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Abstract

This paper proposes improvements over earlier work by Nazareth and Blei [1] for1

estimating the depth of Bayesian neural networks. Here, we propose a discrete2

truncated normal distribution over the network depth to independently learn its3

mean and variance. Posterior distributions are inferred by minimizing the varia-4

tional free energy, which balances the model complexity and accuracy. Our method5

improves test accuracy in the spiral data set and reduces the variance in posterior6

depth estimates.7

1 Introduction8

Determining the optimal neural network architecture for a given problem is a challenging task,9

typically involving manual design iterations or automated grid searches. Both approaches are10

time-consuming and resource-intensive. A critical aspect of this process is balancing the model’s11

complexity to prevent overfitting while ensuring high accuracy.12

The seminal work of Nazareth and Blei [1] introduced a variational inference scheme to network13

depth estimation. By treating the layer depth of the model as a latent variable, they can infer its14

posterior distribution. Importantly, their variational free energy provided an excellent objective for15

balancing the model complexity against the model accuracy.16

Although the approach presented in [1] offers a refreshing perspective, some areas could be improved.17

For instance, using a truncated Poisson distribution for layer depth results in the mean and variance18

being approximately equal, which can lead to significant uncertainty in determining the appropriate19

number of layers, especially for networks of increasing depth and complexity. Moreover, although20

the methodology in [1] is based on variational principles, certain simplifying assumptions undermine21

the probabilistic nature of their model. Specifically, the first-order linearization approximation over22

expectations neglects uncertainties over the parameters.23

This paper focuses exclusively on Bayesian neural networks and builds on the work by [1], addressing24

the aforementioned areas of improvement. Specifically, we make the following contributions:25

• We propose a discrete truncated normal distribution over the number of hidden layers of26

a Bayesian neural network, enabling variance reduction in the posterior estimates of the27

appropriate number of layers;28

• Parameter estimation and structure learning are jointly performed by minimization of the29

variational free energy, explicitly taking the uncertainties over variables into account.30

In Section 2 the probabilistic model is specified, after which the inference procedure is elaborated in31

Section 3. Section 4 discusses the results obtained, and Section 5 concludes the paper.32
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Figure 1: Visualization of the non-linearity ΩL in (2). Deeper models reuse parts of shallower models.

2 Model specification33

Let D = {(xn, yn)}Nn=1 be a dataset of N labeled observations. We define the likelihood function of34

a Bayesian neural network as35

p(yn |xn, θ, L) = N (yn |ΩL(xn),Σ), (1a)
p(yn |xn, θ, L) = Cat(yn |σ(ΩL(xn))), (1b)

for regression and classification, respectively. N (· |µ,Σ) represents a normal distribution with mean36

µ and covariance Σ and Cat(· | p) is a categorical distribution with event probabilities p, with σ(·)37

denoting the softmax function. The underlying non-linearity ΩL is parameterized by parameters θ, is38

visualized in Figure 1 and is defined as the composition39

ΩL = gL ◦ fL ◦ fL−1 ◦ · · · ◦ f1 ◦ f0, (2)

with input transformation f0, latent transformations {fl}Ll=1 and output transformations {gl}Ll=0.40

We treat the model depth L ∈ N0 as an unknown variable. Therefore, a suitable discrete prior must41

be selected, with limited support and enabling efficient inference. The truncated Poisson distribution42

proposed in [1] has a variance and support that grows in network depth, preventing it from converging43

to a single value for the depth.44

Alternative discrete distributions suffer from similar problems, such as the negative binomial distribu-45

tion whose variance is always larger or equal to its mean. Others do not have continuous parameters,46

such as the hypergeometric distribution with integer parameters. For the categorical distributions used47

in [2], the support needs to be bounded. The generalized Poisson distribution [3] enables situations48

where its mean exceeds its variance, however, in those situations the distribution quickly becomes49

ill-defined [4]. Furthermore, the Conway-Maxwell-Poisson distribution does not require closed-form50

expressions for its normalization constant [5, 6].51

Here, we propose to use a discrete truncated normal distribution, whose mean and variance52

are decoupled, which enables us to model both over- and under-dispersed distributions. Let53

N≥0(x |µ, σ2)
△∝ N (x |µ, σ2)1[x |x ≥ 0] denote a normal distribution truncated to the positive real54

line. Based on this truncated normal distribution, we define the prior over L as its discrete counterpart55

p(L) =

∫ L+1

L

N≥0(l |µL, σ
2
L) dl for L ∈ N0. (3)

We intentionally do not choose a discrete Gamma distribution [7] here, despite its positive domain,56

because computing derivatives to the shape parameter after truncation is difficult due to the presence57

of the lower incomplete gamma function in its cumulative density function.58

To complete the model specification, the prior over the parameters is chosen to fully factorize as59

p(θ |L) =
∏

ϑgL
∈θgL

N (ϑgL |µϑ, σ
2
ϑ)

L∏
l=0

∏
ϑfl

∈θfl

N (ϑfl |µϑ, σ
2
ϑ), (4)

where an explicit distinction in made between the parameters in the input and hidden layers {θfl}Ll=0,60

which are shared amongst different model depths, and in the depth-specific output layers {θgl}Ll=0.61
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Figure 2: Spiral datasets for different rotation speeds ω, generated according to Appendix A.1.

With the model specified, the next step involves specifying the variational posterior distribution. We62

factorize the variational posterior distribution as63

q(θ, L) = q(L)
∏

ϑgL
∈θgL

N (ϑgL | µ̂ϑ, σ̂
2
ϑ)

L∏
l=0

∏
ϑfl

∈θfl

N (ϑfl | µ̂ϑ, σ̂
2
ϑ). (5)

To retain tractability, we further truncate the variational posterior distribution over L to its lower and64

upper quantiles defined by pl, pu to ensure a limited support by defining65

N [pl,pu]
≥0 (x |µ, σ2)

△∝ N≥0(x |µ, σ2)1

[
x
∣∣∣ pl ≤ ∫ x

0

N≥0(z |µ, σ2) dz ≤ pu

]
. (6)

Using this expression the variational posterior distribution over the network depth is formulated as66

q(L) =

∫ L+1

L

N [pl,pu]
≥0 (l | µ̂L, σ̂

2
L) dl for L ∈ N0. (7)

where the ·̂ accent identifies the variational parameters in (6) and (7).67

3 Probabilistic inference68

Estimation of the variational posterior distributions, which encompasses both parameter estimation69

and structure learning, is achieved by minimization of the variational free energy70

F[p, q] = Eq(L,θ)

[
ln

p(y, θ, L |x)
q(θ, L)

]
,

= Eq(L)

[
ln

q(L)

p(L)
+ Eq(θ |L)

[
ln

q(θ |L)
p(θ |L) +

N∑
n=1

ln p(yn |xn, θ, L)

]]
,

(8)

where the expectation over parameters can be further decomposed as71

Eq(θ |L)

[
ln

q(θ |L)
p(θ |L)

]
=

∑
ϑgL

∈θgL

KL [q(ϑgL)∥p(ϑgL)] +

L∑
l=0

∑
ϑfl

∈θfl

KL [q(ϑfl)∥p(ϑfl)] . (9)

Although the expectation over the network depth seems computationally involved, the limited support72

as a result of the truncation in (7) reduces this operation to a finite summation as Eq(L)[f(· |L)] =73 ∑
l∈supp{q(L)} q(l)f(· | l). Furthermore, since hidden layers are reused in networks of varying depth74

as illustrated in Figure 1, most computations can be reused in computing the expected log-evidence.75

4 Experiments76

All experiments1 have been implemented in Julia [8] to explore its excellent metaprogramming77

capabilities as required by the dynamic nature of the unbounded models. We closely follow the78

1All experiments are anonymously available at https://anonymous.4open.science/r/
DepthEstimationBNN-NeurIPS.
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Figure 3: (Left) Test accuracy on the spiral classification task for varying rotation speeds ω. Solid
lines represent the average accuracy over five independent runs, with shaded areas indicating one
standard deviation (±σ). The discrete truncated normal distribution shows accuracy improvements
across all rotational speeds compared to the Poisson-based model in [1]. (Right) Means and standard
deviations of the posterior distributions over network depth, shown for the first run, with similar
trends across other runs. As expected, the variance of the Poisson-based model increases at larger
depths, while the normal distribution converges to a single depth.

experimental design of [1] and generate a train, validation and test set of 1024 samples each of79

the spiral dataset [1, 9] for binary classification as described in Appendix A.1. This dataset is80

parameterized by a rotation speed ω, which captures the difficulty of the dataset as shown in Figure 2.81

The input layer f0 : R2 → R32 and latent layers fl : R32 → R32 ∀ l ≥ 1 each consist of a linear82

transformation followed by a LeakyReLU [10]. The output layers only involve a linear transformation83

gl : R32 → R2 ∀ l ≥ 0, where the non-linearity appears in (1b). We compare our approach to84

[1] which uses a Poisson(0.5) prior, where the variational posterior distribution is initialized by85

the Poisson(1.0) distribution, truncated to the 0.95-quantile. We select a similarly shaped normal86

distribution (µL = 0, µ̂L = 0, σL = 1.15 and σ̂L = 1.8), whose truncation is defined by pl = 0.02587

and pu = 0.975. Appendix A.2 shows the resemblance between these priors.88

We jointly learn the parameters of the probabilistic model and its variational posterior through89

stochastic variational inference [11] by minimizing the variational free energy in (8) using the Adam90

optimizer [12] until convergence. Appendix A.3 specifies the hyperparameter settings. Inference in91

the model is performed using Bayes-by-backprop [13] with local reparameterization [14]. The model92

that achieves the lowest variational free energy on the validation set is saved and evaluated on the test93

set by forming predictions according to94

p(y⋆ |x⋆) ≈ Eq(θ,L) [p(y
⋆ |x⋆, θ, L)] . (10)

Figure 3 shows the achieved predictive accuracy on the test set and the inferred posterior distributions95

over the model depth. From this we conclude that the discrete truncated normal distribution outper-96

forms the Poisson distribution on the spiral classification task. The normal-based model achieves a97

higher accuracy, which becomes increasingly significant when the complexity of the data increases.98

Furthermore, as expected, the posterior distribution over the model depth in the normal-based model99

has a reduced variance in comparison to the Poisson-based model, as its mean and variance are100

naturally decoupled during training. In practice this leads to computational savings when making101

predictions using (10) as the narrow support of q(L) requires less output layers gl to be active.102

5 Discussion and conclusion103

This paper introduces a discrete truncated normal distribution for modeling the depth of a Bayesian104

neural network and demonstrates how to infer its posterior distribution through the minimization105

of variational free energy. Compared to methods using a Poisson prior [1], our approach results in106

reduced variance in posterior estimates and improved test accuracy on the spiral classification task.107

The results presented in this paper show promising improvements in estimating the depth of Bayesian108

neural networks. However, additional experiments are required involving more complex models and109

tasks. Network width estimation and parameter pruning [13, 15–17] offer valuable opportunities for110

further expanding the methodology presented here.111
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Figure 4: Log probability mass function of the (left) prior distribution over the model depth used
in [1] and of the discrete truncated normal distribution used in this paper; and of the (right) initial
variational posterior distributions over the model depth.

A Experimental details162

This appendix outlines the implementation details corresponding to experiments in Section 4.163

A.1 Data generation164

The spiral dataset used in the experiments of Section 4 and visualized in Figure 2 are generated165

according to the following sampling procedure2:166

tn ∼ Uniform([0, 1]) (11a)

un =
√
tn (11b)

yn ∼ Uniform({−1, 1}) (11c)

xn ∼ N
([

ynun cos
(
ωun

π
2

)
ynun sin

(
ωun

π
2

)] , 4 · 10−4I2

)
(11d)

A.2 Prior selection167

For selecting the prior and initial variational posterior distributions in the experiments of Section 4,168

we manually align the discrete truncated distribution with the Poisson distributions. Figure 4 shows a169

comparison of the log probability mass function of both functions as comparisons. Most important are170

the segments with a high log-probability, where the priors align relatively well from visual inspection.171

It should be noted that some discrepancies are inevitable, but at the same time negligible as these172

distributions only serve as a starting point and can be optimized over.173

A.3 Training procedure174

Below we describe the training procedure. Here we tried to stay as close to the experimental design175

of [1] as possible.176

For each run we set a random seed equal to the run index. We then independently sample a177

train, validation and test set consisting of 1024 samples each for ω = 0, 1, . . . , 30 according to178

Appendix A.1. We use the following hyperparameters179

• Prior on the model depth: p(L) = Poisson(L | 0.5) or p(L) =
∫ L+1

L
N≥0(l | 0, 1.152) dl.180

• Initialization of variational posteriors: q(L) = Poisson[0,0.95](L | 1) or q(L) =181 ∫ L+1

L
N [0.025,0.975]

≥0 (l | 0, 1.82) dl.182

• Optimizer: Adam [12] with default hyperparameters (β1 = 0.9 and β2 = 0.999).183

2The variance in the last step seems to differ from the original description in [1, Appendix B.1], however,
the value reported there (0.02) refers to the standard deviation of the normal distribution, as verified with their
publicly available experiments.
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• Learning rate: 0.005 (0.0005 for µ̂L and σ̂2
L, and for the rate parameter of the posterior184

Poisson distribution λ̂L).185

• Number of epochs: 20.000.186

• Batch size: 256 (randomly shuffled per epoch).187

• Leaky ReLU: max(αx, x), where α = 0.1.188

• Reparameterization: strictly positive parameters are transformed using the softplus function189

for unconstrained optimization.190
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1. Claims192

Question: Do the main claims made in the abstract and introduction accurately reflect the193

paper’s contributions and scope?194

Answer: [Yes]195

Justification: The introduction clearly specifies the problem this paper addresses and explic-196

itly states the contributions of the paper. The abstract highlights these contributions and the197

results obtained from the experiments in the paper.198

Guidelines:199

• The answer NA means that the abstract and introduction do not include the claims200

made in the paper.201

• The abstract and/or introduction should clearly state the claims made, including the202

contributions made in the paper and important assumptions and limitations. A No or203

NA answer to this question will not be perceived well by the reviewers.204

• The claims made should match theoretical and experimental results, and reflect how205

much the results can be expected to generalize to other settings.206

• It is fine to include aspirational goals as motivation as long as it is clear that these goals207

are not attained by the paper.208

2. Limitations209

Question: Does the paper discuss the limitations of the work performed by the authors?210

Answer: [Yes]211

Justification: The conclusion states that more rigorous experiments are required. Additional212

experimentation is currently ongoing. Yet for the scope of this extended abstract, the authors213

deemed the results of the current experiments interesting enough to share. Furthermore, as-214

sumptions are clearly mentioned throughout the paper and experimental details are provided215

in Appendix A and in the complementary code repository. Although details regarding the216

computational efficiency are more clearly addressed in the motivating work of [1], we only217

highlight their key findings at the end of Sections 3 and 4 due to space limitations. We note218

here that there are little concerns regarding the computational scalability.219

Guidelines:220

• The answer NA means that the paper has no limitation while the answer No means that221

the paper has limitations, but those are not discussed in the paper.222

• The authors are encouraged to create a separate "Limitations" section in their paper.223

• The paper should point out any strong assumptions and how robust the results are to224

violations of these assumptions (e.g., independence assumptions, noiseless settings,225

model well-specification, asymptotic approximations only holding locally). The authors226

should reflect on how these assumptions might be violated in practice and what the227

implications would be.228

• The authors should reflect on the scope of the claims made, e.g., if the approach was229

only tested on a few datasets or with a few runs. In general, empirical results often230

depend on implicit assumptions, which should be articulated.231

• The authors should reflect on the factors that influence the performance of the approach.232

For example, a facial recognition algorithm may perform poorly when image resolution233

is low or images are taken in low lighting. Or a speech-to-text system might not be234

used reliably to provide closed captions for online lectures because it fails to handle235

technical jargon.236

• The authors should discuss the computational efficiency of the proposed algorithms237

and how they scale with dataset size.238

• If applicable, the authors should discuss possible limitations of their approach to239

address problems of privacy and fairness.240

• While the authors might fear that complete honesty about limitations might be used by241

reviewers as grounds for rejection, a worse outcome might be that reviewers discover242

limitations that aren’t acknowledged in the paper. The authors should use their best243
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judgment and recognize that individual actions in favor of transparency play an impor-244

tant role in developing norms that preserve the integrity of the community. Reviewers245

will be specifically instructed to not penalize honesty concerning limitations.246

3. Theory Assumptions and Proofs247

Question: For each theoretical result, does the paper provide the full set of assumptions and248

a complete (and correct) proof?249

Answer: [NA]250

Justification: This paper does not include any theoretical results.251

Guidelines:252

• The answer NA means that the paper does not include theoretical results.253

• All the theorems, formulas, and proofs in the paper should be numbered and cross-254

referenced.255

• All assumptions should be clearly stated or referenced in the statement of any theorems.256

• The proofs can either appear in the main paper or the supplemental material, but if257

they appear in the supplemental material, the authors are encouraged to provide a short258

proof sketch to provide intuition.259

• Inversely, any informal proof provided in the core of the paper should be complemented260

by formal proofs provided in appendix or supplemental material.261

• Theorems and Lemmas that the proof relies upon should be properly referenced.262

4. Experimental Result Reproducibility263

Question: Does the paper fully disclose all the information needed to reproduce the main ex-264

perimental results of the paper to the extent that it affects the main claims and/or conclusions265

of the paper (regardless of whether the code and data are provided or not)?266

Answer: [Yes]267

Justification: Great care has been taken in describing all details of the experimental design.268

This can be seen in 1) the length and accurateness of Section 2, 2) the most important exper-269

imental details provided in Section 4, 3) the clear overview of additional hyperparameters270

and data generation in Appendix A and 4) the complementary code repository. The authors271

highly value reproducibility and are therefore open to any form of feedback to improve upon272

this.273

Guidelines:274

• The answer NA means that the paper does not include experiments.275

• If the paper includes experiments, a No answer to this question will not be perceived276

well by the reviewers: Making the paper reproducible is important, regardless of277

whether the code and data are provided or not.278

• If the contribution is a dataset and/or model, the authors should describe the steps taken279

to make their results reproducible or verifiable.280

• Depending on the contribution, reproducibility can be accomplished in various ways.281

For example, if the contribution is a novel architecture, describing the architecture fully282

might suffice, or if the contribution is a specific model and empirical evaluation, it may283

be necessary to either make it possible for others to replicate the model with the same284

dataset, or provide access to the model. In general. releasing code and data is often285

one good way to accomplish this, but reproducibility can also be provided via detailed286

instructions for how to replicate the results, access to a hosted model (e.g., in the case287

of a large language model), releasing of a model checkpoint, or other means that are288

appropriate to the research performed.289

• While NeurIPS does not require releasing code, the conference does require all submis-290

sions to provide some reasonable avenue for reproducibility, which may depend on the291

nature of the contribution. For example292

(a) If the contribution is primarily a new algorithm, the paper should make it clear how293

to reproduce that algorithm.294

(b) If the contribution is primarily a new model architecture, the paper should describe295

the architecture clearly and fully.296
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the dataset).300

(d) We recognize that reproducibility may be tricky in some cases, in which case301

authors are welcome to describe the particular way they provide for reproducibility.302
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tions to faithfully reproduce the main experimental results, as described in supplemental308

material?309

Answer: [Yes]310

Justification: The complementary code repository allows for reproducing the results in the311

paper, including baseline evaluations and data generation. We have taken care to thoroughly312

test all code in the repository and have fixed random seeds to aid reproducibility.313

Guidelines:314

• The answer NA means that paper does not include experiments requiring code.315

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/316

public/guides/CodeSubmissionPolicy) for more details.317

• While we encourage the release of code and data, we understand that this might not be318

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not319

including code, unless this is central to the contribution (e.g., for a new open-source320

benchmark).321

• The instructions should contain the exact command and environment needed to run to322

reproduce the results. See the NeurIPS code and data submission guidelines (https:323

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.324
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.326

• The authors should provide scripts to reproduce all experimental results for the new327

proposed method and baselines. If only a subset of experiments are reproducible, they328

should state which ones are omitted from the script and why.329

• At submission time, to preserve anonymity, the authors should release anonymized330

versions (if applicable).331

• Providing as much information as possible in supplemental material (appended to the332

paper) is recommended, but including URLs to data and code is permitted.333

6. Experimental Setting/Details334

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-335

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the336

results?337

Answer: [Yes]338

Justification: The training and testing details are available in Section 4, Appendix A and in339
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hyperparameters, to retain readability in the main text.341

Guidelines:342

• The answer NA means that the paper does not include experiments.343

• The experimental setting should be presented in the core of the paper to a level of detail344

that is necessary to appreciate the results and make sense of them.345

• The full details can be provided either with the code, in appendix, or as supplemental346

material.347

7. Experiment Statistical Significance348
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Question: Does the paper report error bars suitably and correctly defined or other appropriate349

information about the statistical significance of the experiments?350

Answer: [Yes]351

Justification: All experiments are performed over 5 independent runs to report the corre-352

sponding confidence intervals. The caption of Figure 3 describes that the plotted intervals353

concern one standard deviation error bands (±σ).354

Guidelines:355

• The answer NA means that the paper does not include experiments.356

• The authors should answer "Yes" if the results are accompanied by error bars, confi-357

dence intervals, or statistical significance tests, at least for the experiments that support358

the main claims of the paper.359

• The factors of variability that the error bars are capturing should be clearly stated (for360

example, train/test split, initialization, random drawing of some parameter, or overall361

run with given experimental conditions).362

• The method for calculating the error bars should be explained (closed form formula,363

call to a library function, bootstrap, etc.)364

• The assumptions made should be given (e.g., Normally distributed errors).365

• It should be clear whether the error bar is the standard deviation or the standard error366

of the mean.367

• It is OK to report 1-sigma error bars, but one should state it. The authors should368

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis369

of Normality of errors is not verified.370

• For asymmetric distributions, the authors should be careful not to show in tables or371

figures symmetric error bars that would yield results that are out of range (e.g. negative372

error rates).373

• If error bars are reported in tables or plots, The authors should explain in the text how374

they were calculated and reference the corresponding figures or tables in the text.375

8. Experiments Compute Resources376

Question: For each experiment, does the paper provide sufficient information on the com-377

puter resources (type of compute workers, memory, time of execution) needed to reproduce378

the experiments?379

Answer: [No]380

Justification: Computer resources are not explicitly mentioned as the experiments are381

executed on a personal laptop and hence do not require vast resources. The experiments382

also do not report execution times as these are not so relevant in the scope of the paper’s383

contributions.384

Guidelines:385

• The answer NA means that the paper does not include experiments.386

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,387

or cloud provider, including relevant memory and storage.388

• The paper should provide the amount of compute required for each of the individual389

experimental runs as well as estimate the total compute.390

• The paper should disclose whether the full research project required more compute391

than the experiments reported in the paper (e.g., preliminary or failed experiments that392

didn’t make it into the paper).393

9. Code Of Ethics394

Question: Does the research conducted in the paper conform, in every respect, with the395

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?396

Answer: [Yes]397

Justification: The research conducted in the paper conforms, in every respect, with the398

NeurIPS Code of Ethics.399

Guidelines:400
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.401

• If the authors answer No, they should explain the special circumstances that require a402

deviation from the Code of Ethics.403

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-404

eration due to laws or regulations in their jurisdiction).405

10. Broader Impacts406

Question: Does the paper discuss both potential positive societal impacts and negative407

societal impacts of the work performed?408

Answer: [NA]409

Justification: The contributions presented in this paper provide tools to improve the model410

design cycle in general, which is task-agnostic and hence does not directly have a societal411

impact.412

Guidelines:413

• The answer NA means that there is no societal impact of the work performed.414

• If the authors answer NA or No, they should explain why their work has no societal415

impact or why the paper does not address societal impact.416

• Examples of negative societal impacts include potential malicious or unintended uses417

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations418

(e.g., deployment of technologies that could make decisions that unfairly impact specific419

groups), privacy considerations, and security considerations.420

• The conference expects that many papers will be foundational research and not tied421

to particular applications, let alone deployments. However, if there is a direct path to422

any negative applications, the authors should point it out. For example, it is legitimate423

to point out that an improvement in the quality of generative models could be used to424

generate deepfakes for disinformation. On the other hand, it is not needed to point out425

that a generic algorithm for optimizing neural networks could enable people to train426

models that generate Deepfakes faster.427

• The authors should consider possible harms that could arise when the technology is428

being used as intended and functioning correctly, harms that could arise when the429

technology is being used as intended but gives incorrect results, and harms following430

from (intentional or unintentional) misuse of the technology.431

• If there are negative societal impacts, the authors could also discuss possible mitigation432

strategies (e.g., gated release of models, providing defenses in addition to attacks,433

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from434

feedback over time, improving the efficiency and accessibility of ML).435

11. Safeguards436

Question: Does the paper describe safeguards that have been put in place for responsible437

release of data or models that have a high risk for misuse (e.g., pretrained language models,438

image generators, or scraped datasets)?439

Answer: [NA]440

Justification: Synthetic datasets have been manually generated and experimental models do441

not provide a high risk for misuse.442

Guidelines:443

• The answer NA means that the paper poses no such risks.444

• Released models that have a high risk for misuse or dual-use should be released with445

necessary safeguards to allow for controlled use of the model, for example by requiring446

that users adhere to usage guidelines or restrictions to access the model or implementing447

safety filters.448

• Datasets that have been scraped from the Internet could pose safety risks. The authors449

should describe how they avoided releasing unsafe images.450

• We recognize that providing effective safeguards is challenging, and many papers do451

not require this, but we encourage authors to take this into account and make a best452

faith effort.453
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12. Licenses for existing assets454

Question: Are the creators or original owners of assets (e.g., code, data, models), used in455

the paper, properly credited and are the license and terms of use explicitly mentioned and456

properly respected?457

Answer: [Yes]458

Justification: We closely follow the experimental design of [1] which we clearly and properly459

credit for this. All other resources are developed by the authors themselves and do not use460

existing assets.461

Guidelines:462

• The answer NA means that the paper does not use existing assets.463

• The authors should cite the original paper that produced the code package or dataset.464

• The authors should state which version of the asset is used and, if possible, include a465

URL.466

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.467

• For scraped data from a particular source (e.g., website), the copyright and terms of468

service of that source should be provided.469

• If assets are released, the license, copyright information, and terms of use in the470

package should be provided. For popular datasets, paperswithcode.com/datasets471

has curated licenses for some datasets. Their licensing guide can help determine the472

license of a dataset.473

• For existing datasets that are re-packaged, both the original license and the license of474

the derived asset (if it has changed) should be provided.475

• If this information is not available online, the authors are encouraged to reach out to476

the asset’s creators.477

13. New Assets478

Question: Are new assets introduced in the paper well documented and is the documentation479

provided alongside the assets?480

Answer: [Yes]481

Justification: The code accompanying the paper is clearly documented.482

Guidelines:483

• The answer NA means that the paper does not release new assets.484

• Researchers should communicate the details of the dataset/code/model as part of their485

submissions via structured templates. This includes details about training, license,486

limitations, etc.487

• The paper should discuss whether and how consent was obtained from people whose488

asset is used.489

• At submission time, remember to anonymize your assets (if applicable). You can either490

create an anonymized URL or include an anonymized zip file.491

14. Crowdsourcing and Research with Human Subjects492

Question: For crowdsourcing experiments and research with human subjects, does the paper493

include the full text of instructions given to participants and screenshots, if applicable, as494

well as details about compensation (if any)?495

Answer: [NA]496

Justification: The paper does not involve crowdsourcing nor research with human subjects.497

Guidelines:498

• The answer NA means that the paper does not involve crowdsourcing nor research with499

human subjects.500

• Including this information in the supplemental material is fine, but if the main contribu-501

tion of the paper involves human subjects, then as much detail as possible should be502

included in the main paper.503
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,504

or other labor should be paid at least the minimum wage in the country of the data505

collector.506

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human507

Subjects508

Question: Does the paper describe potential risks incurred by study participants, whether509

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)510

approvals (or an equivalent approval/review based on the requirements of your country or511

institution) were obtained?512

Answer: [NA]513

Justification: The paper does not involve crowdsourcing nor research with human subjects.514

Guidelines:515

• The answer NA means that the paper does not involve crowdsourcing nor research with516

human subjects.517

• Depending on the country in which research is conducted, IRB approval (or equivalent)518

may be required for any human subjects research. If you obtained IRB approval, you519

should clearly state this in the paper.520

• We recognize that the procedures for this may vary significantly between institutions521

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the522

guidelines for their institution.523

• For initial submissions, do not include any information that would break anonymity (if524

applicable), such as the institution conducting the review.525
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