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ABSTRACT

Verifying the authenticity of AI-generated text has become increasingly important
with the rapid advancement of large language models, and unbiased watermarking
has emerged as a promising approach due to its ability to preserve output distri-
bution without degrading quality. However, recent work reveals that unbiased
watermarks can accumulate distributional bias over multiple generations and that
existing robustness evaluations are inconsistent across studies. To address these
issues, we introduce UWBENCH, the first open-source benchmark dedicated to
the principled evaluation of unbiased watermarking methods. Our framework
combines theoretical and empirical contributions: we propose a statistical metric
to quantify multi-batch distribution drift, prove an impossibility result showing
that no unbiased watermark can perfectly preserve the distribution under infinite
queries, and develop a formal analysis of robustness against token-level modifi-
cation attacks. Complementing this theory, we establish a three-axis evaluation
protocol—unbiasedness, detectability, and robustness—and show that token modifi-
cation attacks provide more stable robustness assessments than paraphrasing-based
methods. Together, UWBENCH offers the community a standardized and repro-
ducible platform for advancing the design and evaluation of unbiased watermarking
algorithms.

1 INTRODUCTION

As the capabilities of large language models have grown significantly in recent years, verifying the
authenticity and origin of AI-generated content has become increasingly critical. Watermarking
language models (Aaronson, 2022; Kirchenbauer et al., 2023a; Christ et al., 2023; Kuditipudi et al.,
2023; Hu et al., 2023; Wu et al., 2023; Chen et al., 2024a;b; 2025; Mao et al., 2024; Dathathri et al.,
2024) has emerged as a promising solution for distinguishing machine-generated text from human-
authored content. These methods embed covert statistical signals into the generation process using
specific keys, allowing downstream detection via statistical hypothesis testing to verify authorship
without degrading fluency.

A particularly important class of these methods is unbiased watermarking, which aims to preserve
the original distribution of the language model’s outputs. Such methods are crucial for practical
deployment since they do not introduce detectable distortions or degrade generation quality (Aaronson,
2022; Christ et al., 2023; Kuditipudi et al., 2023; Hu et al., 2023; Wu et al., 2023; Chen et al., 2025;
Mao et al., 2024; Dathathri et al., 2024). However, recent studies have revealed important limitations.
While unbiased watermarks may preserve the output distribution in expectation, their statistical
properties can drift over multiple generations, leading to distribution bias that violates the original
unbiasedness guarantees (Christ et al., 2023; Kuditipudi et al., 2023; Hu et al., 2023). Moreover,
robustness evaluations in prior work are fragmented: different methods are tested against different
adversaries using inconsistent protocols, leaving a gap in standardized, comparable assessment.

To address these challenges, we introduce UWBENCH, the first open-source benchmark specifically
designed for the analysis and evaluation of unbiased watermarking algorithms. Our framework
offers both theoretical foundations and practical tools to facilitate principled comparisons. On the
theoretical front, we propose a statistical metric that quantifies distributional shift across batches
of generated texts, enabling evaluation of long-term bias. We further prove a general impossibility
result: no unbiased watermark can perfectly preserve the model’s output distribution under an infinite
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Figure 1: Overall benchmarking results of unbiasedness (x-axis), detectability (y-axis), and robustness
(encoded with marker size) on different language model watermarking methods. Points further to
the right and higher indicate better unbiasedness and detectability; larger markers indicate greater
robustness.

query budget. Finally, we develop a formal framework for analyzing the robustness of unbiased
watermarking algorithms against token-level modification attacks, showing that such attacks can be
resisted under certain structural assumptions.

In addition to the theoretical contributions, we provide a comprehensive empirical toolkit for bench-
marking existing and future unbiased watermarking algorithms. We establish a three-axis evaluation
protocol—unbiasedness, detectability, and robustness—that provides a holistic view of watermark per-
formance. Notably, we revisit common adversarial attacks and demonstrate that paraphrasing-based
evaluations suffer from high variance and inconsistent results, potentially leading to misleading con-
clusions. In contrast, token modification attacks yield more stable and reliable robustness assessments,
making them a preferred choice for empirical benchmarking.

Our main contributions are summarized as follows:

• We introduce UWBENCH, an open-source benchmark designed specifically for evaluating
unbiased watermarking methods in language models, with support for systematic and
reproducible comparisons.

• We propose a multi-batch distribution bias metric and prove a fundamental limitation: no
unbiased watermark can preserve the model’s output distribution under unlimited queries.
We also develop a theoretical framework for analyzing robustness against token-level attacks.

• We establish a three-axis evaluation protocol—unbiasedness, detectability, and robust-
ness—and show that token modification attacks offer more stable and reliable robustness
assessments than paraphrasing-based attacks.

2 RELATED WORK

Statistical watermarks. Kirchenbauer et al. (2023a) enhanced the statistical watermark framework
originally introduced by Aaronson (2022), demonstrating the effectiveness of statistical watermarking
through extensive experiments on large language models. They splited the LM tokens into red
and green list, then promoted the use of green tokens by adding a fixed parameter δ to their logits.
Zhao et al. (2023) proposed the unigram watermark, which enhances the robustness of the statistical
watermark by using one-gram hashing to produce watermark keys. Liu et al. (2023b) also improved
the robustness of statistical watermarking by leveraging the semantics of generated content as
watermark keys. Additionally, Liu et al. (2023a) proposed an unforgeable watermark scheme that
employs neural networks to modify token distributions instead of using traditional watermark keys.
However, these approaches may lead to significant changes in the distribution of generated text,
potentially compromising content quality.
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Unbiased watermarks. To maintain the original output distribution in watermarked content, several
researchers have investigated novel approaches for token distribution modification. Aaronson (2022)
pioneered an unbiased watermarking method using Gumbel-max to adjust token distribution and
employing prefix n-grams as watermark keys. Christ et al. (2023) used inverse sampling for modifying
the token distributions of watermarked content on a binary language model with watermark keys
based on token positioning. ITS-edit and EXP-edit Kuditipudi et al. (2023) utilized inverse-sampling
and Gumbel-max respectively for modifying the token distributions of watermarked content, with
a predetermined watermark key list. Hu et al. (2023) combined inverse-sampling and γ-reweight
strategies for watermarking, though their detection method is not model-agnostic. DiPmark Wu et al.
(2023) enhanced the γ-reweight technique and introduced a model-agnostic detector. STA-1 Mao
et al. (2024) optimized the quality of the watermarked text under the low-entropy scenarios. Dathathri
et al. (2024) proposed SynthID, which enables distortion-freeness of LM watermarking with multiple
generations. Chen et al. (2025) introduced MCmark, which significantly improved the detectability
of the unbiased watermark.

LM watermarking benchmarks. WaterBench (Tu et al., 2023) provides a comprehensive benchmark
for LLM watermarking methods. It standardizes watermarking strength by tuning each method’s
hyperparameters to a common level, and then jointly evaluates both generation quality and detection
performance. MarkMyWords (Piet et al., 2025) evaluates LLM watermarks along three dimensions:
generation quality, detection efficiency (measured by the number of tokens required), and robustness.
MarkLLM (Pan et al., 2024) introduces an open-source toolkit that offers a unified, extensible
framework for implementing LLM watermarking algorithms, along with user-friendly interfaces to
facilitate broader adoption. However, most of the watermarking methods covered in these benchmarks
are biased. They lack a thorough analysis of unbiased watermarking techniques, and do not include
evaluation metrics specifically designed for them. As such, we argue that a dedicated benchmark for
unbiased watermarking is both necessary and timely.

3 PRELIMINARY

3.1 MOTIVATION

Statistical watermarking has emerged as a general-purpose solution for verifying the authenticity of
AI-generated content. Unlike task-specific benchmarks, statistical watermarking can be applied to
any language model and across any downstream task without the need for collecting task-dependent
datasets. Thus, for evaluating unbiased watermarking methods, building a new dataset is unnecessary
and does not address the core challenges. Instead, the true value of a benchmark lies in providing
principled and reliable metrics for assessing watermark performance.

Current unbiased watermarking methods are typically evaluated along three axes: unbiasedness,
detectability, and robustness. While detectability metrics are relatively well-established, existing
approaches for measuring unbiasedness and robustness are inadequate. In particular, unbiasedness
has so far been evaluated under a single-prompt setting, which overlooks important failure cases.
We theoretically prove a fundamental impossibility: no watermarking scheme can remain unbiased
when the same prompt is repeatedly queried. Motivated by this result, we propose a new metric that
quantifies distributional bias under repeated queries, offering a more faithful measure of unbiasedness.

Robustness evaluation presents another challenge. Most existing work relies on paraphrasing-based
adversarial attacks. However, these methods suffer from high variance and inconsistent results
(See Figure 2), leading to unreliable conclusions. To overcome this limitation, we combine the
paraphrasing-based adversarial attacks with the random token modification attacks that provides
stable and reproducible assessments robustness.

In summary, UW Bench shifts the focus of watermarking evaluation away from task-specific datasets
and toward theoretically grounded, reproducible, and holistic performance metrics that better capture
the limitations and strengths of unbiased watermarking algorithms.

3.2 WATERMARKING SETTING

Problem Definition. A language model (LM) provider aims to watermark generated text so that any
user can later verify its origin, without access to the LM or the original prompt. A watermarking
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framework consists of two components: a watermark generator and a watermark detector. The
generator embeds hidden statistical signals into the text, while the detector recovers these signals
using hypothesis testing.

Watermark Generator. Let PM (· | x1:n) denote the LM’s distribution for predicting the n-th token
given prefix x1:n. A watermark key k ∈ K and a reweight strategy F are used to construct the
watermarked distribution PW (· | x1:n, k) = F

(
PM (· | x1:n), k

)
. The next token xn is then sampled

from PW instead of PM . The watermark key typically includes a secret key sk and a context key (e.g.,
n-gram index (Aaronson, 2022) or token position (Christ et al., 2023)). This process injects a subtle
statistical signal into the generated text.

The reweight strategy is the core of watermark generation. A strategy is called distortion-free if the
resulting PW preserves the original distribution PM . To date, three main families of distortion-free
strategies have been proposed: (i) inverse-sampling (Christ et al., 2023; Kuditipudi et al., 2023;
Hu et al., 2023), (ii) Gumbel-reparametrization (Aaronson, 2022; Kuditipudi et al., 2023), and (iii)
permute-reweight (Hu et al., 2023).

Definition (Unbiased Watermark). A watermarking scheme is unbiased if, for any context x1:n,
the expected distribution of the next token under watermarking matches the original LM distribution:

Ek∼µ[PW (· | x1:n, k) ] = PM (· | x1:n),

Where µ is the watermark key distribution. In other words, averaging over random watermark keys
does not introduce any systematic distortion into the model’s output distribution.

Watermark Detector. The detector only has access to the watermark key k and the reweight strategy
F . Detection is posed as a hypothesis test: H0 : Text is unwatermarked, H1 : Text is watermarked.
To test this, a score function s : V ×K × F → R is applied token by token. For a sequence x1:n,
the test statistic is S(x1:n) =

∑n
i=1 s(xi, k, F ). If S(x1:n) significantly deviates from its expected

value under H0, the null hypothesis is rejected and the text is declared watermarked.

4 UWBENCH

4.1 UNBIASEDNESS UNDER REPEATED PROMPTS

Unbiasedness (one-shot). Let PM (· | x) be the LM distribution for prompt x and let PW (· | x, k)
be the distribution induced by a watermark with key k ∼ µ. We say the watermark is unbiased in the
one-shot sense if

Ek∼µ[PW (· | x, k)] = PM (· | x) for all prompts x. (1)

Impossibility under repeated prompts. We next state our main impossibility for repeated queries
of the same prompt under a fixed key (proof deferred to the appendix).
Theorem 4.1 (Unbiasedness breaks under repeated prompts). No watermarking scheme can simulta-
neously satisfy: i) preservation of the original LM distribution under repeated queries of the same
prompt with a fixed key k, and ii) detectability. Equivalently, any detectable scheme that is unbiased
in the one-shot sense equation 4 fails to preserve PM when the same prompt is queried repeatedly
under a fixed key.

Single-prompt multi-generation (SPMG) unbiasedness metric. Theorem 4.1 motivates mea-
suring distributional deviation when a single prompt is queried multiple times with a fixed key. Let
p1, . . . , pn be n prompts. For each pi, draw m independent generations from a model P (fixing
decoding settings; for watermarks, the key is held fixed across the m draws). Let Met(·) be any
bounded per-generation performance surrogate (e.g., perplexity, average log-likelihood, reward score),
with |Met(g)| ≤ A. Define the per-prompt SPMG mean: Meti(P ) := 1

m

∑m
j=1 Met

(
gpi

j (P )
)
, and

the SPMG gap between two models P and Q: ∆Met(P,Q) := 1
n

∑n
i=1

∣∣∣Meti(P )−Meti(Q)
∣∣∣.

Intuitively, ∆Met(PM , PT ) captures the multi-sample deviation of a test model PT from the original
PM that emerges only when the same prompt is queried repeatedly.

Variance-controlled detection statistic. To factor out natural sampling noise, we compare the
test model to an i.i.d. clone of the original model. Let PM ′ be an independent model with the same
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distribution as PM . Define the detection statistic

DetWmk(PM , PT ) := ∆Met(PM , PT ) − ∆Met(PM , PM ′).

Large positive values indicate a repeated-prompt shift beyond the intrinsic variance of PM .
Theorem 4.2 (McDiarmid concentration for for SPMG detection). Suppose PT is identically dis-
tributed with PM and |Met(g)| ≤ A for all generations g. Then for any t > 0,

Pr
(∣∣DetWmk(PM , PT )− E[DetWmk(PM , PT )]

∣∣ ≥ t
)

≤ 2 exp
(
− mn t2

12A2

)
. (2)

Equivalently, with probability at least 1− δ,∣∣DetWmk(PM , PT )− E[DetWmk(PM , PT )]
∣∣ ≤ A

√
12 log(2/δ)

mn
.

Inequality 2 yields an α-level threshold tα = A2
√

12 ln(1/α)
mn to control false positives when testing

for repeated-prompt bias. Consequently, SPMG-based evaluation isolates the distributional drift that
Theorem 4.1 predicts, while providing finite-sample guarantees for reliable detection.

4.2 ROBUSTNESS ANALYSIS OF UNBIASED WATERMARKS

Adversary model. During detection, only the text sequence is available to the verifier; hence an
adversary can act solely by modifying tokens. We consider an edit-bounded adversary that applies
up to b token operations (substitution/insertion/deletion), producing an attacked sequence x′. Let
the detector use an additive test statistic S(x) =

∑T
t=1 st(x) with decision threshold τ (reject H0 if

S(x) ≥ τ ). All scores are assumed bounded: st(x) ∈ [0, B].

Limitations of existing attack protocols. Prior works evaluate robustness with random token
edits (Kirchenbauer et al., 2023a;b), paraphrasing (Kirchenbauer et al., 2023b), and translation
(He et al., 2024). These are imperfect for benchmarking: (i) random edits often severely degrade
semantic quality; (ii) paraphrasing exhibits instability across prompts and seeds; (iii) translation
is too strong: it changes essentially all tokens, so no unbiased watermark can survive, making
methods indistinguishable. This motivates a principled, token-level robustness characterization with
certificates.

Token effect region. Let Ct(x) denote the context used by the detector to score token t (e.g., an
n-gram prefix or a rolling, prefix-dependent key schedule). A modification at position i can affect
the scores for all tokens t whose context uses xi, i.e., {t : xi ∈ Ct(x)}. Define the token effect

region length of position i by Ri(x) :=
∣∣∣{t ≥ i : xi ∈ Ct(x)}

∣∣∣. For detectors keyed by an n-gram
prefix, Ri(x) ≤ n+ 1 (only t ∈ [i, i+ n] are influenced). For position-key schedules that depend
on the entire prefix (rolling hash), Ri(x) = T − i + 1 (all suffix tokens can be influenced). Let
Rmax := maxi Ri(x).

Expected score decrease under one edit. Write the detector as S(x) =
∑T

t=1 st(x) and let ∆i

denote the expected reduction in S caused by editing token i, where the expectation is taken over the
randomized alignment (e.g., color assignment or bit tests) induced when the context is destroyed in the
affected region. Then E

[
S(x)− S(x(i))

]
=

∑
t: xi∈Ct(x)

(
E[st(x)]− E[st(x(i))]

)
. Instantiations

for common unbiased watermark families:

Green-count detectors (e.g., γ-reweight, DiPmark, STA): st ∈ {0, 1} indicates whether token t falls
in the green set. Let PG be the (empirical) fraction of green tokens under watermarking. Destroying
alignment in the effect region makes green assignment effectively random, yielding an expected
per-token drop of (2PG − 1)/2. Hence for one edit with effect length R, E

[
S(x) − S(x(i))

]
=

(2PG−1)
2 R.

SynthID-style bit tests: Each token contributes m binary scores, st =
∑m

ℓ=1 st,ℓ with st,ℓ ∈ {0, 1}.
Let Ps := E[st] under watermarking. Randomized alignment drives each bit to mean 1/2, so the
expected per-token drop is (Ps − m

2 ), yielding E
[
S(x)− S(x(i))

]
= (Ps − m

2 )R.
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Table 1: Unbiasedness evaluation a) (1000 prompts, 1 generations each). We evaluate the unbiasedness
of watermarking methods on text summarization and machine translation tasks.

Method Text Summarization Machine Translation

BERTScore ROUGE-1 Perplexity BERTScore BLEU

No watermark 0.3077 0.3807 6.39 0.5432 20.1681

Unigram(δ=0.5) 0.3080 0.3773 6.54 0.5436 20.0175
Unigram(δ=1.0) 0.3053 0.3775 6.85 0.5388 20.1276
Unigram(δ=1.5) 0.2955 0.3656 7.51 0.5307 19.5000
Unigram(δ=2.0) 0.2848 0.3566 8.28 0.5191 18.4838
KGW(δ=0.5) 0.3012 0.3757 6.52 0.5472 20.6198
KGW(δ=1.0) 0.2977 0.3751 6.85 0.5348 19.9166
KGW(δ=1.5) 0.2876 0.3686 7.56 0.5326 19.2318
KGW(δ=2.0) 0.2769 0.3619 8.37 0.5218 17.9401

DIP(α=0.3) 0.3082 0.3793 6.41 0.5422 20.2514
DIP(α=0.4) 0.3081 0.3781 6.53 0.5446 20.4579
γ-reweight 0.3032 0.3749 6.49 0.5394 20.5546
MCmark(n=10) 0.3032 0.3755 6.39 0.5416 20.4171
MCmark(n=20) 0.3054 0.3780 6.41 0.5486 20.0984
MCmark(n=50) 0.3099 0.3810 6.45 0.5400 20.1503
MCmark(n=100) 0.3080 0.3800 6.46 0.5466 20.6732
STA-1 0.3066 0.3793 6.25 0.5492 20.5561
SynthID 0.3049 0.3775 6.37 0.5445 20.4107
EXP-Edit 0.3114 0.3797 6.19 0.5458 20.4879
ITS-Edit 0.3032 0.3749 6.58 0.5091 17.9904

Certified robustness. Because each single-token edit can affect at most Rmax token scores and each
token score changes by at most B, the test statistic is Lipschitz w.r.t. edit distance S(x)− S(x′) ≤
bRmax B for any b-edit attack. Hence we obtain an ℓ0 certified radius:

S(x)− τ > bRmax B =⇒ S(x′) ≥ τ for all x′ with ≤ b edits. (3)
This bound holds without distributional assumptions (worst-case guarantee).

5 EXPERIMENTS

Our evaluation is organized along three axes. (i) Unbiasedness: we measure watermark-
ing unbiasedness in one-shot settings (machine translation and text summarization tasks;
BLEU/ROUGE/BERTScore) and quantify repeated-prompt distribution shift via the SPMG met-
rics ∆Met and the calibrated statistic DetWmk. (ii) Detectability: on open-ended genera-
tion (C4/MMW/Dolly CW/WaterBench) we report TPR at theoretically guaranteed FPR levels
(5%, 1%, 0.1%) and AUC using matched watermarked/unwatermarked sets across Llama-3.2-3B-
Instruct, Mistral-7B-Instruct-v0.3, and Phi-3.5-mini-instruct. (iii) Robustness: We use paraphrasing
attack and random token modification under edit budgets. Detailed setups and hyperparameters are in
Appendix C.

Baselines. We compare against representative unbiased watermarking algorithms: γ-reweight (Hu
et al., 2023), DiPmark (Wu et al., 2023), MCmark (Chen et al., 2025), SynthID (Dathathri et al.,
2024), ITS-Edit (Kuditipudi et al., 2023), EXP-Edit (Kuditipudi et al., 2023), and STA-1 (Mao et al.,
2024). Besides, we add two popular biased watermark: KGW Kirchenbauer et al. (2023a) and
Unigram Zhao et al. (2023) as additional baselines.

Unbiasedness. Following Hu et al. (2023); Wu et al. (2023), we compare task metrics between
the original LM and its watermarked counterpart: Machine translation: BLEU and BERTScore on
WMT16 RO-EN; Text summarization: ROUGE-1/2/L and BERTScore on CNN/DAILYMAIL. We
evaluate with (a) 1000 prompts, one generation per prompt (Table 1); and (b) 10 prompts, 1000
generations per prompt (SPMG, Table 2). To measure repeated-prompt bias, we adopt the SMPG
gap ∆Met(P,Q) and report the calibrated statistic DetWmk(PM , PT ) := ∆Met(PM , PT ) −
∆Met(PM , PM ′) with bounded Met (e.g. perplexity, or bounded quality scores).
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Table 2: Unbiasedness evaluation b) (10 prompts, 1000 generations each)We evaluate the unbiasedness
of watermarking methods on text summarization and machine translation tasks with SPMG metric.

Method Text Summarization Machine Translation

BERTScore ROUGE-1 Perplexity BERTScore BLEU

No watermark 0.0026 0.0017 0.1828 0.0033 0.1199

Unigram(δ=0.5) 0.0037 0.0033 0.2197 0.0074 0.8311
Unigram(δ=1.0) 0.0076 0.0076 0.6133 0.0181 1.7137
Unigram(δ=1.5) 0.0146 0.0148 1.3664 0.0293 2.8560
Unigram(δ=2.0) 0.0255 0.0256 2.4671 0.0423 3.9869
KGW(δ=0.5) 0.0040 0.0023 0.1051 0.0041 0.5211
KGW(δ=1.0) 0.0093 0.0062 0.4095 0.0106 1.1383
KGW(δ=1.5) 0.0177 0.0121 0.9434 0.0178 1.5189
KGW(δ=2.0) 0.0297 0.0199 1.9382 0.0232 2.0037

DIP(α=0.3) 0.0050 0.0039 0.0484 0.0147 1.2311
DIP(α=0.4) 0.0067 0.0059 0.1772 0.0149 1.6594
γ-reweight 0.0071 0.0081 0.1570 0.0174 1.9001
MCmark(n=10) 0.0073 0.0033 0.2456 0.0171 1.5756
MCmark(n=20) 0.0066 0.0037 0.2914 0.0162 0.9958
MCmark(n=50) 0.0069 0.0076 0.2771 0.0153 0.7727
MCmark(n=100) 0.0080 0.0077 0.3068 0.0234 0.6486
STA-1 0.0046 0.0035 0.1505 0.0107 0.8446
SynthID 0.0159 0.0227 0.8254 0.0377 2.5266
EXP-Edit 0.0422 0.0413 2.0032 0.0439 2.4104
ITS-Edit 0.0355 0.0533 1.4912 0.0679 5.0746

Table 3: Averaged detection performance across all language models and datasets by method. We
also include two biased watermarks: KGW and Unigram for reference.

Method TPR@FPR=5% TPR@FPR=1% TPR@FPR=0.1% median p-value AUROC
Unigram(δ=0.5) 68.7% 53.59% 35.55% 3.72e-02 0.803
Unigram(δ=1.0) 90.04% 81.57% 69.49% 3.00e-03 0.919
Unigram(δ=1.5) 96.57% 93.07% 86.96% 5.56e-05 0.960
Unigram(δ=2.0) 98.89% 97.85% 94.66% 1.05e-06 0.981
KGW(δ=0.5) 61.11% 43.9% 26.86% 7.05e-02 0.863
KGW(δ=1.0) 87.07% 79.04% 68.6% 8.70e-03 0.962
KGW(δ=1.5) 95.67% 91.45% 86.32% 4.46e-04 0.987
KGW(δ=2.0) 98.33% 96.57% 94.04% 1.07e-05 0.995
DIP(α=0.3) 78.92% 69.26% 58.11% 2.03e-02 0.943
DIP(α=0.4) 82.61% 74.11% 64.73% 1.33e-02 0.956
γ-reweight 83.68% 75.85% 66.43% 9.14e-03 0.960
EXP-Edit 77.44% 72.42% 67.14% 5.01e-02 0.906
ITS-Edit 55.11% 48.29% 41.67% 1.43e-01 0.804
MCmark(n=10) 98.51% 97.09% 94.57% 4.08e-06 0.993
MCmark(n=100) 95.32% 92.2% 87.53% 5.66e-04 0.987
MCmark(n=20) 97.82% 95.51% 92.05% 4.75e-05 0.994
MCmark(n=50) 97.25% 95.38% 91.66% 9.56e-05 0.991
STA-1 84.55% 73.79% 59.4% 1.43e-02 0.953
SynthID 99.03% 97.29% 94.66% 6.22e-06 0.995

Detectability. Open-ended generation on C4/MMW/DOLLY CW/WATERBENCH: 1000 prompts,
one generation per prompt. For each method we build matched sets of watermarked and unwater-
marked texts (same prompts, decoding settings). We compute: (i) TPR at target FPR {5%, 1%, 0.1%}
using analytic thresholds from each detector’s null; (ii) Median p-value generated by the detection
algorithm; (iii) AUC on balanced datasets (same number of positive/negative sequences). Unless
otherwise stated, we fix generation lengths around 500 tokens per dataset.
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Figure 2: Variance of p-values across watermarking methods under different attack strategies
(FPR=0.1%). Left: standard deviation of p-values by attack. Right: distribution of p-values (boxplots)
across watermark methods.

Table 4: Robustness (TPR@1%FPR) of watermarking method across different attack types.

Method DIPPER Random 30% Random 20% Random 10%

KGW(δ=0.5) 0.42% 4.26% 7.55% 8.19%
KGW(δ=1.0) 0.21% 14.90% 24.48% 38.75%
KGW(δ=1.5) 1.46% 37.60% 56.77% 75.10%
KGW(δ=2.0) 1.35% 62.11% 78.32% 91.68%
Unigram(δ=0.5) 34.90% 47.92% 56.67% 66.25%
Unigram(δ=1.0) 40.52% 64.38% 80.52% 85.00%
Unigram(δ=1.5) 44.48% 80.21% 89.16% 93.68%
Unigram(δ=2.0) 58.85% 95.63% 98.02% 99.17%

DIP(α=0.3) 0.83% 2.66% 7.23% 17.98%
DIP(α=0.4) 0.42% 3.37% 7.37% 21.16%
γ-reweight 0.73% 2.53% 11.47% 26.95%
STA(γ=0.5) 2.29% 4.90% 12.29% 21.56%
SynthID 3.02% 7.71% 14.58% 26.25%
ITS-Edit 1.15% 2.40% 3.96% 6.04%
EXP-Edit 0.94% 15.21% 21.46% 26.98%
MCmark(n=10) 5.10% 39.26% 73.37% 96.11%
MCmark(n=20) 3.85% 33.85% 61.56% 86.25%
MCmark(n=50) 3.96% 37.92% 63.44% 85.63%
MCmark(n=100) 3.02% 30.42% 50.52% 71.15%

Robustness. We evaluate watermark robustness under two categories of paraphrasing-based attacks.
DIPPER is a strong neural paraphraser that rewrites text while preserving semantic meaning, thereby
introducing substantial variability into the generated outputs. In contrast, Random token replacement
attacks directly perturb the text by substituting a fixed percentage of tokens (10%, 20%, or 30%) with
randomly sampled alternatives. While random replacements offer a simple, noise-driven baseline
for robustness testing, DIPPER provides a more realistic and challenging paraphrasing scenario that
better reflects practical adversarial conditions.

Paraphrasing variance. Using DIPPER paraphrasing, we generate r paraphrases per input (multi-
ple seeds and temperatures), forming matched sets for each method. We report the mean ± std of
TPR@FPR and AUC across seeds and show per-prompt variance distributions. As shown in Figure 2,
DIPPER exhibits substantially higher variance in p-values compared to random token replacement
attacks. The bar plot (left) shows that the standard deviation of p-values under DIPPER is roughly
four times higher than under the strongest random attack (30% token replacement). The boxplot
(right) further highlights this instability: DIPPER produces a wide spread of p-values, ranging from
very low to relatively high values, while random replacements lead to consistently small p-values
with much tighter distributions.
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5.1 A THREE-AXIS EVALUATION OF UNBIASED WATERMARK

Unbiasedness score. For each method, we quantify unbiasedness as closeness to the unwatermarked
baseline (“None”) across metrics m ∈ {TS-BERT,ROUGE-1,Perplexity,MT-BERT,BLEU}.
For Config 1, compute the relative deviation r

(1)
m = |xmethod

m,cfg1 − xNone
m,cfg1|/xNone

m,cfg1. For Con-

fig 2, treat reported values as deltas and remove the baseline noise floor via r
(2)
m =

max{0, |∆method
m,cfg2| − |∆None

m,cfg2|}/xNone
m,cfg1. Aggregate D1 = 1

M

∑
m r

(1)
m and D2 = 1

M

∑
m r

(2)
m ,

then combine D = λD1 + (1− λ)D2 (default λ = 0.6). Finally, map to [0, 100] via the 100(1−D)
(default α = 1); higher U indicates greater unbiasedness (i.e., smaller average deviation from baseline
and lower small-sample sensitivity).

Detectability Score. Using the averaged detection metrics per method (TPR at FPR
∈ {5%, 1%, 0.1%}, median p-value, AUROC), first convert TPR percentages to decimals
tpr5, tpr1, tpr0.1 ∈ [0, 1] and form a low-FPR–weighted operating-point score stpr = 0.2 tpr5 +
0.3 tpr1 + 0.5 tpr0.1. Map median p-value to a bounded significance score via sp =
min

{
1, [− log10(max(p, 10−22))]/22

}
, which clips extremely small p at 10−22 and yields sp ∈

[0, 1]. Let sauc = AUROC ∈ [0, 1]. The final detectability score is a convex combination

Detect = 100
(
wtpr stpr + wauc sauc + wp sp

)
,

with default weights (wtpr, wauc, wp) = (0.60, 0.25, 0.15). Higher values indicate stronger de-
tectability, with emphasis on reliable detection at very low FPR while still rewarding overall separa-
bility (AUROC) and statistical significance (median p).

Robustness score. For each watermarking method m, let ta,f (m) ∈ [0, 1] denote the true positive
rate (TPR, as a decimal) under attack a ∈ {DIPPER,Random30,Random20,Random10} at false
positive rate f ∈ {0.1%, 1%, 5%}. We first compute a low-FPR–emphasized per-attack operat-
ing score sa(m) = 0.5 ta,0.1%(m) + 0.3 ta,1%(m) + 0.2 ta,5%(m). These per-attack scores are
then aggregated with reduced weight on DIPPER (reflecting the current study’s priorities) using
(vDIPPER, vRandom30, vRandom20, vRandom10) = (0.2, 0.4, 4

15 ≈ 0.2667, 2
15 ≈ 0.1333) to obtain a single

robustness value R(m) =
∑

a va sa(m) ∈ [0, 1]. The final non-smoothed robustness score reported
in our tables is RobustnessScore(m) = 100R(m) ∈ [0, 100]; higher values indicate stronger ro-
bustness with greater emphasis on performance at very low FPR and under the more challenging
random-replacement attacks.

Figure 2 and Table 7 jointly highlight the trade-offs between unbiasedness, detectability, and ro-
bustness across watermarking methods. From the scatter plot, we observe that methods such as
MCmark (n=10/20) and SynthID occupy the top-right corner, demonstrating strong detectability
and unbiasedness, though with limited robustness (small marker size). In contrast, Unigram (δ=2)
and KGW (δ=2) achieve considerably higher robustness (large markers) but at the cost of lower
unbiasedness and detectability. The tabulated scores further confirm this: Unigram (δ=2) attains the
highest robustness (0.855) despite relatively low detectability (0.903), whereas MCmark variants
and SynthID provide balanced detectability (>0.945) and unbiasedness (>0.965) but modest robust-
ness. Notably, DiPmark and STA-1 maintain excellent unbiasedness (>0.98) but their detectability
lags behind (<0.72), highlighting their limitations under strict detection thresholds. Overall, these
results underscore the central tension in watermark design: methods that optimize detectability and
unbiasedness often sacrifice robustness, whereas highly robust methods compromise on unbiased
generation quality or reliable detectability.

6 CONCLUSION

We introduced UWBENCH, an open-source benchmark for the principled evaluation of unbiased
watermarking in language models. Our theory establishes a fundamental limitation: any detectable
scheme that is unbiased in the one-shot sense cannot preserve the original distribution under repeated
queries of the same prompt, motivating our single-prompt multiple-generation (SPMG) metric and a
calibrated detection statistic for unbiasedness assessment. Experiments across diverse models and
datasets demonstrate standardized, reproducible comparisons along three axes clarifying practical
trade-offs and failure modes.
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A LLM USAGE

We ONLY used ChatGPT-4o and ChatGPT-5 to refine the content.

B MISSING PROOFS

B.1 PROOF OF THEOREM 4.1

Setup. Fix a prompt x. Let PM (· | x) denote the LM’s distribution over full generations (sequences
or token paths). A watermarking scheme consists of a reweight strategy F and a watermark key
k ∈ K, producing a watermarked distribution

PW (· | x, k) = F
(
PM (· | x), k

)
.

We say the scheme is unbiased (distribution-preserving in expectation over keys) if

Ek∼µ[PW (· | x, k)] = PM (· | x), (4)

where µ is the key distribution. Detectability means there exists a statistical test that, for some keys k,
can distinguish samples from PW (· | x, k) versus PM (· | x) with nontrivial power.

Repeated-prompt model. Consider m independent generations of the same prompt x under a fixed
key k:

P
(m)
W (· | x, k) :=

(
PW (· | x, k)

)⊗m
, P

(m)
M (· | x) :=

(
PM (· | x)

)⊗m
.

Lemma B.1 (Detectability ⇒ key-level deviation). If a watermarking scheme is detectable, then
there exists a measurable set A ⊆ K with µ(A) > 0 such that PW (· | x, k) ̸= PM (· | x) for all
k ∈ A.

Proof. If PW (· | x, k) = PM (· | x) for µ-almost every k, then for any sample size m the product
measures also coincide, P (m)

W (· | x, k) = P
(m)
M (· | x), rendering any detector powerless (no test can

outperform random guessing). Thus detectability implies a positive-measure subset of keys for which
the two distributions differ.

Lemma B.2 (Separation amplifies under products). Let P ̸= Q be two distributions on a common
measurable space. Denote their Bhattacharyya coefficient by BC(P,Q) =

∫ √
dP dQ ∈ (0, 1).

Then for product measures,

BC
(
P⊗m, Q⊗m

)
=

(
BC(P,Q)

)m −−−−→
m→∞

0,

and consequently the total variation distance satisfies

TV
(
P⊗m, Q⊗m

)
≥ 1−

(
BC(P,Q)

)m −−−−→
m→∞

1.

Proof. Bhattacharyya coefficients multiply under independent products. Using the inequality 1−
TV(P,Q) ≤ BC(P,Q) yields the stated lower bound on TV; since BC(P,Q) < 1 when P ̸= Q,
the bound tends to 1 as m → ∞.

By Lemma B.1, detectability implies the existence of a positive-measure set A of keys with PW (· |
x, k) ̸= PM (· | x). Fix any such k ∈ A and apply Lemma B.2 with P = PW (· | x, k) and
Q = PM (· | x). Then

TV
(
P

(m)
W (· | x, k), P (m)

M (· | x)
)

−−−−→
m→∞

1,

so the product distributions diverge and become perfectly distinguishable as m grows. Therefore,
under repeated queries with a fixed key, the watermarked joint law cannot equal the LM’s joint law;
i.e., the scheme cannot preserve the original distribution under repeated prompts. This contradicts
simultaneous satisfaction of (1)–(2) with detectability.
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B.2 PROOF OF THEOREM 4.2

Proof. Let f map all 3nm sampled generations to DetWmk = ∆(PM , PT )−∆(PM , PM ′). Chang-
ing a single generation for prompt i alters the corresponding per-prompt mean by at most 2A/m, and
since x 7→ |x− a| is 1-Lipschitz, the induced change on a ∆ term is at most (2A)/(mn).

Bounded differences:

• One PM sample affects both ∆(PM , PT ) and ∆(PM , PM ′) by at most (2A)/(mn) each,
hence |∆f | ≤ (4A)/(mn).

• One PT sample affects only ∆(PM , PT ): |∆f | ≤ (2A)/(mn).

• One PM ′ sample affects only ∆(PM , PM ′): |∆f | ≤ (2A)/(mn).

Summing squared Lipschitz constants over all variables gives∑
k

c2k = nm

(
4A

mn

)2

+ nm

(
2A

mn

)2

+ nm

(
2A

mn

)2

=
24A2

mn
.

By McDiarmid’s inequality,

Pr
(
f − Ef ≥ t

)
≤ exp

(
− 2t2∑

k c
2
k

)
= exp

(
− mn t2

12A2

)
,

and the two-sided version follows by symmetry.

C DETAILED EXPERIMENT SETUP

C.1 EXPERIMENT SETUP

Models & Datasets. We evaluate on LLAMA-3.2-3B-INSTRUCT (Dubey et al., 2024), MISTRAL-
7B-INSTRUCT-V0.3 (Jiang et al., 2023), and PHI-3.5-MINI-INSTRUCT (Abdin et al., 2024) for
open-ended text generation following prior work (Kirchenbauer et al., 2023a; Hu et al., 2023). Our
primary corpus is a standard subset of C4 (Raffel et al., 2020); we additionally report on three MMW
datasets (Piet et al., 2023), DOLLY CW (Conover et al., 2023), and two WATERBENCH tasks (Tu
et al., 2023). For one-shot unbiasedness validation, we follow Hu et al. (2023); Wu et al. (2023)
using MBART (Liu et al., 2020) on WMT16 RO-EN (Bojar et al., 2016) (machine translation) and
BART (Lewis, 2019) on CNN/DAILYMAIL (See et al., 2017) (summarization).

Watermarking setup. Unless noted, watermark keys combine a secret key with a prefix 2-gram
context key. Hyperparameters follow the original papers: KGW δ ∈ 0.5, 1.0, 1.5, 2.0, Unigram
δ ∈ 0.5, 1.0, 1.5, 2.0, DiPmark α ∈ {0.3, 0.4}; SynthID tournament layers m = 20; MCmark list
length l ∈ 10, 20, 50, 100; γ-reweight as in Hu et al. (2023). We report TPR@FPR at theoretically
guaranteed FPR levels {5%, 1%, 0.1%} and Median p-value. Unless specified, decoding settings
and prompt sets are identical across methods.

Evaluation Metrics for Text Quality. We employ the following metrics to assess the quality of
generated text:

• ROUGE. For summarization tasks, we use the ROUGE metric (Lin, 2004), which measures
n-gram overlap between generated summaries and reference texts, thereby capturing how
well the output conveys the essential content.

• BLEU. For machine translation, we adopt the BLEU score (Papineni et al., 2002), which
evaluates lexical similarity between system-generated translations and human references.

• BERTScore. BERTScore (Zhang et al., 2019) computes sentence similarity by aggregating
cosine similarities between contextualized token embeddings. We report BERTScore-F1,
-Precision, and -Recall for both summarization and translation tasks.
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• Perplexity. Perplexity, a standard measure from information theory, quantifies how well a
probabilistic model predicts observed text. Lower values indicate more accurate predictive
performance. We use perplexity to evaluate both summarization and open-ended text
generation.

D ADDITIONAL RESULTS

Table 5: Robustness (TPR@0.1%FPR) of watermarking method across different attack types.

Method DIPPER Random 30% Random 20% Random 10%

KGW(δ=0.5) 0.00% 2.23% 2.45% 4.26%
KGW(δ=1.0) 0.00% 4.69% 9.69% 18.75%
KGW(δ=1.5) 0.31% 17.29% 35.00% 50.94%
KGW(δ=2.0) 0.00% 40.21% 62.21% 80.53%
Unigram(δ=0.5) 17.71% 25.21% 36.04% 43.65%
Unigram(δ=1.0) 21.35% 41.88% 55.52% 69.06%
Unigram(δ=1.5) 23.23% 61.58% 75.26% 85.16%
Unigram(δ=2.0) 36.46% 86.88% 93.23% 95.83%
DIP(α=0.3) 0.10% 0.96% 1.70% 6.28%
DIP(α=0.4) 0.10% 0.74% 3.79% 8.21%
γ-reweight 0.10% 1.58% 5.58% 13.58%
STA(γ=0.5) 0.42% 0.73% 2.71% 8.85%
SynthID 0.52% 2.60% 4.79% 9.90%
ITS-Edit 0.00% 0.52% 1.67% 3.75%
EXP-Edit 0.31% 8.96% 15.10% 19.17%
MCmark(n=10) 0.52% 13.89% 46.32% 84.42%
MCmark(n=20) 1.15% 18.44% 43.02% 70.94%
MCmark(n=50) 0.94% 20.52% 44.79% 71.25%
MCmark(n=100) 0.73% 17.29% 34.06% 56.77%

Table 6: Robustness (TPR@5%FPR) of watermarking method across different attack types.

Method DIPPER Random 30% Random 20% Random 10%

KGW(δ=0.5) 1.67% 14.89% 19.79% 21.60%
KGW(δ=1.0) 2.08% 30.73% 47.81% 61.67%
KGW(δ=1.5) 4.38% 58.13% 77.71% 89.17%
KGW(δ=2.0) 5.63% 80.74% 91.16% 96.00%
Unigram(δ=0.5) 53.75% 67.81% 78.85% 83.96%
Unigram(δ=1.0) 60.83% 84.17% 92.19% 91.46%
Unigram(δ=1.5) 63.33% 92.84% 94.32% 97.37%
Unigram(δ=2.0) 74.79% 98.23% 99.48% 100.00%

DIP(α=0.3) 2.29% 7.02% 16.91% 36.91%
DIP(α=0.4) 1.77% 7.79% 18.21% 39.16%
γ-reweight 1.88% 11.37% 23.68% 46.84%
STA(γ=0.5) 6.88% 15.52% 28.23% 45.63%
SynthID 9.90% 23.13% 32.60% 49.90%
ITS-Edit 5.00% 8.23% 10.73% 11.88%
EXP-Edit 5.10% 25.73% 29.69% 39.38%
MCmark(n=10) 15.21% 61.26% 90.21% 99.05%
MCmark(n=20) 13.85% 58.65% 79.90% 94.38%
MCmark(n=50) 10.83% 56.46% 78.23% 91.77%
MCmark(n=100) 10.63% 50.63% 68.85% 83.85%
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Table 7: Unbiasedness, detectability, and robustness scores of watermarking methods, sorted by
Detectability score.

Method Unbiasedness Detectability Robustness
SynthID 0.965 0.974 0.105
MCmark(n=10) 0.985 0.971 0.423
MCmark(n=20) 0.988 0.959 0.390
MCmark(n=50) 0.989 0.945 0.398
KGW(δ=2) 0.884 0.925 0.533
MCmark(n=100) 0.985 0.906 0.330
Unigram(δ=2) 0.872 0.903 0.855
Unigram(δ=1.5) 0.927 0.838 0.711
KGW(δ=1.5) 0.935 0.808 0.350
KGW(δ=1) 0.972 0.724 0.155
Unigram(δ=1) 0.972 0.723 0.590
DiPmark(α=0.5) 0.980 0.719 0.078
DiPmark(α=0.4) 0.985 0.702 0.058
EXP 0.936 0.676 0.147
STA(γ=0.5) 0.988 0.676 0.079
DiPmark(α=0.3) 0.991 0.660 0.051
Unigram(δ=0.5) 0.991 0.502 0.436
ITS 0.907 0.494 0.032
KGW(δ=0.5) 0.988 0.461 0.054
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