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H I G H L I G H T S

• This paper introduces the interpretable feature-temporal transformer (IFTT) model, which enhances wind power forecasting by effectively integrating historical
information and future prior information from multiple variables.

• The designed decoupled feature-temporal self-attention (DFTA) module and variable attention network (VAN) ensure the interpretability of temporal information
and multi-variable inputs, allowing for the extraction of important features.

• Experimental results on multiple datasets in different geographical locations demonstrate the superior performance of the proposed IFTT algorithm compared to
various advanced methods, highlighting its potential to improve the accuracy of WPF.

• The interpretability of the IFTT model provides valuable insights for ensuring the safe and reliable utilization of wind power, enabling informed decision-making
and risk assessment in the context of wind power integration into the grid.
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A B S T R A C T

The inherent randomness and volatility of wind power generation present significant challenges to the reliable
and secure operation of the power system. Therefore, it is crucial to have interpretable wind power forecasting
(WPF) to ensure seamless grid integration and effective risk assessment. Existing forecasting models often focus
on improving WPF performance and ignore the interpretability of the model, resulting in ambiguous forecasting.
In this paper, the interpretable feature-temporal transformer (IFTT) for short-term wind power forecasting with
multivariate time series is presented. The model uses an encoder-decoder architecture to effectively integrate
historical information and future prior information from multiple variables. The designed decoupled feature-
temporal self-attention (DFTA) module and variable attention network (VAN) effectively realize the interpret-
ability of temporal information and multi-variable inputs while extracting important features. The Auxiliary
Forecasting Network (AFN) plays a key role in providing pseudo-future wind speed predictions, which serve as an
essential input for the model’s decoder, and enhancing forecasting accuracy through multi-task learning.
Experimental results on multiple datasets in different geographical locations show that the proposed algorithm is
superior to various advanced methods. Besides, the interpretability of the IFTT model offers valuable insights for
ensuring the safety of wind power utilization and supporting informed risk decision-making.

1. Introduction

In response to the global climate change resulting from the con-
ventional use of fossil fuels, the global energy sector is undergoing an
energy revolution [1]. Wind energy, as a clean and renewable energy
source, holds several advantages, including zero emissions, no pollution,

and no fuel cost, positioning it as the third-largest energy source
worldwide, following thermal power and hydroelectric power [2].
However, the inherent randomness and intermittency of wind power
generation present significant challenges to the secure and stable
operation of the power grid. Consequently, the credible and accurate
forecasting of wind power becomes crucial for effective generation
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planning, reliability management, risk mitigation and real-time deci-
sion-making [3].

Wind power forecasting can be divided into different time scales:
ultra-short-term (a few seconds to 30 min ahead), short-term (30 min to
6 h ahead), medium-term (6 h to 1 day ahead), and long-term (1 day or
more ahead) [4–6]. Due to the ability of short-term and ultra-short-term
wind power forecasting to provide reliable transient power information
for power dispatch and grid safety [7], they have received significant
attention. Wind power forecasting methods can be roughly classified
into four types: physical methods, traditional statistical methods, arti-
ficial intelligence methods, and hybrid methods [8–11]. Physical
methods use physical modeling to transform weather parameters into
predicted wind power curves, and then extrapolate to obtain the trend of
the wind power series [6,12]. However, physical modeling is compu-
tationally complex, and its effectiveness is limited in short-term and
ultra-short-term wind power forecasting due to the lack of trend char-
acteristics in historical data [13,14]. Traditional statistical methods,
such as autoregressive moving average (ARMA [15]), autoregressive
integrated moving average (ARIMA [16]), and Hammerstein autore-
gressive models [17], predict by establishing the underlying relationship
between historical data and forecasted power. Traditional statistical
models struggle to handle nonlinear time series, which also hinders their
development in wind power forecasting [8].

With the development of computer science, many artificial intelli-
gence models have been applied to wind power forecasting. Deep
learning, as an important branch of artificial intelligence, has powerful
feature extraction and non-linear mapping capabilities, making it a
research hotspot in the field of wind power forecasting [18]. A study by
Yu et al. [19] proposed an improved LSTM network with an enhanced
forget gate, which analyzed wind power data using this network and
improved the accuracy of wind power forecasting. Kisvari et al. [20]
constructed input features using different wind speeds, generator tem-
peratures, and gearbox temperatures at various heights, and utilized a
GRU network to learn the non-linear mapping relationship between the
input features and wind power, achieving wind power forecasting.
Numerous studies have shown that AI-based models outperform tradi-
tional models in terms of predictive performance [6].

Due to the volatility and suddenness in wind speed, the aforemen-
tioned models often struggle to extract complex feature correlations
from nonlinear and non-stationary wind speed/power data. To over-
come this issue, many WPF studies have focused on hybrid models [21].
Duan et al. [22] combined feature attention mechanisms with Bayesian
neural networks to achieve accurate WPF while also assessing the un-
certainty of the predictions. Wang et al. [23] employed CNN for multi-
scale information fusion, followed by the use of BiLSTM for time
information extraction, and described the uncertainty of wind power
predictions using an asymmetric Laplace distribution. Duan et al. [22]
combined time attention mechanisms with BiLSTM to improve the ac-
curacy of ultra-short-term WPF. Shahid et al. [24] utilized the global
optimization capability of the genetic algorithm (GA) to determine the
optimal time window size and number of neurons in the LSTM network,
thereby enhancing the predictive capacity of the model in short-term
WPF tasks. Abou Houran et al. [25] optimized the CNN-LSTM model
using the Coati Optimization Algorithm (COA) [26], resulting in
improved accuracy in photovoltaic/wind power forecasting. Niu et al.
[27] combined an enhanced variational mode decomposition (VMD),
BiLSTM, and attention mechanisms to achieve reliable wind power in-
terval forecasting. Ding et al. [28] proposed a hybrid forecasting model
based on complementary ensemble empirical mode decomposition
(CEEMD) and kernel extreme learning machine (KELM) with whale
optimization algorithm (WOA) for short-term WPF. Lu et al. [29]
applied VMD to historical wind power data and used the decomposed
signals along with key meteorological factors as inputs to a model that
combined CNN and LSTM for future wind power prediction. Zhang et al.
[30] proposed a hybrid model for WPF by combining discrete wavelet
transform, seasonal autoregressive integrated moving average, and

LSTM. Hybrid models can be effectively developed by synergistically
combining diverse models to comprehensively capture and characterize
the multifaceted fluctuations in wind speed/power [6]. Table 1 provides
a comprehensive summary of numerous studies on WPF, offering an

Table 1
The summary of selected WPF studies.

Classification Timescales Input variables Forecasting Methods

Physical
models

Medium-
term

Physical processes in
atmosphere

Computational fluid
dynamics (CFD) [31]

Medium-
term

Physical processes in
atmosphere

Clustering Pre-
Calculated CFD Method
[32]

Traditional
statistical
models

Short-term
Historical wind
power

Combined with Pattern-
matching and ARMA-
model [15]

Ultra-
short-term

Historical wind
power

ARIMA [16]

Ultra-
short-term

Historical wind
speed and direction

Hammerstein wind
power forecasting model
[17]

Artificial
intelligence
models

Ultra-
short-term

Historical wind
speeds, historical
generator
temperature

Gated Recurrent Unit
(GRU) [20]

Short-term
Historical wind
power

Improved Long Short-
Term Memory-enhanced
forget-gate network
model [19]

Ultra-
short-term

Historical wind
power

BPNN [13]

Hybrid models

Ultra-
short-term

Historical wind
power, historical
wind speed, and
historical
temperature

A novel nonlinear
combination forecasting
method based on PSO-
DBN model is proposed
[22]

Ultra-
short-term

Historical wind
speed and historical
wind power

A hybrid model based on
deep Bayesian model and
feature attention
mechanism [33]

Short-term Historical wind
power

A hybrid model based on
asymmetric Laplace,
multi-convolutional
neural network, and
bidirectional long-short-
term memory network
[23]

Short-term Historical wind
power

An integrated method
based on the
combination of a CEEMD
decomposition model
and WOA-KELM [28]

Ultra-
short-term

Historical wind
speed and historical
wind power

A hybrid model based on
Discrete Wavelet
Transform (DWT),
Seasonal Autoregressive
Integrated Moving
Average (SARIMA), and
Deep-learning-based
Long Short-Term
Memory (LSTM) [30]

Short-term Historical wind
power

A hybrid model based on
VMD and GRU [34]

Ultra-
short-term

Historical wind
power

A novel hybrid model
based on Bernstein
polynomial with mixture
of Gaussians [8]

Short-term

Historical wind
power, historical
wind speed, and
historical wind
direction

A novel hybrid model
based on LSTM and GA
[24]

Ultra-
short-term

Historical wind
power and historical
wind speed

A novel hybrid model
based on PSO and
Adaptive neuro-fuzzy
inference system (ANFIS)
[35]
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overview of the types of input variables, classification, and forecasting
methods employed.

While extensive research has been conducted on WPF, there are still
some existing issues: (1) Existing methods mainly focus on improving
the accuracy of WPF while neglecting the interpretability of the models,
leading to lower credibility of the predicted results. Recently, Lim et al.
[36] proposed an interpretable model for time series modeling called
temporal fusion transformer (TFT), which effectively explains the
importance of different variables at various time lags. However, the
model neglects the influence of information selection and fusion
mechanisms in time series modeling, as it calculates the importance of
time series after the time series modeling process (LSTM module). This
leads to certain inaccuracies in the analysis results of time series infor-
mation importance. (2) Existing WPF methods often only consider the
mapping relationship between historical classical variables (e. g. his-
torical wind power/speed) and wind power, neglecting the highly
coupled relationship between the historical/future states of meteoro-
logical factors, time-related variables, and wind power in the lookback
window and horizon window. There is a lack of research on WPF models
to couple historical and known future information.

To address these issues, this study proposes an interpretable feature-
temporal self-attention transformer (IFTT) for short-term wind power
forecasting with multivariable. The model adopts an encoder-decoder
architecture that effectively integrates historical information of clas-
sical variables (historical wind speed and historical wind power),
meteorological factors, and time-related variables, as well as prior
known future information and pseudo-future information. The designed
AFN serves a dual purpose in the model. It not only provides pseudo-
future wind speed as an input, enhancing the model’s predictive capa-
bilities, but it also establishes a multi-task learning framework by
combining it with the wind power forecasting task. This multi-task
learning approach leverages the high correlation between the two
tasks, providing additional supervision and improving overall perfor-
mance. In the encoder-decoder structure, the DFTA and VAN enable the
interpretability of time series information and historical/future infor-
mation of multivariate input variables. This study provides a basis for
optimizing WPF models and assisting decision-making through inter-
pretive analysis of historical and future information from time series and
meteorological data. The main contributions of this paper are as follows:

1) For the first time, interpretive analysis is performed on different
dimensions in the time series modeling of WPF. This not only iden-
tifies the important variables for WPF by focusing on the importance
of different variables for the predicted results but also analyzes the
impact of different time lags on the predicted results to analyze
sustained temporal patterns and obtain optimal memory window
size.

2) The designed DFTA module decouples multi-variable feature atten-
tion and temporal attention, thereby avoiding the impact of intra-
temporal feature attention on the learning of inter-temporal atten-
tion and ensuring the effective learning of temporal attention.

3) Multiple meteorological data and time-related information are
incorporated into the WPF task, fully utilizing the nonlinear coupling
relationship between multiple relevant variables and wind power to
improve the performance of WPF. The VAN network achieves an
interpretability analysis of each variable.

4) The designed AFN not only provides pseudo-future wind speed to the
model but also forms a multi-task learning paradigm with the wind
power forecasting task, utilizing highly correlated multi-task
learning to provide additional supervision.

The subsequent sections of this study are structured as follows:
Section 2 delves into the intricate details of the proposed methodology.
Section 3 elucidates the dataset, input selection, and preprocessing
techniques employed. Section 4 showcases the principal findings,
accompanied by comprehensive discussions. Lastly, Section 5

encapsulates the key conclusions drawn from this study.

2. Method

2.1. IFTT model

Fig. 1 shows the overall architecture of the IFTT model. From the
figure, it can be observed that the IFTT model adopts an encoder-
decoder architecture. The encoder is responsible for processing histori-
cal time series information, while the decoder handles future time series
information and output results of WPF. Both the encoder and decoder
consist of an input transformation layer, Variable Attention Network
(VAN), Decoupled Feature-Temporal Self-Attention Network (DFTA),
LSTM for temporal information modeling module, Gate Residual
Network (GRN), and Multi-Head Self-Attention (MHA). The input
transformation layer maps the input variables to a high-dimensional
space to facilitate subsequent feature extraction. The VAN is used for
effective selection and fusion of multiple input variables, providing
interpretability for the importance of input variables. To prevent the
influence of intra-temporal feature attention on the learning of inter-
temporal attention and to guarantee the successful learning of tempo-
ral attention, the developed DFTA module decouples multi-variable
feature attention and temporal attention. This module enables effi-
cient temporal importance interpretation and further improves model
performance. The LSTM temporal information modeling module ex-
tracts and models temporal features from historical/future information,
while the GRN selects an appropriate degree of non-linear processing for
feature selection. The encoder and decoder are connected through a
hidden MHA to achieve effective fusion of historical and future infor-
mation. In addition, the decoder includes an auxiliary forecasting
network (AFN) for obtaining pseudo-future wind speed and a linear
layer for final regression, with the obtained pseudo-future wind speed
serving as input to the decoder. This study utilizes the correlation be-
tween wind speed and wind power to form a multitask learning frame-
work, where WPF and pseudo-future wind speed forecasting mutually
supervise each other, thereby improving the performance of WPF.

The input of the IFTT model consists of three parts: historical in-
formation, known future prior information, and pseudo-future wind
speed. The historical information and known future prior information
include classic variables (wind speed and wind power), various meteo-
rological variables (Wind direction, Air temperature, Pressure), and
time-related variables (Hour, Day, Month). The IFTT model not only
achieves accurate WPF but also utilizes the VAN and DFTA to provide
multiple interpretable aspects in wind power forecasting tasks.

2.1.1. Transformation layer
In wind power forecasting, this study integrates classic variables,

meteorological variables, and time-related variables as inputs to the
forecasting model. Therefore, the input variables consist of both discrete
and continuous variables. For discrete variables, this study employs
label encoding and linear transformation to convert each variable into a
Dd

i -dimensional representation vector. The value of Dd
i is obtained using

the empirical guideline from the literature [37]:

Dd
i = min

(

round
(
A*(ni)

B )
, D̃

d
i

)

(1)

where ni and D̃i represent the number of values and the predefined
maximum embedding size of the i-th discrete variable, respectively. The
round( • ) function returns a rounded integer number. A and B are
adjustable parameters.

For continuous variables, a linear mapping layer is used to map the
input variables to a Dc

i -dimensional representation vector. To facilitate
computational convenience, an additional linear transformation is
applied to transform each representation vector into a specific
H-dimensional representation space for ease of computation.

L. Liu et al.
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2.1.2. Gated residual network (GRN)
Due to the inability to determine the exact mapping relationship

between feature vectors and the forecasting target, it is difficult to
determine the degree of non-linear processing required for each feature
vector. In order to give the network flexible non-linear mapping ability,
this study constructs a GRN network with a residual structure and in-
troduces a gate mechanism for information selection. The structure of
the GRN network is shown in Fig. 1, and for any input vector ξ, we have:

GRN(ξ) = Norm(ξ+GLU(η) ) (2)

η = ELU(ξW1 + b1)W2 + b2 (3)

GLU(η) = sigmoid(ηW3 + b3)⨀(ηW4 + b4) (4)

where ELU refers to the exponential linear activation unit [38], Wi and bi
represent the weight and bias of the corresponding layer, and ⊙ denotes
the element-wise Hadamard product. Gated Linear Unit (GLU) utilizes
the sigmoid function to implement the gate mechanism for information
selection. When the information is highly responsive, GLU allows all the
information to pass through; when the information is not responsive, the
output of GLU is almost zero.

2.1.3. Variable attention network (VAN)
The correlation between input variables and the forecasting target

cannot be accurately predicted. In order to achieve effective variable
selection and suppress possible noise effects, inspired by [36], this study
introduces a Variable Attention Network (VAN) to achieve effective
selection and interpretability of input variables. The input of the VAN
network is the feature representation obtained from the original input
variables after the Transformation layer. Let φ(i)

k represent the embed-

ding vector of the i-th variable at time step k, and Ψk =
[
φ(1)

k ,φ(2)
k ,…

,φ(N)

k

]
represent the set of embedding vectors of all input variables at

time step k. All input variables are independently activated with
important information using separate GRU networks:

φ̃(i)
k = GRNi

(
φi

k
)

(5)

At the same time, the importance of each input variable is obtained
using the softmax function to achieve information selection of the input
variables. The output Φk of the VAN network can be expressed as:

Φk =
∑N

j=1
φ̃(i)

k W(i)
k (6)

Wk = Softmax(GRN(Ψk) ) (7)

where Wk is the variable selection weight vector.

2.1.4. Decoupled feature-temporal self-attention (DFTA)
In the standard Self-Attention module (Fig. 2(1)), given the input

matrix X ∈ ℝNTNF×NE , three linear projections are applied to obtain the
query (Q), key (K), and value (V) representations, where NT represents
the number of time dimensions, NF represents the number of feature
dimensions, and NE is the embedding dimension of the features.
Therefore, the projection matrices for Self-Attention can be obtained
using the following equation:

Q = XWQ,K = XWK,V = XWV (8)

The attention mechanism is then calculated as:

Attention(Q,K,V) = AV = softmax
(
QKT
̅̅̅̅
H

√

)

V (9)

where A ∈ ℝNTNF×NTNF ,V∈ ℝNTNF×H, and H is the hidden dimension.
The final output Y of the attention is merged with the backbone

network using a linear projection WO ∈ ℝTF×H:

Y = X+Attention(Q,K,V)WO (10)

In this study, we aim to model the temporal information of multi-
variable features. The standard self-attention module learns attention
between temporal information and attention between different variable
features at the current time step (Fig. 2(1)). This coupling of attention

Fig. 1. The network architecture of IFTT.

L. Liu et al.
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between multi-variable features and temporal information hinders the
effective learning of temporal attention. When the query, key, and value
share the same transformation matrix, the model cannot distinguish
between multi-variable features and temporal context. Interpretable
temporal importance is crucial for time series modeling. To effectively
learn temporal attention in the modeling of multi-variable feature se-
quences, we propose a decoupled feature-temporal self-attention
(DFTA), as shown in Fig. 2(2). We first decompose the input containing
multi-variable features into temporally independent sub-inputs and
learn attention between features within each time step. Then, we apply
temporal attention to the output of feature attention. The DFTA module
effectively avoids the influence of attention between features within a
time step on the learning of temporal attention. It enables the model to
learn temporal attention only between corresponding features across
time steps, further improving its effectiveness.

For a given input matrix X ∈ ℝNTNF×NE , we decompose it into NT

temporally independent input information X(t) ∈ ℝNF×NE , and then
obtain three projections using the following equation:

QF(t) = X(t)WF
Q(t),KF(t) = X(t)WF

K(t),VF(t) = X(t)WF
V(t) (11)

We perform the feature-only attention on all feature positions at each
time step:

AttentionF(t)(Q,K,V) = AF(t)VF(t) = softmax

(
QF(t)KF(t)T

̅̅̅̅
H

√

)

VF(t) (12)

YF(t) = X(t)+AF(t)VF(t)WO
F (13)

where t ∈ {1,2,…,NT} represents different time steps, and
AF(t) ∈ ℝNF×NF .

The output of the feature attention block is then used as input to the
temporal attention block, which performs temporal-only attention op-
erations:

QT = YFWT
Q,KT = YFWT

K,VT = YFWT
V (14)

AttentionT(f)(Q,K,V) = AT(f)VT(f) = softmax

(
QT(f)KT(f)T

̅̅̅̅
H

√

)

VT(f)

(15)

YT(f) = YT(f)+AT(f)VT(f)WO
T (16)

where f ∈ {1,2,…,NF} represents different feature, and AT(f) ∈ ℝNT×NT .

2.1.5. LSTM encoder/decoder module
The long short-term memory (LSTM) network overcomes the long-

term memory loss problem (vanishing gradient problem) in the recur-
rent neural network (RNN). The core of the LSTM module is the cell
state, which determines the retention and forgetting of information.
LSTM units control the cell state by designing three gates: the input gate,
forget gate, and output gate. The forget gate decides which information
to discard from the cell state, the input gate determines how much input
information to retain in the cell state, and the output gate determines
which information to output from the cell state.

The LSTM Encoder/Decoder module is a sequential modeling mod-
ule constructed by connecting multiple LSTM units, where each LSTM
unit receives input information from a time lag/future time step. The
LSTM Encoder module processes historical information, while the LSTM
Decoder module handles future information. Additionally, the hidden
information from the Encoder is used in the Decoder.

By connecting multiple LSTM units in the Encoder and Decoder, the
model can capture temporal dependencies and make forecasting based
on historical information. The LSTM Encoder/Decoder module, com-
bined with the DFTA module, forms the backbone of our proposed model
for effective time series modeling.

2.1.6. Masked multi-head attention
To enhance the learning capability of the standard attention mech-

anism, the paper by [39] introduced a concept called multi-head
attention (MHA), which uses different heads for different representa-
tion subspaces. The formulation is as follows:

Fig. 2. Standard and decoupled self-attention.

L. Liu et al.
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MultiHead(Q,K,V) = Concat(head1,…, headH)WH (17)

headh = Attention
(
QWQ

h ,KWK
h ,VWV

h
)

(18)

where WQ
h ∈ ℝdmodel×dattn , WK

h ∈ ℝdmodel×dattn and WV
h ∈ ℝdmodel×dattn are head-

specific weights for the query, key, and value, respectively.
WH ∈ ℝ(H×dv)×dmodel linearly combines the concatenated outputs of all the
heads. Typically, dv = dattn = dmodel/H.

During the forecasting phase of the model, when decoding, future
information is unknown. Therefore, in this study, masked multi-head
attention is used to integrate the attention between the encoder and
decoder information. This is achieved by using masking to ensure that
only the known information up to the current time step is used during
the computation of the Multi-Head Attention, thus preventing the model
from “peeking” at the answers during decoding.

2.1.7. Auxiliary forecast network
In time-series forecasting tasks, incorporating additional useful var-

iables and their future information can improve the performance of
forecasting models. In the traditional encoder-decoder architecture, the
encoder’s output is typically used as the input for the decoder, enabling
feature decoding and forecasting. In the encoder-decoder architecture
proposed in this study, besides preserving the encoder’s output as the
decoder’s input, prior knowledge of future information is also added to
further enhance the predictive performance of the model. In wind power
forecasting tasks, wind speed is a crucial variable highly related to the
forecasting target. Therefore, in addition to known meteorological var-
iables, this study introduces an Auxiliary Forecast Network (AFN) (see
Fig. 1. for the network structure) that utilizes historical wind speed in-
formation to generate pseudo-future wind speed, which is then used as
input for the decoder of IFTT model:

x̂pf
t:t+τ = AFN

(
xpf

t− τ:t
)

(19)

In the AFN network, the features are encoded and decoded using two
LSTM layers, and a Feed Forward network [39] is used to obtain the
pseudo-future wind speed. The AFN network is a lightweight encoder-
decoder structure that balances effective forecasting and model size
control.

2.2. Multi-task learning

Wind speed is highly correlated with wind power, and incorporating
future wind speed data has significant implications for improving the
performance of WPF. However, the volatility and suddenness in wind
speed make it impossible to have prior knowledge of future wind speed.
Therefore, this paper introduces the Auxiliary Forecasting Network
(AFN) to obtain pseudo-future wind speed, which is then used as input
for the IFTT model. To ensure the quality of the generated pseudo-future
wind speed data and facilitate efficient training of the forecasting model,
multi-task learning is introduced into the training of the IFTT model,
enabling the two highly correlated forecasting tasks to supervise each
other and improve the forecasting performance of the IFTT model.

The WPF task is the primary task, while the pseudo-future wind
speed forecasting is the auxiliary task. The primary task is optimized by
minimizing the sum of quantile losses [40], Lq over multiple quantiles q
and all time points T to forecast:

Lpri =
∑

t∈T

∑

q∈Q
Lq
(
yq

t , ŷ
q
t
)

(20)

where,

Lq
(
yq

t , ŷ
q
t
)
=

{
q
(
yq

t − ŷq
t
)
, if ŷq

t ≤ yq
t

(1 − q)
(
ŷq

t − yq
t
)
, if ŷq

t > yq
t

(21)

The quantile loss provides accurate numerical forecasting and

insights into forecasting uncertainty by providing multiple forecasting
intervals. The set of quantiles used in this study is Ω = [ 0.1, 0.5,0.9].

The auxiliary task is optimized using the classical regression loss Laux:

Laux = ‖yt − ŷt‖
2
2 (22)

Thus, the multi-task joint loss LIFTT of the IFTT model is expressed as:

LIFTT = Lpri + λLaux (23)

where λ is the weight balancing the primary and auxiliary tasks.

2.3. Interpretable wind power forecasting procedure

Intelligent optimization algorithms have been proven to effectively
configure the hyperparameters of deep learning models [41]. In this
study, the hyperparameters to be optimized in the IFTT model are first
determined, including the number of units in DFTA and VAN, the
number of heads of MHA, learning rate and batch size, dropout rate, and
weight of loss. The COA algorithm is employed to intelligently optimize
the aforementioned parameters of the IFTT model, which has been
demonstrated to effectively balance exploration capability and conver-
gence speed and be able to converge to the global optimum in an effi-
cient and timely manner [42]. The initial parameters of the population
are set as random combinations within the specified parameter range,
and the fitness function is defined as 1/loss for selecting the optimal
solution. Under the optimization of the COA algorithm, the optimal
configuration of the IFTT structure is obtained.

Fig. 3 illustrates the forecasting process of our proposed method,
including dataset construction, input sequence partitioning, COA opti-
mization, IFTT model forecasting, and interpretable analysis. The steps
of the IFTT model forecasting process are summarized as follows:

Step 1: Construct a dataset using collected variable data, and divide
the input sequences based on their time series.

Step 2: Feed the time series sequences of the divided variables into
the COA-based IFTT model for WPF. Additionally, input the time series
sequence of wind speed into the AFN to predict pseudo-future wind
speed, and use the obtained pseudo-future wind speed as input for the
COA-based IFTT model to achieve accurate wind power forecasting
through multi-task learning.

Step 3: Forecasted results and interpretable analysis. Evaluate the
forecasting results using metrics such as NMAE, NRMSE, MAPE, accu-
racy, and QR on four datasets. Simultaneously, perform interpretable
analysis on past inputs, future inputs, and different lag order informa-
tion to achieve interpretable wind power forecasting.

3. Dataset and input

3.1. Dataset

In this study, we conducted model training and testing on multiple
datasets in different geographical locations (the Texas turbine dataset
[43] and Fujian turbine dataset [44]). We took the Texas turbine dataset
[43] as an example to (default) compare and introduce our method. The
Texas Turbine dataset comprises a full year of data from a specific year
in Texas, USA. The temporal resolution of the data is 1 h, with 24 points
per day, spanning a total of 365 days, resulting in 8760 sample points. It
includes the required wind power data and meteorological variables
such as wind direction, pressure, and air temperature. According to a
report by the Financial Times, wind energy surpassed coal for the first
time in the overall energy structure of the state in 2020. Wind energy
resources in Texas are abundant and exhibit strong seasonality. There-
fore, we divided the entire year’s data into seasons: Spring (February to
April), Summer (May to July), Autumn (August to October), and Winter
(November, December, and January). The training data, validation data,
and test data for each season were separated in an 80%:10%:10% ratio
(as shown in Fig. 4, wind power changes with time). The three groups
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are used in the following order: model construction, hyperparameter
selection, and final model verification.

3.2. Multi-variable inputs

For wind power forecasting, the multi-variable inputs provide
different information. In this study, we selected four types of input
variables: Classic variables, Meteorological variables, Time-related
variables and Pseudo-future variable. The classic variables comprise
historical wind power and wind speed. Meteorological variables include
Air temperature (Temperature), Wind direction, and Pressure. Time-
related variables consist of Hour, Day of month, and Month. The
pseudo-future variable refers to the pseudo-future wind speed obtained
from AFN. It is noteworthy that classic variables are not included in the
future inputs of our model’s decoder. The types of input variables and
the selection of past and future inputs are shown in Table 2.

To mitigate the impact of varying scales among the data, data stan-
dardization becomes imperative. In this study, we employed the Min-
Max Normalization technique to individually normalize all input vari-
ables, as illustrated in Eq. (24):

x* =
x − xmin

xmax − xmin
(24)

Regarding the input for time series modeling, it entails incorporating
variables from previous time steps to get a lookback window. To ensure
an adequate period for analysis, our study opted to utilize the historical

variables from the preceding 24 h as inputs for the model, while
considering the accessible variables from the subsequent 1 h as future
inputs.

4. Experimental results and discussions

4.1. Hyperparameter settings and evaluation metrics

Optimizing hyperparameters is a critical factor affecting the perfor-
mance of Wind Power Forecasting (WPF) models. Intelligent optimiza-
tion algorithms can obtain optimal network hyperparameter settings,
making the network structure setup more rational and efficient, and
avoiding the issue of the model getting trapped in local optima due to
manual tuning. The COA algorithm [46] has been proven to possess
superior capabilities in balancing exploration ability and convergence
speed. In this paper, the COA algorithm was chosen to tune the hyper-
parameters of the ITFF network, and the optimal parameters are shown
in Table 3, including the number of units in DFTA and GRN, the number
of heads of MHA, learning rate, dropout rate, and weight of loss in multi-
task. In addition, the batch size was set to 100 and the optimizer was
Adam. All experiments were performed on a workstation with a Dual
Intel (R) Xeon (R) E5–2643 v4 CPU @3.4 GHz with 12 cores and 8
NVIDIA TESLA V100.

In this study, normalized mean absolute error (NMAE), normalized
root mean square error (NRMSE), and mean absolute percentage error
(MAPE) were employed as evaluation metrics to assess the performance

Fig. 3. Flowchart of interpretable WPF procedure.
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of the algorithms. Additionally, to ensure the safety of grid connection,
the State Grid of China has specified requirements for the accuracy of
wind power forecasting (accuracy) and the reporting qualified rate (QR)
for wind farms. Wind farms will face severe financial penalties when the
QR does not meet the requirements [33]. Therefore, in addition to the
aforementioned classical evaluation metrics, this study included the
assessment of forecasting accuracy and QR as evaluation metrics. The

calculation of the evaluation metrics is given by Eqs. (25)–(30)

ENMAE =
1
N
∑N

i=1
∣
pi − yi

pcap
∣×100% (25)

ENRMSE =
1

pcap

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(pi − yi)

2

√

×100% (26)

EMAPE =
1
N
∑N

i=1

|pi − yi|

yi
×100% (27)

Acc =

⎛

⎝1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1

(
pi − yi

pcap

)√
√
√
√

⎞

⎠×100% (28)

QR =
1
N
∑N

i=1
Ci (29)

Ci =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1，

(

1 − |
pi − yi

pcap
|

)

× 100% ≥ r

0，

(

1 − |
pi − yi

pcap
|

)

× 100% < r

(30)

where pi and yi represent the forecasting wind power and the actual
wind power, respectively, while pcap represents the wind turbine ca-
pacity. The parameter r denotes the benchmark of QR, which increases
as the requirements for wind power forecasting by the State Grid of
China become more stringent. In this study, we selected a benchmark r
of 80%.

Fig. 4. Division of training, validation, and test sets for the four seasons.

Table 2
Inputs of the IFTT in the dataset.

Input Variable Type Past Inputs Future Inputs

Classic variables Wind power –
Wind speed –

Meteorological variables
Temperature Temperature
Wind direction Wind direction
Pressure Pressure

Time-related variables
Hour Hour
Day of month Day of month
Month Month

Pseudo-future variable – Wind speed (Pseudo)

Table 3
Parameters of the COA-IFTT in the four data sets.

Hyperparameters Spring Summer Autumn Winter

IFTT

Learning rate 0.010 0.007 0.009 0.006
Number of units in DFTA 67 92 82 116
Number of hidden layers 1 3 1 3
Number of attention heads 4 1 1 3
Number of units in GRN 186 161 172 139
Dropout rate 0.133 0.106 0.076 0.026
weight 0.6 0.6 0.6 0.6
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4.2. Performance comparison and analysis of the models

4.2.1. Ablation experiment of input variables
In this study, an ablation experiment on multivariate inputs was

conducted to analyze the effectiveness of each variable. Table 4 presents
the results of the ablation experiment on various input variables across
four seasons. From the table, it can be observed that adding meteoro-
logical variables as network inputs on the basis of classic variables (i.e.,
historical wind speed and historical power) can effectively improve the
predictive performance of the model. On the four seasonal datasets, the
NMAE, NRMSE, and MAPE decreased by an average of 0.84%, 1.26%,
and 1.77%, respectively. And the ACC and QR metrics also improved by
1.34% and 2.94%, respectively. Furthermore, when time-related vari-
ables were added, the prediction results were further improved. For
example, in the spring dataset, the NMAE, NRMSE, and MAPE decreased
from 8.70%, 12.15%, and 29.49% to 8.26%, 11.92%, and 26.59%,
respectively. Significantly, the addition of pseudo-future wind speed as
an input greatly improved the model performance. All evaluation met-
rics exhibited notable improvement, with an average decrease of 0.91%,
1.28%, and 2.56% for NMAE, NRMSE, and MAPE, respectively, the ACC
and QR metrics also improved on average by 1.28% and 1.63%. In the
autumn season, the correlation coefficient between the forecasted wind
power and the actual values reached a high value of 0.97.

From the above experimental results, it can be concluded that classic
variables, meteorological variables, time-related variables, and pseudo-
future wind speed are all beneficial for enhancing the performance of
models during different seasons. The impact of pseudo-future wind
speed and meteorological variables on model performance improvement
was greater than that of time-related variables. When these variables are
combined as inputs, the model achieves optimal performance. Addi-
tionally, it was observed that pseudo-future wind speed significantly
improved the QR, suggesting that incorporating pseudo-future wind
speed can effectively enhance the economic benefits of wind farms.

Fig. 5 displays the forecasting results of the ablation experiment on
input variables. It can be observed that when only classic variables are
used as network inputs, the model demonstrates good predictive per-
formance during periods of stable wind speed but performs weakly
during periods of abrupt wind speed changes. As meteorological vari-
ables, time-related variables, and pseudo-future wind speed are intro-
duced, the predictive performance of the model gradually improves.
When all these variables are included, the model’s forecasting aligns
closely with the actual wind power, reaching optimal performance.

4.2.2. Ablation experiment of network structure
In order to verify the effectiveness of the network structure, an

experimental analysis was conducted, and the results are shown in
Table 5, which illustrates the impact of each module on performance

improvement. By adding the DFTA module to the basic TFT model, an
effective fusion of different feature information and temporal informa-
tion was achieved, leading to a significant enhancement in network
performance. On the four seasonal datasets, the NMAE, NRMSE, and
MAPE indicators decreased on average by 1.11%, 1.57%, and 3.44%
respectively, while the Acc and QR indicators increased on average by
1.57% and 4.24% respectively. Furthermore, by incorporating the
Auxiliary Forecasting Network (AFN) into the TFT-DFTA model to
provide pseudo-future wind speed inputs to the Decoder module, the
forecasting accuracy of wind power was further improved. For instance,
in the spring season, the addition of the AFN module resulted in a
decrease of the NMAE, NRMSE, and MAPE indicators from 8.26%,
11.92%, and 26.59% to 7.25%, 10.50%, and 22.85% respectively. The
Accuracy and QR indicators increased from 88.08% and 91.67% to
89.5% and 92.96% respectively. The correlation coefficient between the
forecasted results and actual wind power reached a high value of 0.92.
The experimental analysis of the network structure demonstrated the
effectiveness and necessity of the network structure proposed in this
study. Fig. 6 displays the forecasting results of wind power for 192
consecutive time steps using different network structures, from which it
can be observed that the addition of the DFTA and AFN modules can
effectively enhance the predictive performance of the model.

4.2.3. Impact of intelligent optimization algorithms
Intelligent optimization algorithms can obtain optimal network

hyperparameter settings, and avoid the issue of the model getting
trapped in local optima due to manual tuning. Several classic intelligent
optimization algorithms: Genetic Algorithm (GA) algorithm [45], Par-
ticle Swarm Optimization (PSO) algorithm [46], Adaptive Differential
Evolution (ADE) algorithm [47] and COA algorithm [26] were been
compared in this study. The experimental results are shown in Table 6.
From Table 6, it can be observed that applying intelligent optimization
algorithms to optimize the IFTT model’s network structure has
improved the wind power forecasting performance. Among the four
seasons, both the ADE and COA algorithms generally outperformed the
GA and PSO algorithms in terms of optimizing the model. When
comparing ADE and COA algorithms, their performance was comparable
in the spring season; In the other three seasons, the COA algorithm
significantly outperformed the ADE algorithm in enhancing the wind
power forecasting performance of the IFTT model. In this study, the COA
algorithm was employed to intelligently optimize the network structure
of the IFTT model, thus obtaining the optimal wind power forecasting
performance.

4.2.4. Comparison with classic methods
In order to thoroughly validate the predictive performance of the

COA-based IFTT model proposed in this study, it is compared with the

Table 4
Ablation experiment of input variables. Cv: Classic variables; Mv: Meteorological variables; Tv: Time-related variables; Pv: Pseudo-future variables.

Seasons Input NMAE/% NRMSE/% MAPE/% Acc/% QR/% Pearson

Spring

Cv 9.59 13.33 33.12 86.67 86.46 0.89
+Mv 8.70 12.15 29.49 87.85 88.02 0.89
+Mv + Tv 8.26 11.92 26.59 88.08 91.67 0.90
+Mv + Tv + Pv 7.25 10.50 22.85 89.50 92.96 0.92

Summer

Cv 8.54 12.12 26.87 87.88 89.89 0.92
+Mv 7.79 10.93 26.84 89.07 92.13 0.93
+Mv + Tv 7.04 9.78 23.74 90.22 93.67 0.94
+Mv + Tv + Pv 6.21 8.38 20.19 91.62 96.07 0.95

Autumn

Cv 8.07 11.15 25.72 88.85 88.54 0.94
+Mv 7.15 9.91 24.72 90.40 91.75 0.95
+Mv + Tv 7.05 9.59 23.25 90.41 95.75 0.96
+Mv + Tv + Pv 6.02 8.20 22.87 91.80 97.40 0.97

Winter

Cv 10.01 14.57 28.78 85.43 85.21 0.9
+Mv 9.21 13.14 26.36 86.86 89.94 0.92
+Mv + Tv 8.72 12.64 25.65 87.36 91.72 0.92
+Mv + Tv + Pv 7.95 11.75 23.10 88.25 92.90 0.93
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DeepAR method [48], the Transformer method [39], the TFT method
[36], the PatchTST method [49], the iTransformer method [50], the
ModernTCN method [51]. The DeepAR method is a general model
proposed by Salinas et al. for time series forecasting, while the Trans-
former method utilizes attention mechanisms to achieve parallel pro-
cessing of time series forecasting tasks. Both of these methods have been
proven to achieve good predictive performance in wind power fore-
casting [52,53]. The iTransformer method improves upon the Trans-
former method by enhancing its capability to capture multivariate

correlations. Both the PatchTST method and the ModernTCN method
are the latest state-of-the-art (SOTA) prediction models published just
this year (ICLR 2024). However, these aforementioned methods lack
time series interpretability. In contrast, the TFT model is an interpret-
able time series model that has quickly gained recognition among re-
searchers in time series tasks. The COA-based IFTT model proposed in
this study, inspired by the TFT algorithm, achieves multivariate inter-
pretable forecasting for wind power for the first time.

The experimental comparison results of the various methods are

Fig. 5. Ablation experiment results of input variables.

Table 5
Ablation experiments of the model. DFTA represents the decoupled feature-temporal self-attention module, and AFN represents the auxiliary forecasting network.

Seasons Method NMAE/% NRMSE/% MAPE/% Acc/% QR/% Pearson

Spring
Base Model(TFT) 9.31 13.24 29.12 86.76 85.42 0.87
+DFTA 8.26 11.92 26.59 88.08 91.67 0.90
Ours(+DFTA+AFN) 7.25 10.50 22.85 89.50 92.96 0.92

Summer
Base Model(TFT) 7.67 11.41 25.28 88.59 92.13 0.92
TFT + DFTA 7.04 9.78 23.74 90.22 93.67 0.94
Ours(+DFTA+AFN) 6.21 8.38 20.19 91.62 96.07 0.95

Autumn
Base Model(TFT) 7.66 10.57 29.60 89.43 94.27 0.94
TFT + FI 7.05 9.59 23.25 90.41 95.75 0.96
Ours(+DFTA+AFN) 6.02 8.20 22.87 91.80 97.40 0.97

Winter
Base Model(TFT) 10.87 14.97 28.98 85.03 84.02 0.90
TFT + DFTA 8.72 12.64 25.65 87.36 91.72 0.92
Ours(+DFTA+AFN) 7.95 11.75 23.10 88.25 92.90 0.93
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shown in Table 7. It can be observed that on the data of the four seasons
(spring, summer, autumn, and winter), both DeepAR and Transformer
achieve comparable predictive performance. In terms of the NMAE,
NRMSE, and MAPE, the Transformer method slightly outperforms the
DeepAR method. The iTransformer method, building upon the Trans-
former method, expands the local receptive field, thereby enhancing
forecasting performance. Both the TFT and PatchTST methods achieve
superior predictive outcomes across various metrics. Compared with the
previous methods, the recently published ModernTCN model shows
improved performance metrics across all four seasons. However, among
these methods, only the TFT method possesses temporal interpretability
capabilities. In pursuit of simultaneously achieving model interpret-
ability and accurate wind power forecasting, this paper extends the TFT
model framework, focusing on combining interpretability with

precision. The COA-based IFTT model proposed in this study not only
introduces the VAN network for selecting multivariate information but
also proposes the DFTA module to effectively capture the importance of
temporal information and integrate information. Additionally, it utilizes
multi-task learning to provide additional supervision to the model,
further improving the accuracy of wind power forecasting. The average
NMAE, NRMSE, and MAPE on the data of the four seasons are 6.86%,
9.71%, and 22.25%, respectively. The average Acc, QR, and Pearson
reach 90.29%, 94.83%, and 0.94, respectively. From the experimental
results, it can be concluded that the proposed method outperforms the
other classical methods. Furthermore, the comparison of the forecasting
results in different seasons indicates that the performance of the pro-
posed method is better in summer and autumn compared to spring and
winter. This may be due to the potential fixed patterns in wind speed

Fig. 6. Display of structural ablation experimental results.

Table 6
Improvement of IFTT model performance by various intelligent optimization algorithms.

Seasons Method NMAE/% NRMSE/% MAPE/% Acc/% QR/% Pearson

Spring

GA-IFTT 7.46 10.80 24.73 89.20 89.58 0.9142
PSO-IFTT 7.54 10.83 24.47 89.17 90.10 0.9160
ADE-IFTT 7.35 10.42 24.62 89.58 91.15 0.9193
COA-IFTT 7.25 10.50 22.85 89.50 92.96 0.92

Summer

GA-IFTT 6.54 9.49 22.06 90.51 95.51 0.94
PSO-IFTT 6.53 9.35 21.97 90.65 95.51 0.94
ADE-IFTT 6.22 9.20 20.93 90.80 95.69 0.94
COA-IFTT 6.21 8.38 20.19 91.62 96.07 0.95

Autumn

GA-IFTT 6.11 8.45 25.74 91.55 95.83 0.96
PSO-IFTT 6.07 8.35 23.60 91.65 96.35 0.96
ADE-IFTT 6.06 8.29 23.98 91.71 95.96 0.9641
COA-IFTT 6.02 8.20 22.87 91.80 97.40 0.97

Winter

GA-IFTT 8.20 12.32 23.75 87.68 91.79 0.92
PSO-IFTT 8.18 12.14 23.43 87.86 92.31 0.92
ADE-IFTT 8.11 12.18 23.09 87.82 92.32 0.92
COA-IFTT 7.95 11.75 23.10 88.25 92.90 0.93
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during summer and autumn, while wind speed exhibits greater vari-
ability in spring and winter, making forecasting more challenging.

Fig. 7 presents the wind power forecasting results of the proposed
method and several classical methods in the four seasons datasets. It can
be observed that there are significant differences between the fore-
casting results of DeepAR, Transformer, and iTransformer and the actual
wind power. The TFT method performs well in predicting wind power
during periods of smooth transition but still exhibits some errors during
periods of abrupt changes. The PatchTST and ModernTCN methods
achieve favorable forecasting results. The proposed method in this paper
yields optimal forecasting results across all four seasons, on the other
hand, is able to accurately predict wind power during both smooth and
abrupt transition periods.

Comparisons on multiple wind farm datasets with different charac-
teristics across different geographical locations can facilitate a more
comprehensive evaluation of model performance. Therefore, in addition
to the previously discussed Texas dataset, this paper conducts compar-
ative analyses against various state-of-the-art (SOTA) methods on spring
datasets from three wind farms located in Fujian Province, China. These
wind farms [44] have different installation capacities: 48 MW (S1), 88
MW (S2), and 280 MW (S3). Similar to the Texas dataset, the Fujian
datasets use spring data from the year of 2022, with a temporal reso-
lution of 1 h, 24 points per day for each site. The experimental results are
detailed in Table 8. Similar conclusions can be drawn from Table 8 as
were from the Texas dataset. On the datasets from the three different
wind farms, DeepAR, Transformer, and iTransformer exhibit compara-
ble performances. The TFT and PatchTST methods marginally outper-
form these three methods, while the ModernTCN method yields results
closest to those of our proposed method. Across multiple metrics, our
method achieves the best performance, thereby more broadly validating
its effectiveness and superiority.

4.3. Interpretable analysis of algorithms

The interpretability of deep neural networks has always been a
challenging research topic. The interpretable wind power forecasting
model proposed in this study, utilizing the VAN network and DFTA

module, not only provides accurate forecasting results but also offers
explanations for the importance of various factors, enhancing the
credibility of the model. This is advantageous for making informed de-
cisions regarding grid integration and resource allocation. Fig. 8 illus-
trates the interpretable analysis results of the IFTT model on the Texas
dataset, which include three parts: importance ranking of past variables,
importance ranking of future variables, and importance ranking of
temporal lag information.

Among the past variables, historical wind power is the most impor-
tant variable in the forecasting of wind power in all four seasons. His-
torical wind speed ranks second in importance in spring, summer, and
winter, but its importance is slightly lower than meteorological elements
in autumn. The overall importance ranking of variables in the four
seasons indicates that meteorological elements are generally more
important for wind power forecasting than time-related variables.
However, there are exceptions, such as the Hour variable, which is
relatively important in predicting wind power during summer, indi-
cating the sensitivity of summer wind power to the time of day. In
spring, autumn, and winter, temperature shows strong importance,
possibly due to the lower and more variable temperatures during these
seasons, which affect the efficiency of wind turbines and have a high
correlation with wind power.

Unlike the past variables, among future variables, the importance
contribution of meteorological variables and time-related variables to
wind power forecasting changes with season. Pseudo-future wind speed
demonstrates strong significance in wind power forecasting perfor-
mance, while the importance of other variables varies depending on the
season. The Hour variable remains important in summer, ranking sec-
ond after pseudo-future wind speed, but its contribution is relatively
small in the other three seasons. Temperature maintains a certain level
of importance in all four seasons, and wind direction is most important
in predicting wind power during spring, likely due to the variability of
wind direction in the research area, which has a significant impact on
wind turbine generation.

From the analysis of the importance of temporal lag information, the
following observations can be made: (1) as the lag order increases, the
importance generally decreases. Specifically, from lag time t-1 to t-8, the

Table 7
Performance comparisons with SOTA methods in different seasons.

Seasons Method NMAE/% NRMSE/% MAPE/% Acc/% QR/% Pearson

Spring

DeepAR 16.30 21.21 51.87 78.79 65.62 0.68
Transformer 16.56 20.25 51.39 79.75 70.31 0.66
TFT 9.31 13.24 29.12 86.76 85.42 0.87
PatchTST 8.50 12.01 29.04 87.99 87.50 0.89
iTransformer 13.06 17.52 42.71 82.48 75.48 0.77
ModernTCN 7.98 11.22 26.98 88.78 89.90 0.90
Ours 7.25 10.50 22.85 89.50 92.96 0.92

Summer

DeepAR 15.04 17.38 53.61 82.62 71.91 0.84
Transformer 11.07 14.50 42.14 85.50 86.52 0.87
TFT 7.67 11.41 25.28 88.59 92.13 0.92
PatchTST 7.65 11.52 22.89 88.48 90.86 0.92
iTransformer 8.82 12.04 29.88 87.96 90.86 0.91
ModernTCN 7.18 10.04 22.29 89.96 94.62 0.94
Ours 6.21 8.38 20.19 91.62 96.07 0.95

Autumn

DeepAR 16.24 22.00 70.43 78.00 73.44 0.80
Transformer 14.27 18.74 57.00 81.26 75.87 0.81
TFT 7.66 10.57 29.60 89.43 94.27 0.94
PatchTST 7.17 10.04 28.43 89.96 94.23 0.94
iTransformer 10.76 16.70 30.37 83.30 85.58 0.84
ModernTCN 6.49 8.51 22.91 91.49 96.15 0.96
Ours 6.02 8.20 22.87 91.80 97.40 0.97

Winter

DeepAR 22.29 28.43 59.77 71.57 54.44 0.73
Transformer 21.64 26.45 48.67 73.55 49.11 0.62
TFT 10.87 14.97 28.98 85.03 84.02 0.90
PatchTST 9.61 13.43 28.04 86.57 89.19 0.91
iTransformer 12.25 17.48 35.11 82.52 77.84 0.85
ModernTCN 8.51 12.86 25.41 87.14 90.27 0.91
Ours 7.95 11.75 23.10 88.25 92.90 0.93
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importance rapidly declines. (2) Different seasons require attention to
different lag orders. For example, in winter, only the first 7 lag times
need to be considered, as the contribution of information with larger lag
orders to wind power forecasting is almost negligible. However, in
spring, more lag time information needs to be taken into account.

5. Conclusion

To address the challenges of interpretability in wind power fore-
casting, this study presents interpretable short-term wind power fore-
casting with multi-variables and a feature-temporal transformer (IFTT).
The model effectively learns the nonlinear mapping from input

Fig. 7. Performance comparison with classical method in different seasons.
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information to wind power by combining the encoder-decoder structure
and temporal information modeling. It comprehensively considers the
historical information of multiple relevant variables, known future

information, and pseudo-future information, and constructs the VAN
network and DFTA module to perform information selection and
importance analysis of temporal information and multivariate inputs.

Table 8
Performance comparisons in multiple wind farm datasets on spring.

Site Method NMAE/% NRMSE/% MAPE/% Acc/% QR/% Pearson

S1

DeepAR 9.88 14.63 36.52 77.79 89.97 0.78
Transformer 9.36 13.71 56.88 65.56 88.08 0.87
TFT 8.40 13.56 34.07 86.44 86.75 0.89
PatchTST 6.47 10.59 28.37 89.41 92.72 0.92
iTransformer 9.46 12.54 37.38 87.46 89.40 0.90
ModernTCN 6.15 9.64 27.69 90.36 94.04 0.94
Ours 5.52 8.90 25.21 91.10 95.36 0.95

S2

DeepAR 8.01 12.29 38.74 87.71 88.33 0.89
Transformer 7.99 12.69 54.46 61.01 89.44 0.86
TFT 7.16 11.01 34.02 88.99 91.11 0.89
PatchTST 6.48 9.83 30.20 90.17 93.89 0.92
iTransformer 7.30 10.06 30.22 89.94 93.89 0.92
ModernTCN 5.77 9.11 28.49 90.89 94.44 0.93
Ours 5.08 8.26 25.14 91.74 96.39 0.94

S3

DeepAR 9.26 12.09 37.67 87.91 87.76 0.83
Transformer 9.35 12.55 49.32 65.76 89.29 0.81
TFT 8.23 10.73 34.02 89.27 90.82 0.88
PatchTST 7.52 10.32 30.94 89.68 93.37 0.88
iTransformer 8.48 10.92 35.16 89.08 92.35 0.86
ModernTCN 6.96 9.68 27.77 90.32 9439 0.89
Ours 6.28 8.61 25.74 91.39 94.90 0.91

Fig. 8. Interpretable results of the IFTT model for four seasons on the Texas dataset.
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The designed AFN not only provides pseudo-future wind speed to the
decoder but also improves wind power forecasting performance through
multi-task learning. Furthermore, the COA algorithm is utilized to
optimize the network hyperparameters for further enhancing model
performance. Ablation experiments demonstrate the effectiveness and
necessity of the selected multivariate inputs and network structure
design. Compared with the DeepAR, Transformer, TFT, PatchTST,
iTransformer and ModernTCN methods on the multiple public datasets
in different geographical locations, our method outperforms in multiple
evaluation metrics.

To avoid the impact of information selection and fusion mechanisms
in temporal modeling on interpretable temporal information, this study
constructs the DFTA module to perform an effective importance analysis
of temporal information before temporal modeling. The attention given
by the forecasting model to different time lags indicates that the
importance of temporal information decreases as the lag order increases,
and different lag orders need to be considered for different seasons.

Analysis of the importance of multi-variable inputs shows that his-
torical and future information of classical variables, meteorological
variables and time-related variables all play an important role in wind
power prediction. Among past variables, wind power and wind speed
are the most important, and meteorological variables are generally more
important than time-related variables; among future variables, pseudo-
future wind speed plays a crucial role, while the importance of meteo-
rological variables and time-related variables changes with the seasons.

The proposed interpretable wind power forecasting model not only
achieves accurate forecasting results but also provides directions for
optimizing wind power forecasting models and supporting decision-
making through interpretable analysis of multivariate inputs and tem-
poral information. Moving forward, we are dedicated to conducting
empirical research that bridges the gap between model interpretability
and grid management decision-making processes, ensuring our ad-
vancements translate seamlessly into practical applications. As part of
our future work, we will strive to propose a unified interpretability
framework. This framework will facilitate cross-model comparisons and
enable more stringent evaluations of interpretability.
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