
SyncMind: Measuring Agent Out-of-Sync Recovery
in Collaborative Software Engineering

Xuehang Guo† 1 Xingyao Wang 1 2 Yangyi Chen 1 Sha Li 1 Chi Han 1 Manling Li 3 Heng Ji 1

Abstract

Software engineering (SE) is increasingly col-
laborative, with developers working together
on shared complex codebases. Effective col-
laboration in shared environments requires
participants—whether humans or AI agents—
to stay on the same page as their environ-
ment evolves. When a collaborator’s under-
standing diverges from the current state—what
we term the out-of-sync challenge—the col-
laborator’s actions may fail, leading to inte-
gration issues. In this work, we introduce
SyncMind, a framework that systematically de-
fines the out-of-sync problem faced by large
language model (LLM) agents in collabora-
tive software engineering (CSE). Based on
SyncMind, we create SyncBench, a bench-
mark featuring 24,332 instances of agent out-
of-sync scenarios in real-world CSE derived
from 21 popular GitHub repositories with ex-
ecutable verification tests. Experiments on
SyncBench uncover critical insights into exist-
ing LLM agents’ capabilities and limitations.
Besides substantial performance gaps among
agents (from Llama-3.1 agents ≤ 3.33% to
Claude-3.5-Sonnet ≥ 28.18%), their consis-
tently low collaboration willingness (≤ 4.86%)
suggests fundamental limitations of existing
LLM in CSE. However, when collaboration oc-
curs, it positively correlates with out-of-sync
recovery success. Minimal performance dif-
ferences in agents’ resource-aware out-of-sync

1University of Illinois Urbana-Champaign 2All Hands
AI 3Northwestern University.†Work done during intern-
ship at UIUC. Correspondence to: Xuehang Guo <xue-
hangg@illinois.edu>, Xingyao Wang <xingyao@all-hands.dev,
xingyao6@illinois.edu>, Yangyi Chen <yangyic3@illinois.edu>,
Sha Li <shal2@illinois.edu>, Chi Han <chihan3@illinois.edu>,
Manling Li <manling.li@northwestern.edu>, Heng Ji
<hengji@illinois.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada, PMLR 267, 2025. Copyright 2025
by the author(s).

recoveries further reveal their significant lack
of resource awareness and adaptability, shed-
ding light on future development of resource-
efficient collaborative systems. Our code and
data are openly available on our project website:
https://xhguo7.github.io/SyncMind/.

1. Introduction

Figure 1. The Out-of-Sync Challenge. At Ti , Agent and Hu-
man work on respective tasks. During Agent’s task completion
from Ti to Tk , Human updates <repo> at Tj that Agent
is unaware of due to being occupied with its own task. This leads
Agent to become out-of-sync at Tk as a result of Sk ̸=Bk.

Collaborative systems—whether involving humans, AI
agents, or both—boost efficiency and capabilities by com-
bining complementary strengths. Recent advances have
demonstrated impressive capabilities of AI agents in collab-
orative tasks (Wang et al., 2024c), from conversational AI as-
sistants, like ChatGPT (OpenAI, 2022), Claude (Anthropic,
2023), that effectively assist users in daily problem-solving,
to coding agents, like Devin (Cognition AI, 2024), Open-
Hands (Wang et al., 2024a), that can actively collaborate
with humans on software development.

These collaborative coding agents are typically designed
and evaluated in static environments where the workspace
remains fixed throughout task execution (Jimenez et al.,
2023; Yang et al., 2024a). However, real-world collabora-
tive software engineering (CSE) fundamentally operates in
dynamic environments, where effective teamwork depends

1

https://xhguo7.github.io/SyncMind/

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure 2. Typical Causes of Out-of-Sync. Examples of out-of-sync scenarios in our benchmark.

on team members maintaining synchronized awareness of
workspace states—a core challenge in the field (Yang et al.,
2024b). While version control systems (Torvalds, 2005) can
detect surface-level code conflicts, they cannot identify se-
mantic inconsistencies that require manual resolution. This
includes scenarios where agents must resolve dependency
updates, modify existing functions to align with newly im-
ported modules, and so on (Fig. 2).

In this work, we introduce SyncMind (§2), a framework that
systematically defines the agent out-of-sync problem in CSE
(Fig. 3), where multiple collaborators frequently modify and
update shared codebases. This occurs when a collaborator’s
belief state (Bk) deviates from the actual world state (Sk) at
time Tk, resulting in collaboration failures due to outdated
information. Consider a human-AI collaboration scenario
in Fig. 1: while an Agent implements changes based on its
understanding at time Ti, the Human modifies the codebase
at Tj (Ti < Tj < Tk). The Agent’s subsequent update at Tk

becomes incompatible with the current state Sk due to its
outdated belief state Bk. This raises the key challenge: How
can collaborators effectively recognize their belief being out-
of-sync (Bk ̸= Sk), diagnose the root causes, and recover
their belief Bk to match the world state Sk?

SyncMind facilitates multi-dimensional evaluation of collab-
orative coding agents:
• Out-of-sync recovery effectiveness (§4.2): We evaluate

how agents detect and resolve state misalignments via
exploring the environment and consulting fellow devel-
opers, enabling them to understand system changes and
resynchronize after failures.

• Collaborative tendency and effectiveness (§4.5): We
measure agents’ tendency to engage in productive inter-
actions with collaborators, a critical problem in CSE. By
analyzing the assistance seeking rate and the performance
difference in independent and collaborative working set-
tings, we measure agents’ recovery effectiveness in CSE.

• Environmental awareness and resource allocation
(§4.7): We examine how agents balance independent
problem-solving (i.e., exploring environment) with collab-
orative assistance. While excessive self-reliance in debug-
ging can strain computational resources, over-dependence
on peer support can burden collaborators through repeti-
tive cycles of assistance requests, revisions, and testing.
We evaluate resource allocation strategies in out-of-sync
recovery by analyzing recovery efficiency, considering
computing time and expense budget.

Based on SyncMind, we construct SyncBench (§3), a testbed
to assess agent out-of-sync recovery in CSE. Built upon 21
GitHub repositories, SyncBench simulates real-world agent
out-of-sync through commit history traversal and multi-
level filtering to obtain 24,332 instances with executable
testing environments. The construction pipeline is fully
open-source and scalable, enabling seamless integration
with additional repositories and supporting future develop-
ment of CSE agents. Through systematic evaluation (§3.4),
our experiments on SyncBench reveal fundamental patterns
in existing LLM-based software agents (§4):
• Out-of-sync recovery capabilities: Evaluated by five

metrics (§3.4) focusing on dissimilar aspects of agents’
abilities, we observe substantial ability gaps among LLM
agents that persist in their performance despite varying
types of recovery actions and task complexity (§4.2). This
highlights the significance of strong multifaceted capabil-
ities for effective out-of-sync recoveries (§4.3).

• Collaboration willingness and abilities: Collaborator as-
sistance generally improves agents’ recovery performance
(0.33% ≤ ∆collaborator ≤ 5.52%), while its effectiveness
varies significantly with agents’ collaboration willingness
(§4.4) and communication abilities (§4.5-4.6).

• Resource awareness and adaptive utilization: Our ex-
periments reveal critical limitations in agents’ resource
awareness and adaptive utilization to efficiently utilize
available resources when provided with various temporal
and financial resource constraints (§4.7).

2. SyncMind: Agent Out-of-Sync Recovery
Tackling agent out-of-sync (§2.1), we introduce our Sync-
Mind framework (Fig. 1) to systematically measure agent
out-of-sync recovery in two key dimensions: recovery effec-
tiveness via two types of recovery (§2.2) and resource effi-
ciency through resource-aware out-of-sync recovery (§2.3).

2.1. Definition of Agent Out-of-Sync

In collaborative environments, a state of ‘out-of-sync’ arises
when a collaborator’s belief state deviates from the project’s
state due to missed updates from other team members
(Fig. 1). We propose the formal definition of ‘out-of-sync’
state, which applies to both human and AI agents.

Let Si be the true world state at time Ti, and Bi be an
agent’s belief state. Starting from Ti when the agent begins

2

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure 3. SyncMind for Measuring Agent Out-of-Sync Recovery. Depending on agent’s initiative, an agent updates its world belief
(B2 → Bn) by interacting with Env, proposing solutions, and seeking collaborator assistance.

a task, the agent becomes out-of-sync at Tk (Ti < Tk) if any
of the following conditions are satisfied:
(1) Knowledge gap: ∃ Update U at time Tj (Ti < Tj < Tk)

where the agent lacks knowledge of U .
(2) State mismatch: Bk ̸= Sk.
(3) Task failure: Task completion based on Bk fails to

achieve intended outcomes in Sk.

Recovery from an out-of-sync state therefore requires:
(1) Identify the root causes (U) of the state mismatch

(Bk ̸= Sk).
(2) Acquire information of the missing update U .
(3) Update its belief state such that Bn = Sn at some future

time Tn (Tn > Tk).

2.2. Agent Out-of-Sync Recovery

In SyncMind (Fig. 3), an agent updates its out-of-sync belief
state to attain Bn = Sn through two types of recovery:

• Independent Recovery. Operating autonomously, inde-
pendent agents update their world beliefs through inter-
acting with Environment (Env) and proposing solutions,
besides their reflection on prior experience and feedback.

• Collaborative Recovery. Collaborative agents can also
take advantage of collaborator assistance to update their
belief states by interacting with other collaborative agents.

2.3. Resource-Aware Recovery

To reflect real-world resource constraints in collaborative
environments, we integrate a resource awareness module
into SyncMind (Fig. 4). This module tracks and constrains
two dimensions of resources: (1) recovery time measured
as the number of turns taken for an agent to recover, and (2)

hypothetical cost that quantify financial resources consumed
through the course of recovery (e.g., computing resources
for debugging and testing, Human’s time and effort to an-
swer Agent’s questions). This resource-aware out-of-sync
recovery framework measures how agents utilize and adapt
their strategies under different resource constraints, enabling
comparisons of efficiency between successful and failed re-
covery attempts across agentic systems.

Figure 4. Resource-Aware Out-of-Sync Recovery. We introduce
resource-aware recovery by mapping resource consumption to
each out-of-sync recovery task.

3. SyncBench: Agent Out-of-Sync Benchmark
3.1. Benchmark Construction

Aligning with real-world out-of-sync scenarios, our bench-
mark construction method is applicable to Python-based
GitHub repositories with existing unit tests. SyncBench
leverages 21 popular GitHub repositories and can be
expanded to include additional repositories following
our benchmark construction methodology (§B.3). In
accordance with the definition of agent out-of-sync (§2.1),
our benchmark construction implements a systematic
pipeline that takes all three conditions into consideration:

Env Configuration. We employ Docker (Founadi et al.,
2013) to configure isolated, reproducible, and executable

3

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure 5. Agent Out-of-Sync Benchmark Construction. A systematic benchmark construction approach (§3.1).

testing environments tailored for our out-of-sync recovery
tasks. Each source repository is packaged into a dedicated
Docker image with complete codebase, dependencies, and
validation infrastructure for unit test execution. Each exe-
cution verification (§3.4) automatically creates an isolated
container instance with auto-removal upon completion, en-
suring consistent and clean testing environments for reliable
recovery evaluation.

Out-of-Sync Simulation. We first extract Python functions
and class methods (hereafter collectively referred to as func-
tions) from source repositories. For each extracted func-
tion, we employ its up-to-date state as ground truth (S2),
while obtaining the out-of-sync belief state (B2) by tracing
its Git history reversely until identifying a commit (B2)
where execution fails (B2 ̸= S2). In this way, Caller and
Callee are constructed through simulating unit test out-of-
sync and tested dependency out-of-sync, respectively: (1)
Caller: We roll back the testing function until it becomes
out-of-sync; (2) Callee: We roll back imported dependency
for tested module out-of-sync, thereby presenting higher
task complexity—agents need to understand dependency re-
lationships and localize the problematic imported modules.

Multi-level Quality Filtering. For each out-of-sync in-
stance, we execute unit tests before and after out-of-sync hap-
pens and use the parsed test outputs to filter for high-quality
instances. Our parsing-based execution testing (§3.4) re-
quires the pass-to-fail state divergence (B2 ̸= S2): (1) up-
dated repository (S1) passes the test to demonstrate ground
truth validity, and (2) repository with the out-of-sync func-
tion (B2) fails the test to allow the out-of-sync scenario to
take shape. To enhance data quality, we additionally apply a
filter that retains only instances with their execution outputs
comprising: (1) at least one execution error or unit test fail-
ure in B2, (2) more than one passing test in S1, (3) identical
parsing result between S1 and Sn.

Weighted Downsampling. In constructing our evaluation
subset with 300 representative instances1 across 21 reposi-
tories, we downsample each repository’s data to less than

1 Due to the costly expenditure of extensive model evaluations
(on average $0.56/instance, ranging from GPT-4o mini with
$0.02/instance, to Claude-3.5-Sonnet with $1.73/instance),
we downsample a subset of SyncBench with 300 instances (§3).

15 instances while maintaining the original patch distribu-
tion over all sampled data, thereby applying the same task
complexity distribution to all downsampled instances.

3.2. Benchmark Datasets

Constructing SyncBench with two complementary datasets—
Caller and Callee (Fig. 5), our initial extraction yields
24,332 instances (Tab. B2). Pruning the raw dataset to
8,461 instances via multi-level filtering, the evaluation sub-
set is further reduced via weighted downsampling. As such,
we finalize our evaluation samples as 300 instances1 with
evenly distributed Caller and Callee samples (150 each).

3.3. LLM-Simulated Collaborators

We leverage LLMs to simulate both agents (who enter out-
of-sync states B2) and know-everything collaborators (S2).

Agent Out-of-Sync. We employ LLMs to power AI agents
in out-of-sync states, which allows belief states to become
tractable and controllable throughout the recovery process.
Meanwhile, this also supports the precise measurement of an
agent’s resource consumption and the systematic evaluation
of an agent’s recovery patterns.

Simulating Know-Everything Collaborators. Validated
by single-turn experiments (§4.4), LLM-simulated know-
everything collaborators are furnished with: (1) complete
task context, including both B0 − Bt and S0 − St (where
the agent seek assistance at Tt, 2 < t < n), (2) ground-truth
solution to reach Bn = Sn, (3) update history (U at T1),
and (4) task-specific response protocols (§D.5).

3.4. Evaluation Metrics

We propose five complementary metrics tailored for com-
prehensively evaluating agent out-of-sync recovery:

Success Rate (SR). We evaluate recovery success (Eq. 1)
through a two-stage validation process: (1) Execution Test:
Execution success can be reached only if an agent’s updated
repository passes the test without errors (i.e., command
exit code of 0). (2) Parsing Validation: We compare the
parsed test execution outputs of an agent’s proposed solu-
tion against that of the ground-truth state (i.e., the original

4

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

commit without issue). Recovery success requires all parsed
output of test cases for the agent-proposed solution to ex-
actly match the ground-truth values.

SR =

∑
m∈M 1(SRm = 1)∑

m∈M 1
(1)

where M represents the task space, SRm ∈ {0, 1} suggests
whether task m achieves recovery success, 1(·) is the indicator
function that returns 1 when the condition is met and 0 otherwise.

Localization Accuracy (LA). We evaluate an agent’s abil-
ity to localize an out-of-sync function at two levels: (a) file
(LAfile): accurately identifying the Python file containing
the out-of-sync function; and (b) function (LAfunc): accu-
rately pinpointing the specific out-of-sync function.

LAf =

∑
M 1(LAf,m = 1)∑

m∈M 1
(2)

where f ∈ {file, func} denotes the localization target type,
LAf,m ∈ {0, 1} indicates whether task m achieves localization
success for target type f .

Conditional Success Rate (CSR). We evaluate agents’ tech-
nical recovery abilities by conditioning recovery on local-
ization success, which leads to CSRfile and CSRfunc:

CSRf = SR|LAf=1 =

∑
m∈M 1(SRm = 1 ∧ LAf,m = 1)∑

m∈M 1(LAf,m = 1)
(3)

Assistance Seeking Rate (ASR). We quantify a collabora-
tive agent’s willingness to collaborate as the proportion of
recovery time (measured in turns of interactions) it adopts
for proactive assistance-seeking.

ASR =

∑
m∈M

∑
t∈Tm

1(ASt = 1)∑
m∈M

∑
t∈Tm

1
(4)

where T represents the recovery time space, Tm(m ∈ M) sug-
gests the total time in task m, ASt ∈ {0, 1} indicates whether the
agent seeks collaborator assistance in turn t.

Recovery Efficiency. We compute the ratio of turns taken
to the maximum time limit as the proxy for time efficiency,
thus excluding external influencing factors, like connection
stability and memory capacity. Expense efficiency is simi-
larly calculated as the average financial expenditure rates.

Effg =

∑
m∈M ϕg(m)∑
m∈M ψg(m)

(5)

where g ∈ {time, expense} denotes the efficiency type,
ϕtime(m) =

∑
t∈Tm

1(amt) counts turns taken for task m,
ϕexpense(m) =

∑
t∈Tm

c(amt) sums costs of actions for task m,
ψtime(m) = Tmax is the maximum time limit, ψexpense(m) =

Cmax is the maximum budget, amt is the action taken at step t in
task m, and c(a) is the cost function for action a.

4. Experiments
4.1. Setup

Recovery Protocol. For baselines, each agent is allowed
up to 30 turns to achieve Bn = Sn, which is then extended
to 50 turns to assess agents’ temporal resource awareness
and exploitation. Financial resources are mapped similarly
to each resource-aware recovery task. Provided with dif-
ferent action options—interacting with Env, proposing a
solution, or proactively seeking collaborator assistance
(§2.2)—both independent and collaborative agents take each
of their moves autonomously.

Env Space. We employ OpenHands (Wang et al., 2024a)
to empower agents to autonomously explore and inspect
the codebase environment by executing various commands.
This exploration enables them to develop a comprehensive
understanding of the codebase for out-of-sync recovery.

Agents. Our experiments assess the out-of-sync recovery ca-
pabilities of seven LLMs, including four open-source (Meta-
Llama-3.1-8B, Meta-Llama-3.1-70B, Meta-Llama-3.3-70B,
and DeepSeek-V2.5) and three close-source (Claude-3.5-
Sonnet, GPT-4o mini, and GPT-4o) LLMs (Meta AI,
2024b;a;c; DeepSeek, 2024; Anthropic, 2024; OpenAI,
2024a;b) in two recovery settings (§2.2), respectively.

Figure 6. Influence of Collaborator Assistance. We quantify
collaborator influence on agent out-of-sync recovery performance
as ∆collaborator to unveil its +positive or -negative impact on certain
aspects of agents’ recovery performance.

5

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Table 1. Out-of-Sync Recovery Evaluation on Caller and Callee. The influence of increased task complexity introduced by dependency
tracing on agents’ out-of-sync recovery performance: ∆complexity = ∆(Callee-Caller).

Agent Recovery Caller (%) Callee (%) ∆complexity (%)

LAfile LAfunc SR LAfile LAfunc SR LAfile LAfunc SR

Llama-3.1-8B
Independent 13.33 8.00 1.33 4.00 1.33 0.67 -9.33 -6.67 -0.66
Collaborative 32.00 26.00 2.00 22.00 16.67 0.67 -10.00 -9.33 -1.33
∆collaborator +18.67 +18.00 +0.67 +18.00 +15.34 +0.00 -0.67 -2.66 -0.67

Llama-3.1-70B
Independent 8.67 5.33 4.00 8.00 4.67 1.33 -0.67 -0.66 -2.67
Collaborative 12.00 6.00 3.33 12.67 5.33 3.33 +0.67 -0.67 +0.00
∆collaborator +3.33 +1.33 -0.67 +4.67 +0.66 +2.00 +1.34 -0.67 +2.67

GPT-4o mini
Independent 13.29 9.30 5.32 7.97 6.64 2.66 -5.32 -2.66 -2.66
Collaborative 15.28 11.96 7.97 9.30 4.65 2.66 -5.98 -7.31 -5.31
∆collaborator +1.99 +2.66 +2.65 +1.33 -1.99 +0.00 -0.66 -4.65 -2.65

DeepSeek
Independent 58.00 47.33 8.67 37.33 22.67 6.00 -20.67 -24.66 -2.67
Collaborative 52.00 47.33 8.67 42.00 27.33 6.67 -10.00 -20.00 -2.00
∆collaborator -6.00 +0.00 +0.00 +4.67 +4.66 +0.67 +10.67 +4.66 +0.67

GPT-4o
Independent 14.67 11.33 6.67 14.00 7.33 1.33 -0.67 -4.00 -5.34
Collaborative 39.33 35.33 10.00 38.67 34.00 6.00 -0.66 -1.33 -4.00
∆collaborator +24.66 +24.00 +3.33 +24.67 +26.67 +4.67 +0.01 +2.67 +1.34

Llama-3.3-70B
Independent 80.67 60.00 18.67 47.33 34.67 14.00 -33.34 -25.33 -4.67
Collaborative 77.33 64.67 22.00 56.00 42.67 16.00 -21.33 -22.00 -6.00
∆collaborator -3.34 +4.67 +3.33 +8.67 +8.00 +2.00 +12.01 +3.33 -1.33

Claude-3.5-Sonnet
Independent 50.83 47.51 25.41 77.35 65.19 30.94 +26.52 +17.68 +5.53
Collaborative 43.09 38.67 28.73 79.56 65.19 38.67 +36.47 +26.52 +9.94
∆collaborator -7.74 -8.84 +3.32 +2.21 +0.00 +7.73 +9.95 +8.84 +4.41

4.2. Significant Ability Gaps Among Agents Powered by
Different LLMs

Our experiments on SyncBench (Tab. 1-C1) reveal substan-
tial capability gaps among seven LLM agents.

Baselines for Out-of-Sync Recovery. LLM agents’ inde-
pendent out-of-sync recoveries demonstrate significant vari-
ations in their baseline capabilities, ranging from Claude-
3.5-Sonnet (SR = 28.18%) to Llama-3.1 agents (SR ≤
2.67%). Their localization capabilities also vary remark-
ably, regardless of pinpointing the exact out-of-sync func-
tion (LAfunc ∈ [4.67, 56.35]%) or less precisely localiz-
ing responsible Python files (LAfile ∈ [8.33, 64.09]%).
Likewise, our evaluation on agents’ technical capabilities
(Tab. C2) also exhibits substantial gaps among LLMs.

Persistent Gaps Despite Varying Recovery Conditions.
Tab. C1 and Tab. C2 show similar performance disparities
for collaborative agents mirroring their independent recover-
ies, despite the generally positive influence of collaborative
assistance. These performance gaps remain significant for
tasks of different complexity (Tab. 1 & C3). Agents’ per-
sistent performance variances across diverse task scenarios
highlight their underlying ability gaps in identifying and
resolving out-of-sync to maintain effective collaborations.

4.3. In Achieving Recovery Success: Technical,
Reasoning, and Collaborative Competences

Conditioned on localization success, CSR (Eq. 3) is sig-
nificantly influenced by how much time left for technical
recovery after accurate localizations, which are largely de-
termined by agents’ abilities to efficiently identify root
causes of Bk ̸= Sk. Comparing Tab. 1-C1 with Tab. C2-
C3, low-performing agents can also showcase strong tech-
nical problem-solving capacities (e.g., CSR: Llama-3.1-
70B > GPT-4o), despite their notably underperformed
localization and recovery abilities (e.g., Llama-3.1-70B:
LAfile ≤ 12.33%, LAfunc ≤ 5.67%, SR ≤ 3.33%) and
remarkably low willingness to collaborate (e.g., Llama-3.1-
70B: ASR = 1.37%). This observation further substanti-
ates that successful out-of-sync recoveries hinge on not only
agents’ technical problem-solving proficiency, but their effi-
cient cause analysis and effective collaboration capabilities.

4.4. Collaborative Assistance Improves Performance—
But Agents Seldom Seek Help

Positive Collaborator Influence. As shown in Fig. 6, col-
laborator assistance generally improves recovery perfor-
mance (SR : +∆collaborator∈[0.33, 5.52]%), with the mag-
nitude varying dependent on agents’ technical capabilities

6

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

and willingness to collaborate. Agents with stronger inde-
pendent recovery capabilities and collaboration willingness
(Claude-3.5-Sonnet: SR = 28.18% and ASR = 4.86%),
together with conditioned technical proficiency (Tab. C2),
obtain higher performance gains (∆collaborator = +5.52%)
than other agents (SR ≤ 4.00% and ASR ≤ 2.98%).

Performance Upper Bound: Solving task with Oracle
Information. To establish the theoretical upper bound of
collaborator influence and identify agents’ collaboration
capability gaps, we additionally conduct a single-turn exper-
iment by providing agents with oracle information that is
used to simulate the collaborator (i.e., the know-everything
agent). With GPT-4o mini as the agent tackling out-of-sync
and GPT-4o as the know-everything collaborator (§3.3), we
configure each single-turn task with collaborator’s exhaus-
tive task-specific natural language instructions on how to
accomplish recovery success. Furnished with full recov-
ery instructions (ASR = 100%), the high upper bound
(SR = 86.33%) lends further evidence to LLM agents’
significantly untapped potential in effective collaboration.

LLM Agents’ Low Willingness to Collaborate. Despite
strong technical capacities (Tab. C2), LLM agents show
limited collaboration willingness (Fig. 7). Nevertheless,
Claude-3.5-Sonnet with the highest performance (SR =
33.70%) and collaboration willingness (ASR = 4.86%)
derives the most benefit from collaboration (∆collaborator =
+5.52%). It is followed by GPT-4o who obtains notable
improvements in both LA (∆collaborator = +25.34%) and
SR (∆collaborator = +4.00%) through proactive assistance
seeking. The lowest ASR = 1.21% presented by DeepSeek
(SR : ∆collaborator = +0.34%) contrastingly substantiates
the significance of proactive collaboration initiative.

4.5. Quality and Strategy of Communication Are
Crucial for Recovery Success

The quality and strategy of communication prove crucial for
recovery success, with several key patterns emerging:

Agents with More High-Quality Questions Achieve Bet-
ter Performance. Depending on whether the question asked
by the agent can lead to recovery success (§C.4), we rate the
quality of each query as low (resulting in recovery failure)
or high (resulting in recovery success), which can be further
classified into two general categories: localization queries
closely related to localizing out-of-sync causes and solution
queries seeking guidance on out-of-sync resolution. Despite
no significant correlation between query volume and recov-
ery success, agents with a larger proportion of high-quality
questions achieve higher performance (Fig. 8).

Strategic Early Exploration Facilitates Recovery Success.
We compute each agent’s communication timing distribu-
tion respectively for its success and failure cases (Fig. C1).

Results reveal that the proportion of assistance seeking in
agents’ first half of recovery time is substantially larger in
success cases (85.71% − 100.00%) than in recovery fail-
ures (55.76%− 97.93%). As top-performing agents exhibit
distinct communication strategies with front-load queries,
random or back-loaded assistance-seeking demonstrates less
effective improvements on agents’ performance. Compared
with solution proposal timing that shows trivial differences
between success and failure cases (averagely 2.79 turns
delayed in successful recoveries), collaborative agents bene-
fit markedly more from advancing their assistance seeking
(averagely 10.50 turns ahead in successful recoveries).

Figure 8. Question Quality. Agents from left to right on the X-
axis according to their ASR from low to high.

4.6. More Challenging Tasks Decrease Performance
While Better Manifest Collaboration Benefits

We observe a large negative influence of increased task
complexity on agents’ recoveries. Callee’s additional de-
pendency tracing allows it to serve more challenging out-of-
sync tasks (§3.1). Comparing agents’ performance between
Caller and Callee (Tab. 1 & C3), Claude-3.5-Sonnet’s per-
formance gains (+∆complexity) demonstrate its superior tech-
nical capabilities in resolving complicated out-of-sync tasks.
Nevertheless, Callee, presenting higher task complexity, in
general undermines agents’ performance (−∆complexity).

Leveraging dissimilar complexity levels of 21 source repos-
itories (Fig. C8), our repository-wise evaluation reflects
consonant patterns between task complexity and recovery
success. While the repository 11-whisper proposes the
least recovery difficulty (SR: Independent 33.33%, Collab-
orative 22.22%), the lowest performance delivered on the
repository 13-sphinx (SR: Independent 0.88%, Collab-
orative 4.70%) serves more challenging tasks.

Although repository complexity manifests negative correla-
tions with recovery success, the effectiveness of collabora-
tor assistance increases on more challenging tasks, com-
paring to its trivial or negative influence on agents’ recov-
eries in simpler out-of-sync scenarios (e.g., 11-whisper
with ∆collaborator = −11.11%, in contrast to 13-sphinx

7

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure 7. Time Allocation. Agents’ performance are ranked from low to high according to their independent SR scores, based on which
they are positioned on the X-axis from left to right. The Y-axis depicts each agent’s time allocation.

with ∆collaborator = +3.82%). This holds in Callee where
agents notably gain more benefits from collaborator assis-
tance (Tab. 1), despite higher task complexity.

4.7. Agents’ Significant Lack of Resource Awareness

We systematically vary resource constraints (Tables C5-C8)
to investigate LLM-based agents’ resource awareness in
two key dimensions (§2.3): (1) Time Resources, through
comparing the standard 30-turn recovery with extended 50-
turn performance; (2) Financial Resources, through varying
initial budgets from $1000 (insufficient for 30-turn costs) to
$3000 (adequate for any 30-turn action taking patterns), and
halving or doubling the cost of collaborator assistance. Our
experiments reveal critical limitations in agents’ resource
awareness and adaptive resource utilization capabilities.

More Recovery Time Can Not Guarantee Performance
Gains. Extended time produces divergent effects (Fig. C3
& Tab. C5): diminishing returns on Llama-3.1-8B (SR:
Independent −0.33%, Collaborative −1.00%), while no-
table improvements on Llama-3.1-70B (SR: Independent
+3.67%, Collaborative +4.67%). This observation sug-
gests that extending the recovery time limit alone is insuffi-
cient for improved performance, while LLM agents’ com-
petences in effective time utilization and technical expertise
(Tab. C2) factor underlyingly into recovery success.

Agents’ Low Sensitivity to Financial Resources. Tripling
the initial budget yields trivial changes in action plan-
ning (ASR improvements: [+0.22,+1.06]%, Fig. C6) and
recovery performance (SR variations: [−0.66,+1.67]%,
Tab. C6). Similarly, halving or doubling the action cost of
assistance seeking contributes to negligible differences in
LLM agents’ willingness to collaborate (ASR variations:
[−0.11,+0.23]% for halved cost, [−0.46,+0.04]% for dou-
bled cost, Fig. C7) and recovery performance (SR varia-
tions: [−2.00,−1.00]% for halved cost, [−1.00,+1.00]%

for doubled cost, Tab. C7). These findings highlight the fun-
damental deficiencies of existing LLM agents in effectively
recognizing resource constraints and adaptively leveraging
available resources (Yang et al., 2024b).

5. Related Work
5.1. Theory of Mind in Collaborative Systems

The concept of ToM—the ability to model and reason about
others’ mental states—has emerged as the foundation of
collaborative systems. LLMs’ ToM capabilities have been
evaluated and applied to various domains through bench-
mark construction (Chen et al., 2024b; Xu et al., 2024; Wu
et al., 2023; Kim et al., 2023) and experimental investigation
(Amirizaniani et al., 2023; Chen et al., 2024a; Strachan et al.,
2024; Kosinski, 2023; Wilf et al., 2024; Verma et al., 2024).
We apply ToM to software engineering agents for their main-
taining of a shared understanding of codebase states, which
is particularly of critical essence in asynchronous collabora-
tion environments where out-of-sync situations frequently
arise due to temporal gaps between contributions.

5.2. Collaborative Software Engineering Systems

The evolution of software engineering tools and practices
relies heavily on the premise of synchronized collaboration.
Modern version control systems (Torvalds, 2005; Owhadi-
Kareshk et al., 2019; Machowski & Marwala, 2021), al-
though implement sophisticated mechanisms for detecting
and resolving conflicts arising from divergent codebase
states, primarily address syntactic conflicts rather than se-
mantic understanding divergence. Recent work showcases
that LLM reasoning can be effectively advanced by diverse
means, such as human feedback (Wang et al., 2024b; Bal-
loli et al., 2024), Env interaction (Wang et al., 2024a; 2025;
Zhang et al., 2024), multi-agent cooperation (Huang et al.,
2024), etc. Pressing closer to real-world repository-level

8

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

programming, advances in LLMs inspire their agentic en-
gagements in software engineering (Liu et al., 2024), in addi-
tion to benchmarks built upon GitHub repositories (Jimenez
et al., 2024; Jain et al., 2024; Chen et al., 2025). However,
real-world dynamic environments require adaptations for
collaborative systems based on the presumption of relatively
static environments. Agents’ lack of automatic synchroniza-
tion and resource awareness therefore arise as latent obsta-
cles that significantly impede collaborative intelligence and
resource efficiency that we aim to provide insights into.

6. Conclusion and Discussion
In this paper, we investigate the out-of-sync challenge in
collaborative software engineering by introducing our out-
of-sync recovery framework, SyncMind §2, and evaluation
benchmark, SyncBench §3. Experiments reveal that suc-
cessful out-of-sync recoveries require not only technical
proficiency (§4.2-4.3), but also effective collaboration (§4.4-
4.5) and adaptive resource management (§4.7) abilities.
Based on our evaluation of multiple aspects of their recov-
ery performance (§3.4), results unveil existing LLM agents’
limited collaboration willingness and resource awareness,
providing insights for future development of collaborative
systems with stronger collaboration initiative and cooper-
ation competences, along with more adaptive resource uti-
lization capacities. Detailed discussions of our findings and
limitations are presented in Appendix A.

Acknowledgement
This research is based upon work supported DARPA ITM
Program No. FA8650-23-C-7316, and the AI Research Insti-
tutes program by National Science Foundation and the Insti-
tute of Education Sciences, U.S. Department of Education
through Award # 2229873 - AI Institute for Transforming
Education for Children with Speech and Language Process-
ing Challenges. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies, either expressed
or implied, of the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation
therein.

Impact Statement
This work aims to provide meaningful insights into advanc-
ing collaborative AI systems and their application in soft-
ware engineering, with potential societal implications in
several areas. The framework and findings serve to im-
prove the reliability and efficiency of collaborative software
engineering, potentially reducing costly errors and develop-
ment delays. However, there are important considerations
valuable to take into account. First, while enhanced collab-
oration capabilities of AI agents could improve software
quality and developer productivity, they may also impact
human developers’ jobs and require careful integration into
existing workflows. Second, our resource-aware framework
highlights the need to consider computational and environ-
mental costs in deploying collaborative AI systems at scale.
Additionally, as AI agents become more capable of detecting
and recovering from synchronization issues, it is of signifi-
cance to ensure that human developers maintain meaningful
oversight and understanding of system changes. We believe
these considerations should be actively discussed as the field
moves toward more sophisticated collaborative AI systems
in software engineering.

References
Amirizaniani, M., Martin, E., Sivachenko, M., Mashhadi,

A., and Shah, C. Do llms exhibit human-like reason-
ing? evaluating theory of mind in llms for open-ended
responses. arXiv preprint, abs/2302.02083, 2023. 8

Anthropic. Claude, 2023. URL https://www.
anthropic.com/claude. 1

Anthropic. Claude-3.5 Sonnet, 2024. URL https://
www.anthropic.com/claude/sonnet. 5

Balloli, V., Beery, S., and Bondi-Kelly, E. Are they the
same picture? adapting concept bottleneck models for
human-ai collaboration in image retrieval. 2024. 8

9

https://www.anthropic.com/claude
https://www.anthropic.com/claude
https://www.anthropic.com/claude/sonnet
https://www.anthropic.com/claude/sonnet

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Chen, J., Zhao, K., Liu, J., Peng, C., Liu, J., Zhu, H., Gao,
P., Yang, P., and Deng, S. Coreqa: Uncovering potentials
of language models in code repository question answer-
ing, 2025. URL https://arxiv.org/abs/2501.
03447. 9

Chen, Z., Wang, T., Wang, Y., Kosinski, M., Zhang, X.,
Fu, Y., and Li, S. Through the theory of mind’s eye:
Reading minds with multimodal video large language
models. ArXiv, abs/2406.13763, 2024a. 8

Chen, Z., Wu, J., Zhou, J., Wen, B., Bi, G., Jiang, G.,
Cao, Y., Hu, M., Lai, Y., Xiong, Z., and Huang, M.
ToMBench: Benchmarking theory of mind in large lan-
guage models. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 15959–15983, Bangkok, Thailand, Au-
gust 2024b. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.847. URL https://
aclanthology.org/2024.acl-long.847/. 8

Cognition AI. Devin, 2024. URL https://devin.ai/.
1

DeepSeek. DeepSeek V2.5, 2024. URL https://
api-docs.deepseek.com/news/news0905. 5

Founadi, K., Hykes, S., and Pahl, S. Docker, 2013. URL
https://www.docker.com/. 3

Huang, D., Zhang, J. M., Luck, M., Bu, Q., Qing, Y.,
and Cui, H. Agentcoder: Multi-agent-based code gen-
eration with iterative testing and optimisation. arXiv
preprint arXiv:2312.13010, 2024. doi: 10.48550/arXiv.
2312.13010. 8

Jain, N., Shetty, M., Zhang, T., Han, K., Sen, K., and Stoica,
I. R2e: Turning any github repository into a programming
agent environment. In ICML, 2024. 9

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K., Press,
O., and Narasimhan, K. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023. 1

Jimenez, C. E., Yang, J., Wettig, A., Yao, S., Pei, K.,
Press, O., and Narasimhan, K. Swe-bench: Can lan-
guage models resolve real-world github issues? arXiv
preprint arXiv:2310.06770, 2024. doi: 10.48550/arXiv.
2310.06770. 9

Kim, H., Sclar, M., Zhou, X., Bras, R., Kim, G., Choi,
Y., and Sap, M. FANToM: A benchmark for stress-
testing machine theory of mind in interactions. In
Bouamor, H., Pino, J., and Bali, K. (eds.), Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 14397–14413,

Singapore, December 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.emnlp-main.
890. URL https://aclanthology.org/2023.
emnlp-main.890/. 8

Kosinski, M. Theory of mind may have spontaneously
emerged in large language models. arXiv preprint,
abs/2302.02083, 2023. 8

Liu, J., Wang, K., Chen, Y., Peng, X., Chen, Z., Zhang, L.,
and Lou, Y. Large language model-based agents for soft-
ware engineering: A survey. ArXiv, abs/2409.02977,
2024. URL https://api.semanticscholar.
org/CorpusID:272423732. 9

Machowski, L. and Marwala, T. Nano version control
and ”robots of robots” – data driven, regenerative
production code. 2021 International Conference on
Computational Science and Computational Intelli-
gence (CSCI), pp. 1938–1943, 2021. URL https:
//api.semanticscholar.org/CorpusID:
238582878. 8

Meta AI. Meta-LLaMA-3.1-70B, 2024a. URL
https://huggingface.co/meta-llama/
Llama-3.1-70B. 5

Meta AI. Meta-LLaMA-3.1-8B, 2024b. URL
https://huggingface.co/meta-llama/
Llama-3.1-8B. 5

Meta AI. Meta-LLaMA-3.3-70B, 2024c. URL
https://huggingface.co/meta-llama/
Llama-3.3-70B. 5

OpenAI. ChatGPT, 2022. URL https://openai.
com/chatgpt/overview/. 1

OpenAI. GPT-4o, 2024a. URL https://platform.
openai.com/docs/models#gpt-4o. 5

OpenAI. GPT-4o mini, 2024b. URL https:
//platform.openai.com/docs/models#
gpt-4o-mini. 5

Owhadi-Kareshk, M., Nadi, S., and Rubin, J. Predicting
merge conflicts in collaborative software development.
2019 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), pp. 1–
11, 2019. URL https://api.semanticscholar.
org/CorpusID:196621587. 8

Strachan, J. W. A., Albergo, D., Borghini, G., Pansardi, O.,
Scaliti, E., Gupta, S., Saxena, K., Rufo, A., Panzeri, S.,
Manzi, G., Graziano, M. S. A., and Becchio, C. Testing
theory of mind in large language models and humans.
Nature Human Behaviour, 8:1285–1295, 2024. 8

10

https://arxiv.org/abs/2501.03447
https://arxiv.org/abs/2501.03447
https://aclanthology.org/2024.acl-long.847/
https://aclanthology.org/2024.acl-long.847/
https://devin.ai/
https://api-docs.deepseek.com/news/news0905
https://api-docs.deepseek.com/news/news0905
https://www.docker.com/
https://aclanthology.org/2023.emnlp-main.890/
https://aclanthology.org/2023.emnlp-main.890/
https://api.semanticscholar.org/CorpusID:272423732
https://api.semanticscholar.org/CorpusID:272423732
https://api.semanticscholar.org/CorpusID:238582878
https://api.semanticscholar.org/CorpusID:238582878
https://api.semanticscholar.org/CorpusID:238582878
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-70B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.1-8B
https://huggingface.co/meta-llama/Llama-3.3-70B
https://huggingface.co/meta-llama/Llama-3.3-70B
https://openai.com/chatgpt/overview/
https://openai.com/chatgpt/overview/
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://api.semanticscholar.org/CorpusID:196621587
https://api.semanticscholar.org/CorpusID:196621587

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Torvalds, L. Git, 2005. URL https://git-scm.com/.
2, 8

Verma, M., Bhambri, S., and Kambhampati, S. The-
ory of mind abilities of large language models in
human-robot interaction: An illusion? In Compan-
ion of the 2024 ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’24, pp. 36–45,
New York, NY, USA, 2024. Association for Comput-
ing Machinery. ISBN 9798400703232. doi: 10.1145/
3610978.3640767. URL https://doi.org/10.
1145/3610978.3640767. 8

Wang, X., Li, B., Song, Y., Xu, F. F., Tang, X., Zhuge, M.,
Pan, J., Song, Y., Li, B., Singh, J., Tran, H. H., Li, F.,
Ma, R., Zheng, M., Qian, B., Shao, Y., Muennighoff, N.,
Zhang, Y., Hui, B., Lin, J., Brennan, R., Peng, H., Ji,
H., and Neubig, G. OpenHands: An open platform for
ai software developers as generalist agents. 2024a. doi:
10.48550/arXiv.2407.16741. 1, 5, 8

Wang, X., Wang, Z., Liu, J., Chen, Y., Yuan, L., Peng, H.,
and Ji, H. Mint: Evaluating llms in multi-turn interaction
with tools and language feedback. 2024b. 8

Wang, X., Chen, Y., Yuan, L., Zhang, Y., Li, Y., Peng, H.,
and Ji, H. Executable code actions elicit better llm agents.
In Proceedings of the 41st International Conference on
Machine Learning, ICML’24. JMLR.org, 2025. 8

Wang, Z., Mao, S., Wu, W., Ge, T., Wei, F., and Ji, H.
Unleashing cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. In Proc. 2024 Annual Conference of the
North American Chapter of the Association for Computa-
tional Linguistics (NAACL2024), 2024c. 1

Wilf, A., Lee, S., Liang, P. P., and Morency, L.-P. Think
twice: Perspective-taking improves large language mod-
els’ theory-of-mind capabilities. In Ku, L.-W., Martins,
A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 8292–8308,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
451. URL https://aclanthology.org/2024.
acl-long.451/. 8

Wu, Y., He, Y., Jia, Y., Mihalcea, R., Chen, Y., and
Deng, N. Hi-ToM: A benchmark for evaluating
higher-order theory of mind reasoning in large lan-
guage models. In Bouamor, H., Pino, J., and Bali, K.
(eds.), Findings of the Association for Computational
Linguistics: EMNLP 2023, pp. 10691–10706, Singa-
pore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.

717. URL https://aclanthology.org/2023.
findings-emnlp.717/. 8

Xu, H., Zhao, R., Zhu, L., Du, J., and He, Y. OpenToM:
A comprehensive benchmark for evaluating theory-of-
mind reasoning capabilities of large language models. In
Ku, L.-W., Martins, A., and Srikumar, V. (eds.), Proceed-
ings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
8593–8623, Bangkok, Thailand, August 2024. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.466. URL https://aclanthology.
org/2024.acl-long.466/. 8

Yang, J., Jimenez, C. E., Zhang, A. L., Lieret, K., Yang,
J., Wu, X., Press, O., Muennighoff, N., Synnaeve, G.,
Narasimhan, K. R., et al. Swe-bench multimodal: Do ai
systems generalize to visual software domains? arXiv
preprint arXiv:2410.03859, 2024a. 1

Yang, Z., Liu, A., Liu, Z., Liu, K., Xiong, F., Wang, Y.,
Yang, Z., Hu, Q., Chen, X., Zhang, Z., Luo, F., Guo,
Z., Li, P., and Liu, Y. Towards unified alignment be-
tween agents, humans, and environment. arXiv preprint,
abs/2402.07744, 2024b. 2, 8

Zhang, K., Li, J., Li, G., Shi, X., and Jin, Z. CodeAgent:
Enhancing code generation with tool-integrated agent
systems for real-world repo-level coding challenges. In
Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long
Papers), pp. 13643–13658, Bangkok, Thailand, Au-
gust 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.acl-long.737. URL https://
aclanthology.org/2024.acl-long.737. 8

11

https://git-scm.com/
https://doi.org/10.1145/3610978.3640767
https://doi.org/10.1145/3610978.3640767
https://aclanthology.org/2024.acl-long.451/
https://aclanthology.org/2024.acl-long.451/
https://aclanthology.org/2023.findings-emnlp.717/
https://aclanthology.org/2023.findings-emnlp.717/
https://aclanthology.org/2024.acl-long.466/
https://aclanthology.org/2024.acl-long.466/
https://aclanthology.org/2024.acl-long.737
https://aclanthology.org/2024.acl-long.737

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

A. Discussions and Limitations
The evolution of collaborative software engineering introduces complex challenges in maintaining synchronization among
collaborators, whether humans or AI agents. Our investigation into the agent out-of-sync challenge reveals fundamental
insights into how collaborators detect, respond to, and recover from belief state divergence (Bk ̸= Sk at time Tk). This
section elaborates on our key findings, discusses their broader implications, and acknowledges important limitations that
suggest potential directions for future research.

Key Findings and Implications. By introducing our evaluation framework (SyncMind §2) and benchmark (SyncBench
§3) built upon real-world GitHub repositories, our experiments (§4) illuminate critical aspects of agent out-of-sync:

(1) Technical Capabilities and Collaborative Effectiveness. Through either independent or collaborative recovery (§2.2), the
stark performance variations among LLM agents (Tables 1-C1 & C2-C3) demonstrate that technical proficiency alone is
insufficient for a successful out-of-sync recovery (§4.2-4.3 & §C.1). Similar recovery trajectories of high-performance agents
(e.g., Claude-3.5-Sonnet with SR: Independent 28.18%, Collaborative 33.70%), especially with respect to early-stage
exploration (§C.2) and proactive collaborative initiative (§4.4-4.5), suggest that both independent problem-solving and
collaborative communication capabilities are crucial for maintaining synchronization in real-world dynamic collaborative
environments.

(2) Collaboration Patterns and Communication Quality. Experiment results reveal the positive correlation between LLM
agents’ collaboration willingness and recovery success. Benefiting from proactive assistance seeking, the influence of
collaborator assistance (∆collaborator ∈ [0.33, 5.52]%) remains beneficial among different LLM agents. However, its
effectiveness varies significantly as affected by communication timing (85.71%− 100.00% early-stage assistance among
successful recoveries), question quality (rather than volume), and proactive collaboration initiative (ASR ≤ 4.86%)
(§4.4-4.5).

(3) Task Complexity and Recovery Strategies. Agents’ performance gaps between Caller and Callee tasks (Tab. 1) highlight
how different types of out-of-sync scenarios require distinct recovery strategies (§4.5). While Callee tasks requiring
dependency tracing show wider performance variations (0.67%− 38.67%) and degraded performance among most agents,
complex tasks generally benefit more from collaborative assistance (§4.6). Leveraging the dissimilar complexity levels of
different source repositories, our repository-wise analysis (§C.7) lends further evidence to the negative correlation between
increased task complexity and recovery success.

(4) Resource Awareness and Efficiency. Our experiments with varying resource constraints (§4.7 & C.5) unveil critical
insights with regard to LLM agents’ resource awareness and adaptive resource utilization. While their underlying technical
capabilities significantly affect their time resource utilization, LLM agents’ recovery performance demonstrates their notably
low awareness of both temporal and financial resources. As early-stage resource allocation proves crucial for attaining
recovery success, strategic action planning and resource estimation are highlighted for high-performing and resource-efficient
out-of-sync recoveries.

Broader Implications for Collaborative Systems. Our findings reveal meaningful implications for the future development
of collaborative systems, especially in real-world scenarios with dynamic environments and intricate task contexts. From
system design perspectives, the agent out-of-sync challenge in real-world collaboration scenarios emphasizes the importance
of state monitoring and divergence detection that are able to provide collaboration with effective recognition of the state
mismatch Bk ̸= Sk taking place at time Tk (§2.1). The low ASR (≤ 4.86%) among all LLM agents also underscores the
value of stronger collaboration initiative and communication capabilities for effective collaboration. Our implementation of
resource-aware out-of-sync recovery demonstrates the necessity of intelligent resource allocation and estimation strategies,
illuminating both the importance of early-stage investment in environmental understanding and the need for adaptive
resource utilization based on task complexity and resource availability. In designing effective collaboration protocols, our
work elaborates the benefits of collaborator assistance, meanwhile highlighting the value of quality-focused rather than
quantity-focused communication.

Limitations and Future Work. While our study provides meaningful insights, several limitations present potential
directions for our future work:

(1) Benchmark Limitations. Although our benchmark construction method is applicable to diverse GitHub repositories and
therefore can be further expanded to larger sizes to accommodate custom use (e.g., large-scale training), our SyncBench

12

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(§3) currently focuses primarily on GitHub Python repositories with unit tests, which may limit its generalizability to
broader software engineering scenarios with dissimilar programming languages and testing environments. Additionally, our
simulation of collaborative out-of-sync scenarios based on real-world historical repository changes may not fully capture
all complexities of live collaboration patterns, especially in large-scale collaborative software engineering with multiple
collaborators involved.

(2) Evaluation Framework Constraints. Implementing resource-aware out-of-sync recovery, our simplified resource modeling
may not capture all real-world constraints involved in multifarious collaborative scenarios in reality. In our future work,
we aim to include more diversified resource utilization with deeper exploration of collaborators’ long-term collaborative
relationships. We also endeavor to extend our technical scope to multi-agent systems with multiple collaborators working on
the task, resulting in more complex out-of-sync scenarios with multiple agents facing out-of-sync states (Bk ̸= Sk).

(3) Methodological Considerations. There are also limitations in our methodological design. Our simulation-based approach
may not capture all nuances of real-world collaborations, and our investigation can be expanded to diverse communication
protocols. To this end, our future work will also pay attention to the development of specialized training approaches
to enhance agents’ collaboration initiatives and communication capabilities, along with investigating more sophisticated
resource management strategies that better mirror real-world development constraints.

B. Experiment Configuration
B.1. Pilot for Configuration

In determining the appropriate experiment settings, we conduct a series of preliminary tests (Tab. B1) for basic interaction
configurations.

Interaction Basics. We first pilot out-of-sync recovery on Llama-3.1-70B and GPT-4o with the maximum number of turns
limited to 10 interactive iterations across 66 instances. For both agents, a large proportion of tasks consist of 10 total turns of
Env exploration without any solution attempts, while the remaining 11 tests have only one or two solution proposal attempts
without success. Based on this result, we further expand the max-turn limitation to 20 and 30 turns, respectively. Drawing
upon the observation that fewer turns leave insufficient time for agents to propose their solutions, we finalize 30 turns of
maximum interaction time to ensure the quality, effectiveness, and efficiency1 of our experiments.

Resource Awareness. To define the proper cost setting of recovery actions, we compare the pilot experiment results of
different cost settings in terms of initial budget (i.e., the total amount of money each agent is given at the very beginning of
each test), solution-proposal cost (i.e., the cost of proposing a solution for execution validation), and assistance-seeking cost
(i.e., the cost of proactively asking for collaborator assistance). Setting the balanced cost of both solution-proposal and
assistance-seeking as $100, we encourage agents to take these two recovery actions by providing them with an initial budget
of $300, $1000, and $3000, respectively. Meanwhile, all experiments are conducted with the maximum time limit set to
30 turns, as revealed by earlier pilot results. Comparing the performance between Budget = $1000 and Budget = $3000,
deteriorated SR scores are obtained as we provide agents with adequate budget that can cover all kinds of action selection
patterns. This unfolds LLM agents’ lack of cost awareness that makes a sufficient initial budget an obstacle towards
recovery success. To this regard, we define an initial budget of $1000 for our standard resource-aware out-of-sync recovery
experiments, allowing agents to allocate freely up to one-third of the maximum turns of interactions for solution-proposal
and assistance-seeking actions.

Table B1. Pilot for Configuration. Preliminary tests to determine the appropriate experiment settings. All pilots are conducted through
independent recovery, and we refer to the number of solution-proposal attempts as Attempts in this table to indicate whether current setting
can support an effective out-of-sync recovery.

Agent Recovery Time Limit (turn) Budget ($)

10 20 30 300 1000 3000

Llama-3.1-70B SR (%) 0.00 0.00 1.52 0.00 1.52 0.00
Attempts 0 1 4 0 4 5

GPT-4o SR (%) 0.00 1.52 4.55 0.00 4.55 3.03
Attempts 0 2 5 0 5 9

13

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Table B2. Agent Out-of-Sync Benchmark. Our benchmark is constructed through Env configuration, out-of-sync simulation, and multi-
level filtering, and can be expanded to larger sizes for large-scale evaluation, or be further subsampled through weighted downsampling to
obtain small-scale evaluation subsets.

Source Original Size Reduced Size

Callee Caller Total Callee Caller Total

FastAPI/FastAPI 979 660 1639 4 10 14
huggingface/transformers 4635 453 5088 4 5 9

matplotlib/matplotlib 757 980 1737 4 5 9
psf/requests 8 65 73 4 10 14

mwaskom/seaborn 356 217 573 13 6 19
pylint-dev/pylint 229 239 468 11 10 21
pytest-dev/pytest 1638 940 2578 8 10 18

openai/gym 53 89 142 11 5 16
sympy/sympy 887 1106 1993 13 10 23
pallets/flask 34 266 300 4 10 14

openai/whisper 9 1 10 2 1 3
scikit-learn/scikit-learn 376 2663 3039 1 5 6

sphinx-doc/sphinx 675 434 1109 9 10 19
pycaret/pycaret 20 22 42 11 4 15

explosion/spaCy 313 434 747 10 11 21
python-pillow/Pillow 295 1334 1629 11 10 21

scrapy/scrapy 465 665 1130 13 10 23
optuna/optuna 190 296 486 3 5 8

microsoft/FLAML 38 30 68 4 3 7
psf/black 25 79 104 7 5 12

mlflow/mlflow 367 839 1206 3 5 8

Total 12711 11621 24332 150 150 300

B.2. Benchmark Construction

We design our benchmark construction method §3 with generalizability and adaptability to diverse Python repositories that
have Python as their primary programming language, meanwhile possessing unit tests for testing the functioning of various
modules. Including environment setup (e.g., pyproject.toml, setup.py) is a plus, while specifying necessary packages serves
as an alternative way to enrich SyncBench (§3).

In the current version, our agent out-of-sync benchmark, SyncBench (§3), is built upon 21 popular GitHub repositories
(Tab. B2), and can be further expanded or downsampled to proper dataset sizes suitable for different experiment conditions
and evaluation purposes.

Our benchmark construction method complies with our definition of agent out-of-sync (§2.1), where meeting at least one of
three conditions can result in an agent’s belief deviation, either directly leading to task failure or indirectly laying latent
problems for future execution errors. Although the latter outcome is not immediately visible, growing state divergences can
be accumulated as underlying risks that lead to significant troubles in the near future as the collaboration proceeds. To take
all three conditions into account, our benchmark construction method supports both pass-to-fail and pass-to-pass samples,
though we only consider pass-to-fail in our current version of SyncBench (§3.1) to emphasize the importance of out-of-sync
recovery abilities in maintaining effective collaborations.

• Pass-to-fail state divergence. Out-of-sync scenarios directly visible as pass-to-fail state divergence (B2 ̸= S2) are readily
leveraged to construct out-of-sync recovery tasks where: (1) collaborator updated repository (S1) can successfully pass the
execution test, and (2) agent revised repository with out-of-sync function (B2) fails the execution test.

• Pass-to-pass state divergence. Out-of-sync scenarios that are not manifested as immediate task failures are also taken
into consideration to create out-of-sync recovery tasks based on pass-to-pass state divergence (B2 ̸= S2) where: (1)
collaborator updated repository (S1) successfully passes the execution test, resulting in parsed test output denoted as OS ,
(2) agent revised repository with out-of-sync function (B2) also successfully passes the execution test, resulting in parsed
test output denoted as OB , and (3) parsed test output results between S2 and B2 are different (OS ̸= OB).

As our determination of recovery success depends on the success of both execution test and parsing validation (§3.4), both

14

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

pass-to-fail and pass-to-pass out-of-sync recovery tasks can be effectively evaluated.

In our experiments (§4), we test on 300 downsampled instances1 with evenly distributed Caller and Callee (§3.2) for
computational efficiency and comparison effectiveness.

Here are some examples of our test instances:

(1) Example-1 on psf/requests:

Traced git commit: c0813a2d910ea6b4f8438b91d315b8d181302356

Out-of-sync function:

1 def _urllib3_request_context(
2 request: "PreparedRequest",
3 verify: "bool | str | None"
4) -> "(typing.Dict[str, typing.Any], typing.Dict[str, typing.Any])":
5 host_params = {}
6 pool_kwargs = {}
7 parsed_request_url = urlparse(request.url)
8 scheme = parsed_request_url.scheme.lower()
9 port = parsed_request_url.port

10 cert_reqs = "CERT_REQUIRED"
11 if verify is False:
12 cert_reqs = "CERT_NONE"
13 if isinstance(verify, str):
14 pool_kwargs["ca_certs"] = verify
15 pool_kwargs["cert_reqs"] = cert_reqs
16 host_params = {
17 "scheme": scheme,
18 "host": parsed_request_url.hostname,
19 "port": port,
20 }
21 return host_params, pool_kwargs

Initial error log:

============================= test session starts ==============================platform
linux -- Python 3.11.9, pytest-8.3.2, pluggy-1.5.0 -- /workspace/test_venv/bin/python↪→

cachedir: .pytest_cache
rootdir: /workspace/test_repo\nconfigfile: pyproject.toml
plugins: httpbin-2.0.0, cov-5.0.0, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collecting ... collected 329 items

tests/test_requests.py::TestRequests::test_entry_points PASSED [0%]
tests/test_requests.py::TestRequests::test_invalid_url[MissingSchema-hiwpefhipowhefopw]

PASSED [0%]↪→
tests/test_requests.py::TestRequests::test_invalid_url[InvalidSchema-localhost:3128]

PASSED [0%]↪→
tests/test_requests.py::TestRequests::test_invalid_url[InvalidSchema-localhost.localdomai ⌋

n:3128/] PASSED [
1%]

↪→
↪→
tests/test_requests.py::TestRequests::test_invalid_url[InvalidSchema-10.122.1.1:3128/]

PASSED [1%]↪→
tests/test_requests.py::TestRequests::test_invalid_url[InvalidURL-http://] PASSED [1%]
tests/test_requests.py::TestRequests::test_invalid_url[InvalidURL-http://*example.com]

PASSED [2%]↪→
tests/test_requests.py::TestRequests::test_invalid_url[InvalidURL-http://.example.com]

PASSED [2%]↪→
tests/test_requests.py::TestRequests::test_basic_building PASSED
...
FAILED tests/test_requests.py::TestRequests::test_redirect_with_wrong_gzipped_header

15

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

FAILED tests/test_requests.py::TestRequests::test_requests_history_is_saved
FAILED tests/test_requests.py::TestRequests::test_json_param_post_content_type_works
FAILED tests/test_requests.py::TestRequests::test_response_iter_lines - TypeE...
FAILED tests/test_requests.py::TestRequests::test_response_context_manager - ...
FAILED tests/test_requests.py::TestRequests::test_unconsumed_session_response_closes_conn ⌋

ection↪→
FAILED tests/test_requests.py::TestRequests::test_response_json_when_content_is_None
FAILED tests/test_requests.py::TestRequests::test_custom_redirect_mixin - Typ...
FAILED tests/test_requests.py::TestTimeout::test_stream_timeout - TypeError: ...
FAILED tests/test_requests.py::TestTimeout::test_invalid_timeout[timeout0-(connect, read)]
FAILED tests/test_requests.py::TestTimeout::test_invalid_timeout[foo-must be an int, float

or None]↪→
FAILED tests/test_requests.py::TestTimeout::test_none_timeout[None] - TypeErr...
FAILED tests/test_requests.py::TestTimeout::test_none_timeout[timeout1] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_read_timeout[timeout0] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_read_timeout[timeout1] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_connect_timeout[timeout0] - ...
FAILED tests/test_requests.py::TestTimeout::test_connect_timeout[timeout1] - ...
FAILED tests/test_requests.py::TestTimeout::test_total_timeout_connect[timeout0]
FAILED tests/test_requests.py::TestTimeout::test_total_timeout_connect[timeout1]
FAILED tests/test_requests.py::TestTimeout::test_encoded_methods - TypeError:...
FAILED tests/test_requests.py::test_urllib3_retries - TypeError: _urllib3_req...
FAILED tests/test_requests.py::test_urllib3_pool_connection_closed - TypeErro...
FAILED tests/test_requests.py::TestPreparingURLs::test_redirecting_to_bad_url[http://:1-I ⌋

nvalidURL]↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_json_decode_compatibility
FAILED tests/test_requests.py::TestPreparingURLs::test_json_decode_persists_doc_attr
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_True↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_bundle_expired_cert↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_bundle_unexpired_cert↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_mtls ⌋

_settings↪→
====== 131 failed, 196 passed, 1 skipped, 1 xfailed, 8 warnings in 30.10s ======

Ground-truth function:

1 def _urllib3_request_context(
2 request: "PreparedRequest",
3 verify: "bool | str | None",
4 client_cert: "typing.Tuple[str, str] | str | None",
5 poolmanager: "PoolManager",
6) -> "(typing.Dict[str, typing.Any], typing.Dict[str, typing.Any])":
7 host_params = {}
8 pool_kwargs = {}
9 parsed_request_url = urlparse(request.url)

10 scheme = parsed_request_url.scheme.lower()
11 port = parsed_request_url.port
12

13 # Determine if we have and should use our default SSLContext
14 # to optimize performance on standard requests.
15 poolmanager_kwargs = getattr(poolmanager, "connection_pool_kw", {})
16 has_poolmanager_ssl_context = poolmanager_kwargs.get("ssl_context")
17 should_use_default_ssl_context = (
18 _preloaded_ssl_context is not None and not has_poolmanager_ssl_context
19)
20

21 cert_reqs = "CERT_REQUIRED"
22 if verify is False:
23 cert_reqs = "CERT_NONE"
24 elif verify is True and should_use_default_ssl_context:

16

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

25 pool_kwargs["ssl_context"] = _preloaded_ssl_context
26 elif isinstance(verify, str):
27 if not os.path.isdir(verify):
28 pool_kwargs["ca_certs"] = verify
29 else:
30 pool_kwargs["ca_cert_dir"] = verify
31 pool_kwargs["cert_reqs"] = cert_reqs
32 if client_cert is not None:
33 if isinstance(client_cert, tuple) and len(client_cert) == 2:
34 pool_kwargs["cert_file"] = client_cert[0]
35 pool_kwargs["key_file"] = client_cert[1]
36 else:
37 # According to our docs, we allow users to specify just the client
38 # cert path
39 pool_kwargs["cert_file"] = client_cert
40 host_params = {
41 "scheme": scheme,
42 "host": parsed_request_url.hostname,
43 "port": port,
44 }
45 return host_params, pool_kwargs

(2) Example-2 on nwaskon/seaborn:

Traced git commit: 45666c8b4ba634c7720cab59bf0aaa00ab9b5e29

Out-of-sync function:

1 def add(
2 self,
3 mark: Mark,
4 stat: Stat = None,
5 data: Optional[DataFrame | Mapping] = None,
6 variables: Optional[dict[str, Optional[Hashable | Vector]]] = None,
7 orient: Literal["x", "y", "v", "h"] = "x",
8) -> Plot:
9

10 layer_data = self._data.concat(data, variables)
11

12 if stat is None:
13 stat = mark.default_stat
14

15 orient = {"v": "x", "h": "y"}.get(orient, orient)
16 mark.orient = orient
17 if stat is not None:
18 stat.orient = orient
19

20 self._layers.append(Layer(layer_data, mark, stat))
21

22 return self

Initial error log:

============================= test session starts ==============================platform
linux -- Python 3.11.9, pytest-8.3.2, pluggy-1.5.0 -- /workspace/test_venv/bin/python↪→

cachedir: .pytest_cache
rootdir: /workspace/test_repo
configfile: pyproject.toml
plugins: asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collecting ... collected 14 items

17

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

tests/_marks/test_dot.py::TestDot::test_simple FAILED [7%]
tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix FAILED [14%]
tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data FAILED [21%]
tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color] FAILED [28%]
tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill] FAILED [35%]
tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker] FAILED [42%]
tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize] FAILED [50%]
tests/_marks/test_dot.py::TestDots::test_simple FAILED [57%]
tests/_marks/test_dot.py::TestDots::test_set_color FAILED [64%]
tests/_marks/test_dot.py::TestDots::test_map_color FAILED [71%]
tests/_marks/test_dot.py::TestDots::test_fill FAILED [78%]
tests/_marks/test_dot.py::TestDots::test_pointsize FAILED [85%]
tests/_marks/test_dot.py::TestDots::test_stroke FAILED [92%]
tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix FAILED [100%]

=================================== FAILURES ===================================
_____________________________ TestDot.test_simple ______________________________

self = <tests._marks.test_dot.TestDot object at 0x7f4196cb99d0>

def test_simple(self):

x = [1, 2, 3]
y = [4, 5, 2]

> p = Plot(x=x, y=y).add(Dot()).plot()

tests/_marks/test_dot.py:39:
_ _

self = <seaborn._core.plot.Plot object at 0x7f419697afd0>
mark = Dot(artist_kws={}, marker=<'o'>, pointsize=<6>, stroke=<0.75>, color=<'C0'>,

alpha=<1>, fill=<True>, edgecolor=<depend:color>, edgealpha=<depend:alpha>,
edgewidth=<0.5>, edgestyle=<'-'>)

↪→
↪→
stat = None, data = None, variables = None, orient = 'x'

def add(
self,
mark: Mark,
stat: Stat = None,

...
seaborn/_core/plot.py:498: AttributeError
______________________ TestDots.test_filled_unfilled_mix _______________________

self = <tests._marks.test_dot.TestDots object at 0x7f979214a990>

def test_filled_unfilled_mix(self):

x = [1, 2]
y = [4, 5]
marker = ["a", "b"]
shapes = ["o", "x"]

mark = Dots(stroke=2)
> p = Plot(x=x, y=y).add(mark, marker=marker).scale(marker=shapes).plot()
E TypeError: Plot.add() got an unexpected keyword argument 'marker'

tests/_marks/test_dot.py:171: TypeError
=========================== short test summary info ============================
FAILED tests/_marks/test_dot.py::TestDot::test_simple - AttributeError: 'Plot...
FAILED tests/_marks/test_dot.py::TestDot::test_filled_unfilled_mix - TypeErro...
FAILED tests/_marks/test_dot.py::TestDot::test_missing_coordinate_data - Attr...
FAILED tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[color]
FAILED tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[fill] - ...
FAILED tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[marker]
FAILED tests/_marks/test_dot.py::TestDot::test_missing_semantic_data[pointsize]

18

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

FAILED tests/_marks/test_dot.py::TestDots::test_simple - AttributeError: 'Plo...
FAILED tests/_marks/test_dot.py::TestDots::test_set_color - AttributeError: '...
FAILED tests/_marks/test_dot.py::TestDots::test_map_color - AttributeError: '...
FAILED tests/_marks/test_dot.py::TestDots::test_fill - AttributeError: 'PlotD...
FAILED tests/_marks/test_dot.py::TestDots::test_pointsize - AttributeError: '...
FAILED tests/_marks/test_dot.py::TestDots::test_stroke - AttributeError: 'Plo...
FAILED tests/_marks/test_dot.py::TestDots::test_filled_unfilled_mix - TypeErr...
============================== 14 failed in 1.16s ==============================

Ground-truth function:

1 def add(
2 self,
3 mark: Mark,
4 *transforms: Stat | Move,
5 orient: str | None = None,
6 legend: bool = True,
7 label: str | None = None,
8 data: DataSource = None,
9 **variables: VariableSpec,

10) -> Plot:
11 """
12 Specify a layer of the visualization in terms of mark and data transform(s).
13

14 This is the main method for specifying how the data should be visualized.
15 It can be called multiple times with different arguments to define
16 a plot with multiple layers.
17

18 Parameters
19 ----------
20 mark : :class:`Mark`
21 The visual representation of the data to use in this layer.
22 transforms : :class:`Stat` or :class:`Move`
23 Objects representing transforms to be applied before plotting the data.
24 Currently, at most one :class:`Stat` can be used, and it
25 must be passed first. This constraint will be relaxed in the future.
26 orient : "x", "y", "v", or "h"
27 The orientation of the mark, which also affects how transforms are computed.
28 Typically corresponds to the axis that defines groups for aggregation.
29 The "v" (vertical) and "h" (horizontal) options are synonyms for "x" / "y",
30 but may be more intuitive with some marks. When not provided, an
31 orientation will be inferred from characteristics of the data and scales.
32 legend : bool
33 Option to suppress the mark/mappings for this layer from the legend.
34 label : str
35 A label to use for the layer in the legend, independent of any mappings.
36 data : DataFrame or dict
37 Data source to override the global source provided in the constructor.
38 variables : data vectors or identifiers
39 Additional layer-specific variables, including variables that will be
40 passed directly to the transforms without scaling.
41

42 Examples
43 --------
44 .. include:: ../docstrings/objects.Plot.add.rst
45

46 """
47 if not isinstance(mark, Mark):
48 msg = f"mark must be a Mark instance, not {type(mark)!r}."
49 raise TypeError(msg)
50

51 # TODO This API for transforms was a late decision, and previously Plot.add
52 # accepted 0 or 1 Stat instances and 0, 1, or a list of Move instances.

19

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

53 # It will take some work to refactor the internals so that Stat and Move are
54 # treated identically, and until then well need to "unpack" the transforms
55 # here and enforce limitations on the order / types.
56

57 stat: Optional[Stat]
58 move: Optional[List[Move]]
59 error = False
60 if not transforms:
61 stat, move = None, None
62 elif isinstance(transforms[0], Stat):
63 stat = transforms[0]
64 move = [m for m in transforms[1:] if isinstance(m, Move)]
65 error = len(move) != len(transforms) - 1
66 else:
67 stat = None
68 move = [m for m in transforms if isinstance(m, Move)]
69 error = len(move) != len(transforms)
70

71 if error:
72 msg = " ".join([
73 "Transforms must have at most one Stat type (in the first position),",
74 "and all others must be a Move type. Given transform type(s):",
75 ", ".join(str(type(t).__name__) for t in transforms) + "."
76])
77 raise TypeError(msg)
78

79 new = self._clone()
80 new._layers.append({
81 "mark": mark,
82 "stat": stat,
83 "move": move,
84 # TODO it doesn't work to supply scalars to variables, but it should
85 "vars": variables,
86 "source": data,
87 "legend": legend,
88 "label": label,
89 "orient": {"v": "x", "h": "y"}.get(orient, orient), # type: ignore
90 })
91

92 return new

B.3. Out-of-Sync Recovery on SyncBench

Employing our resource-aware out-of-sync recovery framework (SyncMind §2), Fig. B1 presents an agent out-of-sync
recovery example on our benchmark (SyncBench §3).

C. Agent Out-of-Sync Recovery: An In-Depth Analysis
As the continuation of our findings and discussions (§4), in this section, we aim to provide an in-depth analysis of agents’
out-of-sync recovery efficiency, conditional recovery performance, along with their strategic recovery patterns in terms of
temporal dynamics of recovery actions, solution proposal strategies, effective assistance seeking, and resource awareness
characteristics.

C.1. Conditional Recovery Performance

As a complement to our previous observations with regard to agents’ huge performance gaps (§4.2), we expand our
exploration to agents’ technical problem-solving capabilities conditioned on their localization success. By calculating
CSR (§3.4), we extend our evaluation results (Tab. C1-1) to include conditional recovery analysis on both agents’ overall
performance (Tab. C2) and their separate performance on Caller and Callee (Tab. C3).

(1) Overall Performance. As summarized in Tab. C2, we integrate CSR with the overall evaluation of all seven agents
(Tab. C1), which not only affords evidence to different LLM agents’ significant technical ability gaps (§4.2), but further

20

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure B1. Out-of-Sync Recovery Example. Starting from the initial out-of-sync state at T2, an LLM agent takes different recovery
actions to approach synchronized state through multi-turn interactions, which involve interacting with Env (green blocks), proactively
asking for collaborator assistance (blue block), or proposing a solution to examine agent’s recovery progress (orange blocks). By
incorporating resource awareness throughout the out-of-sync recovery process, the agent pays extra heed to making rational use of
available resources for gaining knowledge and validating solution at a cost. For better clarity, some details are omitted as [. . .].

Table C1. Overall Out-of-Sync Recovery Performance. We use ∆collaborator to represent the influence of collaborator assistance.

Agent Independent (%) Collaborative (%) ∆collaborator (%)

LAfile LAfunc SR LAfile LAfunc SR LAfile LAfunc SR

Llama-3.1-8B 8.67 4.67 0.33 27.00 21.33 1.33 +18.33 +16.66 +1.00
Llama-3.1-70B 8.33 5.00 2.67 12.33 5.67 3.33 +4.00 +0.67 +0.66
GPT-4o mini 10.63 7.97 3.99 12.29 8.31 5.32 +1.66 +0.34 +1.33

DeepSeek-V2.5 47.67 35.00 7.33 47.00 37.33 7.67 -0.67 +2.33 +0.34
GPT-4o 14.33 9.33 4.00 39.00 34.67 8.00 +24.67 +25.34 +4.00

Llama-3.3-70B 64.00 47.33 16.33 66.67 53.67 19.00 +2.67 +6.34 +2.67
Claude-3.5-Sonnet 64.09 56.35 28.18 61.33 51.93 33.70 -2.76 -4.42 +5.52

Table C2. Conditional Out-of-Sync Recovery Performance. Following Tab. C1, ∆collaborator represents the influence of collaborator
assistance.

Agent Independent (%) Collaborative (%) ∆collaborator (%)

CSRfile CSRfunc SR CSRfile CSRfunc SR CSRfile CSRfunc SR

Llama-3.1-8B 3.81 7.07 0.33 4.93 6.24 1.33 +1.12 -0.83 +1.00
Llama-3.1-70B 32.05 53.40 2.67 27.01 58.73 3.33 -5.04 +5.33 +0.66
GPT-4o mini 37.54 50.06 3.99 43.29 64.02 5.32 +5.75 +13.96 +1.33

DeepSeek 15.38 20.94 7.33 16.32 20.55 7.67 +0.94 -0.39 +0.34
GPT-4o 27.91 42.87 4.00 20.51 23.07 8.00 -7.40 -19.80 +4.00

Llama-3.3-70B 25.52 34.50 16.33 28.50 35.40 19.00 +2.98 +0.90 +2.67
Claude-3.5-Sonnet 43.97 50.01 28.18 54.95 64.90 33.70 +10.98 +14.89 +5.52

contributes to the finding that strong technical programming capabilities alone is insufficient for effectively maintaining

21

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Table C3. Conditional Out-of-Sync Recovery Evaluation on Caller and Callee. The influence of increased task complexity introduced
by dependency tracing on agents’ conditional out-of-sync recovery performance: ∆complexity = ∆(Callee-Caller).

Agent Recovery Caller (%) Callee (%) ∆complexity (%)

CSRfile CSRfunc SR CSRfile CSRfunc SR CSRfile CSRfunc SR

Llama-3.1-8B
Independent 9.98 16.63 1.33 16.75 50.38 0.67 +6.77 +33.75 -0.66
Collaborative 6.25 7.69 2.00 3.05 4.02 0.67 -3.20 -3.67 -1.33
∆collaborator -3.73 -8.94 +0.67 -13.70 -46.36 +0.00 -9.97 -37.42 -0.67

Llama-3.1-70B
Independent 46.14 75.05 4.00 16.63 28.48 1.33 -29.51 -46.57 -2.67
Collaborative 27.75 55.50 3.33 26.28 62.48 3.33 -1.47 +6.98 +0.00
∆collaborator -18.39 -19.55 -0.67 +9.65 +34.00 +2.00 +28.04 +53.55 +2.67

GPT-4o mini
Independent 40.03 57.20 5.32 33.38 40.06 2.66 -6.65 -17.14 -2.66
Collaborative 52.16 66.64 7.97 28.60 57.20 2.66 -23.56 -9.44 -5.31
∆collaborator +12.13 +9.44 +2.65 -4.78 +17.14 +0.00 -16.91 +7.70 -2.65

DeepSeek
Independent 14.95 18.32 8.67 16.07 26.47 6.00 +1.12 +8.15 -2.67
Collaborative 16.67 18.32 8.67 15.88 24.41 6.67 -0.79 +6.09 -2.00
∆collaborator +1.72 +0.00 +0.00 -0.19 -2.06 +0.67 -1.91 -2.06 +0.67

GPT-4o
Independent 45.47 58.87 6.67 9.50 18.14 1.33 -35.97 -40.73 -5.34
Collaborative 25.43 28.30 10.00 15.52 17.65 6.00 -9.91 -10.65 -4.00
∆collaborator -20.04 -30.57 +3.33 +6.02 -0.49 +4.67 +26.06 +30.08 +1.34

Llama-3.3-70B
Independent 23.14 31.12 18.67 29.58 40.38 14.00 +6.44 +9.26 -4.67
Collaborative 28.45 34.02 22.00 28.57 37.50 16.00 -6.45 -5.45 -6.00
∆collaborator +5.31 +2.90 +3.33 -1.01 -2.88 +2.00 -12.89 -14.71 -1.33

Claude-3.5-Sonnet
Independent 49.99 53.48 25.41 40.00 47.46 30.94 +9.99 -6.02 +5.53
Collaborative 66.67 74.30 28.73 48.55 59.32 38.67 -18.12 -14.98 +9.94
∆collaborator +16.68 +20.82 +3.32 +8.55 +11.86 +7.73 -28.11 -8.96 +4.41

synchronization in collaborative software engineering (§4.3).

Persistent Gaps In LLM Agents’ Technical Problem-Solving Capabilities. As one of the high-performing agents, Claude-
3.5-Sonnet showcases its robust problem-solving capacity in conditional recovery (CSRfile ≥ 43.97%, CSRfunc ≥
50.01%), with positive gains from collaborator assistance in both CSRfile (∆collaborator = +10.98%) and CSRfunc

(∆collaborator = +14.89%). This effectively substantiates the importance of both strong technical efficiency and effective
collaboration in successful out-of-sync recoveries. On the other hand, Llama-3.1-8B consistently exhibits limited technical
recovery capacity at both file (CSRfile ≤ 4.93%) and function (CSRfunc ≤ 7.07%) levels. The huge technical recovery
gaps in both CSRfile and CSRfunc complement our prior observations on LLM agents’ persistent ability gaps (§4.2).

Technical Proficiency Alone Is Insufficient for Recovery Success. Our calculation of agents’ CSR scores (Tab. C2)
also corroborates that strong technical SE capacity alone is insufficient for out-of-sync recovery success. For example,
showcasing comparably high CSR scores at both file and function levels, GPT-4o mini and Llama-3.1-70B obtain their
success rates less than 5.32% and 3.33% (Tab. C1), respectively. Their significant lack of willingness to collaborate (Llama-
3.1-70B with ASR = 1.37%, GPT-4o mini with ASR = 1.69%) (Fig. 7), combined with their low localization accuracy
(LAfile ≤ 12.33%, LAfunc ≤ 8.31%) (Tab. C1), further demonstrates the significance of multifaceted capabilities for
obtaining out-of-sync recovery success (§4.3).

(2) Caller versus Callee. In assessing agents’ conditional performance separately on Caller and Callee, we summarize
Tab. C3 by incorporating CSR calculation into Tab. 1.

Expanding our prior analysis (§4.2) to technical recovery capacity, agents’ ability gaps remain huge in conditional recovery
success at both file (from Llama-3.1-8B with CSRfile = 3.05% to Claude-3.5-Sonnet with CSRfile = 66.67%) and
function (from Llama-3.1-8B with CSRfunc = 4.02% to Claude-3.5-Sonnet with CSRfunc = 74.30%) levels, with in
general diminished performance on Callee. Nevertheless, Claude-3.5-Sonnet continues to excel in delivering superior
conditioned technical recovery capabilities (CSRfile ≥ 40.00% and CSRfunc ≥ 47.46%).

On the other hand, the comparable technical recovery capacities among Claude-3.5-Sonnet, GPT-4o mini, and GPT-4o mini,
as demonstrated by their recovery performance on both Caller and Callee, resonate strongly with their overall performance

22

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(Tab. C2), substantiating the insufficient role of technical proficiency in effective out-of-sync recoveries (§4.3).

Figure C1. First-Half Action Distribution in Success and Failure Cases. We visualize the average action distribution of each LLM
agent in their first-half recovery turns. For each agent, Figure (a) depicts the average proportion of each action taken during the first half
of its successful recoveries, while Figure (b) illustrates these proportions for its failure cases.

C.2. Temporal Dynamics of Recovery Actions

Our discussion on collaboration effectiveness (§4.5) uncovers the consistent patterns of advancing repository exploration for
out-of-sync recovery success (Fig. C1). The comparison on action distribution in the first half of recovery time between
(a) success cases and (b) failure cases presents the positive correlation between effective communication and successful
out-of-sync recovery. By extending their action distribution to concrete indexing, we visualize LLM agents’ time allocation
throughout their out-of-sync recoveries (Fig. C2), which sheds light on the effective recovery strategies with regard to agents’
action taking patterns and temporal dynamics.

23

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure C2. Recovery Time Allocation. Through (a) independent or (b) collaborative out-of-sync recovery, agents distribute their recovery
actions freely to different turns. As suggested by figure legends, actions of proactively asking for collaborator assistance (AC) are denoted
as arrowheads heading to the right (▷), while actions of proposing a recovery solution (PS) are represented as arrowheads heading towards
the left (◁). For each agent, we also calculate the mean index of its AC (mAC) and PS (mPS), indicated as dotted lines () and
dashed lines () , respectively. Employing the shade of colors to indicate the frequency distribution of actions taken at each turn, the
more recovery actions a turn index is assigned, the deeper the color of the turn index is superimposed.

Exploring earlier and solving later. Choices of actions across all recovery turns are arranged in Fig. C2 according to their
corresponding indices, where overlapped selections create a gradient of color depth to reveal the actual interaction allocation
of each LLM agent in the course of recovering its belief state to the up-to-date world state. Fig. C2 therefore elaborates the
time allocation patterns of different agents under the standard 30-turn out-of-sync recovery setting through (a) independent
or (b) collaborative recovery (§2.2). Leveraging action indices, we calculate, for each LLM agent, the mean index of its
proposing a solution (mPS) or proactively asking for collaborator assistance (mAC) actions. Comparing the performance
of different LLM agents, both independent and collaborative recoveries showcase the positive correlation between later-turn
solution proposal and high-performance recovery (e.g., Claude-3.5-Sonnet and Llama-3.3-70B with their mPS ≥ 15.28
and SR ≥ 16.33%). Comparing mPS with mAC, collaborative agents by and large seek collaborator assistance in
markedly earlier turns (mAC ∈ [3.35, 12.45]) while deferring solution proposal to some later time (mPS ∈ [8.49, 17.40]),
which resonates strongly with first-half action distribution patterns between successful and failed recovery cases (Fig. C1).
Viewing (a) independent and (b) collaborative recovery collectively, agents with higher performance in general defer their
solution proposal actions to some later turns (mPS > 14.87) after exploring the codebase in the first half of time through
interacting with Env or proactively seeking collaborator assistance (Fig. C1). Integrated with allocating a major proportion
of interactions to Env exploration, agents are able to better their performance through appropriately postponing their choices
of solution proposal until obtaining sufficient contextual knowledge to establish synchronized mental models of updated
states for an effective solution proposal attempt.

24

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

C.3. Solution Proposal Dynamics

Our experiments reveal a ‘Goldilocks zone’ for LLM agents’ solution proposals—both excessive and insufficient proposal
attempts correlate positively with reduced recovery success.

Low solution proposal frequency is as adverse as frequent solution proposal attempts. Possessing the least awareness
of proposing a solution towards out-of-sync recovery success, GPT-4o mini (Fig. 7) presents only 1.30% time for solution
proposal during its independent recovery, which is on average 0.39 turn out of the total 30 turns allowed. Similarly,
collaborative GPT-4o mini agent allocates merely 1.32% recovery time to propose a solution in its 30-turn recovery tasks.
GPT-4o mini’s low-frequency solution proposal patterns, which are only between [0.39, 0.40] turns on average, results in its
noticeably underperformed recoveries (Independent: SR = 4.00%, Collaborative: SR = 5.33%), especially compared
with other LLM agents with their solution proposal attempts above 6.00% recovery time. On the other hand, excessive
solution proposals introduce analogous negative influence on agents’ recovery performance. Llama-3.1-8B allocates 31.32%
recovery time in its independent out-of-sync recovery scenarios for solution proposal actions, while having 30.70% of
its total time for proposing solutions in its collaborative recovery tasks. Despite its frequent solution proposal attempts,
limited solutions (Independent: SR = 0.33%, Collaborative: SR = 1.33%) are validated to be effective for achieving
recovery success. This impact stays applicable to other agents. For instance, Llama-3.1-70B with 29.96% and 29.09%
solution proposal in its independent and collaborative recoveries, respectively, achieves Independent-SR = 2.67% and
Collaborative-SR = 3.33%. Nevertheless, the timing of solution proposal attempts during later turns (Fig. C2) after gaining
a better understanding of the codebase may supplement further advantages in fulfilling successful out-of-sync recoveries.

C.4. Effective Assistance Seeking

According to task completion successfulness, we categorize agents’ proactive questions into high-quality and low-quality
queries (§4.5). By investigating the <query, response> pairs collected from collaborative interactions between agents and
collaborators, we summarize typical characteristics of two query classes in Tab. C4.

Communication-Performance Gap. Viewing separately LLM agents’ communication performance and recovery effec-
tiveness (§4.4-4.5), our findings reveal a notable disparity between agents’ programming performance and communication
capabilities—An LLM agent can be a good programmer but a poor communicator. This can be clearly substantiated by
the fact that Claude-3.5-Sonnet showcases the best performance (SR = 33.70%) with ASR = 4.86% while GPT-4o
mini achieves significantly superior upper-bound recovery performance (SR = 86.33%) with full collaborator support
(§4.4), especially considering its markedly lower performance (SR = 5.32%) with ASR = 1.69% in multi-turn recovery
experiments.

Improvement Implications. Fig. 8 unveils the significant advantage of high-quality assistance seeking, as revealed by high-
performing LLM agents with a higher proportion of high-quality questions in both query categories (e.g., Claude-3.5-Sonnet:
SR = 33.70%, with 21.35% high-quality localization queries and 16.00% high-quality solution queries). Nevertheless,
arranged based on ASR from low to high along the X-axis (Fig. 8), higher ASR scores present no direct correlation with
larger proportions of high-quality questions in either category. This further substantiates the importance of enhancing
question quality, rather than increasing question volume, for LLM-based agents to achieve improved out-of-sync recovery
performance. In pursuit of effective collaborator assistance (§4.5), we conclude question quality indicators in three aspects
(Tab. C4): (1) Specificity, where high-performing queries precisely identify ambiguous areas, (2) Timing, where effective
questions follow a logical progression from localization to solution refinement, and (3) Context Integration, where superior
queries raise task-specific confusions pivotal to out-of-sync recovery success.

Here are some assistance asking examples of different LLM agents during their journeys of out-of-sync recovery.

Examples of low-quality queries:

(1) Vague queries:

========== TURN 24 ==========
AGENT:
Can you please help confirm if the function `__init__` is out-of-sync?
HUMAN:
[Balance: $300 Left] I'm sorry that I'm not sure which `__init__` you are asking for

confirmation.↪→

25

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(2) Irrelevant queries:

========== TURN 2 ==========
AGENT:
Can you provide more information about the doctest items that are expected to be collected

in the test case `test_collect_module_two_doctest_no_modulelevel`? Specifically, what
are the contents of the doctest items, and what is the expected behavior of the
doctest?

↪→
↪→
↪→
HUMAN:
[Balance: $900 Left] The test case `test_collect_module_two_doctest_no_modulelevel` is

creating a Python file with multiple functions, some of which contain string comments
that represent doctests. The expected behavior is to collect these doctest items:

↪→
↪→
1. The string `\">>> magic = 42 \"` inside the `my_func` function, which is an incomplete

doctest item.↪→
2. The string `\">>> import os # this one does have a doctest\"` inside the `another`

function, representing an actual doctest.↪→
The test is expecting these doctests to be recognized and collected, thus expecting a

total of two doctest items to be collected.↪→

(3) Redundant queries:

========== TURN 2 ==========
AGENT:
Could you please help me locate the Python repository `test_repo` and provide its absolute

path? It seems I cannot find it in the current working directory.↪→
HUMAN:
[Balance: $900 Left] /workspace/test_repo

(4) Repetitive queries:

========== TURN 1 ==========
AGENT:
Where is the file containing the responsible code, and which function is out-of-sync?

Specifically, can you please help provide the relative path of the responsible code?↪→
HUMAN:
[Balance: $900 Left] The relative path is `./tests/utils/test_play.py`.
The out-of-sync function is `_get_video_size`.
========== TURN 4 ==========
AGENT:
What is the absolute path of the file containing the `_get_video_size` method? Please

provide the necessary information so I can proceed with the task.↪→
HUMAN:
[Balance: $800 Left] The absolute path of the file containing the `_get_video_size` method

is `/workspace/test_repo/tests/utils/test_play.py`.↪→

(5) Over-specific queries:

========== TURN 6 ==========
AGENT:
Could you please help me locate the source code files in the test_repo? I need to find

where the requests module implementation is located, particularly the file that
handles URL preparation and request handling.

↪→
↪→
HUMAN:
[Balance: $800 Left] The requests module implementation is located in the `test_repo`

directory under the path `/workspace/test_repo/src/requests/adapters.py`, where URL
preparation and request handling are addressed.

↪→
↪→

(6) Speculative queries:

========== TURN 13 ==========
AGENT:

26

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

I think adding the key `by_msg` to `self.stats` can be a solution to recover the function
`any_fail_on_issues`. Can you please help confirm whether this may be a potential
solution?

↪→
↪→
HUMAN:
[Balance: $700 Left] Yes, it is a possible solution.

Examples of high-quality queries:

(1) Explicit queries:

========== TURN 4 ==========
AGENT:
Looking at the error trace and code, I see that the error occurs in

`_register_options_provider` method when trying to add arguments to the parser. Could
you confirm if the `options` attribute of the provider (which should be a BaseChecker
instance) is expected to be a list/tuple of (opt, optdict) pairs? This would help me
understand if the error is due to incorrect data structure or missing arguments.

↪→
↪→
↪→
↪→
HUMAN:
Yes, the `options` attribute of the provider is expected to be a list or tuple of (opt,

optdict) pairs.↪→

(2) Targeted queries:

========== TURN 3 ==========
AGENT:
Looking at the test file, I see that the tests are failing with AttributeError. Could you

please share the specific AttributeError message from one of the failing tests? The
error logs you provided only show \"AttributeError: type obj...\" but are truncated.
The complete error message would help me identify which attribute is missing.

↪→
↪→
↪→
HUMAN:
[Balance: $900 Left] AttributeError: type object 'VNode' has no attribute 'append'

(3) Constructive queries:

========== TURN 18 ==========
AGENT:
In the failing test case `test_disable_all_enable_invalid`, what is the exact value and

type of `node.root().file` when the error occurs? Can you show me the value of the
tuple or provide more details about its structure?

↪→
↪→
HUMAN:
[Balance: $500 Left] `node.root().file` is expected to be a string, but when the error

occurs, it is actually a tuple. The exact structure of the tuple might not be fully
visible in the error message, but it likely contains multiple elements that should
have been a single file path string.

↪→
↪→
↪→

(4) Action-oriented queries:

========== TURN 17 ==========
AGENT:
Could you help me locate the `get_data_path` function in the spaCy codebase? And could you

please help confirm if I need to import dependencies for this function?↪→
HUMAN:
[Balance: $700 Left] The `get_data_path` function is located in the `spacy.util` module.

But you don't need to import other dependencies. You only need to accommodate the new
imports from `spacy.util`.

↪→
↪→

(5) Instruction-oriented queries:

========== TURN 2 ==========
AGENT:

27

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Based on the error messages showing \"TypeError: Lookups.get...\" in NER-related tests,
could you tell me if there's a specific Lookups class or method that's being called in
these failing tests, and what is the expected behavior of this Lookups functionality
that I should aim to implement?

↪→
↪→
↪→
HUMAN:
[Balance: $800 Left] There is a specific `get_table` method in the Lookups class that's

being called in these failing tests. The expected implementation of this method is to
retrieve a table by its name and potentially use a default value if the table doesn't
exist.

↪→
↪→
↪→

Table C4. Agent Query Characteristics. The summarization of agents’ clarifying questions in their pursuits of out-of-sync recovery
success.

QUALITY CHARACTERISTICS

LOW

Vague Queries: Queries that are unclear, lack explicit details, or are expressed in a confusing manner, reducing
the effectiveness of human responses in assisting agent’s out-of-sync recovery.
Irrelevant Queries: Queries that are unrelated to the current context, task, or solution, providing scarcely useful
information for addressing agent’s immediate confusion or progressing toward a solution.
Redundant Queries: Queries that seek information already provided or covered, hardly contributing to new value
or progress. These queries may stem from a failure to recognize or process previously shared information.
Repetitive Queries: Queries that are asked multiple times, often in identical or slightly rephrased forms, without
any significant change in context, which can result in unnecessary duplication and inefficiency.
Over-Specific Queries: Queries that are unnecessarily detailed or hyper-focused on minor aspects, which leads to
human responses distracted from the main problem or delay the recovery progress by over-complicating agent’s
current confusions.
Speculative Queries: Queries based on agent’s assumptions, guesses, or hypothetical situations that fail to align
with current task, potentially leading to confusion or ineffective human assistance.

HIGH

Explicit Queries: Queries that are well-structured, unambiguous, and provide the exact information needed to
articulate the question or confusion clearly, allowing human collaborators to quickly understand and effectively
respond.
Targeted Queries: Queries that are specific and target agent’s immediate confusion or objective, ensuring human’s
response addresses the key problem without unnecessary distractions.
Constructive Queries: Queries that build upon prior information, human responses, and/or recovery failures,
progressively narrowing down the essential recovery direction or advancing the recovery progress toward
resolution.
Action-Oriented Queries: Queries that focus on actionable solutions or next steps, helping drive the out-of-sync
recovery process forward effectively.
Instruction-Oriented Queries: Queries that can effectively seek human instructions on generating a viable
solution towards out-of-sync recovery success.

C.5. Resource Awareness

Endowing agents with the awareness of resource constraints and the ability for adaptive resource deployment is crucial for
real-world collaborations. Implementing resource-aware agent out-of-sync recovery (§4.7), our investigation reveals signifi-
cant limitations in agents’ resource management capabilities across multiple dimensions, suggesting future improvement
directions for resource-efficient collaborations.

Time Awareness. Comparing agents’ time allocation (Fig. C3) and overall performance (Fig. C4) between the maximum
30 and 50 available turns discloses complex patterns in agents’ temporal resource utilization. Contrary to intuitive
expectations, extending available recovery time provides no guarantee for performance enhancement (Tab. C5), as increasing
the maximum time limit from 30 to 50 turns shows diminishing returns on Llama-3.1-8B’s success rates (Independent:
−0.33%, Collaborative: −1.00%) while significant improvements on Llama-3.1-70B’s SR scores (Independent: +3.67%,
Collaborative: +4.67%). The effectiveness of out-of-sync recovery appears more dependent on LLM agents’ technical
capabilities and strategic time allocation than total available time. This can be substantiated by agents like Llama-3.1-
70B (Independent: 88.68% Env interaction; Collaborative: 100.00% assistance asking and 94.64% Env interaction) that
strategically concentrate exploration in early stages (the first half of time) while postponing their solution proposal to later
phases. Claude-3.5-Sonnet (SR = 33.70%) also supports this observation through allocating 93.62% assistance seeking
turns in its first half of recovery time among its success cases. This emphasis on early-stage exploration proves more critical

28

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Table C5. Resource-Aware Out-of-Sync Recovery: Time Awareness. Performance summarization of resource-aware out-of-sync
recovery. Unstated resource settings: (1) initial budget: $1000, (2) the cost of proposing a solution: $100, (3) the cost of seeking
collaborator assistance: $100.

Agent Recovery Time Limit: 30 Turn (%) Time Limit: 50 Turn (%) ∆Time (%)

file func SR file func SR file func SR

Llama-3.1-8B
Independent 8.67 4.67 0.33 8.67 7.00 0.67 +0.00 +2.33 +0.34
Collaborative 27.00 21.33 1.33 25.33 20.33 0.33 -1.67 -1.00 -1.00
∆collaborator +18.33 +16.66 +1.00 +16.66 +16.33 -0.34 -1.66 -0.33 -1.34

Llama-3.1-70B
Independent 8.33 5.00 2.67 28.00 18.00 7.33 +19.67 +13.00 +4.66
Collaborative 12.33 5.67 3.33 29.67 20.00 7.00 +17.34 +14.33 +3.67
∆collaborator +4.00 +0.67 +2.33 +1.67 +2.00 -0.33 -2.33 +1.33 -2.66

Table C6. Resource-Aware Out-of-Sync Recovery: Budget Awareness. Performance summarization of resource-aware out-of-sync
recovery with varying initial budget settings. Unstated resource settings: (1) maximum time limit: $30 turns, (2) the cost of proposing a
solution: $100, (3) the cost of seeking collaborator assistance: $100.

Agent Recovery Budget: $ 1000 (%) Budget: $ 3000 (%) ∆Budget (%)

file func SR file func SR file func SR

Llama-3.1-8B
Independent 8.67 4.67 0.33 13.00 7.67 0.67 +4.33 +3.00 +0.34
Collaborative 27.00 21.33 1.33 37.33 28.33 0.67 +10.33 +7.00 -0.66
∆collaborator +18.33 +16.66 +1.00 +24.33 +20.66 +0.00 +6.00 +4.00 -1.33

Llama-3.1-70B
Independent 8.33 5.00 2.67 25.33 15.67 4.00 +17.00 +10.67 +1.33
Collaborative 12.33 5.67 3.33 29.33 19.67 5.00 +17.00 +14.00 +1.67
∆collaborator +4.00 +0.67 +2.33 +4.00 +4.00 +1.00 +0.00 +3.33 -1.33

Table C7. Resource-Aware Out-of-Sync Recovery: Action Cost. Performance summarization of resource-aware out-of-sync recovery
with varying assistance-seeking cost settings. Unstated resource settings: (1) maximum time limit: $30 turns, (2) initial budget: $1000, (3)
the cost of proposing a solution: $100

Agent Recovery Asking Cost: $ 50 (%) Asking Cost: $ 100 (%) Asking Cost: $ 200 (%)

file func SR file func SR file func SR

Llama-3.1-8B Collaborative 29.67 22.00 0.33 27.00 21.33 1.33 24.33 19.00 0.33
∆collaborator +21.00 +17.33 +0.00 +18.33 +16.66 +1.00 +15.66 +14.33 +0.00

Llama-3.1-70B Collaborative 19.00 9.67 1.33 12.33 5.67 3.33 17.00 10.33 4.33
∆collaborator +10.67 +4.67 -1.34 +4.00 +0.67 +2.33 +8.67 +5.33 +1.66

than the mere extension of available time. In light of time allocation for different actions, extended recovery time notably
encourages agents’ Env interaction choices with reduced proactive assistance seeking and solution proposal (Fig. C3).
The negligible performance impact of this shift highlights both the importance of adaptive action distribution and agents’
limitations in optimizing extended time usage for knowledge acquisition and recovery planning. The consistent impairing
effects of increased time availability on advantageous collaborator assistance further underlines the significance of adaptive
and strategic action planning in extended recovery journeys.

Cost Sensitivity. Our investigation of budget-cost financial awareness reveals surprisingly low cost sensitivity among agents.
Varying initial budgets between $1000 and $3000 (Tab. C6 & Fig. C5), where $3000 enables limitless action taking across
30 turns of recovery, produces minimal performance differences (≤ +1.67% on SR), suggesting agents’ scarce sensitivity to
effective financial management. Similarly, halving or doubling the cost of proactively seeking collaborator assistance ($50,
$100, $200) results in trivial changes to both assistance-seeking behaviors (time allocation difference≤ 0.26%, Fig. C7) and
overall recovery performance (≤ 2.00% on SR, Tab. C7 and Fig. C5). This consistent cost insensitivity among LLM agents
indicates fundamental limitations in their abilities to strategically estimate and adaptively plan resource utilization.

Strategic Action Planning and Resource Efficiency. The sequence and timing of recovery actions significantly influence

29

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure C3. Effects of Time Increment on Time Allocation. As a supplement to Fig. 7, this figure further illustrates the time allocation
changes of LLM agents when provided with more turns of interaction allowed.

Figure C4. Effects of Time Increment on Overall Performance. As a supplement to Fig. 7, this figure further elaborates the effects of
increased available time on the recovery performance of Llama-3.1-8B and Llama-3.1-70B: (a) the maximum time limit is set to 30 turns,
(b) the maximum time limit is extended to 50 turns.

30

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Figure C5. Effects of Financial Variation on Overall Performance. In exploring the financial awareness of agents, the out-of-sync
recovery performance of different financial settings is visualized above with the changing initial budget or assistance seeking (AS) cost.

Figure C6. Effects of Budget Sufficiency on Time Allocation. This figure visualizes the influence of budget variations on LLM agents’
time allocation changes.

Figure C7. Effects of Action Cost on Time Allocation. This figure visualizes how different action cost settings of an agent’s proactive
assistance seeking affect the agent’s time allocation.

31

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

recovery progress (§C.2-C.4). While high-performing agents typically allocate 75% − 95% of their time to codebase
exploration and context understanding through Env interaction and proactive assistance seeking (Fig. 7), successful
recoveries prioritize early-stage codebase exploration (Fig. C2) that helps establish essential contextual understanding
before attempting to propose a solution. However, existing LLM agents’ limited temporal and financial resource awareness
(Fig. C3, Fig. C6, Fig. C7) leave substantial room for future improvements in strategic action planning and resource-efficient
collaborations.

These findings reveal that current LLM agents lack meaningful resource awareness (§4.7), with their performance primarily
determined by underlying capabilities without strategic resource management. These limitations present significant
opportunities for enhancing agents’ resource-aware planning and decision-making in collaborative systems.

C.6. Recovery Efficiency

Based on our efficiency evaluation metric (Eq. 5), we evaluate the recovery efficiency of different LLM agents in Tab. C8
(under the standard experiment setting: 30-turn maximum, with an initial budget of $1000, along with the same $100 action
cost for both solution proposal and assistance seeking), where (1) time efficiency, denoted as Efftime(%), is calculated as
the average percentage of time taken in all out-of-sync tasks to the total 30-turn available time, and (2) expense efficiency,
calculated as Effexpense(%), is the percentage of the average financial expenditure among all recovery tasks. As spending
less time and costs leads to high-efficiency out-of-sync recoveries, the actual recovery efficiency at both temporal and
financial dimensions are inversely proportional to the calculated Efftime and Effexpense scores, respectively.

Our analysis of agents’ out-of-sync recovery efficiency also supports our previous observations and discussions (§4.7 &
§C.5), providing insights for future development of resource-efficient collaborative systems.

Table C8. Out-of-Sync Recovery Efficiency. This table summarizes agents’ recovery efficiency in their standard 30-turn out-of-sync
tasks. Following Tab. C1, ∆collaborator represents the influence of collaborator assistance.

Agent Independent (%) Collaborative (%) ∆collaborator (%)

Efftime Effexpense SR Efftime Effexpense SR Efftime Effexpense SR

Llama-3.1-8B 99.38 93.97 0.33 99.43 93.53 1.33 +0.05 -0.44 +1.00
Llama-3.1-70B 98.36 89.87 2.67 97.92 91.37 3.33 -0.44 +1.50 +0.66
GPT-4o mini 97.98 3.57 3.99 97.49 8.73 5.32 -0.49 +5.16 +1.33

DeepSeek 94.81 25.23 7.33 95.03 30.30 7.67 +0.22 +5.07 +0.34
GPT-4o 97.62 67.60 4.00 95.79 67.40 8.00 -1.83 -0.20 +4.00

Llama-3.3-70B 90.32 45.23 16.33 88.33 47.87 19.00 -1.99 +2.64 +2.67
Claude-3.5-Sonnet 82.73 51.47 28.18 81.79 59.47 33.70 -0.94 +8.00 +5.52

Figure C8. Repo-Wise Performance. Visualization of LLM agents’ average performance at the repository level.

C.7. Repo-Wise Analysis

We visualize repository-wise average performance on all LLM agents in Fig. C8, which illustrates consistent variation trends
among evaluation metrics, suggesting an inverse correlation between an agent’s recovery performance and out-of-sync task
complexity (§4.6).

32

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

D. Interaction Examples
D.1. Instructions on Out-of-Sync Recovery

In both independent and collaborative recoveries, we instruct agents to complete the task by acknowledging the primary
task objectives and interactive constraints. For independent agents, we emphasize in prompts the two available recovery
actions: Env exploration and solution proposal. As to collaborative agents, the additional action of proactively seeking
collaborator assistance is further provided to support their recovery completion.

Instruction Base. The basic instruction prompt illuminates the primary task objectives and interactive constraints.

SYSTEM:
You are a helpful assistant.
Task: You are generating Python code for the Python repository `test_repo` at

`{self.container_workspace}` to fix the initial execution error of `test_repo` given
by the USER. Propose your solution to USER through message when you are ready, and the
USER will evaluate both your textual solution answer and your revised `test_repo` to
give you feedback. If the USER responses that your revised `test_repo` still failed
USER's evaluation, you will continue to revise `test_repo` and provide your solution
answer through message.

↪→
↪→
↪→
↪→
↪→
↪→

Notice:
Your task is to revise `test_repo` to fix the initial execution error, and you MUST

complete this task on your own without asking for human help. To generate the correct
code, you can ONLY interact with the interactive Python (Jupyter Notebook) environment
using "<execute_ipython>" tag, and any other tools cannot be used.

↪→
↪→
↪→

...

Important Rules:
You CANNOT exit this task until the USER confirm that your revised `test_repo` have passed

USER's evaluation.↪→
You CANNOT evaluate your revised `test_repo` on your own and state that `test_repo` passes

USER's evaluation and exit this task. Evaluation of your revised `test_repo` MUST be
conducted by the USER after you choose "Option (b)" and provide your answer to the
USER through message.

↪→
↪→
↪→
Please noted that it is very unwise to run all unit tests on your side even just for

testing or ckecking because other code files in `test_repo` that are irrelevant to the
error log provided by the USER may currently be under USER's revision and therefore
cause unit test errors. However, your task is to fix ONLY the error given by the USER.

↪→
↪→
↪→
The Python virtual environment for this task has already been set up for you and you can

find the virtual environment at `/workspace/test_venv`. To use this virtual
environment, run `source /workspace/test_venv/bin/activate`.

↪→
↪→
Noted that the Python environment is well-prepared with all necessary dependencies

installed, and therefore you CANNOT install any additional Python packages to assist
your code revision.

↪→
↪→
ONLY when the user confirmed that your revised Python repository `test_repo` has

successfully passed USER's evaluation can you end this task and run the following
command to exit: <execute_bash> exit </execute_bash>.

↪→
↪→

Independent Recovery. Recovery instruction prompt for independent agents explains in detail the foundational recovery
action choices and functioning constraints as follows:

At each turn, you have two options (a) and (b):
(a) Interact with the Python programming environment and receive corresponding output

to assist your code revision.↪→
(b) Propose your solution, including (1) directly revising the responsible Python code

of `test_repo` inside this Python repository at {self.container_workspace}, and
(2) providing your textual solution answer that incorporates both the absoluate
path of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→

33

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

If you choose "Option (a) Interaction with the Python programming environment", you should
provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>.

↪→
↪→
↪→
↪→
On the other hand, if you choose "Option (b) Provide your solution", you should:

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`{self.container_workspace}`.

↪→
↪→
(2) Provide the absolute path of your revised Python file and the name of your revised

function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example:

↪→
↪→
↪→
↪→

<text>
/workspace/test_repo/src/run_inference.py
inference_prepare
</text>

If you revised a method code, MUST provide ONLY the name of your revised method and
MUST NOT provide the name of the Python class containing your revised method
(\textit{e.g.,} `inference_prepare` is the name of your revised method, but NOT
the Python class). If you modified more than one files or functions/methods, MUST
write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example:

↪→
↪→
↪→
↪→
↪→

<text>
/workspace/test_repo/src/run_inference.py
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util
</text>

Either you choose to `(a) Interact with the Python environment` or `(b) Propose your
solution`, you MUST send a message to the USER to evaluate your solution and provide
feedback.

↪→
↪→

...

In the beginning, you have an initial budget of $1000. Before correctly propose a
solution, each of your `(b) Proposing a solution` attempts costs $100. Meanwhile,
although you may make as many `(a) Python environment interaction` turns as you want
at no cost, you have in total 30 turns to complete this task. You will fail this task
if you use up all your $1000 balance or reach the maximum 30-turn limit without
generating a correct `(b) Proposing a solution` response. Therefore, please arrange
each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→

Collaborative Recovery. Recovery instruction prompt for collaborative agents includes recovery choices for both
independent actions and collaborative interactions.

At each turn, you have three options (a), (b), and (c):
(a) Interact with the Python programming environment and receive corresponding output

to assist your code revision.↪→
(b) Propose your solution, including (1) directly revising the responsible Python code

of `test_repo` inside this Python repository at {self.container_workspace}, and
(2) providing your textual solution answer that incorporates both the absoluate
path of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→
(c) Ask human a question and receive the corresponding answer to assist your code

revision.↪→
If you choose "Option (a) Interaction with the Python programming environment", you should

provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>

↪→
↪→
↪→
↪→
If you choose "Option (b) Propose your solution", you should:

34

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`{self.container_workspace}`.

↪→
↪→
(2) Provide the absolute path of your revised Python file and the name of your revised

function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example:

↪→
↪→
↪→
↪→

<text>
/workspace/test_repo/src/run_inference.py
inference_prepare
</text>

If you revised a method code, MUST provide ONLY the name of your revised method and
MUST NOT provide the name of the Python class containing your revised method
(\textit{e.g.,} `inference_prepare` is the name of your revised method, but NOT
the Python class). If you modified more than one files or functions/methods, MUST
write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example:

↪→
↪→
↪→
↪→
↪→

<text>
/workspace/test_repo/src/run_inference.py
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util
</text>

If you choose "Option (c) Ask for human assistance", you should provide your question
through message, which should be enclosed using "<question>" tag and started with
"[QUESTION]", for example: <question> [QUESTION] What programming languages are used
in `test_repo`? </question>.

↪→
↪→
↪→
No matter which option you choose among (a) (b) and (c), you MUST send a message to the

USER to evaluate your response and provide feedback.↪→

...

In the beginning, you have an initial budget of $1000. Before correctly propose a
solution, each of your `(b) Proposing a solution` attempts costs $100, while each of
your `(c) Asking for human's assistance` attempts costs $100. Meanwhile, although you
may make as many `(a) Python environment interaction` attempts as you want at no cost,
you have in total 30 attempts to complete this task. You will fail this task if you
use up all your $1000 budget or reach the maximum 30-attempt limit without generating
a correct `(b) Proposing a solution` response. Therefore, please arrange each of your
actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Tips Try `(c) Ask for human assistance` at any turns! This can definitely help
accelerate your progress of proposing a correct solution and complete your task!↪→

D.2. Resource Awareness

To notify agents their resource consumption and conditions, we incorporate resource awareness into our task instructions
and collaborator responses to help establish agents’ awareness of resources.

For task instruction, we emphasize at the very end the resource constrains for current out-of-sync recovery task:

For independent agents:

In the beginning, you have an initial budget of $1000. Before correctly propose a
solution, each of your `(b) Proposing a solution` attempts costs $100. Meanwhile,
although you may make as many `(a) Python environment interaction` turns as you want
at no cost, you have in total 30 turns to complete this task. You will fail this task
if you use up all your $1000 balance or reach the maximum 30-turn limit without
generating a correct `(b) Proposing a solution` response. Therefore, please arrange
each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→

For collaborative agents:

35

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

In the beginning, you have an initial budget of $1000. Before correctly propose a
solution, each of your `(b) Proposing a solution` attempts costs $100, while each of
your `(c) Asking for human's assistance` attempts costs $100. Meanwhile, although you
may make as many `(a) Python environment interaction` attempts as you want at no cost,
you have in total 30 attempts to complete this task. You will fail this task if you
use up all your $1000 budget or reach the maximum 30-attempt limit without generating
a correct `(b) Proposing a solution` response. Therefore, please arrange each of your
actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

In collaborators’ responses, the remaining balance of current task is specifically displayed at the very beginning to remind
agents of their resource consumption. For example, after two solution proposal attempts without success, an independent
agent would receive:

[Balance: $800 Left] Your revised `test_repo` still failed USER's evaluation test.

D.3. USER Prompt

User inputs provide agents with important task-specific information, including initial budget and codebase execution error.
The relevant locations and names of potential responsible functions are also implied in the provided error log, while the
exact out-of-sync function of the current task requires the agent’s exploration to effectively identify the root causes and
accurately localize its relative path.

Here is a user prompt example for the out-of-sync recovery task on Callee - psf / requests dataset:

[Budget: $1000] Your revised `test_repo` failed execution test as follows:
==================== short test summary info ============================
FAILED tests/test_requests.py::TestRequests::test_mixed_case_scheme_acceptable[http://]
FAILED tests/test_requests.py::TestRequests::test_mixed_case_scheme_acceptable[HTTP://]
FAILED tests/test_requests.py::TestRequests::test_mixed_case_scheme_acceptable[hTTp://]
FAILED tests/test_requests.py::TestRequests::test_mixed_case_scheme_acceptable[HttP://]
FAILED tests/test_requests.py::TestRequests::test_HTTP_200_OK_GET_ALTERNATIVE
FAILED tests/test_requests.py::TestRequests::test_HTTP_302_ALLOW_REDIRECT_GET
FAILED tests/test_requests.py::TestRequests::test_HTTP_307_ALLOW_REDIRECT_POST
FAILED

tests/test_requests.py::TestRequests::test_HTTP_307_ALLOW_REDIRECT_POST_WITH_SEEKABLE↪→
FAILED tests/test_requests.py::TestRequests::test_HTTP_302_TOO_MANY_REDIRECTS
FAILED tests/test_requests.py::TestRequests::test_HTTP_302_TOO_MANY_REDIRECTS_WITH_PARAMS
FAILED tests/test_requests.py::TestRequests::test_http_301_changes_post_to_get
FAILED tests/test_requests.py::TestRequests::test_http_301_doesnt_change_head_to_get
FAILED tests/test_requests.py::TestRequests::test_http_302_changes_post_to_get
FAILED tests/test_requests.py::TestRequests::test_http_302_doesnt_change_head_to_get
FAILED tests/test_requests.py::TestRequests::test_http_303_changes_post_to_get
FAILED tests/test_requests.py::TestRequests::test_http_303_doesnt_change_head_to_get
FAILED tests/test_requests.py::TestRequests::test_header_and_body_removal_on_redirect
FAILED tests/test_requests.py::TestRequests::test_transfer_enc_removal_on_redirect
FAILED tests/test_requests.py::TestRequests::test_fragment_maintained_on_redirect
FAILED tests/test_requests.py::TestRequests::test_HTTP_200_OK_GET_WITH_PARAMS
FAILED tests/test_requests.py::TestRequests::test_HTTP_200_OK_GET_WITH_MIXED_PARAMS
FAILED tests/test_requests.py::TestRequests::test_set_cookie_on_301 - TypeErr...
FAILED tests/test_requests.py::TestRequests::test_cookie_sent_on_redirect - T...
FAILED tests/test_requests.py::TestRequests::test_cookie_removed_on_expire - ...
FAILED tests/test_requests.py::TestRequests::test_cookie_quote_wrapped - Type...
FAILED tests/test_requests.py::TestRequests::test_cookie_persists_via_api - T...
FAILED tests/test_requests.py::TestRequests::test_request_cookie_overrides_session_cookie
FAILED tests/test_requests.py::TestRequests::test_request_cookies_not_persisted
FAILED tests/test_requests.py::TestRequests::test_generic_cookiejar_works - T...
FAILED tests/test_requests.py::TestRequests::test_param_cookiejar_works - Typ...
FAILED tests/test_requests.py::TestRequests::test_cookielib_cookiejar_on_redirect
FAILED tests/test_requests.py::TestRequests::test_requests_in_history_are_not_overridden
FAILED tests/test_requests.py::TestRequests::test_history_is_always_a_list - ...
FAILED tests/test_requests.py::TestRequests::test_user_agent_transfers[User-agent]
FAILED tests/test_requests.py::TestRequests::test_user_agent_transfers[user-agent]

36

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

FAILED tests/test_requests.py::TestRequests::test_HTTP_200_OK_HEAD - TypeErro...
FAILED tests/test_requests.py::TestRequests::test_HTTP_200_OK_PUT - TypeError...
FAILED tests/test_requests.py::TestRequests::test_BASICAUTH_TUPLE_HTTP_200_OK_GET
FAILED tests/test_requests.py::TestRequests::test_errors[http://doesnotexist.google.com-C ⌋

onnectionError]↪→
FAILED

tests/test_requests.py::TestRequests::test_errors[http://localhost:1-ConnectionError]↪→
FAILED tests/test_requests.py::TestRequests::test_proxy_error - TypeError: _u...
FAILED tests/test_requests.py::TestRequests::test_proxy_error_on_bad_url - Ty...
FAILED tests/test_requests.py::TestRequests::test_respect_proxy_env_on_send_self_prepared ⌋

_request↪→
FAILED tests/test_requests.py::TestRequests::test_respect_proxy_env_on_send_session_prepa ⌋

red_request↪→
FAILED tests/test_requests.py::TestRequests::test_respect_proxy_env_on_send_with_redirects
FAILED tests/test_requests.py::TestRequests::test_respect_proxy_env_on_get - ...
FAILED tests/test_requests.py::TestRequests::test_respect_proxy_env_on_request
FAILED tests/test_requests.py::TestRequests::test_proxy_authorization_preserved_on_request
FAILED tests/test_requests.py::TestRequests::test_basicauth_with_netrc - Type...
FAILED tests/test_requests.py::TestRequests::test_DIGEST_HTTP_200_OK_GET - Ty...
FAILED tests/test_requests.py::TestRequests::test_DIGEST_AUTH_RETURNS_COOKIE
FAILED tests/test_requests.py::TestRequests::test_DIGEST_AUTH_SETS_SESSION_COOKIES
FAILED tests/test_requests.py::TestRequests::test_DIGEST_STREAM - TypeError: ...
FAILED tests/test_requests.py::TestRequests::test_DIGESTAUTH_WRONG_HTTP_401_GET
FAILED tests/test_requests.py::TestRequests::test_DIGESTAUTH_QUOTES_QOP_VALUE
FAILED tests/test_requests.py::TestRequests::test_POSTBIN_GET_POST_FILES - Ty...
FAILED tests/test_requests.py::TestRequests::test_invalid_files_input - TypeE...
FAILED tests/test_requests.py::TestRequests::test_POSTBIN_SEEKED_OBJECT_WITH_NO_ITER
FAILED tests/test_requests.py::TestRequests::test_POSTBIN_GET_POST_FILES_WITH_DATA
FAILED tests/test_requests.py::TestRequests::test_post_with_custom_mapping - ...
FAILED tests/test_requests.py::TestRequests::test_request_ok_set - TypeError:...
FAILED tests/test_requests.py::TestRequests::test_status_raising - TypeError:...
FAILED tests/test_requests.py::TestRequests::test_decompress_gzip - TypeError...
FAILED tests/test_requests.py::TestRequests::test_unicode_get[/get-params0]
FAILED tests/test_requests.py::TestRequests::test_unicode_get[/get-params1]
FAILED tests/test_requests.py::TestRequests::test_unicode_get[/get-params2]
FAILED tests/test_requests.py::TestRequests::test_unicode_get[/get-params3]
FAILED tests/test_requests.py::TestRequests::test_unicode_get[\\xf8-params4]
FAILED tests/test_requests.py::TestRequests::test_unicode_header_name - TypeE...
FAILED tests/test_requests.py::TestRequests::test_pyopenssl_redirect - TypeEr...
FAILED tests/test_requests.py::TestRequests::test_invalid_ca_certificate_path
FAILED tests/test_requests.py::TestRequests::test_invalid_ssl_certificate_files
FAILED tests/test_requests.py::TestRequests::test_http_with_certificate - Typ...
FAILED tests/test_requests.py::TestRequests::test_certificate_failure - TypeE...
FAILED tests/test_requests.py::TestRequests::test_urlencoded_get_query_multivalued_param
FAILED tests/test_requests.py::TestRequests::test_different_encodings_dont_break_post
FAILED tests/test_requests.py::TestRequests::test_unicode_multipart_post[data0]
FAILED tests/test_requests.py::TestRequests::test_unicode_multipart_post[data1]
FAILED tests/test_requests.py::TestRequests::test_unicode_multipart_post[data2]
FAILED tests/test_requests.py::TestRequests::test_unicode_multipart_post[data3]
FAILED tests/test_requests.py::TestRequests::test_unicode_method_name - TypeE...
FAILED tests/test_requests.py::TestRequests::test_unicode_method_name_with_request_object
FAILED tests/test_requests.py::TestRequests::test_custom_content_type - TypeE...
FAILED tests/test_requests.py::TestRequests::test_hook_receives_request_arguments
FAILED tests/test_requests.py::TestRequests::test_prepared_request_hook - Typ...
FAILED tests/test_requests.py::TestRequests::test_prepared_from_session - Typ...
FAILED tests/test_requests.py::TestRequests::test_request_with_bytestring_host
FAILED tests/test_requests.py::TestRequests::test_time_elapsed_blank - TypeEr...
FAILED tests/test_requests.py::TestRequests::test_request_and_response_are_pickleable
FAILED tests/test_requests.py::TestRequests::test_prepared_request_is_pickleable
FAILED tests/test_requests.py::TestRequests::test_prepared_request_with_file_is_pickleable
FAILED tests/test_requests.py::TestRequests::test_prepared_request_with_hook_is_pickleable
FAILED tests/test_requests.py::TestRequests::test_session_pickling - TypeErro...
FAILED tests/test_requests.py::TestRequests::test_fixes_1329 - TypeError: _ur...
FAILED tests/test_requests.py::TestRequests::test_uppercase_scheme_redirect
FAILED tests/test_requests.py::TestRequests::test_header_remove_is_case_insensitive

37

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

FAILED tests/test_requests.py::TestRequests::test_params_are_merged_case_sensitive
FAILED tests/test_requests.py::TestRequests::test_header_validation - TypeErr...
FAILED tests/test_requests.py::TestRequests::test_header_with_subclass_types
FAILED tests/test_requests.py::TestRequests::test_auth_is_stripped_on_http_downgrade
FAILED tests/test_requests.py::TestRequests::test_auth_is_retained_for_redirect_on_host
FAILED tests/test_requests.py::TestRequests::test_manual_redirect_with_partial_body_read
FAILED tests/test_requests.py::TestRequests::test_redirect_with_wrong_gzipped_header
FAILED tests/test_requests.py::TestRequests::test_requests_history_is_saved
FAILED tests/test_requests.py::TestRequests::test_json_param_post_content_type_works
FAILED tests/test_requests.py::TestRequests::test_response_iter_lines - TypeE...
FAILED tests/test_requests.py::TestRequests::test_response_context_manager - ...
FAILED tests/test_requests.py::TestRequests::test_unconsumed_session_response_closes_conn ⌋

ection↪→
FAILED tests/test_requests.py::TestRequests::test_response_json_when_content_is_None
FAILED tests/test_requests.py::TestRequests::test_custom_redirect_mixin - Typ...
FAILED tests/test_requests.py::TestTimeout::test_stream_timeout - TypeError: ...
FAILED tests/test_requests.py::TestTimeout::test_invalid_timeout[timeout0-(connect, read)]
FAILED tests/test_requests.py::TestTimeout::test_invalid_timeout[foo-must be an int, float

or None]↪→
FAILED tests/test_requests.py::TestTimeout::test_none_timeout[None] - TypeErr...
FAILED tests/test_requests.py::TestTimeout::test_none_timeout[timeout1] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_read_timeout[timeout0] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_read_timeout[timeout1] - Typ...
FAILED tests/test_requests.py::TestTimeout::test_connect_timeout[timeout0] - ...
FAILED tests/test_requests.py::TestTimeout::test_connect_timeout[timeout1] - ...
FAILED tests/test_requests.py::TestTimeout::test_total_timeout_connect[timeout0]
FAILED tests/test_requests.py::TestTimeout::test_total_timeout_connect[timeout1]
FAILED tests/test_requests.py::TestTimeout::test_encoded_methods - TypeError:...
FAILED tests/test_requests.py::test_urllib3_retries - TypeError: _urllib3_req...
FAILED tests/test_requests.py::test_urllib3_pool_connection_closed - TypeErro...
FAILED tests/test_requests.py::TestPreparingURLs::test_redirecting_to_bad_url[http://:1-I ⌋

nvalidURL]↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_json_decode_compatibility
FAILED tests/test_requests.py::TestPreparingURLs::test_json_decode_persists_doc_attr
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_True↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_bundle_expired_cert↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_tls_ ⌋

settings_verify_bundle_unexpired_cert↪→
FAILED tests/test_requests.py::TestPreparingURLs::test_different_connection_pool_for_mtls ⌋

_settings↪→
====== 131 failed, 196 passed, 1 skipped, 1 xfailed, 8 warnings in 30.10s ======

D.4. Reasoning for Out-of-Sync Recovery

Agents’ successful recoveries from their out-of-sync states depend heavily on their reasoning effectiveness, particularly how
efficiently they gather information and how well they understand and utilize it. By examining both their thought patterns
and solution implementations throughout their out-of-sync recovery journeys, we analyze their reasoning process in detail. It
is evident in two key areas: (1) their exploratory thinking while interacting with the Env or collaborators, showing how
they plan interactions and analyze problems; and (2) their reflective thinking about failed solutions, demonstrating their
progressive reasoning toward recovery success.

The following example showcases an agent’s thoughts on out-of-sync causes, reasoning through seeking collaborator
assistance and developing recovery solutions, while its misinterpretation of collaborator responses (e.g., collaborator
suggests no missing imports) leads to its ultimate recovery failure.

...
========== TURN 17 ==========
AGENT THOUGHTS:

38

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

I've found the `test_applycli_docbin` test starting at line 797. Let me check the test
implementation and the imports at the top of the file. The error message indicates
that `get_data_path` is missing from the imports. This function is likely needed for
the test cases.

↪→
↪→
↪→
Let me ask a question to get more information: ...
========== TURN 18 ==========
AGENT THOUGHTS:
...
Thank you for the information. Now I can fix the missing import. I'll add `get_data_path`

to the imports from `spacy.util`↪→
...
========== TURN 19 ==========
Now that I've added the missing import, I should propose my solution since I've fixed the

import error:↪→
<text>
/workspace/test_repo/spacy/tests/test_cli.py
test_applycli_docbin
</text>
==========
...

The following reasoning thoughts are extracted from a successful out-of-sync recovery, which illuminates coherent reasoning
process through combining high-quality queries and Env exploration to gather information of significance and reasoning
about potential solutions towards out-of-sync recovery success:

...
========== TURN 1 ==========
AGENT THOUGHTS:
Let me start by examining the test file that's showing errors.
========== TURN 2 ==========
AGENT THOUGHTS:
Let me scroll down to find the relevant test case that's failing.
========== TURN 3 ==========
...
========== TURN 10 ==========
AGENT THOUGHTS:
Let me continue scrolling to find the failing test case about certificate bundles.
========== TURN 11 ==========
AGENT THOUGHTS:
I found the failing test case `test_env_cert_bundles`. Let me ask a question to better

understand the issue.↪→
...
========== TURN 12 ==========
AGENT THOUGHTS:
I understand the issue now. The test is failing because it's trying to use a pytest

fixture `mocker` but it's not properly set up. Let me check the test file to see where
this fixture should be defined.

↪→
↪→
========== TURN 13 ==========
AGENT THOUGHTS:
...
I see the issue. The test is using pytest's `mocker` fixture but it's not installed. Let

me check if pytest-mock is installed.↪→
========== TURN 14 ==========
AGENT THOUGHTS:
...
I see that pytest-mock is not installed. Let me modify the test file to use a different

approach without relying on the mocker fixture.↪→
========== TURN 15 ==========
AGENT THOUGHTS:
...
Let me fix the syntax error in my edit.
========== TURN 16 ==========
AGENT THOUGHTS:

39

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

I've modified the test to use direct environment variable manipulation instead of mocking.
Now let me propose this as the solution:↪→

<text>
/workspace/test_repo/tests/test_requests.py
test_env_cert_bundles
</text>
==========
...

D.5. LLMs as Know-Everything Collaborators

Leveraging LLMs as know-everything collaborators (§3.3) to assist agents’ out-of-sync recoveries, we provide them with
complete task-specific knowledge to establish the know-everything answerer for each out-of-sync task. As shown in the
following prompting example, not only do we incorporate all necessary contextual information and ground-truth solution
into the prompts, but we also define concrete restrictions on their response formation.

SYSTEM:
You are a helpful assistant. You are helping the USER to provide question answering

assistance to USER's students.↪→

Grading Context:
In the Python repository `test_repo` locating at `/workspace/test_repo`, there is an

out-of-sync function `assert_format` (denoted as `original_code`) in the Python file
`util.py` locating at `/workspace/test_repo/tests/util.py`.

↪→
↪→
This out-of-sync `original_code` of the function `assert_format` is as follows:

`original_code`=↪→
```
def assert_format(

source: str,
expected: str,
mode: black.Mode = DEFAULT_MODE,
*,
fast: bool = False,
minimum_version: Optional[Tuple[int, int]] = None,

) -> None:
"""Convenience function to check that Black formats as expected.

You can pass @minimum_version if you're passing code with newer syntax to guard safety
guards so they don't just crash with a SyntaxError. Please note this is separate
from TargetVerson Mode configuration.

↪→
↪→
"""
actual = black.format_str(source, mode=mode)
_assert_format_equal(expected, actual)
# It's not useful to run safety checks if we're expecting no changes anyway. The
# assertion right above will raise if reality does actually make changes. This just
# avoids wasted CPU cycles.
if not fast and source != expected:
# Unfortunately the AST equivalence check relies on the built-in ast module
# being able to parse the code being formatted. This doesn't always work out
# when checking modern code on older versions.
if minimum_version is None or sys.version_info >= minimum_version:

black.assert_equivalent(source, actual)
black.assert_stable(source, actual, mode=mode)

```
This `original_code` is out-of-sync because the Python repository `test_repo` has been

updated except the function `assert_format` still remains as the old-version
`original_code`. Therefore, running unit test on the updated `test_repo` that contains
this out-of-sync `original_code` reports the following error (denoted as
`initial_execution_error`): `initial_execution_error`=

↪→
↪→
↪→
↪→
============================= test session starts ==============================platform

linux -- Python 3.11.9, pytest-8.3.2, pluggy-1.5.0 -- /workspace/test_venv/bin/python↪→
cachedir: .pytest_cache
hypothesis profile 'default' -> database=DirectoryBasedExampleDatabase(PosixPath('/worksp ⌋

ace/test_repo/.hypothesis/examples'))↪→
rootdir: /workspace/test_repo

40

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

configfile: pyproject.toml
plugins: hypothesis-6.112.0, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collecting ... collected 176 items

tests/test_format.py::test_simple_format[pep_572_py39] FAILED [0%]
tests/test_format.py::test_simple_format[walrus_in_dict] FAILED [1%]
tests/test_format.py::test_simple_format[multiline_consecutive_open_parentheses_ignore]

FAILED [1%]↪→
tests/test_format.py::test_simple_format[context_managers_38] FAILED [2%]
tests/test_format.py::test_simple_format[module_docstring_1] FAILED [2%]
tests/test_format.py::test_simple_format[line_ranges_diff_edge_case] FAILED [3%]
tests/test_format.py::test_simple_format[pep_570] FAILED [3%]
tests/test_format.py::test_simple_format[dummy_implementations] FAILED [4%]
tests/test_format.py::test_simple_format[starred_for_target] FAILED [5%]
tests/test_format.py::test_simple_format[backslash_before_indent] FAILED [5%]
tests/test_format.py::test_simple_format[trailing_comma_optional_parens3] FAILED [6%]
tests/test_format.py::test_simple_format[pattern_matching_with_if_stmt] FAILED [6%]\
tests/test_format.py::test_simple_format[preview_cantfit_string] FAILED [7%]
tests/test_format.py::test_simple_format[line_ranges_imports] FAILED [7%]
tests/test_format.py::test_simple_format[context_managers_autodetect_38] FAILED [8%]
tests/test_format.py::test_simple_format[string_prefixes] FAILED [9%]
tests/test_format.py::test_simple_format[nested_stub] FAILED [9%]
tests/test_format.py::test_simple_format[pep_572_do_not_remove_parens] FAILED [10%]
tests/test_format.py::test_simple_format[tupleassign] FAILED [10%]
tests/test_format.py::test_simple_format[pep_572_remove_parens] FAILED [11%]
tests/test_format.py::test_simple_format[pep_572] FAILED [11%]
tests/test_format.py::test_simple_format[context_managers_autodetect_310] FAILED [12%]
tests/test_format.py::test_simple_format[stub] FAILED [13%]
tests/test_format.py::test_simple_format[comment_after_escaped_newline] FAILED [13%]
tests/test_format.py::test_simple_format[preview_cantfit] FAILED [14%]
tests/test_format.py::test_simple_format[composition_no_trailing_comma] FAILED [14%]
tests/test_format.py::test_simple_format[numeric_literals] FAILED [15%]
tests/test_format.py::test_simple_format[keep_newline_after_match] FAILED [15%]
tests/test_format.py::test_simple_format[torture] FAILED [16%]
tests/test_format.py::test_simple_format[line_ranges_unwrapping] FAILED [17%]
tests/test_format.py::test_simple_format[comments8] FAILED [17%]
tests/test_format.py::test_simple_format[remove_newline_after_code_block_open] FAILED [

18%]↪→
tests/test_format.py::test_simple_format[is_simple_lookup_for_doublestar_expression]

FAILED [18%]↪→
tests/test_format.py::test_simple_format[funcdef_return_type_trailing_comma] FAILED [19%]
tests/test_format.py::test_simple_format[module_docstring_2] FAILED [19%]
tests/test_format.py::test_simple_format[form_feeds] FAILED
...
FAILED tests/test_format.py::test_simple_format[fmtskip2] - TypeError: assert...
FAILED tests/test_format.py::test_simple_format[power_op_spacing_long] - Type...
FAILED tests/test_format.py::test_simple_format[docstring_preview] - TypeErro...
FAILED tests/test_format.py::test_simple_format[remove_except_parens] - TypeE...
FAILED tests/test_format.py::test_simple_format[preview_hug_parens_with_braces_and_square ⌋

_brackets]↪→
FAILED tests/test_format.py::test_simple_format[context_managers_autodetect_39]
FAILED tests/test_format.py::test_simple_format[docstring_newline_preview] - ...
FAILED tests/test_format.py::test_simple_format[module_docstring_followed_by_class]
FAILED tests/test_format.py::test_simple_format[import_spacing] - TypeError: ...
FAILED tests/test_format.py::test_simple_format[numeric_literals_skip_underscores]
FAILED

tests/test_format.py::test_simple_format[preview_pep646_typed_star_arg_type_var_tuple]↪→
FAILED tests/test_format.py::test_simple_format[async_stmts] - TypeError: ass...
FAILED tests/test_format.py::test_line_ranges_line_by_line[pattern_matching]
FAILED tests/test_format.py::test_line_ranges_line_by_line[basic] - TypeError...
======================== 174 failed, 2 passed in 1.47s =========================

41

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Two Questions for Students: Running unit test on the Python repository `test_repo`
(here the updated `test_repo` that contains the out-of-sync `original_code` is
provided to students) reports the following error (here `initial_execution_error` is
provided to students). Students are asked to: (1) localize the responsible
function/method code that caused this error, and provide your answer of both the
Python file path of the responsible function/method code and the name of the
responsible function/method code, and (2) revise the responsible function/method code
you just localized to fix `initial_execution_error`.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Ground-truth Answers for Two Questions
(1) Python file path: `/workspace/test_repo/tests/util.py`

Name of the responsible function: assert_format
(2) `ground_truth_revised_code`=

```
def assert_format(

source: str,
expected: str,
mode: black.Mode = DEFAULT_MODE,
*,
fast: bool = False,
minimum_version: Optional[Tuple[int, int]] = None,
lines: Collection[Tuple[int, int]] = (),
no_preview_line_length_1: bool = False,

) -> None:
"""Convenience function to check that Black formats as expected.

You can pass @minimum_version if you're passing code with newer syntax to guard
safety guards so they don't just crash with a SyntaxError. Please note this is
separate from TargetVerson Mode configuration.
"""
_assert_format_inner(

source, expected, mode, fast=fast, minimum_version=minimum_version,
lines=lines↪→

)

# For both preview and non-preview tests, ensure that Black doesn't crash on
# this code, but don't pass "expected" because the precise output may differ.
try:

if mode.unstable:
new_mode = replace(mode, unstable=False, preview=False)

else:
new_mode = replace(mode, preview=not mode.preview)

_assert_format_inner(
source,
None,
new_mode,
fast=fast,
minimum_version=minimum_version,
lines=lines,

)
except Exception as e:

text = (
"unstable"
if mode.unstable
else "non-preview" if mode.preview else "preview"

)
raise FormatFailure(

f"Black crashed formatting this case in {text} mode."
) from e

# Similarly, setting line length to 1 is a good way to catch
# stability bugs. Some tests are known to be broken in preview mode with line

length↪→
# of 1 though, and have marked that with a flag --no-preview-line-length-1
preview_modes = [False]
if not no_preview_line_length_1:

42



SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

preview_modes.append(True)

for preview_mode in preview_modes:

try:
_assert_format_inner(

source,
None,
replace(mode, preview=preview_mode,

line_length=1, unstable=False),
fast=fast,
minimum_version=minimum_version,
lines=lines,

)
except Exception as e:

text = "preview" if preview_mode else "non-preview"
raise FormatFailure(

f"Black crashed formatting this case in {text} mode with
line-length=1."↪→

) from e
```

Question Answering Assistance: To help students better answer these two questions,
each student is allowed to ask you a question. However, your answer to each student's
question has following restrictions:

↪→
↪→
(1) You CAN ONLY answer the specific piece of information asked by the student, and CANNOT

include any other information NOT asked by the student.↪→
(2) You CANNOT provide any misleading information if you are unsure of its correctness.

TO DO: Please answer each student's question provided by the user.

**Important: ** MUST give ONLY your answer as your response. MUST NOT give any other
things like rhetorical questions, question analysis, enclosure symbols, etc.↪→

E. Out-of-Sync Recovery Examples
E.1. Success Cases

(1) Independent Recovery Success

Here is an interaction example of a successful independent out-of-sync recovery completion on explosion/spaCy, performed
by Claude-3.5-Sonnet:

SYSTEM:
You are a helpful assistant.
Task: You are generating Python code for the Python repository `test_repo` at

`/workspace/test_repo` to fix the initial execution error of `test_repo` given by the
USER. Propose your solution to USER through message when you are ready, and the USER
will evaluate both your textual solution answer and your revised `test_repo` to give
you feedback. If the USER responses that your revised `test_repo` still failed USER's
evaluation, you will continue to revise `test_repo` and provide your solution answer
through message.

↪→
↪→
↪→
↪→
↪→
↪→

Notice:
Your task is to revise `test_repo` to fix the initial execution error, and you MUST

complete this task on your own without asking for human help. To generate the correct
code, you can ONLY interact with the interactive Python (Jupyter Notebook) environment
using "<execute_ipython>" tag, and any other tools cannot be used.

↪→
↪→
↪→
At each turn, you have two options (a) and (b):

(a) Interact with the Python programming environment and receive corresponding output
to assist your code revision.↪→

43

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(b) Propose your solution, including (1) directly revising the responsible Python code
of `test_repo` inside this Python repository at /workspace/test_repo, and (2)
providing your textual solution answer that incorporates both the absoluate path
of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→

If you choose "Option (a) Interaction with the Python programming environment", you should
provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>

↪→
↪→
↪→
↪→
On the other hand, if you choose "Option (b) Provide your solution", you should:

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`/workspace/test_repo`.

↪→
↪→
(2) Provide the absolute path of your revised Python file and the name of your revised

function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example: <text> /workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→

inference_prepare </text>. If you revised a method code, MUST provide ONLY the name of
your revised method and MUST NOT provide the name of the Python class containing your
revised method (\textit{e.g.,} `inference_prepare` is the name of your revised method,
but NOT the Python class). If you modified more than one files or functions/methods,
MUST write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example: <text>
/workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→
↪→
↪→
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util </text>.
Either you choose to `(a) Interact with the Python environment` or `(b) Propose your

solution`, you MUST send a message to the USER to evaluate your solution and provide
feedback.

↪→
↪→

Important Rules
You CANNOT exit this task until the USER confirm that your revised `test_repo` have passed

USER's evaluation.↪→
You CANNOT evaluate your revised `test_repo` on your own and state that `test_repo` passes

USER's evaluation and exit this task. Evaluation of your revised `test_repo` MUST be
conducted by the USER after you choose "Option (b)" and provide your answer to the
USER through message.

↪→
↪→
↪→
Please noted that it is very unwise to run all unit tests on your side even just for

testing or ckecking because other code files in `test_repo` that are irrelevant to the
error log provided by the USER may currently be under USER's revision and therefore
cause unit test errors. However, your task is to fix ONLY the error given by the USER.

↪→
↪→
↪→
Python virtual environment for this task has already been set up for you and you can find

the virtual environment at `/workspace/test_venv`. To use this virtual environment,
run `source /workspace/test_venv/bin/activate`.

↪→
↪→
Noted that the Python environment is well-prepared with all necessary dependencies

installed, and therefore you CANNOT install any additional Python packages to assist
your code revision.

↪→
↪→
ONLY when the user confirmed that your revised Python repository `test_repo` has

successfully passed USER's evaluation can you end this task and run the following
command to exit: <execute_bash> exit </execute_bash>.

↪→
↪→

Important Notice In the beginning, you have an initial budget of $1000. Before
correctly propose a solution, each of your `(b) Proposing solution` attempts costs
$100. Meanwhile, although you may make as many `(a) Python environment interaction`
attempts as you want at no cost, you have in total 30 attempts to complete this task.
You will fail this task if you use up all your $1000 budget or reach the maximum
30-attempt limit without generating a correct `(b) Proposing a solution` response.
Therefore, please arrange each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→

USER:
[Budget: $1000] Your revised `test_repo` failed execution test as follows:
[initial execution error]
ImportError while loading conftest '/workspace/test_repo/spacy/tests/conftest.py'.
spacy/__init__.py:13: in <module>

44

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

from . import pipeline # noqa: F401
spacy/pipeline/__init__.py:1: in <module>

from .attributeruler import AttributeRuler
spacy/pipeline/attributeruler.py:8: in <module>

from ..language import Language
spacy/language.py:76: in <module>

DEFAULT_CONFIG = util.load_config(DEFAULT_CONFIG_PATH)
spacy/util.py:718: in load_config

config_path = ensure_path(path)
spacy/util.py:399: in ensure_path

if isinstance(path, basestring_):
E NameError: name 'basestring_' is not defined

========== TURN 1 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/spacy/util.py')
[Thought]
Let me analyze the error and interact with the Python environment to locate the

responsible code.↪→

========== TURN 2 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let me scroll down to find the `ensure_path` function where the error occurs.

========== TURN 3 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
scroll_down()
scroll_down()
[Thought]
Let me continue scrolling to find the `ensure_path` function.

========== TURN 4 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/spacy/util.py',
to_replace="""import functools

import importlib
import importlib.util
import inspect
import itertools
import logging
import os
import pkgutil
import re
import shlex
import shutil
import socket
import stat
import subprocess
import sys
import tempfile
import warnings""",

new_content="""import functools
import importlib
import importlib.util
import inspect
import itertools
import logging

45

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

import os
import pkgutil
import re
import shlex
import shutil
import socket
import stat
import subprocess
import sys
import tempfile
import warnings

Define basestring_ for Python 3 compatibility
basestring_ = str"""
)
[Thought]
I found the issue. In the `ensure_path` function in `/workspace/test_repo/spacy/util.py`,

there's a reference to `basestring_` which is not defined. This variable should be
defined before being used. Let me fix this by adding the definition of `basestring_`
at the beginning of the file.

↪→
↪→
↪→

========== TURN 5 ==========
ASSISTANT:
[MessageAction]
I have fixed the issue by adding the definition of `basestring_` as a string type for

Python 3 compatibility. Here's my solution:↪→

<text>
/workspace/test_repo/spacy/util.py
ensure_path
</text>

The fix adds the line `basestring_ = str` at the beginning of the file to define the
missing `basestring_` variable that was causing the ImportError. This is a common
Python 2 to Python 3 compatibility fix, as `basestring` was removed in Python 3 and we
now use `str` instead.

↪→
↪→
↪→

USER:
[Balance: $900 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 6 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/spacy/compat.py')
[Thought]
Let me check the error more carefully. The issue might be related to Python 2 vs Python 3

compatibility. Let me check the imports and compatibility section of the file.↪→

========== TURN 7 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/spacy/util.py',
to_replace="""def ensure_path(path):
if isinstance(path, basestring_):

return Path(path)
else:

return path""",
new_content="""def ensure_path(path):
if isinstance(path, (str, bytes)):

return Path(path)
else:

return path"""
)

46

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

[Thought]
Let me check the `ensure_path` function again and modify it to use a more modern approach

without relying on `basestring_`. Since we're working with Python 3, we should use
`str` and `Path` types directly.

↪→
↪→

========== TURN 8 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/spacy/util.py',
to_replace="""import functools

import importlib
import importlib.util
import inspect
import itertools
import logging
import os
import pkgutil
import re
import shlex
import shutil
import socket
import stat
import subprocess
import sys
import tempfile
import warnings

Define basestring_ for Python 3 compatibility
basestring_ = str""",

new_content="""import functools
import importlib
import importlib.util
import inspect
import itertools
import logging
import os
import pkgutil
import re
import shlex
import shutil
import socket
import stat
import subprocess
import sys
import tempfile
import warnings"""
)
[Thought]
Let me remove the previously added `basestring_` definition since we're now using a

different approach with `(str, bytes)` in `ensure_path`:↪→

========== TURN 9 ==========
ASSISTANT:
[IPythonCode]
search_file('basestring_', '/workspace/test_repo/spacy/util.py')
[Thought]
Let me check if there are any other references to `basestring_` in the file that need to

be updated:↪→

========== TURN 10 ==========
[IPythonCode]
search_dir('basestring_', '/workspace/test_repo')
[Thought]

47

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Let me check if there are any other Python files in the repository that might be importing
or using `basestring_`:↪→

========== TURN 11 ==========
ASSISTANT:
[MessageAction]
Let me check the full error message again to make sure we're addressing the right issue.

Since we've modified the `ensure_path` function to handle both `str` and `bytes` types,
and there are no other references to `basestring_` in the codebase, let me propose my
solution:

↪→
↪→
↪→

<text>
/workspace/test_repo/spacy/util.py
ensure_path
</text>

I have modified the `ensure_path` function to use Python 3's type checking with
`isinstance(path, (str, bytes))` instead of the Python 2 `basestring_`. This change
maintains compatibility with both string and bytes objects while using modern Python
type checking. The function now properly handles path-like objects, strings, and bytes
objects.

↪→
↪→
↪→
↪→

USER:
[Balance: $800 Left] Well done! Your revised `test_repo` has successfully passed USER's

evaluation test!↪→

(2) Collaborative Recovery Success

Here is an interaction example of a successful collaborative out-of-sync recovery completion on scrapy/scrapy, performed
by GPT-4o:

SYSTEM:
You are a helpful assistant.
Task: You are generating Python code for the Python repository `test_repo` at

`/workspace/test_repo` to fix the initial execution error of `test_repo` given by the
USER. Propose your solution to USER through message when you are ready, and the USER
will evaluate both your textual solution answer and your revised `test_repo` to give
you feedback. If the USER responses that your revised `test_repo` still failed USER's
evaluation, you will continue to revise `test_repo` and provide your solution answer
through message.

↪→
↪→
↪→
↪→
↪→
↪→

Notice:
Your task is to revise `test_repo` to fix the initial execution error, and you may ask for

human help. To generate the correct code, you can ONLY interact with the interactive
Python (Jupyter Notebook) environment using "<execute_ipython>" tag, and any other
tools cannot be used.

↪→
↪→
↪→
At each turn, you have two options (a) and (b):

(a) Interact with the Python programming environment and receive corresponding output
to assist your code revision.↪→

(b) Propose your solution, including (1) directly revising the responsible Python code
of `test_repo` inside this Python repository at /workspace/test_repo, and (2)
providing your textual solution answer that incorporates both the absoluate path
of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→
(c) Ask human a question and receive the corresponding answer to assist your code

revision.↪→
If you choose "Option (a) Interaction with the Python programming environment", you should

provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>

↪→
↪→
↪→
↪→
If you choose "Option (b) Propose your solution", you should:

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`/workspace/test_repo`.

↪→
↪→

48

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(2) Provide the absolute path of your revised Python file and the name of your revised
function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example: <text> /workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→

inference_prepare </text>. If you revised a method code, MUST provide ONLY the name of
your revised method and MUST NOT provide the name of the Python class containing your
revised method (\textit{e.g.,} `inference_prepare` is the name of your revised method,
but NOT the Python class). If you modified more than one files or functions/methods,
MUST write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example:

↪→
↪→
↪→
↪→
↪→
<text>
/workspace/test_repo/src/run_inference.py
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util
</text>.
If you choose "Option (c) Ask for human assistance", you should provide your question

through message, which should be enclosed using "<question>" tag and started with
"[QUESTION]", for example: <question> [QUESTION] Which function or method is
responsible for the initial execution error, and what is its absolute path?
</question>.

↪→
↪→
↪→
↪→
No matter which option you choose among (a) (b) and (c), you MUST send a message to the

USER to evaluate your response and provide feedback.↪→

Important Rules
You CANNOT exit this task until the USER confirm that your revised `test_repo` have passed

USER's evaluation.↪→
You CANNOT evaluate your revised `test_repo` on your own and state that `test_repo` passes

USER's evaluation and exit this task. Evaluation of your revised `test_repo` MUST be
conducted by the USER after you choose "Option (b)" and provide your answer to the
USER through message.

↪→
↪→
↪→
Please noted that it is very unwise to run all unit tests on your side even just for

testing or ckecking because other code files in `test_repo` that are irrelevant to the
error log provided by the USER may currently be under USER's revision and therefore
cause unit test errors. However, your task is to fix ONLY the error given by the USER.

↪→
↪→
↪→
Python virtual environment for this task has already been set up for you and you can find

the virtual environment at `/workspace/test_venv`. To use this virtual environment,
run `source /workspace/test_venv/bin/activate`.

↪→
↪→
Noted that the Python environment is well-prepared with all necessary dependencies

installed, and therefore you CANNOT install any additional Python packages to assist
your code revision.

↪→
↪→
ONLY when the user confirmed that your revised Python repository `test_repo` has

successfully passed USER's evaluation can you end this task and run the following
command to exit: <execute_bash> exit </execute_bash>.

↪→
↪→

Important Notice In the beginning, you have an initial budget of $1000. Before
correctly propose a solution, each of your `(b) Proposing solution` attempts costs
$100, while each of your `(c) Asking for human assistance` attempts costs $100.
Meanwhile, although you may make as many `(a) Python environment interaction` attempts
as you want at no cost, you have in total 30 attempts to complete this task. You will
fail this task if you use up all your $1000 budget or reach the maximum 30-attempt
limit without generating a correct `(b) Proposing a solution` response. Therefore,
please arrange each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Tips Try `(c) Ask for human assistance` at any turns! This can definitely help
accelerate your progress of proposing a correct solution and complete your task!↪→

USER:
[Budget: $1000] Your revised `test_repo` failed execution test as follows:
[initial execution error]
[...] sponse(

request, response, self.spider
)

> self.referrermw.request_scheduled(request, self.spider)

/workspace/test_repo/tests/test_spidermiddleware_referer.py:1036:
_ _

49

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

/workspace/test_repo/scrapy/spidermiddlewares/referer.py:421: in request_scheduled
policy_referrer = self.policy(parent_url, request).referrer(

/workspace/test_repo/scrapy/spidermiddlewares/referer.py:260: in referrer
and self.potentially_trustworthy(request_url)

_ _

self = <scrapy.spidermiddlewares.referer.StrictOriginWhenCrossOriginPolicy object at
0x7f5fc8c7ab10>↪→

r = 'http://scrapytest.org/203'

def potentially_trustworthy(self, r):
Note: this does not follow

https://w3c.github.io/webappsec-secure-contexts/#is-url-trustworthy↪→
> parsed_url = urlparse_cached(r)
E NameError: name 'urlparse_cached' is not defined

/workspace/test_repo/scrapy/spidermiddlewares/referer.py:105: NameError
=========================== short test summary info ============================
FAILED tests/test_spidermiddleware_referer.py::TestSettingsStrictOrigin::test
FAILED

tests/test_spidermiddleware_referer.py::TestSettingsStrictOriginWhenCrossOrigin::test↪→
FAILED tests/test_spidermiddleware_referer.py::TestRequestMetaSrictOrigin::test
FAILED tests/test_spidermiddleware_referer.py::TestRequestMetaStrictOriginWhenCrossOrigin ⌋

::test↪→
FAILED tests/test_spidermiddleware_referer.py::TestReferrerOnRedirectStrictOrigin::test
FAILED tests/test_spidermiddleware_referer.py::TestReferrerOnRedirectStrictOriginWhenCros ⌋

sOrigin::test↪→
========================= 6 failed, 33 passed in 0.35s =========================

========== TURN 1 ==========
ASSISTANCE:
[MessageAction]
<question> [QUESTION] Could you please provide the absolute path of the file and the

function or method name where the `urlparse_cached` function is defined or should be
defined? </question>

↪→
↪→

USER:
[Balance: $900 Left] The absolute path of the file where the `urlparse_cached` function

should be defined is not provided in the given context, and therefore I am unsure of
its correctness.

↪→
↪→

========== TURN 2 ==========
ASSISTANCE:
[IPythonCode]
search_dir('urlparse_cached', '/workspace/test_repo')
[Thought]
Let's start by searching for the `urlparse_cached` function in the `test_repo` directory

to determine if it is defined elsewhere or if it needs to be defined. This will help
us understand where the function should be located or if it needs to be implemented.

↪→
↪→

========== TURN 3 ==========
ASSISTANCE:
[MessageAction]
<env>
The `urlparse_cached` function is defined in the file

`/workspace/test_repo/scrapy/utils/httpobj.py` at line 18. It is also imported and
used in various other files within the `test_repo` directory. The error in the initial
execution log indicates that the function is not recognized in the file
`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`, which suggests that it
might not have been imported there.

↪→
↪→
↪→
↪→
↪→
</env>

I will now check the file `/workspace/test_repo/scrapy/spidermiddlewares/referer.py` to
see if the `urlparse_cached` function is imported. If it is not, I will add the
necessary import statement. Let's open the file and inspect the imports.

↪→
↪→

50

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

USER:
[Balance: $800 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 4 ==========
ASSISTANCE:
[IPythonCode]
open_file('/workspace/test_repo/scrapy/spidermiddlewares/referer.py', 1, 100)
[Thought]
Let's open the file `/workspace/test_repo/scrapy/spidermiddlewares/referer.py` and inspect

the imports to see if `urlparse_cached` is imported. If it is not, I will add the
necessary import statement.

↪→
↪→

========== TURN 5 ==========
ASSISTANCE:
[MessageAction]
<env>
The `urlparse_cached` function is not imported in the file

`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`. This is likely the cause
of the `NameError` encountered during the test execution. To resolve this, I will add
an import statement for `urlparse_cached` from `scrapy.utils.httpobj`.

↪→
↪→
↪→
</env>

I will now add the import statement for `urlparse_cached` in the file
`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`.↪→

USER:
[Balance: $700 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 6 ==========
ASSISTANCE:
[IPythonCode]
insert_content_at_line(

'/workspace/test_repo/scrapy/spidermiddlewares/referer.py',
30,
'from scrapy.utils.httpobj import urlparse_cached\n'

)
[Thought]
Let's add the import statement for `urlparse_cached` in the file

`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`. I will insert the import
statement after the existing imports.

↪→
↪→

========== TURN 7 ==========
ASSISTANCE:
[MessageAction]
<env>
I have added the import statement for `urlparse_cached` in the file

`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`. This should resolve the
`NameError` encountered during the test execution.

↪→
↪→
</env>

I will now propose the solution to the user.

<text>
/workspace/test_repo/scrapy/spidermiddlewares/referer.py
potentially_trustworthy
</text>

USER:
[Balance: $600 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 8 ==========

51

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

ASSISTANCE:
[IPythonCode]
search_file('def potentially_trustworthy',

'/workspace/test_repo/scrapy/spidermiddlewares/referer.py')↪→
[Thought]
Let's further investigate the `potentially_trustworthy` method in the file

`/workspace/test_repo/scrapy/spidermiddlewares/referer.py` to ensure that the
`urlparse_cached` function is used correctly. I will search for the
`potentially_trustworthy` method in the file to review its implementation.

↪→
↪→
↪→

========== TURN 9 ==========
ASSISTANCE:
[IPythonCode]
open_file('/workspace/test_repo/scrapy/spidermiddlewares/referer.py', 104, 100)
[Thought]
Let's open the file `/workspace/test_repo/scrapy/spidermiddlewares/referer.py` at line 104

to review the implementation of the `potentially_trustworthy` method. This will help
us ensure that the `urlparse_cached` function is used correctly within this method.

↪→
↪→

========== TURN 10 ==========
ASSISTANCE:
[MessageAction]
<env>
The `potentially_trustworthy` method uses the `urlparse_cached` function to parse the URL.

The import statement for `urlparse_cached` has been added, so the `NameError` should
be resolved. However, the method also calls `self.tls_protected(r)`, which uses
`urlparse` instead of `urlparse_cached`. This could be inconsistent if
`urlparse_cached` is intended to be used throughout. I will update the `tls_protected`
method to use `urlparse_cached` for consistency.

↪→
↪→
↪→
↪→
↪→
</env>

I will now update the `tls_protected` method to use `urlparse_cached` instead of
`urlparse`. Let's proceed with this change.↪→

USER:
[Balance: $500 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 11 ==========
ASSISTANCE:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/scrapy/spidermiddlewares/referer.py',
to_replace='return urlparse(url).scheme in ("https", "ftps")',
new_content='return urlparse_cached(url).scheme in ("https", "ftps")'

)
[Thought]
Let's update the `tls_protected` method to use `urlparse_cached` instead of `urlparse` for

consistency. I will make this change in the file
`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`.

↪→
↪→

========== TURN 12 ==========
ASSISTANCE:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/scrapy/spidermiddlewares/referer.py',
to_replace=' return urlparse(url).scheme in ("https", "ftps")',
new_content=' return urlparse_cached(url).scheme in ("https", "ftps")'

)
[Thought]
It seems there was an indentation error in the previous edit. Let's correct the

indentation and update the `tls_protected` method to use `urlparse_cached` instead of
`urlparse`.

↪→
↪→

========== TURN 13 ==========

52

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

ASSISTANCE:
[MessageAction]
<env>
I have successfully updated the `tls_protected` method to use `urlparse_cached` instead of

`urlparse`. This should ensure consistency in the URL parsing approach used in the
`potentially_trustworthy` method and its related methods.

↪→
↪→
</env>

I will now propose the solution to the user.

<text>
/workspace/test_repo/scrapy/spidermiddlewares/referer.py
tls_protected
</text>

USER:
[Balance: $400 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 14 ==========
ASSISTANCE:
[IPythonCode]
open_file('/workspace/test_repo/scrapy/utils/httpobj.py', 18, 100)
[Thought]
Let's further investigate the `urlparse_cached` function in the file

`/workspace/test_repo/scrapy/utils/httpobj.py` to ensure it is implemented correctly.
This will help us verify that the function behaves as expected when used in the
`potentially_trustworthy` and `tls_protected` methods. I will open the file and review
the implementation of `urlparse_cached`.

↪→
↪→
↪→
↪→

========== TURN 15 ==========
ASSISTANCE:
[MessageAction]
<env>
The `urlparse_cached` function is implemented to cache the result of `urlparse` for

`Request` or `Response` objects. It uses a `WeakKeyDictionary` to store the parsed
results, which allows the cache to be automatically cleaned up when the objects are no
longer in use. The function appears to be implemented correctly for its intended
purpose.

↪→
↪→
↪→
↪→
</env>

Given that the `urlparse_cached` function is implemented correctly, the issue might be
related to how it is used or the objects being passed to it. Let's check the usage of
`urlparse_cached` in the `potentially_trustworthy` method to ensure that the correct
type of object is being passed. I will review the context around the
`potentially_trustworthy` method to verify this.

↪→
↪→
↪→
↪→

USER:
[Balance: $300 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 16 ==========
ASSISTANCE:
[IPythonCode]
open_file('/workspace/test_repo/scrapy/spidermiddlewares/referer.py', 100, 100)
[Thought]
Let's review the context around the `potentially_trustworthy` method in the file

`/workspace/test_repo/scrapy/spidermiddlewares/referer.py` to ensure that the correct
type of object is being passed to `urlparse_cached`. I will open the file and examine
the relevant section.

↪→
↪→
↪→

========== TURN 17 ==========
ASSISTANCE:
[MessageAction]
<env>

53

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

The `potentially_trustworthy` method uses `urlparse_cached` to parse the URL from the
parameter `r`. The `urlparse_cached` function is designed to work with `Request` or
`Response` objects, but the parameter `r` in `potentially_trustworthy` is a string.
This mismatch could be causing the issue. I will modify the `potentially_trustworthy`
method to use `urlparse` directly for string URLs.

↪→
↪→
↪→
↪→
</env>

I will update the `potentially_trustworthy` method to use `urlparse` instead of
`urlparse_cached` for parsing string URLs. Let's proceed with this change.↪→

USER:
[Balance: $200 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 18 ==========
ASSISTANCE:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/scrapy/spidermiddlewares/referer.py',
to_replace=' parsed_url = urlparse_cached(r)',
new_content=' parsed_url = urlparse(r)'

)
[Thought]
Let's update the `potentially_trustworthy` method to use `urlparse` instead of

`urlparse_cached` for parsing string URLs. This should resolve the issue with the
incorrect usage of `urlparse_cached`. I will make this change in the file
`/workspace/test_repo/scrapy/spidermiddlewares/referer.py`.

↪→
↪→
↪→

========== TURN 19 ==========
ASSISTANCE:
[MessageAction]
<env>
I have updated the `potentially_trustworthy` method to use `urlparse` instead of

`urlparse_cached` for parsing string URLs. This should resolve the issue with the
incorrect usage of `urlparse_cached`.

↪→
↪→
</env>

I will now propose the solution to the user.

<text>
/workspace/test_repo/scrapy/spidermiddlewares/referer.py
potentially_trustworthy
</text>

USER:
[Balance: $100 Left] Well done! Your revised `test_repo` has successfully passed USER's

evaluation test!↪→

E.2. Failure Cases

(1) Independent Recovery Failure

Here is an interaction example of a failed independent out-of-sync recovery completion on pylint-dev/pylint, performed by
Claude-3.5-Sonnet:

SYSTEM:
You are a helpful assistant.
Task: You are generating Python code for the Python repository `test_repo` at

`/workspace/test_repo` to fix the initial execution error of `test_repo` given by the
USER. Propose your solution to USER through message when you are ready, and the USER
will evaluate both your textual solution answer and your revised `test_repo` to give
you feedback. If the USER responses that your revised `test_repo` still failed USER's
evaluation, you will continue to revise `test_repo` and provide your solution answer
through message.

↪→
↪→
↪→
↪→
↪→
↪→

54

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Notice:
Your task is to revise `test_repo` to fix the initial execution error, and you MUST

complete this task on your own without asking for human help. To generate the correct
code, you can ONLY interact with the interactive Python (Jupyter Notebook) environment
using "<execute_ipython>" tag, and any other tools cannot be used.

↪→
↪→
↪→
At each turn, you have two options (a) and (b):

(a) Interact with the Python programming environment and receive corresponding output
to assist your code revision.↪→

(b) Propose your solution, including (1) directly revising the responsible Python code
of `test_repo` inside this Python repository at /workspace/test_repo, and (2)
providing your textual solution answer that incorporates both the absoluate path
of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→

If you choose "Option (a) Interaction with the Python programming environment", you should
provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>

↪→
↪→
↪→
↪→
On the other hand, if you choose "Option (b) Provide your solution", you should:

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`/workspace/test_repo`.

↪→
↪→
(2) Provide the absolute path of your revised Python file and the name of your revised

function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example: <text> /workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→

inference_prepare </text>. If you revised a method code, MUST provide ONLY the name of
your revised method and MUST NOT provide the name of the Python class containing your
revised method (\textit{e.g.,} `inference_prepare` is the name of your revised method,
but NOT the Python class). If you modified more than one files or functions/methods,
MUST write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example: <text>
/workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→
↪→
↪→
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util </text>.
Either you choose to `(a) Interact with the Python environment` or `(b) Propose your

solution`, you MUST send a message to the USER to evaluate your solution and provide
feedback.

↪→
↪→

Important Rules
You CANNOT exit this task until the USER confirm that your revised `test_repo` have passed

USER's evaluation.↪→
You CANNOT evaluate your revised `test_repo` on your own and state that `test_repo` passes

USER's evaluation and exit this task. Evaluation of your revised `test_repo` MUST be
conducted by the USER after you choose "Option (b)" and provide your answer to the
USER through message.

↪→
↪→
↪→
Please noted that it is very unwise to run all unit tests on your side even just for

testing or ckecking because other code files in `test_repo` that are irrelevant to the
error log provided by the USER may currently be under USER's revision and therefore
cause unit test errors. However, your task is to fix ONLY the error given by the USER.

↪→
↪→
↪→
Python virtual environment for this task has already been set up for you and you can find

the virtual environment at `/workspace/test_venv`. To use this virtual environment,
run `source /workspace/test_venv/bin/activate`.

↪→
↪→
Noted that the Python environment is well-prepared with all necessary dependencies

installed, and therefore you CANNOT install any additional Python packages to assist
your code revision.

↪→
↪→
ONLY when the user confirmed that your revised Python repository `test_repo` has

successfully passed USER's evaluation can you end this task and run the following
command to exit: <execute_bash> exit </execute_bash>.

↪→
↪→

55

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

Important Notice In the beginning, you have an initial budget of $1000. Before
correctly propose a solution, each of your `(b) Proposing solution` attempts costs
$100. Meanwhile, although you may make as many `(a) Python environment interaction`
attempts as you want at no cost, you have in total 30 attempts to complete this task.
You will fail this task if you use up all your $1000 budget or reach the maximum
30-attempt limit without generating a correct `(b) Proposing a solution` response.
Therefore, please arrange each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→

USER:
[Budget: $1000] Your revised `test_repo` failed execution test as follows:
[initial execution error]
==================== short test summary info ============================
ERROR tests/pyreverse/test_writer.py::test_dot_files[packages_No_Name.dot] - ...
ERROR tests/pyreverse/test_writer.py::test_dot_files[classes_No_Name.dot] - N...
ERROR tests/pyreverse/test_writer.py::test_colorized_dot_files[packages_colorized.dot]
ERROR tests/pyreverse/test_writer.py::test_colorized_dot_files[classes_colorized.dot]
ERROR tests/pyreverse/test_writer.py::test_no_standalone_dot_files[classes_no_standalone. ⌋

dot]↪→
ERROR tests/pyreverse/test_writer.py::test_no_standalone_dot_files[packages_no_standalone ⌋

.dot]↪→
ERROR tests/pyreverse/test_writer.py::test_type_check_imports_dot_files[packages_type_che ⌋

ck_imports.dot]↪→
ERROR tests/pyreverse/test_writer.py::test_type_check_imports_dot_files[classes_type_chec ⌋

k_imports.dot]↪→
ERROR tests/pyreverse/test_writer.py::test_puml_files[packages_No_Name.puml]
ERROR tests/pyreverse/test_writer.py::test_puml_files[classes_No_Name.puml]
ERROR tests/pyreverse/test_writer.py::test_mmd_files[packages_No_Name.mmd] - ...
ERROR tests/pyreverse/test_writer.py::test_mmd_files[classes_No_Name.mmd] - N...
ERROR tests/pyreverse/test_writer.py::test_html_files[packages_No_Name.html]
ERROR tests/pyreverse/test_writer.py::test_html_files[classes_No_Name.html]
ERROR tests/pyreverse/test_writer.py::test_colorized_puml_files[packages_colorized.puml]
ERROR tests/pyreverse/test_writer.py::test_colorized_puml_files[classes_colorized.puml]
========================= 2 passed, 16 errors in 0.28s =========================

========== TURN 1 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/tests/pyreverse/test_writer.py')
[Thought]
Let me analyze the error log and interact with the Python environment to locate and fix

the issue.↪→

========== TURN 2 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let me continue reading the test file to understand the test cases better.

========== TURN 3 ==========
[IPythonCode]
scroll_down()
[Thought]
Let me continue reading the test file to understand how the files are compared.

========== TURN 4 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/writer.py')
[Thought]
Let me check the DiagramWriter implementation since all test failures are related to file

generation.↪→

========== TURN 5 ==========
ASSISTANT:

56

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

[IPythonCode]
scroll_down()
[Thought]
Let me continue reading the DiagramWriter implementation.

========== TURN 6 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/printer_factory.py')
[Thought]
Let me check the printer factory implementation since it's responsible for creating the

correct printer based on the output format.↪→

========== TURN 7 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/dot_printer.py')
[Thought]
Let me check the DotPrinter implementation since it's the default printer and most test

failures are related to dot files.↪→

========== TURN 8 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let me continue reading the DotPrinter implementation.

========== TURN 9 ==========
[IPythonCode]
open_file('/workspace/test_repo/tests/pyreverse/data/packages_No_Name.dot')
[Thought]
Let me check the test data directory to understand what the expected output files should

look like.↪→

========== TURN 10 ==========
ASSISTANT:
[Command]
ls -la packages_No_Name.dot
[Thought]
Let me check the actual output file generated by the test to compare with the expected

output.↪→

========== TURN 11 ==========
ASSISTANT:
[Command]
ls -R /workspace/test_repo/tests/pyreverse/data/
[Thought]
Let me check if the test data directory exists and its structure.

========== TURN 12 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/tests/pyreverse/conftest.py')
[Thought]
Let me check the test configuration to understand how the test is set up.

========== TURN 13 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/testutils/pyreverse.py')
[Thought]
Let me check the PyreverseConfig class to understand the default configuration.

========== TURN 14 ==========

57

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/printer.py')
[Thought]
Let me check the printer module to understand the base printer functionality.

========== TURN 15 ==========
ASSISTANT:
[Command]
ls -la /workspace/test_repo/tests/data/
[Thought]
Let me check the actual test data directory structure to understand what files are being

tested.↪→

========== TURN 16 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/writer.py', 1, 60)
[Thought]
Let me analyze the issue. The test failures are related to file generation in different

formats (dot, puml, mmd, html). Looking at the error log and code, I notice that:↪→

1. The test expects output files to be generated in the current directory
2. The test compares generated files with reference files in

`/workspace/test_repo/tests/pyreverse/data/`↪→
3. The DiagramWriter class is responsible for file generation

Let me check if there's an issue with the output directory configuration:

========== TURN 17 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/writer.py',
to_replace=""" if os.path.exists(self.config.output_directory):

file_name = os.path.join(self.config.output_directory, file_name)""",
new_content=""" if self.config.output_directory:

os.makedirs(self.config.output_directory, exist_ok=True)
file_name = os.path.join(self.config.output_directory, file_name)"""

)
[Thought]
I found the issue. In the DiagramWriter class, there's a condition that only joins the

output directory path if it exists:↪→

```python
if os.path.exists(self.config.output_directory):

file_name = os.path.join(self.config.output_directory, file_name)
```

This means if the output directory doesn't exist, it won't be created. Let me fix this by
modifying the code to create the output directory if it doesn't exist:↪→

========== TURN 18 ==========
ASSISTANT:
[MessageAction]
Now I'll provide my solution to fix the initial execution error. The issue was in the

DiagramWriter class where it only used the output directory if it existed, but didn't
create it if it didn't exist. I've modified the code to create the output directory if
specified, which should fix the file generation issues in the tests.

↪→
↪→
↪→

<text>
/workspace/test_repo/pylint/pyreverse/writer.py
write
</text>

58

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

USER:
[Balance: $900 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 19 ==========
ASSISTANT:
[Command]
which dot
[Thought]
Let me check if there's an issue with the dot command availability since the tests use

graphviz.↪→

========== TURN 20 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/dot_printer.py')
[Thought]
Let me check if we need to handle the case when graphviz is not available. I'll look at

the DotPrinter implementation again.↪→

========== TURN 21 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let me check the generate method in DotPrinter to see how it handles file generation.

========== TURN 22 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/dot_printer.py',
to_replace=""" if target not in graphviz_extensions:

subprocess.run(
["dot", "-T", target, dot_sourcepath, "-o", outputfile], check=True

)
os.unlink(dot_sourcepath)""",

new_content=""" if target not in graphviz_extensions and target in {"png",
"svg", "jpg", "jpeg", "gif"}:↪→

subprocess.run(
["dot", "-T", target, dot_sourcepath, "-o", outputfile], check=True

)
os.unlink(dot_sourcepath)

elif target not in graphviz_extensions:
For non-graphviz formats (puml, mmd, html), just rename the dot file
os.rename(dot_sourcepath, outputfile)"""

)
[Thought]
I see the issue. The DotPrinter's generate method tries to run the `dot` command for

non-dot/gv files, but we should only do that for image formats. Let me modify the code
to fix this:

↪→
↪→

========== TURN 23 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/printer_factory.py')
[Thought]
Let me check if we need to handle the file generation differently for different formats.

Let me look at the printer factory again.↪→

========== TURN 24 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/printer_factory.py',

59

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

to_replace="""def get_printer_for_filetype(filetype: str) -> type[Printer]:
return filetype_to_printer.get(filetype, DotPrinter)""",
new_content="""def get_printer_for_filetype(filetype: str) -> type[Printer]:
if filetype not in filetype_to_printer:

raise ValueError(f"Unsupported output format: {filetype}")
return filetype_to_printer[filetype]"""

)
[Thought]
I see the issue now. The DotPrinter is being used as a fallback for all formats, but it

shouldn't be. Each format should have its own printer. Let me modify the printer
factory:

↪→
↪→

========== TURN 25 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/plantuml_printer.py')
[Thought]
Let me check the PlantUML printer implementation since we're having issues with puml

files.↪→

========== TURN 26 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/pylint/pyreverse/printer.py')
[Thought]
I see the issue now. The PlantUML printer is missing the generate method, which means it's

inheriting the generate method from DotPrinter through the Printer base class. Let me
check the base Printer class.

↪→
↪→

========== TURN 27 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/printer.py',
to_replace=""" def generate(self, outputfile: str) -> None:

"""Generate and save the final outputfile."""
self._close_graph()
with open(outputfile, "w", encoding="utf-8") as outfile:

outfile.writelines(self.lines)""",
new_content=""" @abstractmethod
def generate(self, outputfile: str) -> None:

"""Generate and save the final outputfile.""""""
)
[Thought]
I see the issue now. The DotPrinter is overriding the base Printer's generate method with

its own implementation that tries to use graphviz, but other printers like PlantUML,
MermaidJS, and HTML are inheriting the base Printer's generate method. Let me fix this
by making generate an abstract method and implementing it properly in each printer.

↪→
↪→
↪→

========== TURN 28 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/printer.py',
to_replace=' def generate(self, outputfile: str) -> None:\n """Generate and

save the final outputfile."""\n self._close_graph()\n with
open(outputfile, "w", encoding="utf-8") as outfile:\n
outfile.writelines(self.lines)',

↪→
↪→
↪→
new_content=' @abstractmethod\n def generate(self, outputfile: str) -> None:\n

"""Generate and save the final outputfile."""'↪→
)
[Thought]
Let me try the edit again with proper string formatting:

========== TURN 29 ==========

60

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/plantuml_printer.py',
to_replace=' def _close_graph(self) -> None:\n """Emit the lines needed to

properly close the graph."""\n self.emit("@enduml")',↪→
new_content=' def _close_graph(self) -> None:\n """Emit the lines needed to

properly close the graph."""\n self.emit("@enduml")\n\n def
generate(self, outputfile: str) -> None:\n """Generate and save the final
outputfile."""\n self._close_graph()\n with open(outputfile, "w",
encoding="utf-8") as outfile:\n outfile.writelines(self.lines)'

↪→
↪→
↪→
↪→

)
[Thought]
Now that I've made generate an abstract method, I need to implement it in each printer

class. Let me add the generate method to the PlantUML printer:↪→

========== TURN 30 ==========
ASSISTANT:
Now that I've made generate an abstract method, I need to implement it in each printer

class. Let me add the generate method to the PlantUML printer:↪→
<execute_ipython>
edit_file_by_replace(

'/workspace/test_repo/pylint/pyreverse/plantuml_printer.py',
to_replace=' def _close_graph(self) -> None:\n """Emit the lines needed to

properly close the graph."""\n self.emit("@enduml")',↪→
new_content=' def _close_graph(self) -> None:\n """Emit the lines needed to

properly close the graph."""\n self.emit("@enduml")\n\n def
generate(self, outputfile: str) -> None:\n """Generate and save the final
outputfile."""\n self._close_graph()\n with open(outputfile, "w",
encoding="utf-8") as outfile:\n outfile.writelines(self.lines)'

↪→
↪→
↪→
↪→

)
</execute_ipython>

========== FINAL EVALUATION ==========
USER:
[Balance: $900 Left] Your revised `test_repo` still failed USER's evaluation test.

(2) Collaborative Recovery Failure

Here is an interaction example of a failed collaborative out-of-sync recovery completion on mlflow/mlflow, performed by
DeepSeek:

SYSTEM:
You are a helpful assistant.
Task: You are generating Python code for the Python repository `test_repo` at

`/workspace/test_repo` to fix the initial execution error of `test_repo` given by the
USER. Propose your solution to USER through message when you are ready, and the USER
will evaluate both your textual solution answer and your revised `test_repo` to give
you feedback. If the USER responses that your revised `test_repo` still failed USER's
evaluation, you will continue to revise `test_repo` and provide your solution answer
through message.

↪→
↪→
↪→
↪→
↪→
↪→

Notice:
Your task is to revise `test_repo` to fix the initial execution error, and you may ask for

human help. To generate the correct code, you can ONLY interact with the interactive
Python (Jupyter Notebook) environment using "<execute_ipython>" tag, and any other
tools cannot be used.

↪→
↪→
↪→
At each turn, you have two options (a) and (b):

(a) Interact with the Python programming environment and receive corresponding output
to assist your code revision.↪→

(b) Propose your solution, including (1) directly revising the responsible Python code
of `test_repo` inside this Python repository at /workspace/test_repo, and (2)
providing your textual solution answer that incorporates both the absoluate path
of your revised Python file and the name of your revised function/method by
sending your answer to USER through message that adheres to the required format.

↪→
↪→
↪→
↪→

61

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

(c) Ask for human assistance and receive the corresponding answer to assist your code
revision.↪→

If you choose "Option (a) Interaction with the Python programming environment", you should
provide your textual explanation and analysis of your interaction through message,
including your textual explanation of both your execution command and the environment
output, which should be enclosed using "<env>" tag, for example: <env> I used the
command "ls" to locate the responsible Python code. </env>

↪→
↪→
↪→
↪→
If you choose "Option (b) Propose your solution", you should:

(1) Revise the responsible Python code of `test_repo` with proper indentation, which
should be directly implemented inside the Python repository at
`/workspace/test_repo`.

↪→
↪→
(2) Provide the absolute path of your revised Python file and the name of your revised

function/method as your solution by sending your solution answer to USER through
message, which MUST contain ONLY one line of the absolute path followed by another
line of the function/method name without any other texts and be enclosed using
"<text>" tag, for example: <text> /workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→

inference_prepare </text>. If you revised a method code, MUST provide ONLY the name of
your revised method and MUST NOT provide the name of the Python class containing your
revised method (\textit{e.g.,} `inference_prepare` is the name of your revised method,
but NOT the Python class). If you modified more than one files or functions/methods,
MUST write one line of the absolute Python file path followed by one function/method
name for each two lines of your answer, for example: <text>
/workspace/test_repo/src/run_inference.py

↪→
↪→
↪→
↪→
↪→
↪→
inference_prepare
/workspace/test_repo/src/run_inference.py
inference_util </text>.
If you choose "Option (c) Ask for human assistance", you should provide your question

through message, which should be enclosed using "<question>" tag and started with
"[QUESTION]", for example: <question> [QUESTION] Which function or method is
responsible for the initial execution error, and what is its absolute path?
</question>.

↪→
↪→
↪→
↪→
No matter which option you choose among (a) (b) and (c), you MUST send a message to the

USER to evaluate your response and provide feedback.↪→

Important Rules
You CANNOT exit this task until the USER confirm that your revised `test_repo` have passed

USER's evaluation.↪→
You CANNOT evaluate your revised `test_repo` on your own and state that `test_repo` passes

USER's evaluation and exit this task. Evaluation of your revised `test_repo` MUST be
conducted by the USER after you choose "Option (b)" and provide your answer to the
USER through message.

↪→
↪→
↪→
Please noted that it is very unwise to run all unit tests on your side even just for

testing or ckecking because other code files in `test_repo` that are irrelevant to the
error log provided by the USER may currently be under USER's revision and therefore
cause unit test errors. However, your task is to fix ONLY the error given by the USER.

↪→
↪→
↪→
Python virtual environment for this task has already been set up for you and you can find

the virtual environment at `/workspace/test_venv`. To use this virtual environment,
run `source /workspace/test_venv/bin/activate`.

↪→
↪→
Noted that the Python environment is well-prepared with all necessary dependencies

installed, and therefore you CANNOT install any additional Python packages to assist
your code revision.

↪→
↪→
ONLY when the user confirmed that your revised Python repository `test_repo` has

successfully passed USER's evaluation can you end this task and run the following
command to exit: <execute_bash> exit </execute_bash>.

↪→
↪→

Important Notice In the beginning, you have an initial budget of $1000. Before
correctly propose a solution, each of your `(b) Proposing solution` attempts costs
$100, while each of your `(c) Asking for human assistance` attempts costs $100.
Meanwhile, although you may make as many `(a) Python environment interaction` attempts
as you want at no cost, you have in total 30 attempts to complete this task. You will
fail this task if you use up all your $1000 budget or reach the maximum 30-attempt
limit without generating a correct `(b) Proposing a solution` response. Therefore,
please arrange each of your actions wisely.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Tips Try `(c) Ask for human assistance` at any turns! This can definitely help
accelerate your progress of proposing a correct solution and complete your task!↪→

USER:

62

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

[Budget: $1000] Your revised `test_repo` failed execution test as follows:
[initial execution error]
[...] _PY_VERSION, _NEW_PY_VERSION),

],
)
def test_update_mlflow_versions(

monkeypatch, tmp_path, replace_func, expect_dict, new_py_version,
expected_new_version↪→

):
paths_to_change = [Path(filename) for filename in expect_dict]
copy_and_run_change_func(

monkeypatch,
tmp_path,
always copy version.py since we need it in get_current_py_version()
paths_to_change + [Path("mlflow/version.py")],
replace_func,
new_py_version,

)

diff files
for filename, expected_changes in expect_dict.items():

old_file = Path(filename).read_text().splitlines()
new_file = (tmp_path / filename).read_text().splitlines()
diff = list(difflib.context_diff(old_file, new_file, n=0))
changed_lines = {

the [2:] is to cut out the "! " at the beginning of diff lines
int(_DIFF_REGEX.search(diff_line).group(1)): diff[idx + 1][2:]
for idx, diff_line in enumerate(diff)
if _DIFF_REGEX.search(diff_line)

}

formatted_expected_changes = {
line_num: change.format(new_version=expected_new_version)
for line_num, change in expected_changes.items()

}

> assert changed_lines == formatted_expected_changes
...

changed_lines = {4: 'VERSION = "2.16.2.dev0"'}
diff = ['*** \n',
'--- \n',
'***************\n',
'*** 4 ****\n',
'! VERSION = "2.16.1.dev0"',
'--- 4 ----\n',
'! VERSION = "2.16.2.dev0"']

expect_dict = {'mlflow/version.py': {4: 'VERSION = "{new_version}"'}}
expected_changes = {4: 'VERSION = "{new_version}"'}
expected_new_version = '2.16.2'
filename = 'mlflow/version.py'
formatted_expected_changes = {4: 'VERSION = "2.16.2"'}
monkeypatch = <tests.conftest.ExtendedMonkeyPatch object at 0x7f43ddc93450>
new_file = ['# Copyright 2018 Databricks, Inc.',
'import re',
'',
'VERSION = "2.16.2.dev0"',
'',
'',
'def is_release_version():',
' return bool(re.match(r"ˆ\\d+\\.\\d+\\.\\d+$", VERSION))']

new_py_version = '2.16.2'
old_file = ['# Copyright 2018 Databricks, Inc.',
'import re',
'',

63

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

'VERSION = "2.16.1.dev0"',
'',
'',
'def is_release_version():',
' return bool(re.match(r"ˆ\\d+\\.\\d+\\.\\d+$", VERSION))']

paths_to_change = [PosixPath('mlflow/version.py')]
replace_func = <function replace_python at 0x7f43ddcd27a0>
tmp_path = PosixPath('/tmp/pytest-of-root/pytest-0/test_update_mlflow_versions_re7')

...

../test_venv/lib/python3.11/site-packages/_pytest/config/__init__.py:1437
/workspace/test_venv/lib/python3.11/site-packages/_pytest/config/__init__.py:1437:

PytestConfigWarning: Unknown config option: timeout↪→

self._warn_or_fail_if_strict(f"Unknown config option: {key}\n")

-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
============================= slowest 10 durations =============================
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java_pom_xml-expect_dict3-2.16.2-2.16.2]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java-expect_dict0-2.16.2-2.16.2]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java_pom_xml-expect_dict5-2.16.2rc1-2.16.2-SNAPSHOT]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java_pom_xml-expect_dict4-2.16.2.dev0-2.16.2-SNAPSHOT]↪→
0.00s setup tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java-expect_dict0-2.16.2-2.16.2]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java-expect_dict1-2.16.2.dev0-2.16.2-SNAPSHOT]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_js-expect_dict6-2.16.2-2.16.2]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_java-expect_dict2-2.16.2rc1-2.16.2-SNAPSHOT]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_pyproject_toml-expect_dict8-2.16.2-2.16.2]↪→
0.00s call tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[repl ⌋

ace_python-expect_dict7-2.16.2-2.16.2]↪→
======================= command to run failed test cases =======================
pytest 'tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[replace_js- ⌋

expect_dict6-2.16.2-2.16.2]'
'tests/dev/test_update_mlflow_versions.py::test_update_mlflow_versions[replace_python ⌋
-expect_dict7-2.16.2-2.16.2]'

↪→
↪→
↪→

...

Differing items:
{12: "export const Version = '2.16.2.dev0';"} != {12: "export const Version =

'2.16.2';"}↪→

Full diff:
{

- 12: "export const Version = '2.16.2';",
+ 12: "export const Version = '2.16.2.dev0';",
? +++++

}

...

Differing items:
{4: 'VERSION = "2.16.2.dev0"'} != {4: 'VERSION = "2.16.2"'}

Full diff:
{

- 4: 'VERSION = "2.16.2"',

64

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

+ 4: 'VERSION = "2.16.2.dev0"',
? +++++

}

...

========== TURN 1 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/mlflow/version.py')
[Thought]
Let's start by analyzing the error log provided by the USER. The error indicates that the

test `test_update_mlflow_versions` is failing because the expected version string
`"2.16.2"` does not match the actual version string `"2.16.2.dev0"`.

↪→
↪→

To fix this, we need to ensure that the version string in the file `mlflow/version.py` is
correctly formatted according to the expected version.↪→

Let's first locate the file `mlflow/version.py` and check its content:

========== TURN 2 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/mlflow/version.py',
to_replace='VERSION = "2.16.1.dev0"',
new_content='VERSION = "2.16.2"',

)
[Thought]
The file `mlflow/version.py` contains the version string `"2.16.1.dev0"`. The test expects

this version to be updated to `"2.16.2"` without the `.dev0` suffix.↪→

To fix this, we need to modify the `VERSION` string in `mlflow/version.py` to match the
expected version `"2.16.2"`.↪→

Let's update the file:

========== TURN 3 ==========
ASSISTANT:
[MessageAction]
The file `mlflow/version.py` has been updated to set the `VERSION` to `"2.16.2"`, which

should match the expected version in the test.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/mlflow/version.py
</text>

USER:
[Balance: $900 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 4 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/tests/dev/test_update_mlflow_versions.py')
[Thought]
Given that the previous update to `mlflow/version.py` did not resolve the issue, let's

investigate further. The error log indicates that the test
`test_update_mlflow_versions` is failing for multiple cases, including `replace_js`
and `replace_python`.

↪→
↪→
↪→

Let's check the content of the test file `tests/dev/test_update_mlflow_versions.py` to
understand how the version strings are being updated and tested:↪→

65

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

========== TURN 5 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let's scroll down to view the rest of the file:

AGENT [IPythonRunCellAction]:
[IPythonCode]
scroll_down()
[Thought]
Let's scroll down to view the rest of the file:

========== TURN 6 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/dev/update_mlflow_versions.py')
[Thought]
The test file `tests/dev/test_update_mlflow_versions.py` contains multiple test cases that

check the version update functionality for different file types (Java, Java XML,
JavaScript, Python, PyProject TOML, and R). The test cases use parametrized fixtures
to ensure that the version strings are updated correctly.

↪→
↪→
↪→

The error log indicates that the version strings in the JavaScript and Python files are
not being updated correctly. Specifically, the expected version `"2.16.2"` does not
match the actual version `"2.16.2.dev0"`.

↪→
↪→

To fix this, we need to ensure that the version update functions (`replace_js` and
`replace_python`) correctly handle the version strings without adding the `.dev0`
suffix.

↪→
↪→

Let's check the implementation of the `replace_python` function in the file
`dev/update_mlflow_versions.py`:↪→

========== TURN 7 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let's scroll down to view the rest of the file:

========== TURN 8 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_python(old_version: str, new_py_version: str, paths: List[Path])

-> None:\n replace_occurrences(\n files=paths,\n
pattern=re.escape(old_version),\n repl=new_py_version,\n)',

↪→
↪→
new_content='def replace_python(old_version: str, new_py_version: str, paths:

List[Path]) -> None:\n replace_occurrences(\n files=paths,\n
pattern=re.escape(old_version),\n
repl=replace_dev_or_rc_suffix_with(new_py_version, ""),\n)',

↪→
↪→
↪→

)

edit_file_by_replace(
'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_js(old_version: str, new_py_version: str, paths: List[Path]) ->

None:\n replace_occurrences(\n files=paths,\n
pattern=re.escape(old_version),\n repl=new_py_version,\n)',

↪→
↪→
new_content='def replace_js(old_version: str, new_py_version: str, paths: List[Path]) ->

None:\n replace_occurrences(\n files=paths,\n
pattern=re.escape(old_version),\n
repl=replace_dev_or_rc_suffix_with(new_py_version, ""),\n)',

↪→
↪→
↪→

66

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

)
[Thought]
The `replace_python` and `replace_js` functions in `dev/update_mlflow_versions.py` are

responsible for updating the version strings in Python and JavaScript files,
respectively. The issue seems to be that these functions are not correctly handling
the version strings, leading to the `.dev0` suffix being added.

↪→
↪→
↪→

To fix this, we need to ensure that the `replace_python` and `replace_js` functions
correctly update the version strings without adding the `.dev0` suffix.↪→

Let's modify the `replace_python` and `replace_js` functions to handle the version strings
correctly:↪→

========== TURN 9 ==========
ASSISTANT:
[MessageAction]
The `replace_python` and `replace_js` functions have been updated to correctly handle the

version strings without adding the `.dev0` suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/dev/update_mlflow_versions.py
</text>

USER:
[Balance: $800 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 10 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return base_version +
repl if parsed.is_prerelease else version',

↪→
↪→
new_content='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return base_version if
parsed.is_prerelease else version',

↪→
↪→

)
[Thought]
Given that the previous updates to the `replace_python` and `replace_js` functions did not

resolve the issue, let's take a closer look at the `replace_dev_or_rc_suffix_with`
function, which is used to handle the version suffixes.

↪→
↪→

The `replace_dev_or_rc_suffix_with` function currently removes the `.dev0` suffix if it
exists. However, the test expects the version to be updated to `"2.16.2"` without any
suffix.

↪→
↪→

Let's modify the `replace_dev_or_rc_suffix_with` function to ensure that it correctly
handles the version strings without adding any suffix:↪→

========== TURN 11 ==========
ASSISTANT
[MessageAction]
The `replace_dev_or_rc_suffix_with` function has been updated to ensure that it correctly

handles the version strings without adding any suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/dev/update_mlflow_versions.py
</text>

67

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

USER:
[Balance: $700 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 12 ==========
ASSISTANT:
[IPythonCode]
open_file('/workspace/test_repo/tests/dev/test_update_mlflow_versions.py')
[Thought]
Given that the previous updates to the `replace_dev_or_rc_suffix_with` function did not

resolve the issue, let's take a different approach. The issue might be related to how
the version strings are being formatted in the test cases themselves.

↪→
↪→

Let's check the test cases in `tests/dev/test_update_mlflow_versions.py` to ensure that
the expected version strings are correctly formatted:↪→

========== TURN 13 ==========
ASSISTANT:
[IPythonCode]
scroll_down()
[Thought]
Let's scroll down to view the rest of the file:

========== TURN 14 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/tests/dev/test_update_mlflow_versions.py',
to_replace='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION + "-SNAPSHOT"),\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION + "rc1", _NEW_PY_VERSION + "-SNAPSHOT"),\n
(replace_java_pom_xml, _JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n
(\n replace_java_pom_xml,\n _JAVA_XML_FILES,\n
_NEW_PY_VERSION + ".dev0",\n _NEW_PY_VERSION + "-SNAPSHOT",\n),\n
(\n replace_java_pom_xml,\n _JAVA_XML_FILES,\n
_NEW_PY_VERSION + "rc1",\n _NEW_PY_VERSION + "-SNAPSHOT",\n),\n
(replace_js, _JS_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python,
_PYTHON_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n)',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
new_content='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + "rc1", _NEW_PY_VERSION),\n (replace_java_pom_xml,
_JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
".dev0",\n _NEW_PY_VERSION,\n),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
"rc1",\n _NEW_PY_VERSION,\n),\n (replace_js, _JS_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python, _PYTHON_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n)',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

)
[Thought]
The test cases in `tests/dev/test_update_mlflow_versions.py` are parametrized to ensure

that the version strings are updated correctly. The issue might be related to how the
`expected_new_version` is being formatted in the test cases.

↪→
↪→

Let's modify the test cases to ensure that the `expected_new_version` is correctly
formatted without the `.dev0` suffix:↪→

68

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

========== TURN 15 ==========
ASSISTANT:
[MessageAction]
The test cases in `tests/dev/test_update_mlflow_versions.py` have been updated to ensure

that the `expected_new_version` is correctly formatted without the `.dev0` suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/tests/dev/test_update_mlflow_versions.py
</text>

USER:
[Balance: $600 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 16 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/mlflow/version.py',
to_replace='VERSION = "2.16.2"',
new_content='VERSION = "2.16.1"',

)
[Thought]
Given that the previous updates to the test cases did not resolve the issue, let's take a

step back and consider the possibility that the issue might be related to the initial
version string in `mlflow/version.py`. The initial version string might be causing the
test to fail because it includes the `.dev0` suffix.

↪→
↪→
↪→

Let's update the initial version string in `mlflow/version.py` to ensure that it does not
include the `.dev0` suffix:↪→

========== TURN 17 ==========
ASSISTANT:
[MessageAction]
The initial version string in `mlflow/version.py` has been updated to `"2.16.1"`, ensuring

that it does not include the `.dev0` suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/mlflow/version.py
</text>

USER:
[Balance: $500 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 18 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text)',

↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", ""))',

↪→
↪→
↪→
↪→

)

69

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

[Thought]
Given that the previous updates to the initial version string in `mlflow/version.py` did

not resolve the issue, let's consider the possibility that the issue might be related
to how the version strings are being formatted in the `replace_occurrences` function.

↪→
↪→

Let's modify the `replace_occurrences` function to ensure that it correctly handles the
version strings without adding any suffix:↪→

========== TURN 19 ==========
ASSISTANT:
[MessageAction]
The `replace_occurrences` function has been updated to ensure that it correctly handles

the version strings without adding any suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/dev/update_mlflow_versions.py
</text>

USER:
[Balance: $400 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 20 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/tests/dev/test_update_mlflow_versions.py',
to_replace='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + "rc1", _NEW_PY_VERSION),\n (replace_java_pom_xml,
_JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
".dev0",\n _NEW_PY_VERSION,\n),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
"rc1",\n _NEW_PY_VERSION,\n),\n (replace_js, _JS_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python, _PYTHON_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n)',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
new_content='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + "rc1", _NEW_PY_VERSION),\n (replace_java_pom_xml,
_JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
".dev0",\n _NEW_PY_VERSION,\n),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
"rc1",\n _NEW_PY_VERSION,\n),\n (replace_js, _JS_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python, _PYTHON_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n)',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

)
[Thought]
Given that the previous updates to the `replace_occurrences` function did not resolve the

issue, let's consider the possibility that the issue might be related to how the
version strings are being formatted in the test cases themselves.

↪→
↪→

Let's modify the test cases to ensure that the `expected_new_version` is correctly
formatted without the `.dev0` suffix:↪→

70

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

========== TURN 21 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/tests/dev/test_update_mlflow_versions.py',
to_replace='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + "rc1", _NEW_PY_VERSION),\n (replace_java_pom_xml,
_JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
".dev0",\n _NEW_PY_VERSION,\n),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
"rc1",\n _NEW_PY_VERSION,\n),\n (replace_js, _JS_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python, _PYTHON_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n)',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
new_content='@pytest.mark.parametrize(\n ("replace_func", "expect_dict",

"new_py_version", "expected_new_version"),\n [\n (replace_java,
_JAVA_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + ".dev0", _NEW_PY_VERSION),\n (replace_java, _JAVA_FILES,
_NEW_PY_VERSION + "rc1", _NEW_PY_VERSION),\n (replace_java_pom_xml,
_JAVA_XML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
".dev0",\n _NEW_PY_VERSION,\n),\n (\n
replace_java_pom_xml,\n _JAVA_XML_FILES,\n _NEW_PY_VERSION +
"rc1",\n _NEW_PY_VERSION,\n),\n (replace_js, _JS_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_python, _PYTHON_FILES,
_NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_pyproject_toml,
_PYPROJECT_TOML_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n (replace_r,
_R_FILES, _NEW_PY_VERSION, _NEW_PY_VERSION),\n],\n) # Ensure
expected_new_version is correctly formatted',

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

)
[Thought]
Given the error message, it seems that the `to_replace` and `new_content` parameters are

identical, which is not allowed. Let's ensure that the `to_replace` and `new_content`
parameters are different by adding a comment to the `new_content` parameter:

↪→
↪→

========== TURN 22 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return base_version if
parsed.is_prerelease else version',

↪→
↪→
new_content='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return
base_version.replace(".dev0", "") if parsed.is_prerelease else version',

↪→
↪→

)
[Thought]
Given that the previous updates to the test cases did not resolve the issue, let's

consider the possibility that the issue might be related to how the version strings
are being formatted in the `replace_dev_or_rc_suffix_with` function.

↪→
↪→

Let's modify the `replace_dev_or_rc_suffix_with` function to ensure that it correctly
handles the version strings without adding any suffix:↪→

========== TURN 23 ==========
ASSISTANT:
[MessageAction]

71

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

The `replace_dev_or_rc_suffix_with` function has been updated to ensure that it correctly
handles the version strings without adding any suffix.↪→

Let's propose this solution to the USER:

<text>
/workspace/test_repo/dev/update_mlflow_versions.py
</text>

USER:
[Balance: $300 Left] Your revised `test_repo` still failed USER's evaluation test. Please

try again.↪→

========== TURN 24 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", ""))',

↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", ""))',

↪→
↪→
↪→
↪→

)
[Thought]
Given that the previous updates to the `replace_dev_or_rc_suffix_with` function did not

resolve the issue, let's consider the possibility that the issue might be related to
how the version strings are being formatted in the `replace_occurrences` function.

↪→
↪→

Let's modify the `replace_occurrences` function to ensure that it correctly handles the
version strings without adding any suffix:↪→

========== TURN 25 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", ""))',

↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→

)
[Thought]
Given the error message, it seems that the `to_replace` and `new_content` parameters are

identical, which is not allowed. Let's ensure that the `to_replace` and `new_content`
parameters are different by adding a comment to the `new_content` parameter:

↪→
↪→

========== TURN 26 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',

72

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

to_replace='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =
Version(version)\n base_version = parsed.base_version\n return
base_version.replace(".dev0", "") if parsed.is_prerelease else version',

↪→
↪→
new_content='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return
base_version.replace(".dev0", "") if parsed.is_prerelease else version',

↪→
↪→

)
[Thought]
Given that the previous updates to the `replace_occurrences` function did not resolve the

issue, let's consider the possibility that the issue might be related to how the
version strings are being formatted in the `replace_dev_or_rc_suffix_with` function.

↪→
↪→

Let's modify the `replace_dev_or_rc_suffix_with` function to ensure that it correctly
handles the version strings without adding any suffix:↪→

========== TURN 27 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(
'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return
base_version.replace(".dev0", "") if parsed.is_prerelease else version',

↪→
↪→
new_content='def replace_dev_or_rc_suffix_with(version, repl):\n parsed =

Version(version)\n base_version = parsed.base_version\n return
base_version.replace(".dev0", "") if parsed.is_prerelease else version # Ensure
version strings are correctly formatted',

↪→
↪→
↪→

)
[Thought]
Given the error message, it seems that the `to_replace` and `new_content` parameters are

identical, which is not allowed. Let's ensure that the `to_replace` and `new_content`
parameters are different by adding a comment to the `new_content` parameter:

↪→
↪→

========== TURN 28 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→

)
[Thought]
Given that the previous updates to the `replace_dev_or_rc_suffix_with` function did not

resolve the issue, let's consider the possibility that the issue might be related to
how the version strings are being formatted in the `replace_occurrences` function.

↪→
↪→

Let's modify the `replace_occurrences` function to ensure that it correctly handles the
version strings without adding any suffix:↪→

========== TURN 29 ==========
ASSISTANT:
[IPythonCode]
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',

73

SyncMind: Measuring Agent Out-of-Sync Recovery in Collaborative Software Engineering

to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],
repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→

)
[Thought]
Given the error message, it seems that the `to_replace` and `new_content` parameters are

identical, which is not allowed. Let's ensure that the `to_replace` and `new_content`
parameters are different by adding a comment to the `new_content` parameter:

↪→
↪→

========== TURN 30 ==========
ASSISTANT:
Given the error message, it seems that the `to_replace` and `new_content` parameters are

identical, which is not allowed. Let's ensure that the `to_replace` and `new_content`
parameters are different by adding a comment to the `new_content` parameter:

↪→
↪→
<execute_ipython>
edit_file_by_replace(

'/workspace/test_repo/dev/update_mlflow_versions.py',
to_replace='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→
new_content='def replace_occurrences(files: List[Path], pattern: Union[str, re.Pattern],

repl: str) -> None:\n if not isinstance(pattern, re.Pattern):\n pattern =
re.compile(pattern)\n for f in files:\n old_text = f.read_text()\n
if not pattern.search(old_text):\n continue\n new_text =
pattern.sub(repl, old_text)\n f.write_text(new_text.replace(".dev0", "")) #
Ensure version strings are correctly formatted',

↪→
↪→
↪→
↪→
↪→

)
</execute_ipython>

========== FINAL EVALUATION ==========
USER:
[Balance: $300 Left] Your revised `test_repo` still failed USER's evaluation test.

74

	Introduction
	SyncMind: Agent Out-of-Sync Recovery
	Definition of Agent Out-of-Sync
	Agent Out-of-Sync Recovery
	Resource-Aware Recovery

	SyncBench: Agent Out-of-Sync Benchmark
	Benchmark Construction
	Benchmark Datasets
	LLM-Simulated Collaborators
	Evaluation Metrics

	Experiments
	Setup
	Significant Ability Gaps Among Agents Powered by Different LLMs
	In Achieving Recovery Success: Technical, Reasoning, and Collaborative Competences
	Collaborative Assistance Improves Performance— But Agents Seldom Seek Help
	Quality and Strategy of Communication Are Crucial for Recovery Success
	More Challenging Tasks Decrease Performance While Better Manifest Collaboration Benefits
	Agents' Significant Lack of Resource Awareness

	Related Work
	Theory of Mind in Collaborative Systems
	Collaborative Software Engineering Systems

	Conclusion and Discussion
	Discussions and Limitations
	Experiment Configuration
	Pilot for Configuration
	Benchmark Construction
	Out-of-Sync Recovery on SyncBench

	Agent Out-of-Sync Recovery: An In-Depth Analysis
	Conditional Recovery Performance
	Temporal Dynamics of Recovery Actions
	Solution Proposal Dynamics
	Effective Assistance Seeking
	Resource Awareness
	Recovery Efficiency
	Repo-Wise Analysis

	Interaction Examples
	Instructions on Out-of-Sync Recovery
	Resource Awareness
	USER Prompt
	Reasoning for Out-of-Sync Recovery
	LLMs as Know-Everything Collaborators

	Out-of-Sync Recovery Examples
	Success Cases
	Failure Cases

