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Abstract

Recent studies demonstrate that large language models often encode correct an-1

swers internally even when their outputs are incorrect, and that lightweight probes2

can recover these latent signals. This work extends such analyses to compare3

general-purpose and biomedical domain–specialized models. Across circular, lo-4

gistic, and MLP probes, both models exhibit low probe accuracy on internal and5

external knowledge, but strong error-detection performance in deeper layers. The6

key difference lies in stability: probe performance in the biomedical model is7

markedly more variable, with nearly double the standard deviation in error detector8

F1 compared to the general model (e.g., 0.0742 vs. 0.0510 for circular probes).9

An isotropy analysis provides a complementary explanation. The general model10

displays higher anisotropy (baseline similarity = 0.4667), producing stable, lin-11

early separable correctness signals, whereas the biomedical model exhibits greater12

isotropy (baseline similarity = 0.3737), coinciding with noisier probe behavior.13

These findings suggest that domain-specific finetuning does not destroy or add14

probe-accessible knowledge, but rather reorganizes representational geometry in15

ways that reduce the stability of error-detection signals. The results here indicate16

that increased isotropy may undermine robustness in self-monitoring.117

1 Introduction18

Large language models (LLMs) have rapidly advanced the state of the art across a wide range19

of tasks. However, their tendency to produce “hallucinations”, plausible but factually incorrect20

statements, raises serious concerns about reliability, especially in high-stakes domains such as21

medicine. Empirical studies show that exposing an LLM to new factual information during supervised22

fine-tuning slows learning and increases the tendency to hallucinate: fine-tuning examples introducing23

new knowledge are learned more slowly than those consistent with pre-existing knowledge, and once24

they are learned the model’s hallucination rate grows roughly linearly with the proportion of new facts25

in the fine-tuning data [1]. Moreover, head-to-head comparisons on medical question-answering find26

that domain-adapted LLMs rarely outperform their general-purpose counterparts; medical models win27

in only about 12 % of test cases and are significantly worse in more than one-third [2]. These findings28

suggest that most factual knowledge is acquired during pre-training and that naïvely fine-tuning on29

biomedical corpora may actually degrade factuality [1].30

To mitigate hallucinations, a complementary line of work probes a model’s hidden activations31

to understand what it “knows” [3, 4]. Early results showed that a simple classifier trained on32

hidden activations can tell whether a statement is true or false with 71–83 % accuracy, outperform-33

ing probability-based heuristics [5]. More recent work on three-digit addition demonstrated that34

lightweight probes can decode both the model’s prediction and the correct answer from hidden35
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states, regardless of whether the output is right; these probes can also predict whether the output is36

correct with over 90 % accuracy and can guide selective re-prompting [6]. Visualizations of hidden37

representations on true/false datasets reveal clear linear structure, and difference-in-mean probes38

generalize across datasets while causally influencing the model’s answer [7]. Despite these insights,39

existing studies focus on general-domain models and simple arithmetic or binary truth tasks; it is40

unclear whether similar signals exist in medical models or for long-tail biomedical knowledge.41

Two factors make the biomedical setting particularly challenging. First, biomedical knowledge is42

long-tailed: many facts appear in only a handful of documents. A model’s ability to answer a43

fact-based question correlates strongly with how many pre-training documents mention the subject44

and object [8]. Even after applying knowledge-editing methods, performance on long-tail biomedical45

facts remains markedly worse than on high-frequency facts, partly because biomedical triples often46

exhibit one-to-many relations [9]. Second, hallucination detection is under-explored in medicine. The47

MedHallu benchmark shows that state-of-the-art models struggle to identify hallucinated answers in48

PubMedQA; even GPT-4o achieves an F1 as low as 0.625 on the hardest category [10]. Intriguingly,49

hallucinations that are semantically closer to the ground truth are the most difficult to detect [10], and50

general-purpose models outperform fine-tuned medical models on this task [10]. These observations51

suggest that domain-specific fine-tuning reorganizes internal representations in ways that may make52

self-monitoring less robust.53

We propose a lightweight, unified framework for biomedical knowledge probing and error detection.54

Given a triple template T (s, r), we first perform external probing: we ask the LLM to predict the55

object o and record its top-k outputs. We then perform internal probing on the residual-stream56

hidden states at the final subject token to decode both (a) the model’s predicted object and (b) a57

proxy for the ground-truth object. Building on prior work that trains simple probes to decode answers58

from hidden states and detect arithmetic errors [5, 6, 11], we design logistic and MLP probes that59

predict whether the model’s answer is correct. We test this framework across base and medical LLMs60

(Mistral-7B, Llama-3, BioMistral) [12, 13, 14, 15], and we explicitly evaluate long-tail triples where61

subjects and objects co-occur infrequently [8, 9]. Our probing approach also connects to mechanistic62

interpretability: by inspecting linear directions in the hidden state, we shed light on how models63

encode biomedical relations [7, 5, 16].64

Motivated by these gaps, we ask: Do biomedical domain–adapted LLMs differ from general LLMs in65

how they internally represent and monitor factual knowledge? We adapt the probing framework for66

arithmetic errors [6] to biomedical knowledge triples ⟨s, r, o⟩ and make three main contributions:67

1. Cross-domain probing. We design simple circular, logistic, and MLP probes that decode68

both the model’s prediction and the correct object from hidden states at each layer. We69

find that, while both general and biomedical models encode latent knowledge, probes on70

biomedical models show much higher variance in detecting errors.71

2. Error detection and geometry. We train lightweight classifiers to flag mismatches between72

predicted and ground-truth objects and analyze the geometry of hidden activations. Our73

results indicate that general models have more structured representations that support stable74

error detection, whereas biomedical models have more uniform representations, making75

error detection noisier.76

3. Implications for safety. We argue that the altered representational geometry in77

domain-adapted models may weaken their ability to self-monitor. Lightweight probes78

offer a low-overhead tool for real-time error detection and highlight potential risks when79

deploying domain-adapted LLMs in medical settings.80

2 Method81

We study biomedical triples ⟨s, r, o⟩ with a simple prompt T (s, r) and use the residual–stream vector82

at layer l for the last subject token, xl ∈ Rd. On the same xl we train two decoders: an internal83

decoder that predicts the ground-truth object o (what the model “knows”) and an external decoder84

that predicts the model’s own output fθ(s, r) (what the model will “say”), following the compact85

probing setup of Sun, Stolfo & Sachan [6]. We then turn these signals into a lightweight correctness86

score.87
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Figure 1: Layer-wise probe performance on general models (solid) and biomedical models (dashed).
Left, internal Acc@10. Center, external Acc@10. Right, error-detector F1. Biomedical models
exhibit notably higher variability in error detection at later layers despite similar average recall.

Probing Internal and External Knowledge. Both decoders share the same readouts and differ88

only by their target label. We consider K candidate objects and use three lightweight probes in89

one pass over xl: circular projects with (w1,w2), reads an angle θ = atan2(w⊤
2 xl,w

⊤
1 xl), then90

predicts k̂ = ⌊(θ/2π)K⌋; logistic computes logits z = Wxl + b and predicts k̂ = argmaxi zi;91

MLP computes h = ReLU(W1xl + b1), then z = W2h + b2, and predicts k̂ = argmaxi zi.92

Internal accuracy is the accuracy of decoders trained to recover o; external accuracy is the accuracy93

of decoders trained to recover fθ(s, r).94

Probing for Error Detection. We detect erroneous biomedical triples using three lightweight probes95

that analyze hidden activations: (1) Logistic Regression provides interpretable linear error detection,96

(2) Circular MLP captures non-linear geometric patterns in embedding space, and (3) Joint Circular97

Error Detector compares internal vs. external knowledge representations through angular differences.98

The circular approach maps activations to angles θ = atan2(w⊤
1 x,w

⊤
2 x) and flags errors when99

angular discrepancies exceed learned thresholds, achieving high accuracy while preserving semantic100

relationships in the embedding space.101

3 Experiment102

We probe knowledge and error signals in six large language models (three general-purpose models103

and their biomedical adaptations) across three datasets.104

Language Models. We compare three open-source bases, Gemma-2-9B [17], Llama-3-8B [13],105

and MISTRAL-7B-INSTRUCT-V0.1 [12], with their corresponding biomedical variants106

(Meditron3-Gemma2-9B [18], MMed-Llama-3-8B [19], and BioMistral-7B [14]). This pairing107

isolates the effect of medical finetuning, which may not reliably improve recall or reduce hallucina-108

tions [2, 1].109

Datasets and Prompts. We employ three relation-based datasets. The first is MedLAMA, which110

contains UMLS triples from Meng et al. [20] to probe general knowledge; we mark triples with fewer111

than ten PubMed co-occurrences as long-tail, following Kandpal et al. [8] and Yi et al. [9]. The112

second is a set of drug–symptom pairs from Berkowitz et al. [21] comprising 165 positive controls and113

234 negative controls to assess pharmacovigilance. The third is a collection of drug–drug interactions114

extracted from SemMedDB [22]. For each relation (for example, “may treat”), we define a simple115

template such as “[X] might treat [Y]” to prompt the models, and Appendix 1 provides the full list.116

Evaluation Metric. We evaluate how well the model accesses stored knowledge using Accuracy@K117

metrics (Acc@1, Acc@5, Acc@10). For each triple ⟨s, r, o⟩, we query the model with a relation118

template and compute Acc@10 as the fraction of cases where the gold object o appears among the119

top-10 predictions. For error detection, we label a prediction correct if the top-ranked object matches120

o and incorrect otherwise, train lightweight probes on hidden states to predict correctness, and report121

F1 scores, with labels following the missing-from-top-10 criterion [20]. To locate where knowledge122

becomes accessible, we truncate the model at layers L ∈ 10, . . . , 25, extract residual streams at the123

final subject token, train probes at each layer, and identify the optimal depth that maximizes validation124

performance. Finally, we detect retrieval failures—cases where the model internally encodes the125

3



Figure 2: Baseline anisotropy across layers. General models (red) show higher anisotropy. Biomedical
models (blue) are more isotropic. Lower anisotropy coincides with more volatile error-detection
signals.

correct knowledge but fails to produce it among the top-10 predictions—by training a probe to predict126

such failures and reporting F1 scores.127

Experiment Results. Figure 1 reports layer-wise curves. Mean internal and external Acc@10 are128

comparably low for the general and biomedical models, indicating that finetuning does not add or129

remove probe-accessible knowledge. The key difference is stability: the biomedical model exhibits130

substantially larger layer-to-layer variance in error-detector F1, especially in deeper layers (Table 2;131

e.g., circular probes SD = 0.053 vs. 0.027).132

To explain this variability, we analyze representation geometry. Following Ethayarajh [23], we133

compute the cosine similarity between random directions and layer-averaged representations and134

use the resulting baseline as an anisotropy score. The general model is more anisotropic (0.608)135

than the biomedical model (0.354). Intuitively, higher anisotropy concentrates activations along a136

few dominant directions, yielding more consistent, linearly separable probe directions across layers.137

Lower anisotropy (i.e., greater isotropy) disperses activations, which makes the induced error signals138

noisier and less stable over depth. Taken together, these results support a causal interpretation:139

reduced anisotropy can drive greater across-layer variation in both error detection and prediction.140

This, in turn, suggests that finetuning primarily reorganizes, rather than expands, probe-accessible141

knowledge, and that such reorganization may undermine self-monitoring robustness, in line with142

reports that certain finetuning regimes exacerbate hallucinations.143

4 Limitations and Conclusion144

Our results show that general-purpose and biomedical LLMs contain similar amounts of probe-145

accessible knowledge, but their internal error-detection signals differ sharply in stability: across146

circular, logistic, and MLP probes, the biomedical model has nearly twice the across-layer standard147

deviation in error-detector F1 compared to the general model (Table 2). An isotropy analysis indicates148

a plausible mechanism: domain-specific fine-tuning reduces anisotropy, yielding more isotropic149

representations that are less amenable to simple linear separation of correct vs. incorrect states.150

Practically, this implies that fine-tuning reorganizes internal geometry without adding new knowledge151

and can make self-monitoring less reliable, consistent with reports that instruction tuning increases152

hallucination rates [1, 2]. As a simple diagnostic, we propose measuring the variability of internal153

error-detection signals to assess robustness. More broadly, our unified probing and error-detection154

framework links mechanistic interpretability to safety: by extracting both predicted and ground-155

truth objects from hidden states, lightweight probes act as oracles that anticipate hallucinations and,156

when plugged into re-prompting or abstention pipelines, improve reliability with minimal overhead.157

Although we focus on biomedical facts, the approach generalizes to other domains with long-tail158

knowledge and high-stakes decisions. Future work should study cross-model prediction [24], explore159

unsupervised clustering for richer error signals, and test whether stronger probes or representation160

editing can mitigate the variability introduced by domain-specific fine-tuning.161
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A Related Work234

Long-Tail Biomedical Knowledge Biomedical knowledge exhibits a long-tailed distribution: many235

subject–object pairs appear in only a few training documents. LLMs’ ability to answer fact-based236

questions correlates strongly with the number of documents containing the subject and object [8].237

Kandpal et al. [8] demonstrated that even very large models struggle to learn rare facts and require238

orders of magnitude more parameters to match performance on questions with little pre-training239

support. Knowledge editing can inject rare facts into LLMs, but Yi et al. [9] found that edited models240

still perform worse on long-tail biomedical knowledge than on high-frequency knowledge and that241

one-to-many relations limit the effectiveness of editing. Our evaluation therefore stratifies probes by242

knowledge popularity to assess whether internal error signals differ between common and rare facts.243

Mechanistic Interpretability Mechanistic interpretability (MI) aims to identify and understand the244

circuits and directions in neural networks that implement high-level functions. Studies have shown245

that hidden activations encode truthfulness signals that can be isolated by linear probes [7]. The246

linear classifiers on hidden activations can detect when a language model is lying [5] and that concept247

directions found via linear relational embeddings can causally steer model outputs [25]. Our work248

builds on these insights by applying MI tools to domain-adapted biomedical models and analyzing249

how fine-tuning affects the geometry of internal representations.250

Error Detection in LLMs Detecting hallucinations is essential for trustworthy deployment. Azaria251

& Mitchell [5] trained a classifier on hidden activations to distinguish true from false statements252

and demonstrated that internal states provide more reliable confidence estimates than softmax253

probabilities. Many subsequent works explore probability-based or consistency-based detectors, but254

general-purpose LLMs still struggle on medical hallucination benchmarks. The MedHallu dataset255

showed that even GPT-4o achieves only moderate F1 scores and that hallucinations close to the truth256

are hardest to detect [10]. Our probes build on this literature by comparing logistic, circular, and MLP257

probes for binary error detection and by analyzing how probe performance varies across domains and258

layers.259

B Experiments Compute Resources260

All experiments were conducted on 4 NVIDIA H100 GPUs. Probe training and evaluation completed261

within approximately one day of wall-clock time.262

C Prompt Templates and Layerwise Stability263

This appendix documents (i) the minimal natural-language templates we use to render (s, r, o) tuples264

into prompts for extracting layer representations xℓ, and (ii) the layerwise stability of three probe265
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Relation Manual Prompt

may treat [X] might treat [Y].
may prevent [X] might prevent [Y].
adverse drug effect The adverse effect of [X] is [Y].
interacts with The [X] interacts with [Y].

Table 1: Templates T (s, r) used to elicit xl. Here [X] is the subject s and [Y] is the object o.

Probe Metric Bio s.d. Gen s.d. Ratio

Circular Acc@10 0.00730 0.00796 0.917
Circular External_Acc@10 0.00441 0.00553 0.797
Circular F1 (err. det.) 0.05287 0.02725 1.940
Logistic Acc@10 0.00959 0.01311 0.732
Logistic External_Acc@10 0.00460 0.00295 1.561
Logistic F1 (err. det.) 0.00504 0.00353 1.427
MLP Acc@10 0.00727 0.00477 1.526
MLP External_Acc@10 0.00268 0.00473 0.567
MLP F1 (err. det.) 0.01994 0.01292 1.543

Table 2: Across-layer standard deviations (s.d.) of probe metrics. Bio = biomedical model; Gen =
general model. Larger s.d. indicates less stability across layers.

families. In Table 1, [X] is the subject s and [Y] is the object o; instantiating T (s, r) yields the input266

from which we read xℓ. Table 2 reports the standard deviation across layers for each metric; larger267

values indicate less stable signals over depth. Notably, error-detection F1 varies substantially more in268

the biomedical model.269

D Additional Layer-wise Results by Co-occurrence270

We stratify (s, o) pairs by corpus co-occurrence into four buckets (low to high frequency): ≤ 10,271

(10, 100], (100, 1000], and >1000. For each bucket we plot layer-wise probe accuracy on internal272

and external knowledge (left/center) and error-detector F1 (right) for circular, logistic, and MLP273

probes. Across buckets, knowledge readout remains low while error detection strengthens with depth;274

the biomedical model shows consistently higher across-layer variability, especially in later layers.275
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Figure 3: Layer-wise probe performance for low-frequency pairs (co-occurrence ≤ 10). Error
detection is strong in deeper layers, with notably higher variability for the biomedical model (solid)
relative to the general model (dashed).

Figure 4: Layer-wise probe performance for (10, 100] co-occurrence. The stability gap persists:
biomedical error-detection signals vary more across layers despite similar average recall.

Figure 5: Layer-wise probe performance for (100, 1000] co-occurrence. General model (dashed)
remains more stable across depth; biomedical model (solid) shows noisier F1 trajectories.

Figure 6: Layer-wise probe performance for high-frequency pairs (co-occurrence >1000). Trends
hold with slightly smoother curves; biomedical error-detection variability remains elevated at later
layers.
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NeurIPS Paper Checklist276

1. Claims277

Question: Do the main claims made in the abstract and introduction accurately reflect the278

paper’s contributions and scope?279

Answer: [Yes]280

Justification: The abstract and introduction state that domain-specific finetuning reorganizes281

internal representations without adding or removing probe-accessible knowledge, and that282

this reduces stability of error detection. These claims match the experiments and conclusions.283

Guidelines:284

• The answer NA means that the abstract and introduction do not include the claims285

made in the paper.286

• The abstract and/or introduction should clearly state the claims made, including the287

contributions made in the paper and important assumptions and limitations. A No or288

NA answer to this question will not be perceived well by the reviewers.289

• The claims made should match theoretical and experimental results, and reflect how290

much the results can be expected to generalize to other settings.291

• It is fine to include aspirational goals as motivation as long as it is clear that these goals292

are not attained by the paper.293

2. Limitations294

Question: Does the paper discuss the limitations of the work performed by the authors?295

Answer: [Yes]296

Justification: Section “Limitations and Conclusion” explicitly discusses that findings are297

limited to biomedical triples and that variability may arise from finetuning regimes. It also298

notes the scope (long-tail biomedical knowledge) and proposes future work.299

Guidelines:300

• The answer NA means that the paper has no limitation while the answer No means that301

the paper has limitations, but those are not discussed in the paper.302

• The authors are encouraged to create a separate "Limitations" section in their paper.303

• The paper should point out any strong assumptions and how robust the results are to304

violations of these assumptions (e.g., independence assumptions, noiseless settings,305

model well-specification, asymptotic approximations only holding locally). The authors306

should reflect on how these assumptions might be violated in practice and what the307

implications would be.308

• The authors should reflect on the scope of the claims made, e.g., if the approach was309

only tested on a few datasets or with a few runs. In general, empirical results often310

depend on implicit assumptions, which should be articulated.311

• The authors should reflect on the factors that influence the performance of the approach.312

For example, a facial recognition algorithm may perform poorly when image resolution313

is low or images are taken in low lighting. Or a speech-to-text system might not be314

used reliably to provide closed captions for online lectures because it fails to handle315

technical jargon.316

• The authors should discuss the computational efficiency of the proposed algorithms317

and how they scale with dataset size.318

• If applicable, the authors should discuss possible limitations of their approach to319

address problems of privacy and fairness.320

• While the authors might fear that complete honesty about limitations might be used by321

reviewers as grounds for rejection, a worse outcome might be that reviewers discover322

limitations that aren’t acknowledged in the paper. The authors should use their best323

judgment and recognize that individual actions in favor of transparency play an impor-324

tant role in developing norms that preserve the integrity of the community. Reviewers325

will be specifically instructed to not penalize honesty concerning limitations.326

3. Theory assumptions and proofs327
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Question: For each theoretical result, does the paper provide the full set of assumptions and328

a complete (and correct) proof?329

Answer: [NA]330

Justification: The paper does not include formal theoretical results or proofs; it is an331

empirical study.332

Guidelines:333

• The answer NA means that the paper does not include theoretical results.334

• All the theorems, formulas, and proofs in the paper should be numbered and cross-335

referenced.336

• All assumptions should be clearly stated or referenced in the statement of any theorems.337

• The proofs can either appear in the main paper or the supplemental material, but if338

they appear in the supplemental material, the authors are encouraged to provide a short339

proof sketch to provide intuition.340

• Inversely, any informal proof provided in the core of the paper should be complemented341

by formal proofs provided in appendix or supplemental material.342

• Theorems and Lemmas that the proof relies upon should be properly referenced.343

4. Experimental result reproducibility344

Question: Does the paper fully disclose all the information needed to reproduce the main ex-345

perimental results of the paper to the extent that it affects the main claims and/or conclusions346

of the paper (regardless of whether the code and data are provided or not)?347

Answer: [Yes]348

Justification: The paper provides details on models, datasets, prompt templates, probing349

methods, and evaluation metrics (Sections 2–3, Appendix). These are sufficient to reproduce350

the main findings.351

Guidelines:352

• The answer NA means that the paper does not include experiments.353

• If the paper includes experiments, a No answer to this question will not be perceived354

well by the reviewers: Making the paper reproducible is important, regardless of355

whether the code and data are provided or not.356

• If the contribution is a dataset and/or model, the authors should describe the steps taken357

to make their results reproducible or verifiable.358

• Depending on the contribution, reproducibility can be accomplished in various ways.359

For example, if the contribution is a novel architecture, describing the architecture fully360

might suffice, or if the contribution is a specific model and empirical evaluation, it may361

be necessary to either make it possible for others to replicate the model with the same362

dataset, or provide access to the model. In general. releasing code and data is often363

one good way to accomplish this, but reproducibility can also be provided via detailed364

instructions for how to replicate the results, access to a hosted model (e.g., in the case365

of a large language model), releasing of a model checkpoint, or other means that are366

appropriate to the research performed.367

• While NeurIPS does not require releasing code, the conference does require all submis-368

sions to provide some reasonable avenue for reproducibility, which may depend on the369

nature of the contribution. For example370

(a) If the contribution is primarily a new algorithm, the paper should make it clear how371

to reproduce that algorithm.372

(b) If the contribution is primarily a new model architecture, the paper should describe373

the architecture clearly and fully.374

(c) If the contribution is a new model (e.g., a large language model), then there should375

either be a way to access this model for reproducing the results or a way to reproduce376

the model (e.g., with an open-source dataset or instructions for how to construct377

the dataset).378

(d) We recognize that reproducibility may be tricky in some cases, in which case379

authors are welcome to describe the particular way they provide for reproducibility.380

In the case of closed-source models, it may be that access to the model is limited in381
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some way (e.g., to registered users), but it should be possible for other researchers382

to have some path to reproducing or verifying the results.383

5. Open access to data and code384

Question: Does the paper provide open access to the data and code, with sufficient instruc-385

tions to faithfully reproduce the main experimental results, as described in supplemental386

material?387

Answer: [Yes]388

Justification: All datasets are public (MedLAMA, PubMed-derived sets, SemMedDB). In389

addition, the code will be released on GitHub with instructions and setup details to enable390

faithful reproduction of the main experimental results.391

Guidelines:392

• The answer NA means that paper does not include experiments requiring code.393

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/394

public/guides/CodeSubmissionPolicy) for more details.395

• While we encourage the release of code and data, we understand that this might not be396

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not397

including code, unless this is central to the contribution (e.g., for a new open-source398

benchmark).399

• The instructions should contain the exact command and environment needed to run to400

reproduce the results. See the NeurIPS code and data submission guidelines (https:401

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.402

• The authors should provide instructions on data access and preparation, including how403

to access the raw data, preprocessed data, intermediate data, and generated data, etc.404

• The authors should provide scripts to reproduce all experimental results for the new405

proposed method and baselines. If only a subset of experiments are reproducible, they406

should state which ones are omitted from the script and why.407

• At submission time, to preserve anonymity, the authors should release anonymized408

versions (if applicable).409

• Providing as much information as possible in supplemental material (appended to the410

paper) is recommended, but including URLs to data and code is permitted.411

6. Experimental setting/details412

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-413

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the414

results?415

Answer: [Yes]416

Justification: Section 3 and Appendix specify datasets, relation templates, model variants,417

probing methods, and evaluation metrics, enabling understanding of the setup.418

Guidelines:419

• The answer NA means that the paper does not include experiments.420

• The experimental setting should be presented in the core of the paper to a level of detail421

that is necessary to appreciate the results and make sense of them.422

• The full details can be provided either with the code, in appendix, or as supplemental423

material.424

7. Experiment statistical significance425

Question: Does the paper report error bars suitably and correctly defined or other appropriate426

information about the statistical significance of the experiments?427

Answer: [Yes]428

Justification: Results report across-layer variability using standard deviations (Table 2) and429

compare probe families. Error bars/variance are included where relevant.430

Guidelines:431

• The answer NA means that the paper does not include experiments.432
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-433

dence intervals, or statistical significance tests, at least for the experiments that support434

the main claims of the paper.435

• The factors of variability that the error bars are capturing should be clearly stated (for436

example, train/test split, initialization, random drawing of some parameter, or overall437

run with given experimental conditions).438

• The method for calculating the error bars should be explained (closed form formula,439

call to a library function, bootstrap, etc.)440

• The assumptions made should be given (e.g., Normally distributed errors).441

• It should be clear whether the error bar is the standard deviation or the standard error442

of the mean.443

• It is OK to report 1-sigma error bars, but one should state it. The authors should444

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis445

of Normality of errors is not verified.446

• For asymmetric distributions, the authors should be careful not to show in tables or447

figures symmetric error bars that would yield results that are out of range (e.g. negative448

error rates).449

• If error bars are reported in tables or plots, The authors should explain in the text how450

they were calculated and reference the corresponding figures or tables in the text.451

8. Experiments compute resources452

Question: For each experiment, does the paper provide sufficient information on the com-453

puter resources (type of compute workers, memory, time of execution) needed to reproduce454

the experiments?455

Answer: [Yes]456

Justification: All experiments were conducted on 4 NVIDIA H100 GPUs. Probe training457

and evaluation required approximately one day of wall-clock time.458

Guidelines:459

• The answer NA means that the paper does not include experiments.460

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,461

or cloud provider, including relevant memory and storage.462

• The paper should provide the amount of compute required for each of the individual463

experimental runs as well as estimate the total compute.464

• The paper should disclose whether the full research project required more compute465

than the experiments reported in the paper (e.g., preliminary or failed experiments that466

didn’t make it into the paper).467

9. Code of ethics468

Question: Does the research conducted in the paper conform, in every respect, with the469

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?470

Answer: [Yes]471

Justification: The research complies with the NeurIPS Code of Ethics. It uses only publicly472

available biomedical datasets and models without involving sensitive human subjects data.473

Guidelines:474

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.475

• If the authors answer No, they should explain the special circumstances that require a476

deviation from the Code of Ethics.477

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-478

eration due to laws or regulations in their jurisdiction).479

10. Broader impacts480

Question: Does the paper discuss both potential positive societal impacts and negative481

societal impacts of the work performed?482

Answer: [Yes]483
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Justification: The introduction and conclusion discuss risks of deploying domain-specific484

LLMs in medical settings, noting reduced robustness in self-monitoring. Positive impact485

includes lightweight tools for hallucination detection.486

Guidelines:487

• The answer NA means that there is no societal impact of the work performed.488

• If the authors answer NA or No, they should explain why their work has no societal489

impact or why the paper does not address societal impact.490

• Examples of negative societal impacts include potential malicious or unintended uses491

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations492

(e.g., deployment of technologies that could make decisions that unfairly impact specific493

groups), privacy considerations, and security considerations.494

• The conference expects that many papers will be foundational research and not tied495

to particular applications, let alone deployments. However, if there is a direct path to496

any negative applications, the authors should point it out. For example, it is legitimate497

to point out that an improvement in the quality of generative models could be used to498

generate deepfakes for disinformation. On the other hand, it is not needed to point out499

that a generic algorithm for optimizing neural networks could enable people to train500

models that generate Deepfakes faster.501

• The authors should consider possible harms that could arise when the technology is502

being used as intended and functioning correctly, harms that could arise when the503

technology is being used as intended but gives incorrect results, and harms following504

from (intentional or unintentional) misuse of the technology.505

• If there are negative societal impacts, the authors could also discuss possible mitigation506

strategies (e.g., gated release of models, providing defenses in addition to attacks,507

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from508

feedback over time, improving the efficiency and accessibility of ML).509

11. Safeguards510

Question: Does the paper describe safeguards that have been put in place for responsible511

release of data or models that have a high risk for misuse (e.g., pretrained language models,512

image generators, or scraped datasets)?513

Answer: [NA]514

Justification: No new high-risk models or datasets are released; the work uses existing515

open-source models and benchmarks.516

Guidelines:517

• The answer NA means that the paper poses no such risks.518

• Released models that have a high risk for misuse or dual-use should be released with519

necessary safeguards to allow for controlled use of the model, for example by requiring520

that users adhere to usage guidelines or restrictions to access the model or implementing521

safety filters.522

• Datasets that have been scraped from the Internet could pose safety risks. The authors523

should describe how they avoided releasing unsafe images.524

• We recognize that providing effective safeguards is challenging, and many papers do525

not require this, but we encourage authors to take this into account and make a best526

faith effort.527

12. Licenses for existing assets528

Question: Are the creators or original owners of assets (e.g., code, data, models), used in529

the paper, properly credited and are the license and terms of use explicitly mentioned and530

properly respected?531

Answer: [Yes]532

Justification: All used assets (Llama, Mistral, BioMistral, MedLAMA, SemMedDB, Pub-533

MedQA) are publicly licensed and properly cited in the bibliography.534

Guidelines:535

• The answer NA means that the paper does not use existing assets.536
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• The authors should cite the original paper that produced the code package or dataset.537

• The authors should state which version of the asset is used and, if possible, include a538

URL.539

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.540

• For scraped data from a particular source (e.g., website), the copyright and terms of541

service of that source should be provided.542

• If assets are released, the license, copyright information, and terms of use in the543

package should be provided. For popular datasets, paperswithcode.com/datasets544

has curated licenses for some datasets. Their licensing guide can help determine the545

license of a dataset.546

• For existing datasets that are re-packaged, both the original license and the license of547

the derived asset (if it has changed) should be provided.548

• If this information is not available online, the authors are encouraged to reach out to549

the asset’s creators.550

13. New assets551

Question: Are new assets introduced in the paper well documented and is the documentation552

provided alongside the assets?553

Answer: [NA]554

Justification: The paper does not introduce new datasets, models, or code artifacts.555

Guidelines:556

• The answer NA means that the paper does not release new assets.557

• Researchers should communicate the details of the dataset/code/model as part of their558

submissions via structured templates. This includes details about training, license,559

limitations, etc.560

• The paper should discuss whether and how consent was obtained from people whose561

asset is used.562

• At submission time, remember to anonymize your assets (if applicable). You can either563

create an anonymized URL or include an anonymized zip file.564

14. Crowdsourcing and research with human subjects565

Question: For crowdsourcing experiments and research with human subjects, does the paper566

include the full text of instructions given to participants and screenshots, if applicable, as567

well as details about compensation (if any)?568

Answer: [NA]569

Justification: The study does not involve crowdsourcing or human subject experiments.570

Guidelines:571

• The answer NA means that the paper does not involve crowdsourcing nor research with572

human subjects.573

• Including this information in the supplemental material is fine, but if the main contribu-574

tion of the paper involves human subjects, then as much detail as possible should be575

included in the main paper.576

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,577

or other labor should be paid at least the minimum wage in the country of the data578

collector.579

15. Institutional review board (IRB) approvals or equivalent for research with human580

subjects581

Question: Does the paper describe potential risks incurred by study participants, whether582

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)583

approvals (or an equivalent approval/review based on the requirements of your country or584

institution) were obtained?585

Answer: [NA]586

Justification: No human subject research was conducted; all datasets are from existing587

biomedical corpora.588
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Guidelines:589

• The answer NA means that the paper does not involve crowdsourcing nor research with590

human subjects.591

• Depending on the country in which research is conducted, IRB approval (or equivalent)592

may be required for any human subjects research. If you obtained IRB approval, you593

should clearly state this in the paper.594

• We recognize that the procedures for this may vary significantly between institutions595

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the596

guidelines for their institution.597

• For initial submissions, do not include any information that would break anonymity (if598

applicable), such as the institution conducting the review.599

16. Declaration of LLM usage600

Question: Does the paper describe the usage of LLMs if it is an important, original, or601

non-standard component of the core methods in this research? Note that if the LLM is used602

only for writing, editing, or formatting purposes and does not impact the core methodology,603

scientific rigorousness, or originality of the research, declaration is not required.604

Answer: [Yes]605

Justification: The core methodology involves probing the hidden states of general and606

biomedical LLMs (Mistral, Llama, Gemma, BioMistral, Meditron, MMed-Llama), which is607

clearly described throughout the paper.608

Guidelines:609

• The answer NA means that the core method development in this research does not610

involve LLMs as any important, original, or non-standard components.611

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)612

for what should or should not be described.613
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