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Abstract001

We examine how users perceive the limitations002
of an AI system when it encounters a task that it003
cannot perform perfectly and whether providing004
explanations alongside its answers aids users005
in constructing an appropriate mental model of006
the system’s capabilities and limitations. We007
employ a visual question answer and expla-008
nation task where we control the AI system’s009
limitations by manipulating the visual inputs:010
during inference, the system either processes011
full-color or grayscale images. Our goal is to012
determine whether participants can perceive the013
limitations of the system. We hypothesize that014
explanations will make limited AI capabilities015
more transparent to users. However, our results016
show that explanations do not have this effect.017
Instead of allowing users to more accurately018
assess the limitations of the AI system, expla-019
nations generally increase users’ perceptions020
of the system’s competence – regardless of its021
actual performance.022

1 Introduction023

Machine learning-based technologies (often called024

‘artificial intelligence’, AI) are now commonly be-025

ing deployed and used in real-world applications,026

influencing human decision-making (or automating027

decision-making altogether) with implications for028

societies, organizations, and individuals. Despite029

continuous advances and impressive performance030

on many tasks, these technologies are not always031

accurate and will likely never be. Machine learn-032

ing models depend on curation of the data they033

are trained on, they are optimized according to034

criteria that may not do justice to the complexity035

of reality, and the context in which they are used036

cannot be fully modeled, to name a few reasons for037

their limitations. In addition, the underlying algo-038

rithms themselves have inherent weaknesses. Large039

language models (LLMs), e.g., are well known to040

hallucinate, i.e., to make predictions that are incon-041

sistent with facts or themselves (Ji et al., 2023), or042

to be highly sensitive to spurious variations in their 043

inputs/prompts (Sclar et al., 2023). 044

Many machine learning models also suffer from 045

their own complexity: consisting of millions, bil- 046

lions, or even trillions of parameters, they are black- 047

boxes, opaque to human understanding. However, 048

in order to reliably use machine learning models 049

and AI systems based on such models, human users 050

must be able to assess their limitations and defi- 051

ciencies, and to understand the decisions that such 052

systems make and why (codified, for example, as 053

the right “to obtain an explanation of the decision 054

reached” in the legal framework of the General 055

Data Protection Regulation of the European Union; 056

GDPR, 2016, Recital 71). Research in Explainable 057

AI (XAI) addresses this need, and recent years have 058

seen an explosion of explainability methods that 059

aim to make the internal knowledge and reasoning 060

of AI systems transparent and explicit, and thus 061

interpretable and accessible to users. Explainability 062

of model predictions is thus seen as a solution, and 063

it is assumed that they enable users to construct 064

functional ‘mental models’ (Norman, 1983) of AI 065

systems, i.e., models that closely correspond to the 066

actual capabilities of the systems. 067

Whether this is the case is an active research 068

question and there is evidence that explainability 069

comes with new challenges. Important questions in 070

XAI are what actually makes a good explanation, 071

which criteria it needs to satisfy, and how the quality 072

of explanations can be measured (Alshomary et al., 073

2024). Furthermore, recent perspectives emphasize 074

that explanations should be social (Miller, 2019) and 075

constructed interactively, taking into account the 076

user’s explanation needs (Rohlfing et al., 2021). Ja- 077

covi and Goldberg (2020) argue that evaluations of 078

explanations should carefully distinguish plausibil- 079

ity (does it seem plausible to users) and faithfulness 080

(does it reflect the model’s internal reasoning) and 081

that non-faithful, but plausible, explanations can 082

be dangerous in that they let users construct faulty, 083
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and eventually dysfunctional, mental models that084

can lead to unwarranted trust (Jacovi et al., 2021).085

In this paper, we investigate the effects of provid-086

ing natural language explanations on users’ mental087

models of an AI system in terms of its capabilities,088

and whether these explanations allow them to di-089

agnose system limitations. We present the results090

of a study in the visual question answering and091

explanation (VQA/X) domain, artificially inducing092

a simple limitation by providing two VQA/X sys-093

tems with images stripped of color information, i.e.,094

in grayscale (see Figure 1). Participants, unaware095

of the manipulation, see the unmanipulated full096

color image, the question, the system’s answer, and097

its explanation for the answer, and have to judge098

various system capabilities (including its ability to099

recognize colors) and its competence. This visual100

domain does not require participants to understand101

the internal processes of the system but should still102

enable them to estimate what it can and cannot103

do. The comparison of judgments to responses to104

non-manipulated system input and judgments of105

responses without explanations sheds light on par-106

ticipants’ difficulties in using (natural language)107

XAI explanations to build accurate mental models,108

even for such a simple case. This raises the question109

of how effective explanations can be in real-world110

applications of XAI technology that involve more111

complex reasoning and problems.112

2 Background113

Our work is related to previous studies that have ex-114

amined whether explanations enhance users’ trust in115

AI systems. Kunkel et al. (2019), for example, com-116

pared trust in personal (human) versus impersonal117

(recommender system) recommendation sources118

and examined the impact of explanation quality on119

trust. Their results showed that users rated human120

explanations higher than system-generated ones and121

that the quality of explanations significantly influ-122

enced trust in the recommendation source. Bansal123

et al. (2021) investigated whether explanations help124

humans anticipate when an AI system is potentially125

incorrect. They used scenarios where an AI system126

helps participants to solve a task (text classification127

or question answering), providing visual explana-128

tions (highlighted words) under certain conditions.129

Their findings revealed that explanations increased130

the likelihood of the participants to accept the AI131

system’s recommendations, irrespective of their132

accuracy. Thus, rather than fostering appropriate re-133

Question: What season is it?


NLX-GPT (color): 

ANSWER: summer EXPL: because the 
grass is green and the trees are casting 
shadows


NLX-GPT (greyscale):  
ANSWER fall EXPL: because the trees 
are green and the grass is dry

Question: Are there more large yellow 
shiny objects than metal things?


NLX-GPT (color): 

ANSWER: no EXPL: because there are 
no large yellow shiny things and there is 
a metal cylinder

NLX-GPT (greyscale):  
ANSWER yes EXPL: because there is a 
large yellow shiny cylinder and there are 
two metal spheres and a metal cube

Figure 1: Items from our study: Answers and expla-
nations generated with NLX-GPT for color/grayscale
images in VQA-X (top) and CLEVR-X (bottom). Ex-
planations in the grayscale condition refer to colors that
were not available in the system inputs (green, yellow).

liance on AI systems, explanations tended to foster 134

blind trust. Similarly, (Kim et al., 2021) conducted 135

a large-scale user study for visual explanations, 136

showing that these do not allow users to distinguish 137

correct from incorrect predictions. Dhuliawala et al. 138

(2023) investigated how users develop and regain 139

trust in AI systems in human–AI collaborations. 140

They found that NLP systems that confidently make 141

incorrect predictions harm user trust, and that even 142

a few incorrect instances can damage trust, with 143

slow recovery. While these studies evaluate the in- 144

fluence of system explanations on users’ trust in the 145

system’s output (a proxy for its perceived compe- 146

tence), they do not investigate users’ understanding 147

of the systems’ reasoning processes and capabilities. 148

In our study, we specifically address this issue and 149

investigate the users’ mental model of the systems’ 150

capabilities and limitations. 151

While the studies above found that nonverbal 152

explanations can be misleading to users, natural 153

language explanations are assumed to be more trans- 154

parent or less difficult to interpret (Park et al., 2018; 155

Salewski et al., 2022). Verbal explanations also 156

offer the advantage that they can be collected from 157

humans, which has led to the development of ex- 158

planation benchmarks, particularly in multimodal 159

domains (Kayser et al., 2021; Salewski et al., 2022). 160

Thus, the dominant approach to verbal explanation 161

generation currently is to leverage human explana- 162

tions during model training (Park et al., 2018; Wu 163

and Mooney, 2019; Kayser et al., 2021; Plüster et al., 164

2023; Sammani and Deligiannis, 2023). While Lyu 165
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et al. (2024) discuss potential faithfulness issues166

related to supervising explanation generation with167

human explanations, we are not aware of work168

that explicitly tests these supervised models in a169

user-centered setting similar to ours.170

3 Approach171

We conduct a study to investigate how users of172

an AI system perceive its limitations when it en-173

counters tasks that it cannot perform perfectly. We174

aim to investigate whether providing explanations175

alongside model responses helps users build an176

appropriate mental model of the AI system’s capa-177

bilities and limitations. We control the AI system’s178

limitations by systematically manipulating its in-179

puts. We design a questionnaire for users to judge180

specific aspects of the AI system’s capabilities. This181

allows us to measure whether users can diagnose182

which capabilities of the AI system have been per-183

turbed through our explicit input manipulations.184

The design of our study is summarized in Figure 2185

and will be explained in detail below.186

VQA Task and Abilities We employ a visual187

question answering and explanation task: the input188

to the AI system is an image and a question in natu-189

ral language, and its task is to generate an answer190

and a natural language explanation that justifies191

the answer. We select a visual question-answering192

setting as it is a rather simple task for humans and,193

at the same time, a task that involves distinguishable194

semantic-visual reasoning capabilities. This is im-195

portant for our setting since we want to test whether196

users can differentiate specific system capabilities,197

based on generated explanations. Thus, inspired by198

Salewski et al.’s (2022) CLEVR-X benchmark for199

explainable VQA, we assume that these capabilities200

involve the abilities to process objects’ (i) color,201

(ii) shape, (iii) material, and (iv) scene compo-202

sition (e.g., spatial relations, relative size). In our203

study participants are asked to rate the AI system’s204

capabilities along these four dimensions, next to205

other, more general criteria for competence and206

fluency (see Figures 8 and 9 in Appendix A.4).207

In the CLEVR-X benchmark, these dimensions208

are given by construction: the visual scenes are209

synthetically generated and composed of objects210

defined by attributes for color, material, and shape.211

The corresponding questions explicitly relate to212

one or multiple of these dimensions. In real-world213

image benchmarks, such as VQA-X (Park et al.,214

2018), these abilities are often more implicit, but215

still highly relevant (see examples in Figure 1). We 216

run our study on items from both benchmarks. 217

Color vs. Grayscale Input Our goal is to investi- 218

gate whether explanations help users in diagnosing 219

system limitations. To introduce these limitations 220

in a controlled way, we manipulate the input of the 221

VQA systems. Out of the four VQA capabilities 222

explained above (color, shape, material, and scene), 223

the color dimension lends itself to straightforward 224

manipulation: during inference, systems either re- 225

ceive the image (i) in full color or (ii) in grayscale. 226

This induced limitation resembles a situation where 227

a multimodal AI model was trained on colored 228

images but, at run-time, a camera/visual sensor is 229

broken such that model inputs are perturbed. To 230

make sure that this manipulation induces an incor- 231

rect model response, we only include items that are 232

correctly answered with the full color image input 233

but incorrectly answered with the grayscale image 234

input. This item selection accounts for the fact that 235

VQA models can be assumed to have further lim- 236

itations that we cannot explicitly control for and 237

exclude items (i) where the VQA does not generate 238

the correct ground-truth answer for the colored im- 239

age, and (ii) where the VQA generates the correct 240

answer for the grayscale image. This gives us a 241

clean set of items where the limitations of the AI 242

system can be attributed to a particular error source. 243

The participants in our study were unaware of the 244

underlying color–grayscale manipulation: they saw 245

images in color, along with the models’ answers and 246

explanations. Our goal was to determine whether 247

participants were able perceive the limitations of 248

the model, i.e., whether they could identify the sys- 249

tem’s lack of color recognition ability. See Figure 2 250

for an illustration of this set-up. 251

Experiments A and X To investigate the effect 252

of providing generated explanations alongside the 253

system answers, we conduct two separate studies: 254

In Experiment X, participants were shown both 255

the answer and its explanation, whereas in Exper- 256

iment A participants were shown only the answer 257

without an explanation. In both studies, we ask 258

participants to rate each item for the system’s capa- 259

bilities (color, shape, material, scene), the overall 260

system competence, answer correctness, the con- 261

sistency of answer/explanation, the consistency of 262

explanation/image, and the explanation’s fluency. 263

Importantly, participants in both Experiments A 264

and X received mixed sets of items from all systems, 265

data sets, and color conditions, and we collected 266
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User’s initial mental 

model of the AI

User’s updated 

mental model

color
shape

material
scene

AI compentenciesEx
pe

rim
en

t A
Question: Does 

the cylinder have 
the same color as 

the cube?
ANSWER: YES

AI outputs

Incorrect answer

User rates 

the AI

AI compentencies

color
shape

material
scene

AI’s internal processing is grayscale

User’s initial mental 

model of the AI

User’s updated 

mental model

ANSWER:YES 
EXPLANATION: the 
cylinder and the cube 
are both grey.

Question: Does 
the cylinder have 
the same color as 
the cube?

color
shape

material
scene

AI compentencies

AI outputs

Incorrect answer

With explanation

User rates 

the AI

AI compentencies

color
shape

material
scene

Ex
pe

rim
en

t X

AI’s internal processing is grayscale

Figure 2: Illustration of our experimental design and hypotheses. In Exp.A, we do not expect users to spot the system
defect (no color recognition due to grayscale input) since only answers are provided. In Exp.X, the system provides
explanations which should help users in building a better mental model.

judgments for each item. In this way, we wanted267

to prevent them from becoming “conditioned” to a268

particular setting, i.e., getting used to certain ways269

of answering or explaining and becoming overly270

sensitive to changes in patterns.271

If explanations lead users to build more appropri-272

ate mental models, participants should, generally273

speaking, be able to differentiate items where sys-274

tems processed grayscale vs. full color images. We275

approached this broad expectation with five hypothe-276

ses specific to our set-up (see Table 2 for a brief277

summary). First, hypotheses H1A and H1X relate278

to the differences in competence scores between279

color and grayscale conditions. Here, we expect280

that explanations help participants to differentiate281

between different system capabilities.282

H1A In Exp.A, competence and all capability283

scores are lower in the grayscale condition284

than in the color condition.285

H1X In Exp.X, competence and color capability286

scores are lower in the grayscale condition287

than in the color condition, but other capability288

scores are more stable.289

Hypotheses H2A and H2X are concerned with the290

comparison between individual competence scores291

in the grayscale condition. Again, explanations292

should help users to identify system deficiencies.293

H2A In the grayscale condition of Exp.A, partici-294

pants give similar scores for all capabilities.295

H2X In the grayscale condition of Exp.X, partici-296

pants rate the color capability lower relative297

to the other capabilities.298

Hypothesis H3A/X pertains to the comparison 299

of competence scores between Exp.A and X. If 300

explanations make defects in color processing trans- 301

parent, grayscale inputs should specifically affect 302

scores for this dimension. 303

H3A/X In Exp.X the overall competence is rated 304

higher than in Exp.A. In Exp.X, color compe- 305

tence is rated lower or the same as in Exp.A. 306

4 Experimental Setup 307

Data We use two datasets in our study: VQA-X 308

(Park et al., 2018) and CLEVR-X (Salewski et al., 309

2022). VQA-X is extensively utilized in Visual 310

Question Answering (VQA) tasks, as an extension 311

of the well-established Visual Question Answering 312

v1 (Antol et al., 2015) and v2 (Goyal et al., 2017) 313

datasets. The images within VQA-X originate from 314

MSCOCO (Lin et al., 2015), and the questions are 315

open-ended (see Figure 1, top). The style of the 316

ground-truth explanations in VQA-X varies widely, 317

ranging from simple image descriptions to detailed 318

reasoning (Salewski et al., 2022). 319

CLEVR-X expands the synthetic dataset CLEVR 320

(Johnson et al., 2017), incorporating synthetic nat- 321

ural language explanations. Each image in the 322

CLEVR dataset depicts three to ten objects, each 323

possessing distinct properties including size, color, 324

material, and shape (see Figure 1, bottom). For 325

each image–question pair in the CLEVR dataset, 326

CLEVR-X contains multiple structured textual ex- 327

planations. These explanations are constructed from 328

the underlying scene graph, ensuring their accuracy 329

without necessitating additional prior knowledge. 330
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Models For each dataset, we used two vision331

and language models: (i) NLX-GPT (Sammani332

et al., 2022) and PJ-X (Park et al., 2018) for VQA-333

X, and (ii) NLX-GPT and Uni-NLX (Sammani334

and Deligiannis, 2023) for CLEVR-X1. We did335

not use vanilla generative AI systems (such as336

ChatGPT) in this study, as we wanted to investigate337

models that were specifically constructed to provide338

explanations alongside their outputs.339

NLX-GPT is an encoder–decoder model, which340

combines CLIP (Radford et al., 2021) as the visual341

encoder with a distilled GPT-2 model (Radford342

et al., 2019). Importantly, this model jointly pre-343

dicts answers and explanations, i.e., it generates a344

single response string of the form “the answer is345

<answer> because <explanation>”, given a question346

and image. For VQA-X, we use the model from347

Sammani et al. (2022), which is pre-trained on348

image-caption pairs and fine-tuned on the VQA-X349

data. For CLEVR-X, we use the published pre-350

trained weights and fine-tune the model on this351

dataset. Uni-NLX relies on the same architecture352

as NLX-GPT, but the model is trained on various353

datasets for natural language explanations (includ-354

ing VQA-X), to leverage shared information across355

diverse tasks and increase flexibility in both answers356

and explanations. We take the trained model from357

Sammani and Deligiannis (2023) and fine-tune358

it on CLEVR-X. While NLX-GPT and Uni-NLX359

generate answers and explanations simultaneously,360

the PJ-X model takes a two-step approach. It first361

predicts the answer with an answering model and,362

subsequently, generates visual and textual explana-363

tions based on the question, image, and answer2.364

For each model, we utilize the recommended365

model weights and fine-tune them on the two366

datasets. During fine-tuning, we supply each model367

with the original, i.e., full color images along with368

the questions, answers, and explanations for both369

datasets. During inference, images are presented in370

color alongside the question, or in grayscale.371

User Study We conducted the study online, using372

Prolific, and obtained ratings from 160 participants373

(80 each in Exp.A and X) who were native English374

1We tried to obtain model outputs from other explainable
VQA-X models such as, e.g., OFA-X (Plüster et al., 2023),
FME (Wu and Mooney, 2019), or e-UG (Kayser et al., 2021),
but encountered significant reproducibility issues: code was
unavailable or not running, authors were unavailable to provide
model outputs, etc.

2We could not replicate Salewski et al.’s (2022) PJ-X results
on CLEVR-X, and the authors could not provide model outputs.
Therefore, we only report PJ-X on VQA-X.

speakers with normal color vision (selected using 375

Prolific’s filters). In both experiments, we utilized 376

identical experimental items, differing only in the 377

presence or absence of explanations. All items 378

consisted of instances where the model provided 379

correct answers for colored images and incorrect 380

answers for grayscale images. We selected a total of 381

128 items, evenly distributed across the datasets and 382

models, comprising 64 for each dataset and 32 for 383

each model, equally split between 16 colored and 16 384

grayscale items (for NLX-GPT, a total of 64 items 385

were selected, with 32 items from CLEVR-X and 386

32 items from VQA-X). The items were distributed 387

over four experimental lists, with each participant 388

evaluating 32 individual items. We gathered 2560 389

judgments per experiment and 5120 overall. 390

We designed the evaluation as a rating task. We 391

informed participants that we are assessing an AI 392

system’s ability to answer questions about images 393

(and, for Exp.X, to generate explanations). The 394

image, question, and answer for each item were 395

presented at the top of the page, and, in Exp.X, 396

the generated explanation was displayed below the 397

answer. Each item had several questions and state- 398

ments for the participants to assess. First, they were 399

asked to evaluate the correctness of the answer. In 400

Exp.X, participants were further asked to assess 401

whether the explanation was (i) consistent with the 402

answer, (ii) consistent with the picture, and (iii) 403

overall fluent. Additionally, participants in both 404

experiments were asked to judge whether they be- 405

lieved that the AI system correctly identifies (iv) 406

shapes, (v) colors, and (vi) materials, as well as 407

whether it (vii) understands the general scene in the 408

image. Finally, (viii) participants judged the overall 409

competence of the system. Participants indicated 410

their agreement on five-point Likert scales, ranging 411

from 1 (‘strongly disagree’) to 5 (‘strongly agree’). 412

For each criterion, we also offered the option of 413

selecting “I don’t know”. Before providing ratings, 414

participants received instructions and viewed an 415

example item illustrating the evaluation criteria. 416

They were paid at a rate of £9.00 per hour. See 417

Appendix A.3 for example trials of the experiment. 418

5 Results 419

We organize the discussion of results based on the 420

hypotheses outlined in Section 3. Since we ask 421

whether explanations help participants determine 422

that the systems could not recognize color, the 423

following discussion concentrates on the grayscale 424
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condition and the differences between the grayscale425

and color conditions (see Appendix A.3 for detailed426

results of the color condition).427

All systems received high ratings in all compe-428

tency and capability dimensions when tested in the429

color condition of Exp.A and X, on both datasets430

(see Table 9 in Appendix A.3). These ratings de-431

creased in very similar ways in the grayscale condi-432

tion. Therefore, we were able to use all items from433

all systems to test our hypotheses, generalizing over434

minor system differences. We discuss differences435

between datasets and models in Appendix A.3, since436

these were not essential for testing our hypotheses.437

Summaries of hypotheses and results are given in438

Table 2.439

Hypotheses H1A and H1X state our expectations440

on distinctions between the grayscale and color441

conditions in Exp.A and X, respectively. Figure 3442

shows the distribution of participant ratings for443

the AI system’s ability to recognize colors, for the444

grayscale and color conditions in both experiments445

(see Figures 4, 5, 6, and 7 in Appendix A.3 for446

results on the other capabilities). In Exp.A and X,447

there is a consistent trend of better assessments448

when systems have been seen the color images com-449

pared to grayscale images, across different systems,450

datasets, and all capabilities. Most users rate the451

color capability with the highest rating in the color452

condition (Figure 3a/c) and with the lowest rating453

in the grayscale condition (Figure 3b/d). The same454

holds for all other capabilities and competency (Fig-455

ures 4, 5, 6, and 7). This confirms hypothesis H1A,456

i.e., ratings for all capabilities decrease when the457

system does not see color. However, this does not458

support H1X, as we expected that only overall com-459

petence and capability to recognize colors would460

be rated lower in the grayscale condition when461

explanations were given, and not all capabilities.462

This suggests that the AI’s explanations did not463

help users diagnose the system’s limitation in the464

grayscale condition, as all capability dimensions465

are similarly affected in Exp.X.466

Hypotheses H2A and H2X state our expectations467

for the grayscale condition. Table 1 presents the468

human evaluation results in Exp.A and X. Starting469

with Exp.A, Table 1 shows that all evaluation crite-470

ria in the grayscale condition receive relatively low471

scores. Interestingly, the manipulated capability,472

i.e., to recognize colors, does have slightly worse473

ratings than the other criteria (for most models and474

datasets). This outcome does not align with our475

expectation (H2A) as participants in Exp.A solely 476

viewed the answers without access to explanations, 477

making it difficult to discern which specific abil- 478

ity or (limitation) influenced the model’s answer. 479

Results from Mann-Whitney U tests (see Table 4 480

in Appendix A.2) show significant differences be- 481

tween the ability to recognize colors and the ability 482

to recognize other criteria for Exp.A (except for the 483

models’ overall competence), contradicting hypoth- 484

esis (H2A). This suggests that users in Exp.A were 485

able to interpret incorrect system answers more 486

than we expected. For Exp.X, the results in Table 1 487

suggest a very similar trend to Exp.A: the ability 488

to recognize colors is rated slightly lower than the 489

other capabilities. The Mann-Whitney U tests for 490

Exp.X (reported in the lower part of Table 4 in Ap- 491

pendix A.2 ), again confirms significant differences 492

between the perceived ability to recognize colors 493

and the other abilities (except the systems’ overall 494

competence). Looking at Exp.X in isolation, these 495

results seem to speak in favor of our hypothesis 496

H2X: users were indeed able to diagnose the system 497

defect, at least to some extent. However, in light of 498

our findings on H2A, these results have to be inter- 499

preted with care: even without model explanations, 500

users rated the color capability lower than others. 501

This trend is a bit stronger in Exp.X but, overall, 502

the differences between perceived capabilities are 503

still rather small. The strongest expected trend in 504

favor of H2X can be found for NLX-GPT on the 505

CLEVR-X data: here, the median if the color rating 506

is 1.0 and 3.0 or 2.0 for the other capabilities. For 507

the other combinations of models and datasets in 508

Exp.X, there is no clear difference in the median 509

ratings for the perceived capabilities. We conclude 510

that there is weak evidence in favor of H2X, as 511

explanations do not substantially improve users’ 512

assessments of system capabilities. 513

Hypothesis H3A/X states our expectations regard- 514

ing the differences between Exp.A and X for overall 515

competency and color recognition ability. 516

Once again, consider Table 1. As expected, in 517

Exp.A, i.e., without explanations, the overall com- 518

petency of the models was rated low (with median 519

values of 1.0 only). In Exp.X, although the values 520

remain low at 2.0, there is a noticeable improvement 521

relative to Exp.A. Thus, despite the answers being 522

incorrect, the addition of the models’ explanations 523

enhances the perception of the models’ overall com- 524

petency. This could suggest that the explanations 525

reveal other capabilities of the models, consistent 526
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(b) Exp.A – grayscale images
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(c) Exp.X – colored images
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(d) Exp.X – grayscale images

Figure 3: Human ratings on the evaluation criterion “Ability of the AI to recognize colors”. Participants indicated
their judgment on a scale from 1 (strongly disagree; here in red) to 5 (strongly agree; here in green).

Colors Shapes Materials General Scene Competency

Experiment Dataset Model med mean med mean med mean med mean med mean

Exp.A CLEVR-X NLX-GPT 1.0 1.69 1.0 2.08 1.0 1.94 1.5 1.97 1.0 1.68
Uni-NLX 1.0 1.84 2.0 2.31 1.0 2.11 2.0 2.16 1.0 1.91

VQA-X NLX-GPT 1.0 1.73 2.0 2.23 1.0 1.71 1.0 1.87 1.0 1.64
PJ-X 1.0 1.71 2.0 2.08 1.0 1.74 1.0 1.83 1.0 1.60

Exp.X CLEVR-X NLX-GPT 1.0 1.93 3.0 2.95 2.0 2.62 2.5 2.61 2.0 2.13
Uni-NLX 2.0 2.27 3.0 2.89 3.0 2.82 2.0 2.61 2.0 2.21

VQA-X NLX-GPT 2.0 2.36 3.0 2.70 2.0 2.32 2.0 2.29 2.0 1.96
PJ-X 2.0 2.25 2.0 2.53 2.0 2.32 2.0 2.23 2.0 1.88

Table 1: Human ratings on system capabilities for the grayscale condition of Exp.A (no explanations) and Exp.X
(with explanations), as median and mean scores across raters.

with our hypothesis H3A/X. However, contrary to527

H3A/X, we also see a general increase in the ratings528

for the systems’ color recognition ability in Exp.X529

compared to Exp.A. We expected that the expla-530

nations would make the color limitation explicit,531

which would result in color ability being rated worse532

or at least as poorly as in Exp.A. This also holds for533

all other model capabilities: all capability ratings534

are comparatively higher in Exp.X than in Exp.A535

(even if lower than in the color condition). This ob-536

servation is supported by the Mann-Whitney U tests537

(see the upper part of Table 4 in Appendix A.2),538

which show significant differences between Exp.A539

and X for all evaluation criteria. This suggests that540

users rate all system capabilities significantly higher541

when explanations are provided. From this we con-542

clude that, instead of making systems’ limitations543

more transparent, the explanations contribute to544

an overall more positive perception of the system,545

regardless of its capabilities. In other words, the AI546

system’s explanations seem to create an illusion of547

the system’s competence that does not correspond548

to its actual performance.549

Automatic Evaluation In the VQA-X domain,550

automatic measures for evaluating similarity or551

overlap with human ground-truth explanations are552

commonly used (cf. Salewski et al., 2022; Sammani553

and Deligiannis, 2023). To assess the construct554

validity of a representative automatic evaluation555

method, we compute BERTScores, measuring the 556

similarity of ground truth explanations from both 557

datasets to human evaluation scores. Table 3 reports 558

the results of the BERTscore metric, showing that 559

they do not exhibit any notable differences between 560

the grayscale and color conditions, which clearly 561

contradicts the results of our human investigation. 562

Thus, while user ratings between the grayscale and 563

color condition are located on opposite ends on the 564

Likert scale, BERTscores show marginal differences 565

across the board. Yet, when comparing the two 566

datasets, the BERTScores for the CLEVR-X dataset 567

show improved values (in both the grayscale and 568

color conditions), aligning with the human results 569

from Exp.X (see Table 1 and 9 in Appendix A.3). 570

Summary Table 2 provides an overview of the 571

validity of our hypotheses. Generally, our results 572

show that explanations do not have a desirable 573

effect on users’ assessment of the system’s com- 574

petency and capabilities. They do not help users 575

construct a more accurate mental model of the sys- 576

tem and its capabilities and limitations, but simply 577

lead to more positive user assessment overall. Our 578

results are strikingly consistent across models and 579

datasets. Even systems fine-tuned on the CLEVR-X 580

benchmark, where explanations were designed to 581

systematically mention the capabilities we assessed 582

in our study (including color), do not address these 583

limitations. Figure 1 shows representative examples 584
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H1A competence and all capabilities rated lower in grayscale cond. than in color cond. in Exp.A "

H1X competence and color capability rated lower in grayscale cond. than in color cond. in Exp.X %

H2A similar ratings for color compared to other capabilities, in grayscale cond. in Exp.A %

H2X lower ratings for color compared to other capabilities, in grayscale cond. in Exp.X (!)
H3A/X competence rated higher for grayscale cond. in Exp.X than in Exp.A, color rated lower (!/%)

Table 2: Overview of the validity of the hypotheses formulated in Section 3.

BERTScore

Dataset Model color grayscale

CLEVR-X NLX-GPT 0.76 0.74
Uni-NLX 0.75 0.74

VQA-X NLX-GPT 0.72 0.72
PJ-X 0.71 0.70

Table 3: BERTScores for explanations by condition.

of why this might be the case: rather than avoiding585

color words or using incorrect colors, systems seem586

to be able to guess the correct color from the ques-587

tion or the general context (e.g., green in the context588

of tree). This behavior is well-known in multimodal589

language models but should be avoided in expla-590

nation tasks since it counteracts transparency and591

appropriate user assessment.592

6 Discussion of Implications593

It is still not well understood how XAI can bridge594

the gap between highly complex black-box models595

with largely opaque internal reasoning processes596

and users’ intuitive understanding of these. Gener-597

ally, our study provides evidence that explanations598

generated by state-of-the-art systems do not always599

lead to the expected effects of XAI and that expla-600

nations may even further obstruct AIs’ reasoning601

processes and trick users into believing that the AI602

is more competent than it actually is. This result is603

particularly noteworthy in light of the fact that the604

manipulation employed in our study introduced an605

obvious error that should be easy to spot for users606

(defects in systems’ color recognition).607

XAI Models Our study underlines the great im-608

portance of prioritizing faithfulness over plausi-609

bility in explanation methods (Jacovi and Gold-610

berg, 2020). With today’s AI systems and LLMs,611

users face the challenging situation that these sys-612

tems present fluent outputs projecting confidence613

and competence. Yet, this confidence may not be614

grounded in actual system capabilities and relia-615

bility (Guo et al., 2017). Our findings suggest that616

this also holds, to some extent, for state-of-the-art617

approaches to natural language explanation genera- 618

tion. Looking at the architecture of these models, 619

this is by no means surprising. At least within the 620

domain of VQA-X, which we focused on in this 621

paper, explanation generation approaches largely 622

follow common language modeling architectures 623

and prioritize generating fluent, human-like outputs. 624

Despite the fact that the importance of faithfulness 625

in XAI has been recognized for some time and it 626

continues to be a challenge (Lyu et al., 2024). 627

Evaluation of XAI Our study also highlights 628

the importance of evaluating explanation methods 629

in thorough, detailed, and user-centered ways (cf. 630

Lopes et al., 2022). In the domain of VQA-X, auto- 631

matic, benchmark-based evaluations still seem to be 632

in focus and widely accepted in the community. All 633

systems we tested in our study have been assessed 634

mainly in automatic evaluations (cf. Park et al., 635

2018; Kayser et al., 2021; Sammani et al., 2022; 636

Sammani and Deligiannis, 2023). This stands in 637

stark contrast to research showing that XAI eval- 638

uations often have little construct validity, i.e., do 639

not assess the intended properties of explanations 640

(Doshi-Velez and Kim, 2017; van der Waa et al., 641

2021). Our BERTscore-results lend further support 642

to this argument. 643

7 Conclusion 644

This paper investigates the effects of providing 645

natural language explanations on users’ ability to 646

construct accurate mental models of AI systems’ 647

capabilities, and whether these explanations allow 648

them to diagnose system limitations. Results from 649

two experiments show that natural language ex- 650

planations generated by state-of-the-art VQA-X 651

systems may actually hinder users from accurately 652

reflecting capabilities and limitations of AI systems. 653

Participants who received natural language expla- 654

nations projected more competence onto the system 655

and rated its limited capabilities higher than those 656

who did not receive explanations. 657
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Limitations658

We identify the following limitations in our work:659

The addition of further models and data sets660

might have provided additional insights into our661

experiments. Unfortunately, recently research on662

generating natural language explanations has not663

been very active. The best known approaches are664

models like PJ-X (Park et al., 2018) or e-UG (Kayser665

et al., 2021), which have older code bases with666

reproducibility issues. We have tried to include667

other models (see Section 4, footnotes 1 and 2).668

For the grayscale condition, we remove color in-669

formation at the inference level for models trained670

on colored input. An alternative approach would671

be altering inputs during model training, possibly672

leading to deficiencies that are harder to identify for673

participants. Similarly, other kinds of perturbations674

such as altering relative object sizes or scene lay-675

outs might affect different dimensions of perceived676

system capabilities than color recognition. Here,677

we focused on color, as this property is easier to678

control and less intertwined with other properties679

than, e.g., object size (which might also change how680

relative positions are described).681

Ethics Statement682

Our study focuses on user-centered evaluation of683

XAI systems and on understanding whether these684

systems fulfill the promise of making black-box AI685

systems more transparent for users. Therefore, we686

believe that our study contributes to understanding687

and improving the social and ethical implications688

of recent work in NLP, and Language & Vision.689

In our study, we collect ratings from Prolific users690

but, other than that, did not record any personal691

information on these users.692
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A Appendix866

A.1 Materials Availability Statement867

We used the following public resources in our work:868

• Source code for NLX-GPT is available from869

GitHub at870

https://github.com/fawazsammani/nlxgpt871

• Source code for Uni-NLX is available from872

GitHub at873

https://github.com/fawazsammani/uni-nlx/874

• Source code for PJ-X and VQA-X data is avail-875

able from GitHub at https://github.com/Seth-876

Park/MultimodalExplanations877

• COCO Images for VQA-X are available here:878

https://cocodataset.org/879

• CLEVR-X data is available from GitHub at880

https://github.com/ExplainableML/CLEVR-881

X882

• CLEVR images for CLEVR-X are available883

here:884

https://cs.stanford.edu/people/jcjohns/clevr/885

Our source code and the data from the human886

evaluation study will be made available in form of887

an accompanying data publication.888

A.2 Statistical Tests889

Table 4 shows the results of Mann-Whitney U tests890

in the grayscale condition. The upper half of the891

table reports the differences in user ratings of sys-892

tem capabilities (color, shape, material, scene) and893

overall competence between Exp.A and X, all differ-894

ences are highly statistically significant. The lower895

half of the Table reports the differences in ratings896

with Exp.A and X. Table 5 reports the same tests897

for the color condition. Here, only the difference be-898

tween overall competence is statistically significant899

between Exp.A and X while all system capabilities900

are rated similarly with or without explanations.901

This further supports our finding that explanations902

enhance user’s perception of system competence,903

regardless of the correctness of system answers.904

A.3 Additional Results905

Answer Correctness First, recall that we only906

included cases where the models generated in-907

correct answers for grayscale images and cor-908

rect answers for full-color images, according to909

Criterion U-statistic 𝑝-value

Colors 488421.0 4.09 × 10−15

Shapes 460501.0 5.81 × 10−21

Materials 428263.0 3.06 × 10−32

General Scene 457629.0 3.38 × 10−22

Competency 464419.5 3.01 × 10−21

Color / Shape (Exp.A) 452212.0 1.64 × 10−15

Color / Shape (Exp.X) 506384.0 4.70 × 10−21

Color / Material (Exp.A) 510967.5 6 × 10−04

Color / Material (Exp.X) 548762.5 3.43 × 10−11

Color / Gen. Scene (Exp.A) 486718.0 1.70 × 10−06

Color / Gen. Scene (Exp.X) 557231.0 4.54 × 10−09

Color / Comp. (Exp.A) 538178.0 0.52
Color / Comp. (Exp.X) 640143.5 0.73

Table 4: Mann-Whitney U test results for the grayscale
conditions of Experiments A and X. In the upper part
of the table, we measure whether the ratings of one
evaluation criterion (e.g., the ability to recognize colors)
of Exp.A differs significantly from the ratings of the
same evaluation criterion from Exp.X. In the lower part
of the table, we measure whether the ratings of the
color criterion differ significantly from the ratings of
the other evaluation criteria. 𝑝-values in bold indicate
statistical significance (𝑝 < 0.001), the smallest 𝑝-value
is underlined.

ground-truth answers in the datasets. Table 6 dis- 910

plays frequency distributions of correctness rat- 911

ings in our user study: ‘no’ ratings predominated 912

in the grayscale condition, whereas ‘yes’ ratings 913

were more prevalent in the color condition across 914

both datasets. We also conducted a chi-squared 915

test of independence on this evaluation criterion 916

(𝜒2 = 2.3617, 𝑑𝑓 = 2, 𝑝 = 0.67), finding no statis- 917

tically significant difference between Exp.A and X 918

regarding the evaluation of the answers’ correctness. 919

These results replicate and confirm the correctness 920

of ground-truth answers in VQA-X and CLEVR-X. 921

Differences between Datasets and Models If 922

we first look at Exp.A (Table 1), only minimal dis- 923

tinctions are evident between datasets or models, 924

particularly concerning the models’ ability to recog- 925

nize colors, materials, and their overall competency. 926

While slight variations exist in the other evaluation 927

criteria, none are notably remarkable. For instance, 928

regarding their understanding of the general scene, 929

the models exhibit slightly better performance with 930

the CLEVR-X dataset. In Exp.X (Table 1), on the 931

other hand, the results exhibit some more variation 932

between models and datasets. For example, only 933

for the models’ overall competency, do we find the 934

same (median) value across models and datasets. 935
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Criterion U-statistic 𝑝-value

Colors 627628.0 0.77510
Shapes 632776.5 0.49522
Materials 606350.0 0.17573
General Scene 647675.0 0.06266
Competency 678234.5 0.00003

Colors / Shapes (Exp.A) 594055.5 0.23511
Colors / Shapes (Exp.X) 706324.0 0.14946
Colors / Materials (Exp.A) 626865.0 0.00012
Colors / Materials (Exp.X) 717614.5 0.02390
Colors / Gen. Scene (Exp.A) 569399.0 0.84294
Colors / Gen. Scene (Exp.X) 710226.5 0.08423
Colors / Competency (Exp.A) 572890.5 0.61815
Colors / Competency (Exp.X) 746006.5 0.00002

Table 5: Mann-Whitney U test results for the color
conditions of Experiments A and X. In the upper part
of the table, we measure whether the ratings of one
evaluation criterion (e.g. the ability to recognize colors)
of Exp.A differs significantly from the ratings of the
same evaluation criterion from Exp.X. In the lower part
of the table, we measure whether the ratings of the color
criterion differs significantly from the ratings of the other
evaluation criteria. 𝑝-Values in bold indicate significance
(𝑝 < 0.05), the smallest 𝑝-values are underlined.

Overall, it also appears that the items based on936

CLEVR-X data perform slightly better in Exp.X,937

specifically in terms of the models’ ability to recog-938

nize shapes and materials, as well as their general939

scene understanding and overall competence.940

Table 7 shows the frequency of questions in941

the human evaluation study that contain the word942

“color[s]” or specific color terms like “red” or “blue”943

etc., categorized by dataset. It is evident that almost944

all questions in the CLEVR-X dataset contain color945

terms, with about half explicitly mentioning the946

word “color”. Conversely, in the VQA-X dataset,947

only three out of 64 questions include the word948

“color[s]”. Hence, the observed distinctions between949

the datasets may be attributed to this contrast.950

Analysis of the Color Condition Table 9 shows951

the human evaluation results for the color condition952

in Exp. A and X. In contrast to the results of the953

grayscale condition (Table 1), with respect to all the954

evaluation criteria, the evaluation for both Exp.A955

and Exp.X is very good. This corresponds to our956

expectation because only items with correct model957

answers were included in the color condition.958

Furthermore, we can see that in both Exp.A959

and Exp.X, there are no remarkable differences960

between the ability to recognize colors and the961

other tested abilities. This is also evident from the962

Mann-Whitney U Test results in Table 5, especially963

when compared to the Mann-Whitney U results for 964

the grayscale condition in Table 4. 965

However, it is notable that, with respect to all 966

evaluation criteria, the PJ-X model receives lower 967

ratings in Exp.X compared to Exp.A. In other words, 968

including explanations in Exp.X results in a decline 969

in performance for the PJ-X model. For the other 970

models, we do not observe this difference between 971

the two Experiments; instead, their evaluation re- 972

mains fairly consistent in the color condition across 973

both experiments. Consequently, the explanations 974

produced by the PJ-X model seem inferior to those 975

of the other models. This discrepancy may be due 976

to the unique architecture of the PJ-X model, which, 977

unlike the other models, generates answers and 978

explanations in two separate steps rather than one. 979

Correlations between BERTscore and human 980

judgements Table 10 shows Pearson’s correla- 981

tion coefficients (𝜌) between the automatic and 982

human evaluation metrics for the CLEVR-X and 983

VQA-X datasets. Interestingly, we find large dif- 984

ferences between the datasets. While all human 985

metrics show statistically significant correlations 986

with BERTScore for the VQA-X dataset, we find no 987

statistically significant correlations for the CLEVR- 988

X dataset. However, one commonality between 989

the two datasets is the lack of differentiation be- 990

tween various criteria. The fact that all skills either 991

correlate or show no correlation suggests that the 992

automatic BERTScore metric is not able to capture 993

the nuanced distinctions that human evaluation can 994

discern. 995

A.4 Online Experiment 996

Figures 8 and 9 show screenshots of the study, 997

example items and evaluation criteria. 998

12
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Exp.A Exp.X

Condition no unsure yes no unsure yes

grayscale 1129 51 99 1157 36 86
color 82 67 1131 59 48 1172

Table 6: Frequency distributions of ratings regarding correctness of system answers for Exp.A and X.

“Color[s]” in question Color term in question

Dataset yes no yes no

CLEVR-X 34 30 59 5
VQA-X 3 61 3 61

Table 7: Occurrence of questions in the human evaluation study containing the word “color[s]” or specific color
terms like “red” or “blue”, differentiated by dataset (color terms include any instance of “color”, a specific color
term, or both).

Consist. of Expl. & Answ. Consist. of Expl. & Img. Fluency of Expl.

Condition Dataset Model median mean median mean median mean

grayscale CLEVR-X NLX-GPT 4.0 3.26 1.0 1.53 4.0 3.27
Uni-NLX 4.0 3.17 1.0 1.74 4.0 3.46

VQA-X NLX-GPT 2.0 2.67 1.0 1.85 4.0 3.42
PJ-X 1.0 2.20 1.0 2.02 4.0 3.35

color CLEVR-X NLX-GPT 5.0 4.58 5.0 4.53 5.0 4.52
Uni-NLX 5.0 4.61 5.0 4.59 5.0 4.54

VQA-X NLX-GPT 5.0 4.42 5.0 4.53 5.0 4.34
PJ-X 4.0 3.56 4.0 3.63 5.0 3.85

Table 8: Human ratings for the additional evaluation criteria of Exp.X. We asked the participants to rate the
consistency of the explanation with the answer, the consistency of the explanation with the image, and the fluency of
the explanation. We report the median and mean scores across raters as the final scores, with bold values indicating
conditions with the best (mean) values for that evaluation criteria.
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(d) Exp.X – grayscale images

Figure 4: Human ratings on the evaluation criterion “Ability of the AI system to understand the general scene”.
Participants indicated their judgment on a scale from 1 (strongly disagree; here in red) to 5 (strongly agree; here in
green).
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(d) Exp.X – grayscale images

Figure 5: Human ratings on the evaluation criterion “Overall competency of the AI system”. Participants indicated
their judgment on a scale from 1 (strongly disagree; here in red) to 5 (strongly agree; here in green).
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(d) Exp.X – grayscale images

Figure 6: Human ratings on the evaluation criterion “Ability of the AI system to recognize shapes”. Participants
indicated their judgment on a scale from 1 (strongly disagree; here in red) to 5 (strongly agree; here in green).
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(d) Exp.X – grayscale images

Figure 7: Human ratings on the evaluation criterion “Ability of the AI system to recognize materials”. Participants
indicated their judgment on a scale from 1 (strongly disagree; here in red) to 5 (strongly agree; here in green).

Colors Shapes Materials General Scene Competency

Experiment Dataset Model med mean med mean med mean med mean med mean

Exp. A. CLEVR-X NLX-GPT 5.0 4.55 5.0 4.57 5.0 4.34 5.0 4.43 5.0 4.47
Uni-NLX 5.0 4.33 5.0 4.38 5.0 4.20 5.0 4.23 5.0 4.28

VQA-X NLX-GPT 5.0 4.55 5.0 4.50 5.0 4.45 5.0 4.67 5.0 4.66
PJ-X 5.0 4.38 5.0 4.30 5.0 4.30 5.0 4.57 5.0 4.50

Exp.X CLEVR-X NLX-GPT 5.0 4.65 5.0 4.66 5.0 4.58 5.0 4.57 5.0 4.52
Uni-NLX 5.0 4.74 5.0 4.61 5.0 4.56 5.0 4.58 5.0 4.56

VQA-X NLX-GPT 5.0 4.54 5.0 4.54 5.0 4.54 5.0 4.58 5.0 4.38
PJ-X 4.0 3.80 4.0 3.86 4.0 3.84 4.0 3.86 4.0 3.71

Table 9: Human ratings on the different evaluation criteria for the color condition of Exp.A (i.e., no model
explanations were shown to the participants) and Exp.B (i.e., model explanations were shown to the participants).
For Colors, Shapes and Materials, we asked the participants to rate the AI system’s ability to recognize the respective
capability. Further, we asked the participants to rate the AI system’s understanding of the General Scene as well as
it’s overall Competency. We report the median and mean scores across raters as the final scores. Bold values indicate
conditions with the best (mean) values for that evaluation criteria.

CLEVR-X VQA-X

Automatic metric Human metric 𝜌 𝑝-value 𝜌 𝑝-value

BERTScore

Consist. of Expl. & Answ. -0.090 0.31 0.251 0.008
Consist. of Expl. & Img. -0.020 0.82 0.278 0.003
Fluency of Expl. -0.033 0.71 0.304 0.001
Shapes -0.068 0.44 0.231 0.02
Colors -0.023 0.80 0.201 0.04
Materials -0.056 0.53 0.248 0.009
General Scene -0.051 0.57 0.251 0.008
Competency -0.051 0.57 0.252 0.008

Table 10: Pearson’s correlation coefficient (𝜌) between BERTScore results and human evaluation metrics for
CLEVR-X and VQA-X data. 𝑝-values in bold indicate statistical significance (𝑝 < 0.05).



15

Figure 8: A training item used in the online experiment to familiarize participants with the task and rating scales.
This item comes from the VQA-X dataset and from Exp.A, i.e., the study without explanations.
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Figure 9: An experimental item used in the online experiment. This item comes from the CLEVR-X dataset and
from Exp.X, i.e., the experiment with explanations.
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