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ABSTRACT

Incremental object detection (IOD), surpassing simple classification, requires the
simultaneous overcoming of catastrophic forgetting in both recognition and local-
ization tasks, primarily due to the significantly higher feature space complexity.
Integrating Knowledge Distillation (KD) would mitigate the occurrence of catas-
trophic forgetting. However, the challenge of knowledge shift caused by invisible
previous task data hampers existing KD-based methods, leading to limited im-
provements in IOD performance. This paper aims to alleviate knowledge shift by
enhancing the accuracy and granularity in describing complex high-dimensional
feature spaces. To this end, we put forth a novel higher-dimension-prototype
learning approach for KD-based 10D, enabling a more flexible, accurate, and
fine-grained representation of feature distributions without the need to retain any
previous task data. Existing prototype learning methods calculate feature cen-
troids or statistical Gaussian distributions as prototypes, disregarding actual ir-
regular distribution information or leading to inter-class feature overlap, which
is not directly applicable to the more difficult task of IOD with complex feature
space. To address the above issue, we propose a Gaussian Mixture Distribution-
based Prototype (GMDP), which explicitly models the distribution relationships
of different classes by directly measuring the likelihood of embedding from new
and old models into class distribution prototypes in a higher dimension manner.
Specifically, GMDP dynamically adapts the component weights and correspond-
ing means/variances of class distribution prototypes to represent both intra-class
and inter-class variability more accurately. Progressing into a new task, GMDP
constrains the distance between the distribution of new and previous task classes,
minimizing overlap with existing classes and thus striking a balance between sta-
bility and adaptability. GMDP can be readily integrated into existing IOD methods
to enhance performance further. Extensive experiments on the PASCAL VOC and
MS-COCO show that our method consistently exceeds four baselines by a large
margin and significantly outperforms other SOTA results under various settings.

I INTRODUCTION

In recent years, deep learning methods [3;[61] have witnessed remarkable advancements in various
visual tasks, particularly in object detection [30;I58]]. However, these methods typically learn defined
labeled classes from static datasets, limiting their applicability in dynamic real-world scenarios.
Incremental Object Detection (IOD) methods have emerged as an exciting and challenging task to
address this issue. In contrast to human incremental learning, deep learning often suffers from the
problem of catastrophic forgetting [45]], where new information interferes with previous knowledge.
This phenomenon poses a significant challenge for IOD, complicating the retention and integration
of new data without disrupting previously learned information.

*Corresponding author.



Published as a conference paper at ICLR 2025

(c) Gaussian Mixture distribution-

(a) Feature centroids prototype (b) Statistical distributions prototype based prototype (Ours)

/N
ON ARA “ AA AAoAA/ ~
a AL Laa / ® R &
< A A ®
. a
2 A
= A o A A A
PN A o (A
N A A" Aea
A A A oA A
/
° o °
- C A ] o - A
k] AA A J AA o
= J
PN A
Pl ota D 44y
° °® a A Ag
A A ° P ° ) AL
, ) N
Annotated Sample Unlabeled &Visible Sample Distribution Center Predicted Distribution

(¢) Feature Space of Classification (d) Feature Sp: ject Detection

Figure 1: The comparison of different prototypes of in- Figure 2: Confidence weighting maps
cremental learning. (a) Many methods [68} con- and t-SNE [60] visualization of embed-
sider feature centroids as prototypes but overlook distri- ding for classification and object de-
butional information, causing significant forgetting. (b) tection. (top) In contrast to classifica-
Calculating statistical Gaussian distributions as proto- tion focusing on the local salient region,
types [69; enhances the reliability of prototype detection also emphasizes global shape
modeling, but simple modeling brings about overlap- and boundary features. (bottom) Classi-
ping feature spaces, leading to misclassification. (c) Our fication tasks reveal clear feature sepa-
higher dimension Gaussian mixture distribution-based ration, while detection tasks present dis-
prototype can more accurately characterize detection fea-  tinct, crowded distributions, rendering
ture distribution, resulting in a better [OD performance.  detection features more complex.

Existing IOD methods can be roughly divided into two paradigms: Rehearsal-based and Knowl-
edge Distillation (KD)-based IOD. Rehearsal-based 10D [4} aims to mitigate catastrophic
forgetting by reutilizing previously training samples. The efficacy of these methods hinges upon the
replay strategy of the samples. In contrast, KD-based 10D [48}[7;[72]], the most commonly employed
paradigm, leverages features and responses from a teacher model’s previous class to guide a student
model in acquiring new knowledge. Nonetheless, distilling new data could introduce knowledge
bias due to the invisible previous task data, leading to limited improvements in IOD performance.

Recently, several works have explored Prototype Learning [49; [73; 41]] to address catastrophic for-
getting, which characterizes classes by learning the distribution of features within classes without
keeping any previous task feature representations, thus compensating for the deficiency of KD. Ex-
isting incremental learning methods [19; [21]] primarily rely on feature centroids as prototypes
(Figure [T] (a)). However, this approach overlooks distributional information, resulting in significant
forgetting due to insufficient modeling of previous data. As illustrated in Figure ] (b), some meth-
ods [69; 23] calculate statistical Gaussian distributions as prototypes to enhance the reliability
of prototype modeling by considering class distributions, which to some extent improves detec-
tion performance. Due to limitations in modeling capabilities, the prototype based on a statistical
Gaussian distribution fails to accurately estimate complex detection feature distributions, leading to
confusion between current and prior knowledge since estimated distributions may overlap. From the
perspective of confidence weighting maps, the features for classification in Figure 2] (a) are predom-
inantly concentrated in local salient regions, whereas detection features (Figure 2] (b)) also attend to
global boundaries or shape characteristics [6]. For t-SNE visualizations of classification(Figure [2]
(¢)), features from different classes often exhibit clear delineation, while those from the same classes
demonstrate a Gaussian-like clustered distribution. Conversely, for detection tasks (Figure [2] (d)),
features from different classes tend to be relatively crowded and exhibit distinct distribution pat-
terns. Therefore, the above methods are tailored for incremental classification and are not directly
applicable to the more challenging task of IOD, which involves a more complex feature space.

In this paper, we propose a novel higher-dimension-prototype learning approach for KD-based IOD
to alleviate the knowledge shift. This approach enables a more flexible, accurate, and fine-grained
representation of feature distributions without retaining any previous task data. To address the above
issue of existing prototype learning methods, we propose a Gaussian Mixture Distribution-based



Published as a conference paper at ICLR 2025

Prototype (GMDP), which explicitly models the distribution relationships between different classes
by directly measuring the likelihood of embedding from new and old models into class distribution
prototypes in a more complex manner to fit high-dimensional feature spaces of object detection,
as shown in Figure [I] (c). Specifically, the GMDP dynamically adjusts the component weights
and corresponding means and variances of class distribution prototypes to represent intra-class and
inter-class variability accurately. Progressing into a new task, GMDP would constrain the distance
between the distribution of new task classes and previous classes, minimize overlap with existing
class features, and strike a balance between stability and adaptability. In addition, implementing
GMDP in detection tasks involves unique challenges, particularly in managing the complexities of
high-dimensional features during the learning process. To address this issue, we leverage a Length
Scaling Progressive Learning (LSPL) method, which gradually learns complex, high-dimensional
features by first focusing on the discriminative characteristics of new classes. To enhance the plas-
ticity of class prototypes, we present a Dynamic Adaptive Prototype Optimization (DAPO) strategy
for IOD. This strategy aims to enhance the adaptability and effectiveness of GMDP modeling by
improving the separation of class features through inter-class mean dispersion, intra-class compo-
nent cohesion, and prototype variance minimization. Simultaneously, our approach can improve
performance further with Rehearsal-based methods. In summary, our contributions are as follows:

e To alleviate the knowledge shift, we propose a novel prototype learning approach for KD-
based 10D, which enables a more flexible, accurate, and fine-grained representation of
feature distributions without keeping any previous task data.

e A novel GMDP is introduced to explicitly model the distribution relationships between
different classes suitable for more complex feature spaces. A Length Scaling Progressive
Learning method is proposed to address the learning difficulties of GMDP. To enhance the
plasticity of class prototypes, we present a DAPO strategy for IOD during the incremental
process, which could enhance the adaptability and effectiveness of GMDP modeling.

e GMDP can be readily integrated into existing IOD methods to enhance performance fur-
ther. Methods with our idea on the PASCAL VOC and MS COCO consistently outperform
4 baselines significantly and achieve state-of-the-art results in different settings.

2 RELATED WORK

2.1 INCREMENTAL LEARNING

Incremental learning [39519; 44] aims to continuously update a model by introducing different sub-
sets of the label space without retraining the model on old data. Previous methods could be roughly
categorized into rehearsal-based, parameter-isolation, and regularization-based fashion. Rehearsal-
based fashion methods mitigate catastrophic forgetting induced by new classes by periodically revis-
iting and rehearsing previously learned samples [428; 149]], or generating new samples [265 1565 |64]].
However, these methods suffer from challenges related to privacy protection and high storage costs.
Parameter-isolation methods [37} 143542 167] segregate parameters for different tasks to ensure that
learning new tasks does not interfere with previously learned tasks. Regularization-based meth-
ods [395 1105 [11; 22] impose constraints on the features and parameters to balance learning between
new and previous classes, thereby maintaining stability and generalization during the model updat-
ing process. In this work, we focus on regularization methods based on Knowledge Distillation.

2.2 CONTINUAL LEARNING WITH PROTOTYPES

Recently, various prototype-based class incremental learning (CIL) methods have been proposed
to continually learn new classes without preserving any historical exemplars [555 |68 [73]. Some
methods [[1;162;74] treat the prototype of each class as a learnable embedding vector. Mean Feature
Prototypes calculate the mean feature of all samples from the same class to form the prototype [21}
55:[73]]. However, using a single feature center can lack informative distribution. To address this, the
latest methods [[16] calculate both the mean feature vector and its variance from all samples to better
represent class distribution. These approaches, however, can be susceptible to outliers and class
overlap, which may undermine stability due to misclassification risks [70; [71]. In this paper, we
introduce the GMDP to constrain the distance between the distribution of new and previous classes,
and minimize overlap with existing class features.
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Figure 3: Histogram visualizations of the statis- Figure 4: The confusion matrix of detection fea-
tical distribution of detection features. ture divergence across different classes.

2.3 INCREMENTAL OBJECT DETECTION

Differing from general object detection [52f [145 515 [155 150] with static training data, Incremental
Object Detection (I0OD) [57; 12451655 155 113]] aims to dynamically adapt to new tasks introduced over
time, while mitigating the risk of catastrophic forgetting, which could be roughly categorized into
the Rehearsal-based fashion and knowledge distillation-based fashion. Rehearsal-based fashion [36;
38 involves storing a balanced set of examples, such as images [36] or sample instances [38] and
periodically revisiting previously learned samples at each incremental step to finetune the model.
For knowledge distillation-based fashion, after Shmelkov er al. [57] introduced the first knowledge
distillation-based incremental detector ILOD, most researchers [[18518}147;[27]] have designed various
knowledge distillation-based IOD methods on many object detection architectures.

Despite the KD-based IOD being the most commonly employed paradigm, distilling new data could
introduce knowledge bias due to the invisible previous task data, leading to limited IOD perfor-
mance. Conversely, prototype-based incremental learning methods encourage the model to learn
discriminative class decision boundaries of new and old models. However, inaccurate prototype dis-
tribution modeling may result in overlapping feature distributions among classes in complex high-
dimensional feature spaces. Given the complementary advantages of KD and prototype methods,
we focus on a KD approach based on class distribution prototypes, balancing detector stability and
adaptability by explicitly modeling complex detection features without keeping previous task data.

3 PROPOSED METHOD
3.1 MOTIVATION

In contrast to existing works [49;[73}41] that only adopt recognition features for prototype compu-
tation, our method leverages both recognition and location-based detection features generated from
the linear layer of Rol. Thus, we aim to capture the multi-faceted class characteristics as shown in
Figure[2](b), enabling a more comprehensive and nuanced representation of discriminative features.
To illustrate the distribution of IOD detection features across diverse dimensions, we exemplify the
features from class 1 and class 2 across various dimensions as shown in Figure 3] These features
are extracted from the linear layer of Rol trained on the PASCAL VOC. Each subplot indicates
the distribution of detection features across distinct dimensions. Employing Shapiro-Wilk [54] and
Agostino-Pearson [46] tests, we evaluate the normality of each dimension feature, revealing devi-
ations from Gaussian distribution. Consequently, IOD detection features are inherently in a more
complex feature space, diverging from the simplicity of recognition features, posing challenges for
single Gaussian distribution modeling [69; (73 23]]. Moreover, variations are observed between the
dimensions of different classes. That is, each dimension of the features can be considered inde-
pendently distributed, enabling more complex modeling. This encourages us to further validate the
feasibility of applying more precise prototype representations of IOD. We obtained more suitable
and accurate probability density estimates by fitting each dimensional feature adopting a Gaussian
Mixture Distribution (Red dashed line) compared to a single Gaussian Distribution. Therefore, we
introduce Gaussian Mixture Distribution-based Prototype (GMDP) as a more flexible and refined
approach to represent IOD feature distribution by introducing distinct components for each class.

The effectiveness of GMDP plays a crucial role in representing class prototypes that overcome
catastrophic forgetting and enhance model plasticity. To validate this, we follow the definition of
distribution distance proposed by Liu et al. [2; [33] to distinguish classes and adopt the Jensen-
Shannon (JS) divergence metric to quantify the distance between class distributions. The distance



Published as a conference paper at ICLR 2025

I:I

.';G-|
Cls
GMDP -
\4 Detect: Person
Ltpk Llogzt‘CReg

: J: D GM*DP—¢ T 1
; \1 { Reg }—

Label: Horse Detect: Person, Horse
GMDP prediction of Task #-/ GMDP prediction of Task ¢
LI CC o

A/,g«}/ .. o/

-~ Qiﬁ Lepr LA[‘
MPV >
A,/ “Lvp D / “
- Shy ‘Q% /
£ ) Distribution Relationship ® %

® o

N e keep /
A :

P gy Prototype Consistency

Figure 5: The overall framework. The Gaussian Mixture Distribution-based Prototype (GMDP)
introduces a flexible, accurate feature characterization in a more complex manner to fit high-
dimensional feature spaces. GMDP would transfer old prototype knowledge by constraining the
distribution relationships of the prototype to maintain consistency, thereby alleviating catastrophic
forgetting. To enhance the plasticity of prototypes, we further present a dynamic adaptive prototype
optimization strategy (Lrarp, Lroc and Lyrpy) to improve the modeling adaptability of GMDP.

between the distribution of two classes can be computed as follows:

1 1
djs = §D(PHH) + iD(QHH) 1)
where d ;5 is the Jensen-Shannon divergence, D refers to the KL divergence, P and () are the Two
distribution-based class prototypes, and u = (P + @Q)/2 is the midpoint distribution. Figurelé-_ll il-
lustrates the distance between class prototypes guided by the statistical Gaussian distributions-based
prototype (SGDP) (left) and our GMDP (right) in the 10-10 task. 10-10 task means that the first stage
trains annotations containing 10 classes and then trains images containing the remaining 10 classes
in the second stage on PASCAL VOC. A smaller divergence value indicates less distinguishability
between two prototypes, potentially resulting in poorer detection performance. Notably, class pro-
totypes guided by SGDP (Figure [ left) exhibit smaller disparities with the 10 classes in the second
task compared to other prototypes. Conversely, classes in both stages with our GMDP display better
discriminability. Thus, our GMDP can more accurately describe the class distributions in complex
feature space compared to SGDP, promoting the modeling of inter-class and intra-class differences.

3.2 GAUSSIAN MIXTURE DISTRIBUTION-BASED PROTOTYPE

To alleviate the knowledge shift issue, we propose a novel prototype learning approach for KD-
based 10D as Figure [5] which can more flexibly, and accurately represent feature distributions
without keeping any previous task data. The key idea is, based on the above analyses, to learn a
set of Gaussian mixture prototypes that capture the essential features according to their distribution
characteristics and adopt these prototypes to transfer knowledge from an old model to the new one.

Specifically, we introduce a Gaussian Mixture Distribution-based Prototype (GMDP) for 10D,
which explicitly models the distribution relationships of different classes by directly measuring the
likelihood of embedding from new and old models into class distribution prototypes. Given a set
of input features X = x1,xs,...,xp from the linear layer of ROI, where each feature z; € RP
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represents an object proposal, we aim to learn a set of prototypes P = {p1, pa, ..., Pc }, where each
prototype Pe = (fe,15 -+ te,ky Te 1, -5 Oc ki, Te) Tepresents a Gaussian mixture distribution with K
components and a mixing coefficient 7. € R”. Each component is composed of a Gaussian distri-
bution with a mean pi. ) € RY and a covariance matrices o, € RY*N_ For object detection, we
compute the likelihood probability of each input feature x; under each prototype distribution p.:

1 1 _
P(x;i|pe) = Z softmax(me)k 7| exp <—($z _ MC’k)TJC,;(a:,» — ,u,%k)> , (2

2m)Noe 2

where K is the component number of the Gaussian mixture distribution-based prototype. The
softmax function is adopted to ensure that the mixing coefficients sum to 1. Thus the GMDP
loss L pp definition for optimizing each class prototype through x; is as follows:

ﬁGMDP——*ZZyzclog (zilpe)) +)\Z||9H 3)

c=1i=1

where IV and C' are the number of all features in the batch and total classes. y; . is the ground-
truth label for the i-th sample and the c-th class. N, is the number of c-th class feature. And A
is the regularization weight. >, ||0]|* is a weight decay term that tends to decrease the magnitude
of the weights () of GMDP and penalizes large parameter values to prevent overfitting. Loapp
measures the difference between the predicted scores and the ground-truth labels. The prediction
score of GMDP is computed by taking the maximum likelihood across all prototypes:

Sampp (i) = mgxp(xﬂpc)- €]

Finally, we aggregate weighted between the GMDP prediction S rpp and the IOD detector clas-
sification result Sp, final classification scores as follows:

Stotat(ylz) = a - Sampp(ylr) + (1 —a) - Sp(y|z), (5)

where « is set to 0.5 to balance the weight between two confidence. During the incremental stage, we
transfer old knowledge from the old model to the new model by measuring the divergence between
the likelihood probability distributions generated from our GMDP of the old and new models. We
can define transfer prototype knowledge loss by Kullback-Leibler (KL) divergence:

Po(zlc)
Pn(zlc)
where P,(z|c) and P, (z|c) are the likelihood probabilities of the old and new models, respectively,
conditioned on the set of old classes C,. z is a high-dimensional feature vector extracted from
each proposal in the ROI layer. By employing prototypes to represent the feature distributions, our
method can adapt to new data without requiring access to the previous task data, thereby overcoming
the knowledge shift problem inherent in existing KD-based IOD methods.

Lipk = Dip(Po||Pn) =D c€C, /P dz, (6)

Length scaling progressive learning method: Introducing GMDP makes network convergence
difficult. To address this, we leverage a Length Scaling Progressive Learning (LSPL) method that
simplifies the learning process by scaling the length of the learned features and progressively in-
corporating the GMDP. Formally, if 2 € RP is the original feature vector, the LSPL reduces its
dimensionality to help the model focus on discriminative information, which is expressed as:

z=0(Wz+b), (7)

where W and b are the weight matrix and bias, respectively. o(-) denotes the activation function.
This transforms z into z € R?, where d < D, retaining crucial feature information. Besides, we
adopted an initial training phase to relieve cold start, first conducting N training steps and then
employing our GMDP to construct high-dimensional prototypes.

3.3 DYNAMIC ADAPTIVE PROTOTYPE OPTIMIZATION STRATEGY

To enhance the plasticity of class prototypes, we present a Dynamic Adaptive Prototype Optimiza-
tion (DAPO) strategy for IOD during the incremental process, which comprises three core principles
aimed at enhancing the adaptability and effectiveness of GMDP modeling.
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Inter-Class Mean Dispersal: The first principle emphasizes maximizing the separation between the
means of different classes, thereby promoting greater dissimilarity among prototypes. By increasing
inter-class mean dispersion of GMDP, the distance between distinct prototypes is maximized, facil-
itating better discrimination between classes. The Inter-Class Mean Dispersal (IMD) loss measures
the distance between means of different classes of GMDP:

c c )
Livp=Y»_ > —— ®)

b)
2 2 T millote
where C'is the number of classes, ; is the mean of class 7, and € is a small constant.

Intra-Class Component Cohesion: The second principle focuses on minimizing the distances be-
tween components of GMDP within the same class. This ensures that the components of a class’s
GMDP are closely clustered, enhancing the coherence and representativeness of the class distribu-
tion prototype. The Intra-Class Component Cohesion (ICC) loss measures the distance between
means of different components within the same class:

¢ K K
Lico=Y% " > lmiy— mik

i=1 j=1k=j+1

|2, €))

where M is the number of components, and 1i; ; is the mean of j-th component of i-th class.

Minimization of Prototype Variance: The third principle aims to mitigate the variance of GMDP
across disparate classes. By minimizing intra-class prototype variance, the distributions become
more compact, providing a more structured and discriminative feature space that facilitates superior
performance in subsequent tasks. The Minimization of Prototype Variance (MPV) loss aggregates
the variances of all components as follows:

c K
Lypy = Z Z%,j, (10)

i=1 j=1

where o; ; is the variance of the j-th component of class 7. By incorporating these principles into the
optimization process, our approach enables prototypes to dynamically adapt to task requirements.

Table 1: mAP@0.5% results on the two-stage incremental setting on Pascal VOC. The best and the
second best results are highlighted in bold and underlined. Two methods equipped with our idea
consistently outperform baselines by a large margin and achieve state-of-the-art results compared
with existing methods in different incremental settings.

Method H 19-1 15-5 10-10 5-15
1-19 20 120|115 16-20 1-20 | 1-10 11-20 1-20 | 1-5 6-20 1-20
Joint Training 70.1 757 743|764 678 743|755 730 743 ]70.1 757 743
Fine-tuning 11.8 647 144|159 542 255 | 26 634 329 | 69 63.1 49.1
Faster ILOD [47] PRL20 || 70.9 632 70.6 | 73.1 573 692|703 530 61.7|62.0 37.1 433
MVC [66] PR22 || 702 60.6 69.7 | 69.4 579 665|662 66.0 66.1 - - -
ORE [24] CVPR21 || 694 60.1 689 | 71.8 58.7 685 | 604 688 64.6 - - -

Meta-ILOD [25] TPAMI 21 || 709 57.6 702 | 71.7 559 67.8 | 684 643 663 - - -
OW-DETR [17] CVPR22 || 70.2 62.0 69.8 | 722 598 69.1 | 63.5 679 65.7 - - -
MMA [5] CVPR22 || 709 629 705|727 606 697|698 639 668|668 572 59.6

CAT [40] CVPR23 || 745 61.1 738|765 593 722|700 674 617 - - -
Wuet al. [63] TIP24 || 725 614 719|736 620 707|703 687 695 - - -
ILOD [57] CVPRI7 || 698 645 696 | 725 585 689 | 69.8 53.7 617|610 373 432
GMDP-ILOD Ours || 742 679 739|746 635 718|719 697 708|652 605 617
ABR [38] ICCV23 || 710 69.7 709 | 730 651 71.0 | 712 728 720 | 647 7.0 69.4
GMDP-ABR Ours || 748 701 746 | 758 655 732|721 732 727|671 719 707

4 EXPERIMENTS
4.1 DATASETS AND EVALUATION

For a fair comparison, we followed the previous work [S57; 138] to adopt two widely used incre-
mental object detection (IOD) datasets to evaluate the effectiveness of our method: PASCAL VOC
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Table 2: mAP@0.5% results on the multiple-stage incremental setting on Pascal VOC. The best and
the second best results are highlighted in bold and underlined. Two baselines with our idea are able
to forget less about the knowledge of previous tasks and learn better new information.

10-5 (3 tasks) | 5-5 (4 tasks) 10-2 (6 tasks) 15-1 (6 tasks) | 10-1 (11 tasks)

Method 1-10 11-20 1-20| 1-5 6-20 1-20|1-10 11-20 1-20|1-15 16-20 1-20|1-10 11-20 1-20
Joint Training 755 73.0 74.3|70.1 75.7 74.3|75.5 73.0 74.3|76.4 67.8 743|755 73.0 743
Fine-tuning 53 30.6 18.0/0.5 183 13.8(3.79 136 8.7|0.0 1047 53|00 5.1 2.55

Faster ILOD [47] PRL20([68.3 57.9 63.1|55.7 16.0 25.9(64.2 486 56.4[66.9 445 61.3[535 41.0 473
MMA [5] CVPR 22(|67.4 60.5 64.0/62.3 31.2 38.9]65.7 52.5 59.1|672 47.8 62.3|57.9 44.6 512
ILOD[37]  CVPRI7|672 59.4 63.3|585 15.6 263[62.1 49.8 559(65.6 47.6 60.2(529 415 472
GMDP-ILOD Ours|68.1 623 652|61.1 35.8 42.1/64.2 53.3 58.8/66.8 50.4 62.7/56.2 50.7 53.5
ABR [38] ICCV23||68.7 67.1 67.9|64.7 56.4 58.4167.0 58.1 62.6/68.7 56.7 65.762.0 55.7 589
GMDP-ABR Ours|69.9 67.8 68.966.3 59.3 61.1|67.6 58.9 63.3/69.5 58.9 66.9/63.3 57.5 60.4

2007 [12] and MS-COCO [32]. PASCAL VOC 2007 comprises 9,963 images across 20 categories,
with 50% of them as training and validation sets. The remaining half is reserved for testing. The
evaluation metric employs mean Average Precision (mAP) using a 0.5 IoU threshold. MS-COCO is
a challenging dataset containing 80 object categories. We report the COCO-style Average Precision
(AP) at different IoU ranging from 0.5 to 0.95 (mAP@[50:95]), 0.50 IoU (mAP@50), and 0.75 IoU
(mAP@75) as the evaluation.

4.2 IMPLEMENTATION DETAILS

In this paper, our experiments are conducted upon four robust baselines: ILOD [57], ERD [13], CL-
DETR [36]] and ABR [38]. Comprehensive results of Transformer baselines ERD and CL-DETR
are provided in the Appendix. Following prior work [575[13;38], we employ the ResNet-50 [20] as
the backbone, initializing ILOD and ABR baselines with pre-trained models from ImageNet [53].
Fitting validation based on each feature length in Section 3.1 confirms that the maximum number of
components for the Gaussian Mixture Distribution is 2. Adjusting the weights of the components
can also be applied to a single Gaussian Mixture Distribution. All experiments are carried out on 4
Nvidia GeForce RTX 3090 GPUs with a batch size of 16 implemented by PyTorch.

4.3 QUANTITATIVE EVALUATION

4.3.1 RESULTS oN PASCAL VOC.

We partitioned the datasets into distinct incremental task sequences in class-incremental object de-
tection. PASCAL VOC 2007 was split into two-stage and multi-stage incremental task settings. For
the two-stage incremental setting, tasks are divided into 19-1, 15-5, 10-10, and 5-15, incrementing
by 1, 5, 10, and 15 classes, respectively. The multi-stage incremental setting divides tasks into 10-5,
5-5, 10-2, 15-1, and 10-1, comprising 3, 4, 6, 6, and 11 tasks, respectively.

Two-stage increments. In Table [l we compare our method to state-of-the-art approaches. We ob-
served that employing the fine-tuning method across all settings led to catastrophic forgetting [43]].
This resulted in significant hindrances in learning new tasks due to forgetting prior knowledge, lead-
ing to knowledge confusion. Compared to ILOD [57], our approach demonstrates stable improve-
ments across both old and new tasks, with a notable 15% improvement in the 10-10 setting and a
43% improvement in the 15-5 setting. GMDP-ILOD achieves competitive performance compared
with recent state-of-the-art methods under the classic IOD method from CVPR in 2017. Based on
advanced ABR [38]], our method outperforms the baseline by a large margin and achieves state-of-
the-art performance, further validating the effectiveness of our method.

Multi-stage increments. To demonstrate the performance of our IOD method, we also show the
performance of multi-step incremental learning on Pascal VOC as shown in Table [2] It can be
observed that fine-tuning exhibits a more severe catastrophic forgetting over multiple steps, where
the forgetting of old knowledge also leads to the limited performance of new classes. Our 10D
method surpasses the two baselines by a large margin and performs well on each incremental step.
Moreover, our method improves both old and new class performance against the baseline model.
This is attributed to the feature explicit modeling for more accurate GMDP, capturing the essential
features according to their distribution characteristics.



Published as a conference paper at ICLR 2025

Table 3: mAP results on MS COCO 2017 at different IoU, where the best among columns in bold.

Method 40-40 mAP@ 70-10 mAP@
[50:95] 50 75 |[50:95] 50 75

Joint Training 359 60.5 38.0 359 60.5 38.0
Fine-tuning 19.0 312 204 5.6 86 6.2
Faster ILOD [47] 20.6 40.1 - 21.3 399 -

MMA [5]] 33.0 56.6 34.6 30.2 52.1 315
ABR [38§] 34.5 57.8 352 31.1 529 327
GMDP-ABR 36.8 59.6 36.7 32.5 53.8 339

Table 4: Ablation study of different components of our method for IOD on Pascal-VOC 2007. After
training with the GMDP, our model achieves a significant improvement over the baseline, especially
in previous tasks. The performance of new tasks could be further enhanced by DAPO strategy.

) DAPO 19-1 15-5 10-10

Baseline GMDP . =~ = fupv|1-19 20 1-201-15 16-20 1-20|1-10 11-20 1-20| SPeed
Joint Training 70.1 757 743|764 67.8 743|755 73.0 43| -
Fine-tuning 11.8 647 144|159 542 255|26 634 329

69.8 64.5 69.6(72.5 585 68.9|69.8 53.7 61.7|27.2fps
73.8 65.2 734|733 60.2 70.0|72.0 66.3 69.2|25.3fps
v 74.0 669 73.6(739 62.1 71.0|71.9 69.1 70.5|25.3fps
73.7 65.7 73.3|73.7 61.8 70.7|72.1 67.2 69.5|25.3fps
v 1739 67.1 73.6|740 623 71.1|71.8 68.9 70.4|25.3fps
v v v |74.2 679 739|746 63.5 71.8|71.9 69.7 70.8|25.3fps

SN
LaRas
\

4.3.2 RESULTS ON MS-COCO.

As indicated in Table[3] we conduct the experiments on MS-COCO to compare the proposed GMDP
with existing methods under 40-40 and 70-10 incremental settings. Fine-tuning also suffers from
catastrophic forgetting across all settings. The performance of our method exceeds its baseline.
Under 40-40 and 70-10 settings, our method achieves 7%, 5% performance gain compared with
ABR [38] on mAP@[50:95] respectively. After applying the GMDP and DAPO strategy, our method
outperforms all other methods significantly. The results show that our prototype modeling method
for IOD performs better on the more difficult MS-COCO dataset.

4.4 ABLATION STUDIES AND DISCUSSION

To prove the effectiveness of each component, we perform ablation studies as shown in Table ] All
experiments are conducted on PASCAL VOC 2007 with ILOD [57] as the base detector. We con-
ducted experiments with GMDP based on ILOD, observing significant performance improvements
(Table ] row 3 vs row 4) attributed to GMDP’s ability to explicitly model distributional characteris-
tics, resulting in improved IOD performance and generalization capabilities. Importantly, the model
retained valuable information according to their distribution characteristics from previous tasks,
thereby mitigating catastrophic forgetting. We also evaluated the impact of the three loss functions,
Livp, Lico,and Ly py of DAPO on model performance. Adopting the complete DAPO strategy
notably enhanced adaptability and performance on new tasks, indicating its efficacy in facilitating
knowledge transfer and adaptation by dynamically optimizing GMDP.

In Figure[6] we compare the effectiveness of various training methods for IOD through visualization
of feature distributions. Joint Training illustrates the feature distributions for different classes are
well-separated, maximizing the model’s performance. The first 5 classes of Fine-tuning are ran-
domly scattered and mixed with other classes, resulting in catastrophic forgetting. The Statistical
Gaussian Distribution-based Prototype (SGDP) mitigates some aspects of catastrophic forgetting,
but a notable overlap exists between old and new tasks with many outliers. This indicates that
SGDP is ineffective in preserving prior knowledge under complex high-dimensional feature spaces.
Our GMDP effectively maintains the separation of different classes, with minimal overlap. This
demonstrates its capability to preserve prior knowledge and integrate new tasks seamlessly, achiev-
ing superior IOD performance.
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(a) Joint Training (b) Fine-tuning (c) SGDP (d) Ours

Figure 6: The t-SNE visualization results with different learning methods under a 5-15 task setting.
(a) Joint Training is trained on all tasks simultaneously, clearly separating classes. (b) Fine-tuning
method is sequentially trained on new tasks, leading to severe catastrophic forgetting. (c) SGDP
mitigates some forgetting but still shows significant overlap between old and new task features, along
with many outliers, indicating inadequate retention of previous knowledge. (d) Clusters generated
by our method are more compact and can be well separated from each other.

Table 5: (Left) Analysis of different numbers of Gaussian components in GMDP. (Right) Visualiza-
tion of decision boundary and the t-SNE for different classes of GMDP with 4 components.

Num of 19-1 15-5
Component | 1-19 20 1-20|1-15 16-20 1-20
0 69.8 645 69.6[72.5 585 68.9
1 73.8 67.2 73.5]/73.5 63.1 709
2 74.2 679 73.9|74.6 63.5 71.8
3 73.5 669 732(73.1 62.7 70.5
4 71.3 659 71.0|71.7 61.1 69.0

(a) The decision boundary diagram with 4 components.  (b) The t-SNE visualization with 4 components.

In addition, we have carefully explored the impact of increasing the number of components in
GMDP under the PASCAL VOC dataset in Table [3] (Left). We can see that the GMDP with 2
components consistently improves performance compared to 1 component, allowing for a more ac-
curate representation of higher-dimensional prototypes. Although theoretically, more components
can better fit complex feature distributions (The decision boundary of the 4 components is more
accurate in Table 3] (Right (a)), in practice, this poses significant challenges to the network’s fitting
capability. 4 components result in a decrease in the detection performance of the proposed method,
as evidenced by the t-SNE visualization in Table [5| (Right (b)), which displays many outliers. This
difficulty in the convergence of more components is a critical issue. Our Length Scaling Progressive
Learning method addresses these challenges by simplifying the learning process, enabling optimal
performance under 2 components setting. Exploring the potential of adopting more components is
an avenue for our future work.

4.5 LIMITATION

The Introduced GMDP increases the model’s complexity, making end-to-end training more chal-
lenging and requiring an initial training phase before integrating our method. This step makes it
easier for the model to converge. Meanwhile, as shown in the last column of Table @ we also evalu-
ate testing speed, where our method is nearly 7% slower than the baseline (row 3 vs row 8). Despite
this, our method demonstrates significant performance improvements under 4 baselines for all tasks.

5 CONCLUSION

In this paper, we propose a novel prototype learning approach for KD-based IOD to alleviate the
knowledge shift, which enables a more flexible, accurate, and fine-grained representation of fea-
ture distributions without keeping any previous task data. A Gaussian Mixture Distribution-based
Prototype (GMDP) is introduced to explicitly model the distribution relationships between different
classes suitable for more complex feature spaces. To enhance the plasticity of class prototypes, we
present a Dynamic Adaptive Prototype Optimization Strategy (DAPO) strategy for IOD during the
incremental process, which could enhance the adaptability and effectiveness of GMDP modeling.
The proposed method can be readily integrated into existing IOD methods to enhance performance
further. Methods with our idea on the PASCAL VOC and MS COCO consistently outperform four
baselines significantly and achieve state-of-the-art results in different incremental settings.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Our method is based on ILOD [57]] with the SGD optimizer, setting the initial learning rate to
0.001, decaying to 0.0001 after 30,000 iterations, and incorporating a momentum of 0.9. During
the incremental phase, the learning rate is adjusted to 0.0001. Following the original paper, other
settings are the same as the original paper. Our GMDP-ERD based on ERD [13] employs the
GFLV1 [29] detector with ResNet-50 as the backbone. Following the original paper, we adopt the
same settings to train the detector. 12 epochs train the method for each incremental step. Our method
based on CL-DETR [36] adopts a pre-trained ResNet-50 as the backbone. We train the model with
50 epochs under different incremental stages. Our GMDP-ABR follows the baseline ABR [38]] train
model with the SGD optimizer, weight decay of 0.0001, and momentum of 0.9. The first stage has
a learning rate of 0.005, and the subsequent stages have a learning rate of 0.002. For tasks involving
incremental addition of 5 or 10 classes, we employed 15,000 iterations, while for the inclusion of 1
or 2 new classes, a regimen of 5,000 iterations was applied.

In summary, the total loss (Lot41) Of the training model under the incremental stage is the weighted
sum of the original baseline loss £ p.¢, GMDP loss L& p p, transferring prototype knowledge loss
Lypri, and DAPO strategy loss. The L;o4i; and L4 in Figure E] are part of Lp;, represent the
loss functions in the baseline model, corresponding to the distillation loss for class classification
and bounding box regression, respectively. The DAPO strategy loss consists of three parts: Inter-
Class Mean Dispersal loss L1 p, Intra-Class Component Cohesion loss £;c¢, and Minimization
of Prototype Variance loss £,;py . The total loss of the incremental object detection network is as
follows:

Liotal = Lpet + MLampr + AoLipk + Xs(Livip + Licc + Lrvpyv), (11)

where the parameters A\; = 0.05, Ao = 0.1, and A3 = 0.05 represent the weight of different
losses, thereby regulating the tradeoff between them. These parameters primarily aim to standard-
ize the range of loss values within the same range rather than implementing intricate adjustments
or adding bells and whistles. Adopting GMDP introduced additional parameters, leading to slower
network convergence. To address this issue, we leverage a Length Scaling Progressive Learning
(LSPL) method that enhances the network convergence speed by reducing the dimensionality of the
detection features to 256. Sufficient experimental results indicate that despite reducing feature di-
mensionality, our detection performance remained unaffected, and we maintained the same network
iteration settings as the original baseline model. Besides, during the initial stage of learning new
classes, the feature distribution is inherently unstable. Thus, significant challenges have been posed
for the learning and convergence of GMDP, due to the lack of stable feature dependency relation-
ships. To address this issue, we adopted an initial training phase, first conducting 1000 training steps
and then employing our GMDP to construct the Gaussian distribution prototype.

A.2 ADDITIONAL EXPREIMENTS

In this section, we conducted IOD experiments on the Ms-COCO 2017 dataset based on two dif-
ferent baselines, ERD [13] and CL-DETR [36] to evaluate our method. As shown in Table [6] our
experiments are conducted on two-stage task settings, adding 40 and 10 categories in 40-40 and
70-10 setups, respectively. Each experiment was conducted three times, with the classes and data
order randomized in each phase. Our approach consistently outperforms both two baselines across
various 10D settings, demonstrating significant improvements. Furthermore, our results are compet-
itive with the current state-of-the-art (SOTA) methods, indicating the effectiveness and robustness
of our proposed method in diverse IOD settings. This improvement can be attributed to GMDP’s
ability to explicitly model the distributional characteristics of detection features, allowing for more
accurate and discriminative representations. By dynamically optimizing prototype representations,
the DAPO strategy enables the model to quickly adapt to new task requirements, improving 10D
performance and generalization capabilities.

We also validated the effectiveness of our method on the Ms-COCO dataset under the multi-stage
incremental setting. Table [/| displays our results with additional multi-stage experiments (e.g.,
40+10x4, 40+20x2) to provide a comprehensive demonstration of our method’s performance under
various incremental settings. , our method achieves consistent performance improvement compared
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Table 6: mAP results on MS-COCO 2017 at different IoU. We run experiments for three different

classes and data orders.

Setting | Method | Baseline | AP AP50 AP75 APS APM  APL

LwF [31] TPAMI 18 GFLV1 7.1 12.4 7.0 4.8 9.5 10.0

ERD [13] CVPR 22 GFLV1 349 51.9 374 18.7 38.8 45.5
GMDP-ERD Ours GFLV1 36.4+03 53.2+05 39.1+02 19.4403 39.7+0.1 46.9+05

CL-DETR [36] CVPR23| UP-DETR 37.6 56.5 394 20.5 39.1 49.9

70+10 LwF [31] TPAMI 18| Deform-DETR | 24.5 36.6 26.7 12.4 28.2 352

iCaRL [49] CVPR 17 | Deform-DETR | 35.9 52.5 39.2 19.1 394 48.6

CL-DETR [36] CVPR 23|Deform-DETR| 40.1 57.8 43.7 23.2 43.2 52.1
GMDP-CL-DETR Ours | Deform-DETR | 42.6+0.5 60.4+04 45.2+03 24.1+02 45.0+02 55.6+04

LwF [31] TPAMI 18 GFLV1 17.2 254 18.6 7.9 18.4 24.3

ERD [13] CVPR 22 GFLV1 36.9 54.5 39.6 21.3 40.4 47.5
GMDP-ERD Ours GFLV1 38.4+01 55.1+03 40.3+01 22.9403 41.7+02 49.8+04

CL-DETR [36] CVPR23| UP-DETR 37.0 56.2 39.1 20.9 38.9 49.2

40+40 LwF [31] TPAMI 18| Deform-DETR | 23.9 41.5 25.0 12.0 26.4 33.0

iCaRL [49] CVPR 17 | Deform-DETR | 33.4 52.0 36.0 18.0 36.4 45.5

CL-DETR [36] CVPR 23|Deform-DETR| 37.5 55.1 40.3 20.9 40.8 50.7
GMDP-CL-DETR Ours | Deform-DETR | 40.8+0.4 58.5+02 43.3+02 23.6+05 43.5+03 53.5+04

to the baseline and performs well on each incremental step. This is attributed to the feature explicit
modeling for more accurate GMDP, capturing the essential features according to their distribution
characteristics. It is noteworthy that due to the time limitation, we can not implement our idea of
transformer-based methods. only Faster-RCNN-based methods are used for fair comparisons.

Table 7: GMDP result (AP/AP50) on the multiple-stage incremental setting on MS COCO. We
reproduced the results of ABR* with the same setting.

20+10x4 40+20x2
Method TL-40) | 1) 40-50) T3 (50-60) T4 (60-70) TS5 (70-80) | T2 (40-60) T3 (60-80)
ERDI3] | 45.7/663 | 364530 30.8/d67 26.2/39.9 20.7/31.8 | 36.754.6  32.4/43.6
RILOD [27] | 45.7/663 | 254/38.9 11.2/17.3 105/156  84/125 | 27.8/42.8  15.8/4.0

SID[@8] | 457/663 | 34.6/52.1 24.1/38.0 14.6/23.0 12.6/233 | 34.0/51.8 23.8/36.5
ABR* [38] | 45.7/663 | 37.9/563 35.5/52.4 31.5/47.6 285435 | 38.0/57.5 34.1/503
GMDP-ABR | 46.3/67.5 | 39.2/59.1 36.8/55.4 33.2/49.3 29.7/45.1 | 39.6/60.2 35.7/52.9

Table 8: Analysis of different number of Gaussian component in GMDP under multiple-stage incre-

mental settings.

10-5 (3 tasks) 5-5(3 tasks) 15-1(6 tasks)
Num of Component | | " "1 0" 50 | 15 620 1-20 | 1-15 1620 1-20
0 687 671 679 | 647 564 584 | 68.7 567 65.7
1 689 675 682|660 587 605|691 583 664
2 699 678 689|663 593 61.1 | 695 589 669
3 69.4 672 683|657 585 603|689 581 662
4 68.6 670 678|649 572 59.1 | 683 57.0 655

We have carefully analyzed the influence of setting different numbers of Gaussian components in
GMDP under multiple-stage incremental settings. Illustrated in [8| different numbers of Gaussian
components are used in the experiment on the PASCAL VOC dataset. We can see that the GMDP
with 2 components under multiple-stage incremental settings consistently improves performance
compared to 1 component, with results similar to 2-stage incremental settings. The proposed method
is insensitive and often achieves performance improvement when the threshold changes from 1 to 3.

Although theoretically, more components can better fit complex feature distributions, in practice, this
poses significant challenges to the network’s fitting capability. 4 components result in a decrease
in the detection performance of the proposed method. This difficulty in the convergence of more
components is a critical issue. Our Dimension Scaling Progressive Learning method addresses these
challenges by simplifying the learning process, enabling optimal performance under 2 components
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setting. The above results also demonstrate the effectiveness and consistency of our method in two-
stage and multi-stage incremental settings.
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