The superior performance of ConEx stems from the composition of a 2D convo-
lution with a Hermitian inner product of complex-valued embeddings. Trouillon
et al. [35] showed that a Hermitian inner product of complex-valued embeddings
can be effectively used to tackle the link prediction problem. Applying the con-
volution operation on complex-valued embeddings of subjects and predicates
permits ConEx to recognize interactions between subjects and predicates in
the form of complex-valued feature maps. Through the affine transformation
of feature maps and their inclusion into a Hermitian inner product involving
the conjugate-transpose of complex-valued embeddings of objects, ConEx can
accurately infer various types of relations. Moreover, the number and shapes
of the kernels permit to adjust the expressiveness , while ConEx retains the
parameter efficiency due to the parameter sharing property of convolutions. By
virtue of the design, the expressiveness of ConEx may be further improved by
increasing the depth of the conv(·, ·) via the residual learning block [12].

8 Conclusion and Future Work

In this work, we introduced ConEx—a multiplicative composition of a 2D
convolution with a Hermitian inner product on complex-valued embeddings. By
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virtue of its novel structure, ConEx is endowed with the capability of controlling
the impact of a 2D convolution and a Hermitian inner product on the predicted
scores. Such combination makes ConEx more robust to overfitting, as is affirmed
with our parameter analysis. Our results open a plethora of other research
avenues. In future work, we plan to investigate the following: (1) combining
the convolution operation with Hypercomplex multiplications, (2) increasing
the depth in the convolutions via residual learning block and (3) finding more
effective combinations of ensembles of models.
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9 Appendix

Statistical Hypothesis Testing. We carried out a Wilcoxon signed-rank test
to check whether our results are significant. Our null hypothesis was that the link
prediction performances of ConEx, ComplEx and ConvE come from the same
distribution. The alternative hypothesis was correspondingly that these results
come from different distributions. To perform the Wilcoxon signed-rank test
(two-sided), we used the differences of the MRR, Hits@1, Hits@3, and Hits@10
performances on WN18RR, FB15K-237 and YAGO3-10. We performed two
hypothesis tests between ConEx and ComplEx as well as between ConEx and
ConvE. In both tests, we were able to reject the null hypothesis with a p-value
< 1%. Ergo, the superior performance of ConEx is statistically significant.

Ablation Study. We conducted our ablation study in a fashion akin to [9].
Like [9], we evaluated 2 different parameter initialisations to compute confidence

intervals that is defined as x̄±1.96 · s√
n

, where x̄ = 1
n

∑n
i xi and s =

√∑n
i (xi−x̄)2

n ,

respectively. Hence, the mean and the standard deviation are computed without
Bessel’s correction. Our results suggest that the initialization of parameters does
not play a significant role in the link performance of ConEx. The dropout
technique is the most important component in the generalization performance of
ConEx. This is also observed in [9]. Moreover, replacing the Adam optimizer
with the RMSprop optimizer [32] leads to slight increases in the variance of the
link prediction results. During our ablation experiments, we were also interested
in decomposing ConEx through removing conv(·, ·), after ConEx is trained
with it on benchmark datasets. By doing so, we aim to observe the impact of a
2D convolution in the computation of scores. Table 9 indicates that the impact
of conv(·, ·) differs depending on the input knowledge graph. As the size of the
input knowledge graph increases, the impact of conv(·, ·) on the computation of
scores of triples increases.
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Table 8: Ablation study for ConEx on FB15K-237. dp and ls denote the dropout
technique and the label smoothing technique, respectively.

FB15K-237

MRR Hits@10 Hits@3 Hits@1

Full .366±.000 .556±.001 .404±.001 .270±.001

No dp on inputs .282±.000 .441±.001 .313±.001 .203±.000
No dp on feature map .351±.000 .533±.000 .388±.001 .259±.001
No ls .321±.001 .498±.001 .354±.001 .232±.002
With RMSprop .361±.004 .550±.007 .400±.005 .267±.003

Table 9: Link prediction results on benchmark datasets. ConEx− stands for
removing conv(·, ·) in ConEx during the evaluation.

ConEx ConEx−

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1
WN18RR .481 .550 .493 .448 .401 .494 .437 .346
FB15K-237 .366 .555 .403 .271 .284 .458 .314 .198
YAGO3-10 .553 .696 .601 .477 .198 .324 .214 .136

Table 10: Link prediction results on WN18 and FB15K obtained from [4,38].

WN18 FB15K

MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult .822 .936 .914 .728 .654 .824 .733 .546
ComplEx .941 .947 .936 .936 .692 .840 .759 .599
ANALOGY .942 .947 .944 .939 .725 .854 .785 .646
R-GCN .819 .964 .929 .697 .696 .842 .760 .601
TorusE .947 .954 .950 .943 .733 .832 .771 .674
ConvE .943 .956 .946 .935 .657 .831 .723 .558
HypER .951 .958 .955 .947 .790 .885 .829 .734
SimplE .942 .947 .944 .939 .727 .838 .773 .660
TuckER .953 .958 .955 .949 .795 .892 .833 .741
QuatE .950 .962 .954 .944 .833 .900 .859 .800

ConEx .976 .980 .978 .973 .872 .930 .896 .837

Link Prediction Results on WN18 and FB15K. Table 10 reports link
prediction results on the WN18 and FB15K benchmark datasets.
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