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Abstract

Recent studies demonstrate that large language models often encode correct an-
swers internally even when their outputs are incorrect, and that lightweight probes
can recover these latent signals. This work extends such analyses to compare
general-purpose and biomedical domain—specialized models. Across circular, lo-
gistic, and MLP probes, both models exhibit low probe accuracy on internal and
external knowledge, but strong error-detection performance in deeper layers. The
key difference lies in stability: probe performance in the biomedical model is
markedly more variable, with nearly double the standard deviation in error detector
F1 compared to the general model (e.g., 0.0742 vs. 0.0510 for circular probes).
An isotropy analysis provides a complementary explanation. The general model
displays higher anisotropy (baseline similarity = 0.4667), producing stable, lin-
early separable correctness signals, whereas the biomedical model exhibits greater
isotropy (baseline similarity = 0.3737), coinciding with noisier probe behavior.
These findings suggest that domain-specific finetuning does not destroy or add
probe-accessible knowledge, but rather reorganizes representational geometry in
ways that reduce the stability of error-detection signals. The results here indicate
that increased isotropy may undermine robustness in self—monitoringﬂ

1 Introduction

Large language models (LLMs) have rapidly advanced the state of the art across a wide range
of tasks. However, their tendency to produce “hallucinations”, plausible but factually incorrect
statements, raises serious concerns about reliability, especially in high-stakes domains such as
medicine. Empirical studies show that exposing an LLM to new factual information during supervised
fine-tuning slows learning and increases the tendency to hallucinate: fine-tuning examples introducing
new knowledge are learned more slowly than those consistent with pre-existing knowledge, and once
they are learned the model’s hallucination rate grows roughly linearly with the proportion of new facts
in the fine-tuning data [ 1f]. Moreover, head-to-head comparisons on medical question-answering find
that domain-adapted LLMs rarely outperform their general-purpose counterparts; medical models win
in only about 12 % of test cases and are significantly worse in more than one-third [2]. These findings
suggest that most factual knowledge is acquired during pre-training and that naively fine-tuning on
biomedical corpora may actually degrade factuality [/1].

To mitigate hallucinations, a complementary line of work probes a model’s hidden activations
to understand what it “knows” [3, 4]. Early results showed that a simple classifier trained on
hidden activations can tell whether a statement is true or false with 71-83 % accuracy, outperform-
ing probability-based heuristics [5]. More recent work on three-digit addition demonstrated that
lightweight probes can decode both the model’s prediction and the correct answer from hidden
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states, regardless of whether the output is right; these probes can also predict whether the output is
correct with over 90 % accuracy and can guide selective re-prompting [6]]. Visualizations of hidden
representations on true/false datasets reveal clear linear structure, and difference-in-mean probes
generalize across datasets while causally influencing the model’s answer [7]]. Despite these insights,
existing studies focus on general-domain models and simple arithmetic or binary truth tasks; it is
unclear whether similar signals exist in medical models or for long-tail biomedical knowledge.

Two factors make the biomedical setting particularly challenging. First, biomedical knowledge is
long-tailed: many facts appear in only a handful of documents. A model’s ability to answer a
fact-based question correlates strongly with how many pre-training documents mention the subject
and object [§]]. Even after applying knowledge-editing methods, performance on long-tail biomedical
facts remains markedly worse than on high-frequency facts, partly because biomedical triples often
exhibit one-to-many relations [9]]. Second, hallucination detection is under-explored in medicine. The
MedHallu benchmark shows that state-of-the-art models struggle to identify hallucinated answers in
PubMedQA; even GPT-40 achieves an F1 as low as 0.625 on the hardest category [[10]. Intriguingly,
hallucinations that are semantically closer to the ground truth are the most difficult to detect [10], and
general-purpose models outperform fine-tuned medical models on this task [[L0]. These observations
suggest that domain-specific fine-tuning reorganizes internal representations in ways that may make
self-monitoring less robust.

We propose a lightweight, unified framework for biomedical knowledge probing and error detection.
Given a triple template T'(s, ), we first perform external probing: we ask the LLM to predict the
object o and record its top-k outputs. We then perform internal probing on the residual-stream
hidden states at the final subject token to decode both (a) the model’s predicted object and (b) a
proxy for the ground-truth object. Building on prior work that trains simple probes to decode answers
from hidden states and detect arithmetic errors [5, |6} |11], we design logistic and MLP probes that
predict whether the model’s answer is correct. We test this framework across base and medical LLMs
(Mistral-7B, Llama-3, BioMistral) [[12} 13} [14}15], and we explicitly evaluate long-tail triples where
subjects and objects co-occur infrequently [8 9]. Our probing approach also connects to mechanistic
interpretability: by inspecting linear directions in the hidden state, we shed light on how models
encode biomedical relations [7} |5} 16].

Motivated by these gaps, we ask: Do biomedical domain—adapted LLMs differ from general LLMs in
how they internally represent and monitor factual knowledge? We adapt the probing framework for
arithmetic errors [[6]] to biomedical knowledge triples (s, r, 0) and make three main contributions:

1. Cross-domain probing. We design simple circular, logistic, and MLP probes that decode
both the model’s prediction and the correct object from hidden states at each layer. We
find that, while both general and biomedical models encode latent knowledge, probes on
biomedical models show much higher variance in detecting errors.

2. Error detection and geometry. We train lightweight classifiers to flag mismatches between
predicted and ground-truth objects and analyze the geometry of hidden activations. Our
results indicate that general models have more structured representations that support stable
error detection, whereas biomedical models have more uniform representations, making
error detection noisier.

3. Implications for safety. We argue that the altered representational geometry in
domain-adapted models may weaken their ability to self-monitor. Lightweight probes
offer a low-overhead tool for real-time error detection and highlight potential risks when
deploying domain-adapted LL.Ms in medical settings.

2 Method

We study biomedical triples (s, r, 0) with a simple prompt T'(s,r) and use the residual-stream vector
at layer [ for the last subject token, x; € R?. On the same x; we train two decoders: an internal
decoder that predicts the ground-truth object o (what the model “knows”) and an external decoder
that predicts the model’s own output fy(s,r) (what the model will “say”), following the compact
probing setup of Sun, Stolfo & Sachan [6]]. We then turn these signals into a lightweight correctness
score.
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Figure 1: Layer-wise probe performance on general models (solid) and biomedical models (dashed).
Left, internal Acc@10. Center, external Acc@10. Right, error-detector F1. Biomedical models
exhibit notably higher variability in error detection at later layers despite similar average recall.

Probing Internal and External Knowledge. Both decoders share the same readouts and differ
only by their target label. We consider K candidate objects and use three lightweight probes in
one pass over x;: circular projects with (w1, ws), reads an angle § = atan2(w, x;, w{ x;), then
predicts k = | (0/2n) K|; logistic computes logits z = Wx; + b and predicts k = arg max; z;;
MLP computes h = ReLU(W;x; + by), then z = W3h + by, and predicts k= arg max; 2;.
Internal accuracy is the accuracy of decoders trained to recover o; external accuracy is the accuracy
of decoders trained to recover fy(s, 7).

Probing for Error Detection. We detect erroneous biomedical triples using three lightweight probes
that analyze hidden activations: (1) Logistic Regression provides interpretable linear error detection,
(2) Circular MLP captures non-linear geometric patterns in embedding space, and (3) Joint Circular
Error Detector compares internal vs. external knowledge representations through angular differences.
The circular approach maps activations to angles § = atan2(w; =, w, x) and flags errors when
angular discrepancies exceed learned thresholds, achieving high accuracy while preserving semantic
relationships in the embedding space.

3 Experiment

We probe knowledge and error signals in six large language models (three general-purpose models
and their biomedical adaptations) across three datasets.

Language Models. We compare three open-source bases, Gemma-2-9B [17]], Llama-3-8B [13]],
and MISTRAL-7B-INSTRUCT-VO.1 [12f, with their corresponding biomedical variants
(Meditron3-Gemma2-9B [18]], MMed-Llama-3-8B [19], and BioMistral-7B [14]]). This pairing
isolates the effect of medical finetuning, which may not reliably improve recall or reduce hallucina-
tions [2} /1]].

Datasets and Prompts. We employ three relation-based datasets. The first is MedLAMA, which
contains UMLS triples from Meng et al. [20]] to probe general knowledge; we mark triples with fewer
than ten PubMed co-occurrences as long-tail, following Kandpal et al. [8]] and Yi et al. [9]. The
second is a set of drug—symptom pairs from Berkowitz et al. [21]] comprising 165 positive controls and
234 negative controls to assess pharmacovigilance. The third is a collection of drug—drug interactions
extracted from SemMedDB [22]. For each relation (for example, “may treat”), we define a simple
template such as “[X] might treat [Y]” to prompt the models, and Appendix [T| provides the full list.

Evaluation Metric. We evaluate how well the model accesses stored knowledge using Accuracy @K
metrics (Acc@1, Acc@5, Acc@10). For each triple (s, r, 0), we query the model with a relation
template and compute Acc@ 10 as the fraction of cases where the gold object o appears among the
top-10 predictions. For error detection, we label a prediction correct if the top-ranked object matches
o and incorrect otherwise, train lightweight probes on hidden states to predict correctness, and report
F1 scores, with labels following the missing-from-top-10 criterion [20]. To locate where knowledge
becomes accessible, we truncate the model at layers L € 10, ..., 25, extract residual streams at the
final subject token, train probes at each layer, and identify the optimal depth that maximizes validation
performance. Finally, we detect retrieval failures—cases where the model internally encodes the
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Figure 2: Baseline anisotropy across layers. General models (red) show higher anisotropy. Biomedical
models (blue) are more isotropic. Lower anisotropy coincides with more volatile error-detection
signals.

correct knowledge but fails to produce it among the top-10 predictions—by training a probe to predict
such failures and reporting F1 scores.

Experiment Results. Figure[I|reports layer-wise curves. Mean internal and external Acc@10 are
comparably low for the general and biomedical models, indicating that finetuning does not add or
remove probe-accessible knowledge. The key difference is stability: the biomedical model exhibits
substantially larger layer-to-layer variance in error-detector F1, especially in deeper layers (Table
e.g., circular probes SD = 0.053 vs. 0.027).

To explain this variability, we analyze representation geometry. Following Ethayarajh [23]], we
compute the cosine similarity between random directions and layer-averaged representations and
use the resulting baseline as an anisotropy score. The general model is more anisotropic (0.608)
than the biomedical model (0.354). Intuitively, higher anisotropy concentrates activations along a
few dominant directions, yielding more consistent, linearly separable probe directions across layers.
Lower anisotropy (i.e., greater isotropy) disperses activations, which makes the induced error signals
noisier and less stable over depth. Taken together, these results support a causal interpretation:
reduced anisotropy can drive greater across-layer variation in both error detection and prediction.
This, in turn, suggests that finetuning primarily reorganizes, rather than expands, probe-accessible
knowledge, and that such reorganization may undermine self-monitoring robustness, in line with
reports that certain finetuning regimes exacerbate hallucinations.

4 Limitations and Conclusion

Our results show that general-purpose and biomedical LLMs contain similar amounts of probe-
accessible knowledge, but their internal error-detection signals differ sharply in stability: across
circular, logistic, and MLP probes, the biomedical model has nearly twice the across-layer standard
deviation in error-detector F1 compared to the general model (Table[2). An isotropy analysis indicates
a plausible mechanism: domain-specific fine-tuning reduces anisotropy, yielding more isotropic
representations that are less amenable to simple linear separation of correct vs. incorrect states.
Practically, this implies that fine-tuning reorganizes internal geometry without adding new knowledge
and can make self-monitoring less reliable, consistent with reports that instruction tuning increases
hallucination rates [[1, 2]]. As a simple diagnostic, we propose measuring the variability of internal
error-detection signals to assess robustness. More broadly, our unified probing and error-detection
framework links mechanistic interpretability to safety: by extracting both predicted and ground-
truth objects from hidden states, lightweight probes act as oracles that anticipate hallucinations and,
when plugged into re-prompting or abstention pipelines, improve reliability with minimal overhead.
Although we focus on biomedical facts, the approach generalizes to other domains with long-tail
knowledge and high-stakes decisions. Future work should study cross-model prediction [24]], explore
unsupervised clustering for richer error signals, and test whether stronger probes or representation
editing can mitigate the variability introduced by domain-specific fine-tuning.
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A Related Work

Long-Tail Biomedical Knowledge Biomedical knowledge exhibits a long-tailed distribution: many
subject—object pairs appear in only a few training documents. LLLMs’ ability to answer fact-based
questions correlates strongly with the number of documents containing the subject and object [§]].
Kandpal et al. [8]] demonstrated that even very large models struggle to learn rare facts and require
orders of magnitude more parameters to match performance on questions with little pre-training
support. Knowledge editing can inject rare facts into LLMs, but Yi et al. [[9] found that edited models
still perform worse on long-tail biomedical knowledge than on high-frequency knowledge and that
one-to-many relations limit the effectiveness of editing. Our evaluation therefore stratifies probes by
knowledge popularity to assess whether internal error signals differ between common and rare facts.

Mechanistic Interpretability Mechanistic interpretability (MI) aims to identify and understand the
circuits and directions in neural networks that implement high-level functions. Studies have shown
that hidden activations encode truthfulness signals that can be isolated by linear probes [7]. The
linear classifiers on hidden activations can detect when a language model is lying [5] and that concept
directions found via linear relational embeddings can causally steer model outputs [25]]. Our work
builds on these insights by applying MI tools to domain-adapted biomedical models and analyzing
how fine-tuning affects the geometry of internal representations.

Error Detection in LLMs Detecting hallucinations is essential for trustworthy deployment. Azaria
& Mitchell [5] trained a classifier on hidden activations to distinguish true from false statements
and demonstrated that internal states provide more reliable confidence estimates than softmax
probabilities. Many subsequent works explore probability-based or consistency-based detectors, but
general-purpose LLMs still struggle on medical hallucination benchmarks. The MedHallu dataset
showed that even GPT-40 achieves only moderate F1 scores and that hallucinations close to the truth
are hardest to detect [[10]]. Our probes build on this literature by comparing logistic, circular, and MLP
probes for binary error detection and by analyzing how probe performance varies across domains and
layers.

B Experiments Compute Resources

All experiments were conducted on 4 NVIDIA H100 GPUs. Probe training and evaluation completed
within approximately one day of wall-clock time.

C Prompt Templates and Layerwise Stability

This appendix documents (i) the minimal natural-language templates we use to render (s, r, 0) tuples
into prompts for extracting layer representations x¢, and (ii) the layerwise stability of three probe
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Relation Manual Prompt

may treat [X] might treat [Y].

may prevent [X] might prevent [Y].

adverse drug effect The adverse effect of [X] is [Y].
interacts with The [X] interacts with [Y].

Table 1: Templates 7'(s, ) used to elicit x;. Here [X] is the subject s and [Y] is the object o.

Probe Metric Bios.d. Gens.d. Ratio
Circular  Acc@10 0.00730 0.00796 0.917
Circular  External_Acc@10 0.00441 0.00553  0.797
Circular  F1 (err. det.) 0.05287 0.02725 1.940
Logistic  Acc@10 0.00959 0.01311 0.732
Logistic ~ External_Acc@10 0.00460 0.00295 1.561
Logistic ~ F1 (err. det.) 0.00504 0.00353 1.427
MLP Acc@10 0.00727 0.00477 1.526
MLP External_Acc@10 0.00268 0.00473  0.567
MLP F1 (err. det.) 0.01994 0.01292 1.543

Table 2: Across-layer standard deviations (s.d.) of probe metrics. Bio = biomedical model; Gen =
general model. Larger s.d. indicates less stability across layers.

families. In Table [X] is the subject s and [Y] is the object o; instantiating T'(s, ) yields the input
from which we read x¢. Table[2|reports the standard deviation across layers for each metric; larger
values indicate less stable signals over depth. Notably, error-detection F1 varies substantially more in
the biomedical model.

D Additional Layer-wise Results by Co-occurrence

We stratify (s, 0) pairs by corpus co-occurrence into four buckets (low to high frequency): < 10,
(10, 100], (100, 1000], and > 1000. For each bucket we plot layer-wise probe accuracy on internal
and external knowledge (left/center) and error-detector F1 (right) for circular, logistic, and MLP
probes. Across buckets, knowledge readout remains low while error detection strengthens with depth;
the biomedical model shows consistently higher across-layer variability, especially in later layers.
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Figure 3: Layer-wise probe performance for low-frequency pairs (co-occurrence < 10). Error
detection is strong in deeper layers, with notably higher variability for the biomedical model (solid)
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Figure 4: Layer-wise probe performance for (10, 100] co-occurrence. The stability gap persists:
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Figure 5: Layer-wise probe performance for (100, 1000] co-occurrence. General model (dashed)

_Bio;n.edical vs‘ -Gen_eral Av;ra_gés - C;Jo;:cul: > 1000

10 Probe Accuracy on Internal Knowledge 10 Probe on External Ki 10 Error Detector F1
: i Probes & Categories
i — CIRCULAR
— LoGisTIC
— e
08 08 0.8
— Biomedical
== General
06 06 0.6
> > ©
9 g g
8 8 s
5 H @
I+ 8 ol
< < jy
0.4 0.4 0.4
0.2 02 0.2
0 0.0 0.0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Layer Index Layer Index Layer Index

Figure 6: Layer-wise probe performance for high-frequency pairs (co-occurrence > 1000). Trends
hold with slightly smoother curves; biomedical error-detection variability remains elevated at later

layers.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction state that domain-specific finetuning reorganizes
internal representations without adding or removing probe-accessible knowledge, and that
this reduces stability of error detection. These claims match the experiments and conclusions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section “Limitations and Conclusion” explicitly discusses that findings are
limited to biomedical triples and that variability may arise from finetuning regimes. It also
notes the scope (long-tail biomedical knowledge) and proposes future work.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include formal theoretical results or proofs; it is an
empirical study.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides details on models, datasets, prompt templates, probing
methods, and evaluation metrics (Sections 2—3, Appendix). These are sufficient to reproduce
the main findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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382 some way (e.g., to registered users), but it should be possible for other researchers

383 to have some path to reproducing or verifying the results.

384 5. Open access to data and code

385 Question: Does the paper provide open access to the data and code, with sufficient instruc-
386 tions to faithfully reproduce the main experimental results, as described in supplemental
387 material?

388 Answer: [Yes]

389 Justification: All datasets are public (MedLAMA, PubMed-derived sets, SemMedDB). In
390 addition, the code will be released on GitHub with instructions and setup details to enable
391 faithful reproduction of the main experimental results.

392 Guidelines:

393 * The answer NA means that paper does not include experiments requiring code.

394 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
395 public/guides/CodeSubmissionPolicy) for more details.

396 * While we encourage the release of code and data, we understand that this might not be
397 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
398 including code, unless this is central to the contribution (e.g., for a new open-source
399 benchmark).

400 * The instructions should contain the exact command and environment needed to run to
401 reproduce the results. See the NeurIPS code and data submission guidelines (https:
402 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

403 * The authors should provide instructions on data access and preparation, including how
404 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
405 * The authors should provide scripts to reproduce all experimental results for the new
406 proposed method and baselines. If only a subset of experiments are reproducible, they
407 should state which ones are omitted from the script and why.

408 * At submission time, to preserve anonymity, the authors should release anonymized
409 versions (if applicable).

410 * Providing as much information as possible in supplemental material (appended to the
411 paper) is recommended, but including URLSs to data and code is permitted.

412 6. Experimental setting/details

413 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
414 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
415 results?

416 Answer: [Yes]

417 Justification: Section 3 and Appendix specify datasets, relation templates, model variants,
418 probing methods, and evaluation metrics, enabling understanding of the setup.

419 Guidelines:

420 » The answer NA means that the paper does not include experiments.

421 * The experimental setting should be presented in the core of the paper to a level of detail
422 that is necessary to appreciate the results and make sense of them.

423 * The full details can be provided either with the code, in appendix, or as supplemental
424 material.

425 7. Experiment statistical significance

426 Question: Does the paper report error bars suitably and correctly defined or other appropriate
427 information about the statistical significance of the experiments?

428 Answer: [Yes]

429 Justification: Results report across-layer variability using standard deviations (Table[2) and
430 compare probe families. Error bars/variance are included where relevant.

431 Guidelines:

432 » The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All experiments were conducted on 4 NVIDIA H100 GPUs. Probe training
and evaluation required approximately one day of wall-clock time.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research complies with the NeurIPS Code of Ethics. It uses only publicly
available biomedical datasets and models without involving sensitive human subjects data.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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11.

12.

Justification: The introduction and conclusion discuss risks of deploying domain-specific
LLMs in medical settings, noting reduced robustness in self-monitoring. Positive impact
includes lightweight tools for hallucination detection.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new high-risk models or datasets are released; the work uses existing
open-source models and benchmarks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used assets (Llama, Mistral, BioMistral, MedLAMA, SemMedDB, Pub-
MedQA) are publicly licensed and properly cited in the bibliography.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not introduce new datasets, models, or code artifacts.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The study does not involve crowdsourcing or human subject experiments.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subject research was conducted; all datasets are from existing
biomedical corpora.
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589 Guidelines:

590 * The answer NA means that the paper does not involve crowdsourcing nor research with
591 human subjects.

592 * Depending on the country in which research is conducted, IRB approval (or equivalent)
593 may be required for any human subjects research. If you obtained IRB approval, you
594 should clearly state this in the paper.

595 * We recognize that the procedures for this may vary significantly between institutions
596 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
597 guidelines for their institution.

598 * For initial submissions, do not include any information that would break anonymity (if
599 applicable), such as the institution conducting the review.

600 16. Declaration of LLM usage

601 Question: Does the paper describe the usage of LLMs if it is an important, original, or
602 non-standard component of the core methods in this research? Note that if the LLM is used
603 only for writing, editing, or formatting purposes and does not impact the core methodology,
604 scientific rigorousness, or originality of the research, declaration is not required.

605 Answer: [Yes]

606 Justification: The core methodology involves probing the hidden states of general and
607 biomedical LLMs (Mistral, Llama, Gemma, BioMistral, Meditron, MMed-Llama), which is
608 clearly described throughout the paper.

609 Guidelines:

610 * The answer NA means that the core method development in this research does not
611 involve LLMs as any important, original, or non-standard components.

612 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
613 for what should or should not be described.
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