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Abstract
Albeit the success of federated learning (FL) in de-
centralized training, bolstering the generalization
of models by overcoming heterogeneity across
clients still remains a huge challenge. To aim at
improved generalization of FL, a group of recent
works pursues flatter minima of models by em-
ploying sharpness-aware minimization in the local
training at the client side. However, we observe
that the global model, i.e., the aggregated model,
does not lie on flat minima of the global objec-
tive, even with the effort of flatness searching in
local training, which we define as flatness discrep-
ancy. By rethinking and theoretically analyzing
flatness searching in FL through the lens of the
discrepancy problem, we propose a method called
Federated Learning for Global Flatness (FedGF)
that explicitly pursues the flatter minima of the
global models, leading to the relieved flatness dis-
crepancy and remarkable performance gains in
the heterogeneous FL benchmarks.

1. Introduction
Federated Learning (FL) has drawn great attention as a key
framework for enabling decentralized learning across an
immense number of distributed clients while preserving
data privacy. The essence of FL is keeping local data on
the client side and communicating the gradients or model
parameters between a server and clients, where the server’s
direct access to the local data is prohibited (McMahan et al.,
2017). Nonetheless, there still exist daunting challenges that
remain unsolved. Most importantly, the diversity or hetero-
geneity of data distribution across clients is shown to hin-
der the successful aggregation of global model parameters,
leading to deteriorated performance and inhibiting model
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convergence (Li et al., 2020b). To overcome the problem,
researchers have dedicated to developing FL algorithms that
achieve successful aggregation across heterogeneous clients
(Li et al., 2020a; Karimireddy et al., 2020; Acar et al., 2021).
Although such intensive efforts have been made to break the
hurdle of heterogeneity, the agreed rule of thumb methods
and principles have not yet been established.

One of the intriguing recent approaches to enhance the gen-
eralization is employing particular optimization methods
that find flatter minima on loss surface, which is widely ob-
served to enhance the generalization of deep models against
the data distribution shifts (Hochreiter & Schmidhuber,
1997; Keskar et al., 2017; Izmailov et al., 2018; Foret et al.,
2021; Cha et al., 2021). The most popular flatness searching
method is Sharpness-Aware Minimization (SAM), which
incorporates the flatness around the minimum into the cost
function (Foret et al., 2021). Building on the promising op-
timizer, researchers in the FL field have recently confirmed
the effectiveness of SAM in strengthening the performance
of FL algorithms for heterogeneous settings (Qu et al., 2022;
Caldarola et al., 2022). Their approaches basically employ a
SAM or SAM-variant optimizer at the local training step at
each client to find a flatter local model of the local objective,
which indeed yields considerable performance gains for the
aggregated global model.

Let us then raise a pivotal question to rethink the flatness
searching in FL: “Does the flatness searching in local train-
ing truly imply the flatness of the global model for the global
objective?” The answer is “Not for the heterogeneous FL
cases”. When the heterogeneity across clients becomes se-
vere, we observed that the existing FL methods with the flat
minima searching look effective for finding flatter minima
in local training, but the global model does not lie on flatter
minima for the global objective. One of the recent works
initiated a discussion on this issue, but little intention was
paid to elaborate on the formal understanding of it (Sun
et al., 2023a). The issue is raised particularly in the regime
of decentralized training, and it severely degrades the perfor-
mance of the flatness searching FL methods. We formally
define the issue as flatness discrepancy.

In this paper, we empirically and theoretically analyze the
relationship between heterogeneity across clients and flat-
ness discrepancy: A strong heterogeneity leads to severe
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discrepancy, eventually yielding the degraded performance
of the global model. Based on the findings, we propose
a method called Federated Learning for Global Flatness
(FedGF) that relieves flatness discrepancy, leading to flat-
ter minima of the global model. The key of FedGF is to
explicitly consider the sharpness of the global model when
running SAM in the local training. Specifically, we uti-
lize the interpolated perturbation for SAM in both views
of local and global objectives. We empirically confirm that
our method shows remarkable performance gains over prior
flatness searching FL methods, ranging up to +5.09% and
+10.02% gains in the heterogeneous CIFAR-10 and CIFAR-
100 benchmarks, respectively. Also, FedGF shows signifi-
cantly faster convergence in heterogeneous cases, which is
theoretically guaranteed by showing how FedGF suppresses
the heterogeneity-related factor in the convergence analysis.

2. Preliminaries and Motivations
We here present the preliminaries for the baseline FL frame-
work called FedAvg (McMahan et al., 2017) and a popular
flatness searching FL algorithm, i.e., FedSAM (Qu et al.,
2022; Caldarola et al., 2022). Also, we here define the flat-
ness discrepancy, which is the key motivation of our work,
and empirically show how it appears to FedSAM.

2.1. Preliminaries of FL: FedAvg

Notations: In the FL setting with N clients and a server,
each client contains mi local data samples, where i ∈ [N ]
is the index of the client. [N ] indicates the set of integers
ranging from 1 to N . A data sample zi,j = (xi,j , yi,j) is
j-th sample of i-th client with paired input xi,j and its label
yi,j , and it is drawn from the local data distribution Di.

The local objective function of client i is Fi(w) :=
1
mi

∑mi

j=1 l(w, zi,j), where w is the model weight and l(·, ·)
is the loss function. FL basically aims to find the model
weight w⋆ that minimizes the global objective F (w), i.e.,

w⋆ = argmin
w

{
F (w) :=

N∑
i=1

mi

m
Fi(w)

}
, (1)

where m is the total number of data samples across clients.

The way to optimize the model weight without accessing
the samples on the client side is to adopt a repetitive ag-
gregation process called round, where a round consists of
local training of models at each client and aggregation of
the locally-trained models at the server.

Local training: At round r ∈ [R], each client receives the
aggregated model wr from the server and runs local training
with K epochs. Specifically, local training is done with
empirical risk minimization of the local loss:

wr
i,k+1 = wr

i,k − ηl∇Fi(w
r
i,k−1), (2)

where k is the number of local epochs, ηl is the learning rate
and wr

i,0 = wr. After K epochs, client i obtains wr
i,K .

Aggregation: The updated local models are then uploaded
to the server and aggregated to obtain global model wr+1:

wr+1 =
∑
i∈Sr

mi

m
wr

i,K , (3)

where Sr ⊆ [N ] is the index of participating clients for
round r. After the aggregation, the next local training for
round r + 1 follows by broadcasting the global model to
the clients. With a sufficient number of rounds up to R, the
global model converges to the optimal weight in Eq. (1).

2.2. Preliminaries of Flatness Searching in FL: FedSAM

FedSAM adopts the SAM optimizer (Foret et al., 2021) for
flatness searching in the local training of FedAvg (Qu et al.,
2022; Caldarola et al., 2022).

SAM optimizer: The SAM optimizer transforms a loss
function f(w) into a min-max cost function as follows:

min
w

max
∥δ∥≤ρ

F (w + δ), (4)

where ρ is a positive real number and ∥δ∥ is L2-norm of δ.
As a key factor, δ works as the perturbation that maximally
raises the loss value so that the SAM optimizer can find flat
minima. The perturbation can be simply approximated as
the gradient direction, which points to the steepest direction
of the loss surface.

FedSAM: By adopting the min-max problem of Eq. (4) in
local training, FedSAM perturbs local model wr

i,k:

w̃r
i,k = wr

i,k + δ = wr
i,k + ρgri,k/∥gri,k∥ (5)

wr
i,k+1 = wr

i,k − ηlg̃
r
i,k, (6)

where gri,k = ∇Fi(w
r
i,k) is the gradient computed at wr

i,k,
w̃r

i,k is the perturbed model weight, and g̃ri,k = ∇Fi(w̃
r
i,k)

is the gradient computed at the perturbed model. Thus, Fed-
SAM finds the local model with flatter minima, leading to
the improved performance of the aggregated global model.

2.3. Motivations: Flatness Discrepancy

Now, we are ready to discuss the flatness discrepancy is-
sue: Flatness searching in local training does not imply the
flatness of the global model. First, we formally define the
discrepancy, i.e., ∆F , as the difference gap of the flatness
between the global and local models. For simplicity, we
here drop the notations of round r and local epoch k.

Definition 1. Flatness discrepancy ∆F of the global model
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Figure 1: The performance and the flatness discrepancy
(∆F ) of FedSAM for the CIFAR-100 experiment

w and the local models {wi}Ni=1 is defined as:

∆F :=

∣∣∣∣∣ max
||δ||≤ρ

F (w + δ)− F (w)

−

[
N∑
i=1

mi

m
max

||δi||≤ρ
Fi(wi + δi)− Fi(wi)

] ∣∣∣∣∣. (7)

When ∆F is small, it means that the increasing amount of
losses of the global and local objectives are similar, i.e., the
degree of the flatness is similar. When ∆F is large, the in-
creasing amount of losses of the global and local objectives
are not the same, i.e., the flatness is discrepant. Herein, we
want to provide the motivating empirical results to show
how the discrepancy issue arises in flatness searching FL.

As a preliminary experiment, we compute the flatness dis-
crepancy values of FedSAM for the CIFAR-100 FL bench-
mark. As shown in Fig. 1, FedSAM shows significant per-
formance degradation as the heterogeneity increases (when
α decreases to 0, the data distribution across clients be-
comes heterogeneous, i.e., non-IID (non-independently and
identically distributed)). Interestingly, along with the perfor-
mance degradation, we observe that the flatness discrepancy
increases when the heterogeneity gets worse. It empirically
reveals that a naive application of SAM to local training of
FL does not guarantee the flatness of the global model for
the global objective. Also, we visualize how the discrep-
ancy appears on the loss surface. As presented in Fig. 2,
FedSAM shows flatter minima around the local model, but
the global model does not lie on flatter minima.

We provide an intuition of how the heterogeneity causes the
larger flatness discrepancy. With the strong heterogeneity,
the local and global objectives, i.e., Fi and F , respectively,
trivially deviate from each other due to the data distribution
gap, so the flatness searching in the local training does not
imply the flatness of the global model. On the other hand, if
the heterogeneity is not severe, i.e., close to the IID case, the
local objective is ideally the same as the global objective, so
the flatness searching for local training directly links to the
global model with flatter minima of global objective.
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Figure 2: Visualization of the loss surface of FedSAM for
the CIFAR-100 case (α = 0).

3. Related Work
3.1. Heterogeneity Issues in FL

In past years, various strategies have been proposed to solve
the heterogeneity issues in FL. A main branch of prior ap-
proaches focuses on regularizing local training to alleviate
the divergence of the local models. As early works, Fe-
dAvgM (Hsu et al., 2019) and SCAFFOLD (Karimireddy
et al., 2020) utilize the update of the global model as momen-
tum in global and local training, respectively, to regularize
the divergence of local gradients. FedProx (Li et al., 2020a)
adopts a regularization term, which is called the proximal
term, to prevent local models from largely deviating from
the global model. FedDyn (Acar et al., 2021) utilizes the
dynamic regularization term, which is tailored to each client,
so suppressing the discrepancy between the global and local
models. FLIX (Gasanov et al., 2021) utilizes the interpo-
lation between global and local model parameters. Our
method, FedGF, is based on flat minima searching, which is
clearly different from the regularization-based methods.

3.2. Flat Minima Searching

In centralized learning: From an early finding of the ben-
efits of flat minima over sharp minima of the model pa-
rameters on loss surface (Keskar et al., 2017), the potential
of flat minima for enhancing the generalization ability of
deep models is largely investigated in both empirical and
theoretical ways. A group of works with Stochastic Weight
Averaging (SWA) has been suggested as a simple heuristic
method for finding flatter minima (Izmailov et al., 2018; Cha
et al., 2021). As another branch of tools, Sharpness-Aware
Minimization (SAM) embeds the flatness term into the cost
function of the optimizer for seeking flatter minima (Foret
et al., 2021; Kwon et al., 2021).

Correlation to the generalization: Some researchers have
raised doubts about the correlation between the generaliza-
tion and the flatness. Sharp minima are shown to be able to
generalize (Dinh et al., 2017), and large models, e.g., trans-
formers, empirically seem not to well correlate its flatness to
the generalization capability (Andriushchenko et al., 2023;
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Kim et al., 2023). Also, a flatness metric should be chosen
carefully to show the positive correlation to the generaliza-
tion (Bisla et al., 2022). The recent active debate argues that
flatter minima do not directly imply better generalization,
but it does not contradict the shown advantages of flat min-
ima searching in standard training (Izmailov et al., 2018;
Foret et al., 2021; Kwon et al., 2021), FL (Qu et al., 2022;
Caldarola et al., 2022; Dai et al., 2023; Sun et al., 2023a;b),
and out-of-distribution generalization (Cha et al., 2021).

In the FL setting: The existing FL methods that pursue flat-
ter minima are based on applying SAM or SAM-variants to
FL, e.g., FedSAM, FedASAM, MoFedSAM, FedGAMMA,
FedSMOO, and FedSpeed (Caldarola et al., 2022; Qu et al.,
2022; Dai et al., 2023; Sun et al., 2023a;b). FedSAM simply
applies the SAM optimizer to local training. FedASAM
controls the size of the perturbation along with the mag-
nitude of model parameters. On the other hand, MoFed-
SAM utilizes the momentum, which is the update of the
global model, when running SAM on the client side. Its
strategy is analogous to that of SCAFFOLD (Karimireddy
et al., 2020), which utilizes the update of the global model
as momentum in the local updates of FedAvg. Moreover,
both two algorithms, FedSpeed (Sun et al., 2023b) and
FedGAMMA (Dai et al., 2023), utilize the gradient com-
puted at the SAM-based perturbed weight. Specifically, Fed-
Speed tunes the local perturbed gradient with the proximal
term, and FedGAMMA tunes it with the local perturbation
of other clients. FedSMOO (Sun et al., 2023a) further tunes
the local perturbation by leveraging the global perturbation
approximated by Taylor expansion. Our FedGF is closely
related to the methods that tune the local perturbations to
pursue better performance. However, FedGF is unique in in-
terpolating the local and global perturbations and managing
the interpolation by observing the divergence between local
and global models, yielding remarkable gains over others.

4. Proposed Method: FedGF
4.1. Training Process of FedGF

Based on the preliminaries in Section 2, we here focus on
the local training and the aggregation steps of FedGF.

Local training: At the beginning of round r, client i re-
ceives the aggregated global model wr, and runs K local
epochs. For local epoch k, client i computes the two per-
turbed models, w̃r

i,k and w̃r as follows:

gri,k = ∇Fi(w
r
i,k, ζi,k) (8)

w̃r
i,k = wr

i,k + ρgri,k/∥gri,k∥ (perturbed local model) (9)

△r = wr−1 − wr (10)
w̃r = wr + ρ△r/∥△r∥ (perturbed global model) (11)

As FedSAM works, the perturbation of the local model

is computed (referring to Eq. (9)). When only using the
perturbed local model, we already found that the aggre-
gated global model is not located on flatter loss surface. To
pursue the flatness of the global model for the global objec-
tive, we should consider the perturbation in the view of the
global model and objective. However, the perturbation of
the global model for the global objective cannot be tractable
because each client cannot access the globally aggregated
data samples across clients. To detour the hardship, we
utilize the difference between the previous and the current
global model, as formulated by Eq. (10), which is an approx-
imated direction of the gradients for the global objective,
i.e., ∇F (wr). Based on the global perturbation, FedGF
computes the perturbed global model in Eq. (11), which can
be understood as the perturbed model with the maximally
raised global objective loss. FedGF then interpolates the
perturbed global and local models to compute w̃r

i,k,c:

w̃r
i,k,c = cw̃r + (1− c)w̃r

i,k, (12)

where 0 ≤ c ≤ 1 is the interpolation coefficient to control
the position of w̃r

i,k,c between the global and local mod-
els. When c is close to 0, it indicates that FedGF becomes
FedSAM. When c is close to 1, FedGF leans toward the
global model to find flat minima around the global model.
FedGF then computes the gradient based on the local epoch
ζi,k ∼ Di at position w̃r

i,k,c to update the local model:

wr
i,k+1 = wr

i,k − ηl∇Fi(w̃
r
i,k,c, ζi,k). (13)

After K epochs, local training for round r is terminated.

Aggregation: The updated local model is then aggregated
at the server to newly update the global model for the next
round, i.e., wr+1. Here, we adopt the global learning rate,
ηg , suggested in (Reddi et al., 2021) (referring to Eq. (14)).
When we set a global learning rate ηg = 1, it becomes the
basis form of aggregation in Eq. (3).

wr+1 = wr − ηg
∑
i∈Sr

mi

m
△r

i , (14)

where△r
i = wr − wr

i,K .

4.2. Interpolation Coefficient c

Interpolation coefficient c controls the perturbed model in-
between the local and global perturbations. Our key strategy
to determine c is based on the following wisdom: When
the local model largely deviates from the global model, i.e.,
a non-IID case, a larger c is preferred for focusing on the
global model flatness; otherwise, i.e., an IID case, a smaller
c is preferred. However, it is non-trivial to control c based on
the non-IIDness because the server cannot access the local
data distribution, which makes it difficult to measure the
heterogeneity of the given setting. Thus, FedGF determines
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Figure 3: Schematic of MoFedSAM, FedSMOO, and FedGF. The gray line illustrates the loss landscape of local distribution.

c based on the divergence metric Dr, which represents how
local models deviate from global model:

Dr =
1

|Sr|
∑
i∈Sr

∥wr − wr
i,K∥2. (15)

For mapping Dr to a value between 0 and 1, we adopt the
thresholding: Ir = I[Dr > TD], where I[·] is an indicator
function and TD > 0 is a hyperparameter. For stability, we
use the averaged Ir across recent W rounds in computing
c:

c =
1

W

r∑
i=r−W+1

Ii. (16)

In the non-IID cases, as the round goes on, we empirically
observe that c starts to increase at a relatively earlier round,
which means that non-zero c is preferred to pursue the global
flatness. Otherwise, c stays near zero for the IID case. Also,
we further theoretically and empirically analyze that c is
strongly related to the faster convergence of FedGF.

A pseudocode of FedGF is provided in Appendix C.

4.3. In-depth Comparison to the Existing Methods

Fig. 3 shows how FedGF is differentiated from the re-
lated methods. We here illustrate the schematics of our
FedGF and two state-of-the-art methods, i.e., MoFedSAM
and FedSMOO, while omitting the figure of FedSAM which
is quite straightforward. Black-colored arrows indicate the
model update at each local epoch. FedSAM and MoFed-
SAM only utilize the perturbation computed in view of the
local objective. However, FedGF additionally considers the
global model perturbation (see the orange-colored dotted ar-
rows). Blue-colored arrows represent the gradient computed
at the perturbed model. MoFedSAM uses the momentum
for finding the model with a lower global objective (see
the green-colored solid line), but FedGF utilizes the reverse
direction of the momentum, as the global perturbation (the
orange-colored arrow with a marker (g)), aiming to find
flatter minima. FedSMOO adjusts the local perturbations
by introducing a correction gradient (Gc), and it is closely

related to FedGF in adjusting perturbation vectors. The key
differences are that FedGF explicitly utilizes the local and
global perturbations and adaptively controls the interpola-
tion between two perturbations by observing the divergence
between the local and global models. Also, we found that
FedSMOO strongly relies on auxiliary regularizations for re-
stricting the local model to allocate near to the global model.
FedGF solely works without the additional regularizations.

5. Theoretical Analysis
We provide the theoretical analysis of FedGF, including the
convergence behavior and the flatness discrepancy. Before
that, we introduce the following assumptions:

Assumption 1. (Smoothness of loss function) Fi is Lipsichz-
smooth for all i ∈ [N ], i.e.,

∥∇Fi(w)−∇Fi(v)∥ ≤ L∥w − v∥

for all w, v in its domain and i ∈ [N ].

Assumption 2. (Bounds of gradients) The global variability
of the local gradient is bounded by σ2

g , i.e.,

∥∇Fi(w
r)−∇F (wr)∥2 ≤ σ2

g ,

for all i ∈ [N ] and r.

Assumption 3. (Bounds of the stochastic gradients) The
stochastic gradient ∇Fi(w, ζi), computed by client i with
model parameter w using mini-batch ζi is an unbiased esti-
mator of ∇Fi(w) with variance bounded by σ2

l , i.e.,

Eζi

∥∥∥∥ ∇Fi(w, ζi)

∥∇Fi(w, ζi)∥
− ∇Fi(w)

∥∇Fi(w)∥

∥∥∥∥2 ≤ σ2
l ,

for all i ∈ [N ].

Assumption 1 and 2 are largely accepted by the prior non-
convex FL convergence studies to assume the smoothness
of loss function and the bounded heterogeneity (McMahan
et al., 2017; Karimireddy et al., 2020; Reddi et al., 2021).
Assumption 3, which bounds the variance of stochastic
gradients, is from the work of FedSAM (Qu et al., 2022).
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5.1. Convergence Analysis of FedGF

We present the convergence analysis of FedGF. Here, ϵ is the
error in estimating the direction of the global perturbation
of FedGF: ϵ := ∥∆r/∥∆r∥ − ∇F (wr)/∥F (wr)∥∥.
Theorem 1. Let the learning rate be ηl = O( 1√

RKL
), ηg =

√
KN , and the amplitude of perturbation is proportional

to the learning rate, e.g., ρ = O( 1√
R
). Under Assumptions

1 - 3 and full client participation, the average of the norm
of the gradient generated by the iterative rounds of FedGF
satisfies:

O
(

FL√
RKN

+
(1− c)2

R
σ2
g

+
L2(1− c)2

R3/2
√
KN

σ2
l +

L2c2ϵ2

R

)
, (17)

where F = F (w̃0) − F (w̃∗) and F (w̃∗) = minw̃ F (w̃).
For the partial client participation strategy, if we choose
the learning rates ηl = O( 1√

RKL
), ηg =

√
KS and ρ =

O( 1√
R
), the average of the norm of the gradient generated

by the iterative rounds of FedGF satisfies:

O
(

FL√
RKS

+

(
(1− c)2

R
+ 1

)
σ2
g

+
L2(1− c)2

R3/2
√
KS

σ2
l +

L2(c2ϵ2 + 1)

R

)
, (18)

where S = |Sr|.

Remark 1. (Faster convergence in non-IID cases) Let us
focus on two variance terms, i.e., σ2

g and σ2
l , which represent

the non-IIDness of the given FL setting and the stochastic
variance of local gradients. These terms are crucial in the
undesired delay of convergence of FL. When FedGF utilizes
a larger c, i.e., reaching 1, then the related terms in Eq. (17)
and (18) can be sufficiently suppressed; FedGF can accel-
erate the convergence even with the strong heterogeneity.
In the extensive experiments, we confirm that FedGF tends
to use larger values of c in the non-IID cases, leading to a
significantly faster convergence than other related baselines.

Remark 2. (Error from ϵ vanishes as round goes on)
Because FedGF approximates the gradient of the global
model, there exists the error term ϵ, which probably hinders
the convergence (referring to ϵ-involved term in Eq. (17) and
(18)). As shown in the theorem, the error term diminishes
as the round goes on; it does not ruin FedGF’s convergence.

Remark 3. (FedGF with c = 0 becomes FedSAM) As
aforementioned, with a smaller c, i.e., around 0, FedGF
becomes FedSAM (the convergence analysis also becomes
identical to that of (Qu et al., 2022)1). Then FedGF does not

1We found that the analysis for partial participation in (Qu
et al., 2022) has a mistake, regarding the remained constant from
σg . The details are in Appendix B.

utilize the global model perturbation, so the last terms in the
convergence analysis disappear. However, the heterogeneity
and variance terms related to σ2

g and σ2
l exist in the conver-

gence behavior. When the setting becomes IID, it means
that σ2

g and σ2
l are negligibly small, so FedGF tends to use

smaller c values around 0 to behave like FedSAM.

5.2. Flatness Discrepancy Analysis

We address the claims on the flatness discrepancy, ∆F .

Theorem 2. ∆F is upper bounded as follows:

∆F ≤ ρσ2
g + Lρ

∑
i∈[N ]

mi

m
∥w − wi∥ (19)

Remark 4. (Heterogeneity, model divergence, and loss
smoothness bound the flatness discrepancy) As shown in
Eq. (19), the term σ2

g , which increases when heterogeneity
gets worse, directly determines the upper bound of ∆F , co-
inciding with our understanding of the discrepancy. Also,
when the loss is not smooth, i.e., with a larger L, then the
discrepancy increases. Finally, when the local model wi

largely deviates from the global model w, then the discrep-
ancy gets worse, which agrees with how FedGF determines
interpolation coefficient c based on the model divergence.

Theorem 3. For FedGF, if we choose ηl = O( 1√
RKL

) and

ρ = O( 1√
R
), ηg =

√
KN , ∆F is then bounded as follows:

∆F ≤ O
(

σ2
g√
R

+
L(1− c)2σ2

l

R5/2
+

σ2
g

LR3/2
+

Lc2ϵ2

R5/2

)
(20)

Remark 5. (∆F is suppressed as round increases) For
FedGF, the upper bound of ∆F formalized by Eq. (19) is
suppressed as the round increases. For a non-IID, FedGF
prefers to use large c, reaching 1, to strongly suppress the
heterogeneity-related terms (referring to the second term).

The proofs of all claims are fully presented in Appendix A.

6. Experiments
We extensively evaluate the performance of FedGF2 on
the FL classification benchmarks suggested by (Caldarola
et al., 2022), where CIFAR-10 and CIFAR-100 datasets are
distributed on clients by utilizing Dirichlet distribution.

6.1. Experimental Settings

Baselines: We compare FedGF with the following meth-
ods: FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al.,
2019), SCAFFOLD (Karimireddy et al., 2020), FedProx (Li

2Codes are available at github.com/hwan-sig/Official-FedGF
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Table 1: Test accuracies with of the FL algorithms on the CIFAR-10 and CIFAR-100 benchmarks

Task Algorithms

Dirichlet distribution parameter α
Dir.(α = 0, non-IID) Dir.(α = 0.005) Dir.(α = 10, IID)

Number of participating clients per each round
5 10 20 5 10 20 5 10 20

CIFAR-10

FedAvg 63.63 65.83 68.33 67.85 71.37 73.03 82.90 82.96 82.93
FedAvgM 62.73 65.61 68.57 67.56 71.32 75.53 82.72 83.60 83.30
FedProx 63.13 65.95 67.98 68.06 71.42 72.87 82.72 83.19 82.92

SCAFFOLD (✗) (✗) (✗) 57.13 56.46 45.27 82.93 83.05 83.39
FedDyn 66.84 71.01 69.45 70.74 73.78 75.43 83.07 83.58 83.67
FedSAM 68.11 71.17 72.49 71.87 74.31 76.07 83.78 83.88 83.82

FedASAM 73.32 74.5 75.49 74.96 75.59 76.57 83.11 83.28 82.89
MoFedSAM 73.1 71.08 76.66 74.43 77.53 79.27 80.9 81.01 81.02
FedGAMMA 45.32 47.55 35.07 46.99 48.44 35.58 74.99 66.12 54.85

FedSMOO 68.82 71.59 72.48 71.9 74.46 75.44 83.72 83.67 83.79
FedGF 78.41 79.68 80.86 78.79 79.39 79.69 84.71 83.94 83.85

CIFAR-100

FedAvg 29.35 33.79 36.62 38.15 40.58 41.27 50.41 50.20 49.98
FedAvgM 29.94 30.07 39.35 38.64 40.72 48.44 50.37 51.2 50.57
FedProx 29.19 33.16 36.41 38.54 40.52 40.77 50.10 49.98 49.96

SCAFFOLD (✗) (✗) (✗) 36.25 (✗) (✗) 52.28 52.12 52.48
FedDyn (✗) (✗) (✗) (✗) (✗) (✗) 51.74 52.41 52.59
FedSAM 29.43 34.32 36.88 42.28 44.57 45.18 54.06 53.75 53.5

FedASAM 34.43 37.09 38.93 44.36 45.76 46.94 54.6 54.42 54.73
MoFedSAM 29.02 35.82 41.26 34.64 42.24 44.92 52.13 52.21 52.07
FedGAMMA (✗) (✗) (✗) 20.52 14.76 10.33 47.43 38.18 25.06

FedSMOO 35.35 38.78 40.82 44.39 46.03 47.5 54.31 54.89 54.65
FedGF 45.37 46.86 47.77 46.48 46.70 46.08 54.16 54.62 54.59

(✗) indicates that the method fails to train, so the results remain at the same level as the random prediction.

et al., 2020a), FedDyn (Acar et al., 2021), FedSAM (Cal-
darola et al., 2022; Qu et al., 2022), FedASAM (Caldarola
et al., 2022), MoFedSAM (Qu et al., 2022), FedGAMMA
(Dai et al., 2023), and FedSMOO3 (Sun et al., 2023a).

Model architecture: We follow the model architecture
described in the prior FL works (Hsu et al., 2020; Caldarola
et al., 2022), which is a variant of the LeNet architecture
by (LeCun et al., 1998). For the larger architecture, such as
ResNet-18, we add the results in Appendix D.6.

FL settings: For a given server and 100 clients, we test
three different numbers of participating clients per round,
i.e., {5, 10, 20}. We distributed 500 data samples per client,
and the number of local updates per round is 8, with batch
size 64. As done in (Hsu et al., 2020), the prior distribution
of local data follows the Dirichlet distribution of α, i.e.,
α ∈ {0, 0.005, 10} for both CIFAR-10 and CIFAR-100
experiments. When α increases, the setting becomes a IID
case. When α goes to zero, it means a non-IID case. The
communication round goes up to 10,000 and 20,000 for
CIFAR-10 and CIFAR-100, respectively.

Further details of the benchmarks, the hyperparameters, and
the model architecture are provided in Appendix C.

3FedSMOO strongly relies on the dynamic regularization. For
a fair comparison of the effectiveness on finding flatter global
model, we evaluate FedSMOO without the regularizer.

6.2. Performance Evaluation

We evaluate the test accuracy of FL algorithms in Table 1
on the CIFAR-10/100 benchmarks. We here provide the
following key findings based on the experimental results.

6.2.1. LARGE GAINS FOR THE NON-IID CASES

FedGF significantly outperforms the existing works in the
non-IID settings, i.e., α = 0. Specifically, it shows the gains
ranging from +4.20% to +5.30% for CIFAR-10 cases and
larger gains ranging from +6.51% to +10.94% for CIFAR-
100 over the runner-ups. The results verify that FedGF
effectively relieves the strong heterogeneity via aggregating
a global model with a strong generalization across clients.
We believe that the gains directly come from the efforts to
search flat minima of global model by FedGF, which is to
be confirmed in the following part. As the heterogeneity
becomes relieved, i.e., as α increases from 0 to 10, the per-
formance gaps between FedGF and prior works are reduced.
This is due to the homogeneity of data distribution in the IID
cases, which relieves the discrepancy between the local and
global models. Also, we found that the regularization-based
FL methods, including SCAFFOLD and FedDyn, is not
successful in the non-IID case4, particularly in CIFAR-100.

4We want remind that the original evaluation in their works are
done in the cases with moderate non-IIDness.
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Figure 4: Convergence behaviors for non-IID

6.2.2. FASTER CONVERGENCE BEHAVIOR

We present the convergence behaviors for the non-IID case
in Fig. 4a and 4b. We clearly confirm that FedGF shows
significantly faster convergence than others, particularly em-
phasized in the CIFAR-100 case. The results verify Remark
1 of Theorem 1, which emphasizes that FedGF can suppress
the terms of the heterogeneity and the stochastic variance, so
it accelerates the speed of convergence by preferring larger
c. In the experiments, it indeed pushes c to be 1 for the
non-IID cases, leading to faster convergence.

6.2.3. ROBUSTNESS TO PARTICIPATING CLIENTS

As shown in Table 1, when the heterogeneity gets worse, the
FL baselines suffer from severe degradations when the num-
ber of participating clients is limited. In contrast, FedGF
shows the robust performance for the limited participating
clients. We emphasize that MoFedSAM shows a significant
drop from 41.26% to 29.02% when the number of partic-
ipating clients decreases from 20 to 5 for the CIFAR-100
α = 0 case. It happens because the momentum of global
models used by MoFedSAM largely fluctuates round-by-
round when the number of participating clients is limited.
FedSMOO suffers from 5.47% drop for the same case. We
conjecture that FedSMOO struggles to find the robust per-
turbation correction term when the number of participations
is limited. On the contrary, let us remind Remark 2 of The-
orem 1, which points out that FedGF can suppress the error,
ϵ, in estimating the global perturbation as round increases.

6.2.4. FLATNESS RESULTS

To confirm the flatness of the global model in both quantita-
tively and qualitatively, we present various flatness results: i)
loss plots, ii) flatness metrics, including flatness discrepancy,
and iii) visualization of loss surface.

Loss plots along to perturbations: Fig. 5 shows the plots
to confirm how the loss value increases as the perturba-
tion of the model parameter is imposed for the CIFAR-
100 experiments with 5 participating clients. In the non-
IID case, FedGF shows slightly flatter loss plot than Fe-
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Figure 5: Loss plots along to perturbation for CIFAR-100

Table 2: LPF, λmax, and ∆F results for CIFAR-100

Algorithm Non-IID (α = 0) IID (α = 10)
LPF ↓ λmax ↓ ∆F ↓ LPF ↓ λmax ↓ ∆F ↓

FedAvg 2.67 81.57 0.39 1.24 103.19 0.11
FedSAM 2.67 43.32 0.33 1.10 25.36 0.04

FedASAM 2.35 25.46 0.24 0.94 14.99 0.04
MoFedSAM 2.64 15.11 0.13 1.48 27.28 0.04
FedSMOO 2.37 25.83 0.12 0.8 23.38 0.08

FedGF 1.36 14.07 0.13 1.08 23.54 0.04
↓: a lower value is preferred.

dAvg, FedSAM, and FedASAM. Although MoFedSAM
and FedSMOO show flatter behavior, our FedGF shows
much lower loss values in the wide range of perturbation;
the gap in loss is more than 1.0, which leads to the large
performance gap in accuracies (as confirmed in Table 1).
In the IID case, the FL algorithms show similar behavior
excepting for FedAvg and MoFedSAM. We conjecture that
MoFedSAM suffers from the fluctuation of global momen-
tums caused by the limited number of clients; leading to the
unexpected sharp loss plot.

Flatness metrics (LPF, λmax, and ∆F ): The loss plots show
a brief understanding of loss surface, but they cannot provide
quantitative measurements of flatness. We here compute
various flatness metrics for an in-depth analysis: the max-
imum eigenvalue of the Hessian matrix, i.e., λmax, which
is commonly used in prior works, Low-Pass Filter (LPF)
based metric, which is recently suggested to show the robust
correlation to generalization (Bisla et al., 2022), and the
proposed flatness discrepancy ∆F . While FedAvg showing
the worst values, FedGF shows the best flatness for LPF and
λmax in the non-IID case. FedGF is the second best for ∆F
with a minimal gap. As noted in Remark 4 of Theorem 2,
we found that non-IIDness increases ∆F for all cases. Also,
we confirm that FedGF sufficiently suppresses discrepancy
as noted in Remark 5 of Theorem 3.

Visualization of loss surface: In Fig. 6, we visualize the
loss surface of the local and global models of FedGF for Fi

and F for the CIFAR-100 cases. It shows that local model
shows a moderate flatness, and the global model shows
flatter loss surface. When compared with the FedSAM’s

8
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Figure 6: Loss surface of FedGF for CIFAR-100 (α = 0).

Figure 7: Behavior of c for CIFAR-100

loss surface (as in Fig. 2), we visually confirm that FedGF
finds flatter minima of global model for the global objective.

6.2.5. ANALYSIS OF COMMUNICATION COST

Herein, we analyze the communication costs of FedGF. In
Table 3, the number of model transmissions is measured
for the related works focusing on the flatness searching
FL methods (‘1’ means a single transmission of model pa-
rameters). The baselines, which are FedAvg and FedSAM,
upload only the locally trained model and download the
averaged global model, leading to a communication cost of
2. FedSMOO and FedGAMMA, state-of-the-art flatness-
searching FL methods, require higher costs, i.e., 4 model
transmissions, because they transmit both parameters and
perturbations between server and clients. In contrast, FedGF
transmits the perturbation, which is a pseudo-gradient, from
server to client for each round but does not require upload-
ing from the client to the server, leading to the moderate
cost of three model transmissions.

Table 3: Number of model transmissions per round

Algorithms client→ server client← server total(upload) (download)
FedAvg 1 1 2

FedSAM 1 1 2
MoFedSAM 1 2 3

FedGF 1 2 3
FedSMOO 2 2 4

FedGAMMA 2 2 4

In Table 4, we compare the actual communication costs,
which are the measured number of model and perturbation
transmissions, to reach the saturated accuracies of the most
typical baseline, i.e., FedAvg. We compare FedGF with
FedSMOO, which mostly follows FedGF as a runner-up
for all cases (we consider the cases with 5 participating
clients). We found that FedGF shows significantly faster
convergence, where FedSMOO requires ×2.40 and ×2.98
times higher costs for the non-IID cases. This result coin-
cides with theories (referring to Remark 1 of Theorem 1)
and the empirical results (referring to the part 6.2.2).

Table 4: Number of model transmissions to reach the Fe-
dAvg’s final performance (×102)

Algorithms α = 0 α = 0.005 α = 10

CIFAR-10 FedGF 75 108 165
FedSMOO 180 (x2.40) 228 (x2.11) 244 (x1.48)

CIFAR-100 FedGF 180 210 240
FedSMOO 536 (x2.98) 440 (x2.10) 248 (x1.03)

6.2.6. ANALYSIS OF c

Behavior: Fig. 7 shows how FedGF utilizes c values ac-
cording to the rounds. FedGF computes c based on the
model divergence in Eq. (15) and (16). For the IID case,
FedGF steadily uses c = 0 due to the minimal divergence
between the local and global models, which coincides with
Remark 3 of Theorem 1. When non-IIDness gets worse,
FedGF prefers to use larger c values up to 1, which strongly
employs the global perturbation. This exactly agrees with
the interpretation of Remark 1 of Theorem 1, which states
that FedGF relieves the heterogeneity by letting c be larger.

Table 5: Static c vs. FedGF (adaptive c)

Dataset IIDness c = 0 c = 0.5 c = 1 FedGF

CIFAR-10 Non-IID 68.11 71.24 78.05 78.41
IID 83.78 82.95 81.94 84.71

CIFAR-100 Non-IID 29.43 26.64 44.39 45.37
IID 54.06 52.47 46.68 54.16

Ablation on static c: As shown in Table 5, FedGF, which
adaptively computes c, is better than the cases of static c.

7. Conclusion
We rethink flat minima searching in FL with the novel per-
spective of flatness discrepancy. It gets worse when the
heterogeneity becomes severe, leading to the deterioration
of the prior flat minima searching FL algorithms. Based on
this wisdom, we propose FedGF, which can relieve the dis-
crepancy by utilizing both local and global perturbations in
the SAM optimizer. FedGF largely outperforms the existing
FL methods, particularly in non-IID cases.
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A. Mathematical Details of Theoretical Analysis
A.1. Preliminary Assumptions, and Lemmas

We recall the introduced assumptions as follows:

Assumption 1. (Smoothness of loss function) Fi is Lipsichz-smooth for all i ∈ [N ], i.e.,

∥∇Fi(w)−∇Fi(v)∥ ≤ L∥w − v∥

for all w, v in its domain and i ∈ [N ].

Assumption 2. (Bounds of gradients) The global variability of the local gradient is bounded by σ2
g , i.e.,

∥∇Fi(w
r)−∇F (wr)∥2 ≤ σ2

g ,

for all i ∈ [N ] and r.

Assumption 3. (Bounds of the stochastic gradients) The stochastic gradient∇Fi(w, ζi), computed by client i with model
parameter w using mini-batch ζi is an unbiased estimator of∇Fi(w) with variance bounded by σ2

l , i.e.,

Eζi

∥∥∥∥ ∇Fi(w, ζi)

∥∇Fi(w, ζi)∥
− ∇Fi(w)

∥∇Fi(w)∥

∥∥∥∥2 ≤ σ2
l ,

for all i ∈ [N ].

To analyze the convergence rate of FedGF, we first state some preliminary lemmas and their proofs as follows:

Lemma 1. (Relaxed triangle inequality) Let {v1, . . . , vτ} be τ vectors in Rd. Then, the following are true: (1) ∥vi + vj∥2 ≤
(1 + a) ∥vi∥2 +

(
1 + 1

a

)
∥vj∥2 for any a > 0, and (2) ∥

∑τ
i=1 vi∥

2 ≤ τ
∑τ

i=1 ∥vi∥
2.

Lemma 2. For random variables x1, . . . , xn, we have

E
[
∥x1 + · · ·+ xn∥2

]
≤ nE

[
∥x1∥2 + · · ·+ ∥xn∥2

]
.

Lemma 3. For independent, mean 0 random variables x1, . . . , xn, we have

E
[
∥x1 + · · ·+ xn∥2

]
= E

[
∥x1∥2 + · · ·+ ∥xn∥2

]
For the Lemmas 1, 2, and 3, they are identically introduced by the work of FedSAM (Qu et al., 2022), where they are
indexed with Lemma A.1, A.2, and A.3, respectively. Thus, we skip the proofs by referring to the proofs in (Qu et al., 2022).

A.2. Main Lemmas and Theorems for Convergence Analysis, and their Proofs

Lemma 4. (Bounded global variance of ∥∇Fi (w + δi)−∇F (w + δ)∥2.) An immediate implication of Assumptions 1 and
2 , the variance of local and global gradients with perturbation can be bounded as follows:

∥∇Fi (w + δi)−∇F (w + δ)∥2 ≤ 3σ2
g + 6L2ρ2.

Proof.

∥∇Fi (w + δi)−∇F (w + δ)∥2 = ∥∇Fi (w + δi)−∇Fi(w) +∇Fi(w)−∇F (w) +∇F (w)−∇F (w + δ)∥2

≤ 3 ∥∇Fi (w + δi)−∇Fi(w)∥2 + 3 ∥∇Fi(w)−∇F (w)∥2 + 3∥∇F (w)−∇F (w + δ)∥2 (21)

≤ 3σ2
g + 6L2ρ2, (22)

where Eq. (21) is from Lemma 2 and Eq. (22) is from Assumption 1, 2 and the perturbation is bounded by ρ. Up to this
point, FedGF steps on the identical mathematical claims of FedSAM (Qu et al., 2022).

12
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From the following Lemma 5, our analysis of FedGF deviates from the one of FedSAM in (Qu et al., 2022).

For a brief notation, we denote w̃i,k,c as w̄i,k in the following analysis, i.e., w̄r
i,k := w̃r

i,k,c = cw̃r + (1− c)w̃r
i,k, and denote

the expectation of clients’ sampling Eζ as E.

Lemma 5. (Bounded Ew of FedGF.) Suppose our functions satisfies Assumptions 1-2. Then, the updates of FedGF for any
learning rate satisfying (1− c)ηl ≤ 1

8KL have the drift due to wi,k − w :

Ew = E ∥wi,k − w∥2 ≤ Ke(T + 8Kη2l ∥∇f(w̃)∥2 + 16KL2η2l c
2ρ2ϵ2),

where e is Euler’s number and T = 8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]

Proof.

E ∥wi,k − w∥2 = E ∥wi,k−1 − w − ηl∇Fi (w̄i,k−1, ζi)∥2

≤
(
1 +

1

2K − 1

)
E ∥wi,k−1 − w∥2 + 2Kη2l E ∥∇Fi (w̄i,k−1, ζi)∥2︸ ︷︷ ︸

A

, (23)

where Eq. (23) is from Lemma 1.

For A,

2Kη2l E ∥∇Fi (w̄i,k−1, ζi)∥2

= 2Kη2l E∥∇Fi (w̄i,k−1, ζi)−∇Fi (w̄i,k−1) +∇Fi (w̄i,k−1)−∇Fi (w̃i) +∇Fi(w̃)−∇F (w̃) +∇F (w̃)∥2

≤ 8Kη2l E

∥∇Fi (w̄i,k−1, ζi)−∇Fi (w̄i,k−1)∥2︸ ︷︷ ︸
A1

+ ∥∇Fi (w̄i,k−1)−∇Fi(w̃)∥2︸ ︷︷ ︸
A2

+ ∥∇Fi(w̃)−∇F (w̃)∥2︸ ︷︷ ︸
A3

+∥∇F (w̃)∥2


(24)

where Eq. (24) is from Lemma 2.

For A1,

E ∥∇Fi (w̄i,k−1, ζi)−∇Fi (w̄i,k−1)∥2 ≤ L2 ∥(w̄i,k−1, ζi)− w̄i,k−1∥2

= L2E
∥∥∥∥(1− c)

(
wi,k−1 + ρ

∇Fi (wi,k−1, ζi)

∥∇Fi (wi,k−1, ζi) ∥

)
+ cw̃ − (1− c)

(
wi,k−1 + ρ

∇Fi (wi,k−1)

∥∇Fi (wi,k−1) ∥

)
− cw̃

∥∥∥∥2 (25)

= L2(1− c)2ρ2E
∥∥∥∥ ∇Fi (wi,k−1, ζi)

∥∇Fi (wi,k−1, ζi) ∥
− ∇Fi (wi,k−1)

∥∇Fi (wi,k−1) ∥

∥∥∥∥2
≤ L2(1− c)2ρ2σ2

l , (26)

where Eq. (25) is from (w̄i,k−1, ζi) = (1− c)
(
wi,k−1 +

∇Fi(wi,k−1,ζi)
∥∇Fi(wi,k−1,ζi)∥

)
+ cw̃, and Eq. (26) is by Assumption 3.

13
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For A2,

E ∥∇Fi (w̄i,k−1)−∇Fi(w̃)∥2 ≤ L2E ∥w̄i,k−1 − w̃∥2

= L2E
∥∥∥∥(1− c)w̃i,k−1 + c

(
wr + ρ

∆r

∥∆r∥
+ ρ

∇F (wr)

∥∇F (wr)∥
− ρ

∇F (wr)

∥∇F (wr)∥

)
− w̃

∥∥∥∥2 (27)

= L2E
∥∥∥∥(1− c)w̃i,k−1 + c

(
wr + ρ

∇F (wr)

∥∇F (wr)∥

)
− w̃ + cρ

∆r

∥∆r∥
− cρ

∇F (wr)

∥∇F (wr)∥

∥∥∥∥2
≤ 2L2E ∥(1− c) (w̃i,k−1 − w̃)∥2 + 2L2c2ρ2ϵ2 (28)

= 2(1− c)2L2E
∥∥∥∥wi,k−1 − w + ρ

∇Fi (wi,k−1, ζi)

∥∇Fi (wi,k−1, ζi) ∥
− ρ

∇F (w)

∥∇F (w) ∥

∥∥∥∥2 + 2L2c2ρ2ϵ2

≤ 4(1− c)2L2E
[
∥wi,k−1 − w∥2 + ρ2 ∥δi,k−1 − δ∥2

]
+ 2L2c2ρ2ϵ2 (29)

= 4(1− c)2L2E ∥wi,k−1 − w∥2 + 8K2L4η2l ρ
2(1− c)2 + 2L2c2ρ2ϵ2 (30)

where Eq. (27) is from w̄i,k−1 = (1 − c)w̃i,k−1 + c
(
wr + ρ ∆r

∥∆r∥

)
, Eq. (28) is from the definition of ϵ2, i.e.,

ϵ := ∥∆r/∥∆r∥ − ∇F (wr)/∥F (wr)∥∥, and Eq. (29) is from Lemma 2, δ := ∇F (w)/∥∇F (w)∥, and δi,k−1 :=
∇Fi(wi,k−1, ζi)/∥∇Fi(wi,k−1, ζi)∥. Moreover, for Eq. (30), we borrow the result of Lemma B.1 in (Qu et al., 2022).

For A3,

∥∇Fi(w̃)−∇F (w̃)∥2 ≤ 3σ2
g + 6L2ρ2 (31)

where Eq. (31) is from Lemma 4.

Therefore, when utilizing Eq. (24), (26), (30), and (31):

E ∥wi,k − w∥2 ≤
(
1 +

1

2K − 1

)
E ∥wi,k−1 − w∥2 + 8Kη2l

[
L2σ2

l (1− c)2ρ2 + 4(1− c)2L2E ∥wi,k−1 − w∥2

+8K2L4η2l ρ
2(1− c)2 + 2L2c2ρ2ϵ2 + 3σ2

g + 6L2ρ2 + ∥∇F (w̃)∥2
]

=

(
1 +

1

2K − 1
+ 32Kη2l L

2(1− c)2
)
E ∥wi,k−1 − w∥2

+ 8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2 + 2L2c2ρ2ϵ2 + ∥∇F (w̃)∥2
]

(32)

If ηl satisfies

1 +
1

2K − 1
+ 32Kη2l L

2(1− c)2 ≤ 1 +
1

K − 1

32Kη2l L
2(1− c)2 ≤ 1

K − 1
− 1

2K − 1
=

K

(2K − 1)(K − 1)

32η2l L
2(1− c)2 ≤ 1

(2K − 1)(K − 1)

(1− c)ηl ≤
1

4L
√
2(2K − 1)(K − 1)

,

Eq. (32) will be

E ∥wi,k − w∥2 ≤
(
1 +

1

K − 1

)
E ∥wi,k−1 − w∥2 + T + 8Kη2l ∥∇F (w̃)∥2 + 16KL2η2l c

2ρ2ϵ2, (33)

where T = 8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
.

By recursively substitutes the wi,k−1 related term via decreasing the index k down to 0 of Eq. (33), we obtain:

E ∥wi,k − w∥2 ≤
k−1∑
τ=0

(
1 +

1

K − 1

)τ

(T + 8Kη2l ∥∇F (w̃)∥2 + 16KL2η2l c
2ρ2ϵ2) (34)

≤ Ke(T + 8Kη2l ∥∇F (w̃)∥2 + 16KL2η2l c
2ρ2ϵ2), (35)

14
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where Eq. (35) is from the definition of Euler’s number (e) (when the k becomes infinite, the related term transforms to
Euler’s number, but k is finite here, so the inequality holds).

A.3. Full Client Participating Convergence

We are ready to handle the convergence analysis for the full client participating case.

Lemma 6.

〈
∇F (w̃r),E

[
− 1

N

N∑
i

K∑
k

ηl∇Fi(w̄
r
i,k)

]
+Kηl∇F (w̃r)

〉
≤(

ηlK

2
+ 16e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2 + 2e(1− c)2K2L2ηlT + 32ec2(1− c)2K2L4η3l ρ

2ϵ2

+ 4K3L4η3l ρ
2(1− c)2 +KηlL

2c2ϵ2 − ηl
2KN2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

,

where T = 8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
, and ⟨a, b⟩ is the inner product of vectors a

and b with the same dimensionality.

Proof.

〈
∇F (w̃r),E

[
− 1

N

N∑
i

K∑
k

ηl∇Fi(w̄
r
i,k)

]
+Kηl∇F (w̃r)

〉

=
ηlK

2
∥∇F (w̃r)∥2 + ηl

2N2K
E

∥∥∥∥∥∥
∑
i,k

[
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
]∥∥∥∥∥∥

2

︸ ︷︷ ︸
A

− ηl
2KN2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

(36)

where Eq. (36) is from ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a − b∥2) with a =
√
ηlK∇F (w̃r) and b =

−
√
ηl

N
√
K

∑
i,k

(
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
)

.

For A,

E

∥∥∥∥∥∥
∑
i,k

[
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
]∥∥∥∥∥∥

2

≤ KN
∑
i,k

E∥∇Fi(w̄
r
i,k)−∇Fi(w̃

r)∥2

≤ KNL2
∑
i,k

E∥w̄r
i,k − w̃r∥2 (37)
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= K2N2L2E
∥∥∥∥(1− c)w̃i,k−1 + c

(
wr + ρ

∆r

∥∆r∥
+ ρ

∇F (wr)

∥∇F (wr)∥
− ρ

∇F (wr)

∥∇F (wr)∥

)
− w̃

∥∥∥∥2
= K2N2L2E

∥∥∥∥(1− c)w̃i,k−1 + c

(
wr + ρ

∇F (wr)

∥∇F (wr)∥

)
− w̃ + cρ

∆r

∥∆r∥
− cρ

∇F (wr)

∥∇F (wr)∥

∥∥∥∥2
≤ 2K2N2L2E ∥(1− c) (w̃i,k−1 − w̃)∥2 + 2K2N2L2c2ρ2ϵ2 (38)

= 2(1− c)2K2N2L2E
∥∥∥∥wi,k−1 − w + ρ

∇Fi (wi,k−1, ζi)

∥∇Fi (wi,k−1, ζi) ∥
− ρ

∇F (w)

∥∇F (w) ∥

∥∥∥∥2 + 2K2N2L2c2ρ2ϵ2

≤ 4(1− c)2K2N2L2E
[
∥wi,k−1 − w∥2 + ρ2 ∥δi,k−1 − δ∥2

]
+ 2K2N2L2c2ρ2ϵ2 (39)

≤ 4(1− c)2K2N2L2E ∥wi,k−1 − w∥2 + 8K4N2L4η2l ρ
2(1− c)2 + 2K2N2L2c2ρ2ϵ2 (40)

≤ 4(1− c)2K2N2L2
[
Ke(T + 8Kη2l E∥∇F (w̃)∥2 + 16KL2η2l c

2ρ2ϵ2)
]
+ 8K4N2L4η2l ρ

2(1− c)2 + 2K2N2L2c2ρ2ϵ2

= 4e(1− c)2K3N2L2T + 32e(1− c)2K4η2l N
2L2∥∇F (w̃r)∥2 + 64ec2(1− c)2N2K3L4η2l ρ

2ϵ2

+ 8K4N2L4η2l ρ
2(1− c)2 + 2K2N2L2c2ρ2ϵ2 (41)

where Eq. (37) is from Assumption 1, Eq. (38) is from the definition of ϵ, Eq. (39) is from the definition of
δ := ∇F (w)/∥∇F (w)∥, δi,k−1 := ∇Fi(wi,k−1, ζi)/∥∇Fi(wi,k−1, ζi)∥, Eq. (41) is from Lemma 5, and T =
8Kη2l E

[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
. For Eq. (40), we borrow the result of Lemma B.1

in (Qu et al., 2022).

By substituting Eq. (41) to Eq. (36), it becomes

ηlK

2
∥∇F (w̃r)∥2 + ηl

2N2K
E

∥∥∥∥∥∥
∑
i,k

[
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
]∥∥∥∥∥∥

2

− ηl
2N2K

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

≤
(
ηlK

2
+ 16e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2 + 2e(1− c)2K2L2ηlT

+ 32ec2(1− c)2K2L4η3l ρ
2ϵ2 + 4K3L4η3l ρ

2(1− c)2 +KηlL
2c2ρ2ϵ2 − ηl

2KN2
E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

.

Lemma 7. For the full client participation scheme, we can bound E
[
∥∆r∥2

]
as follows:

E
[
∥∆r∥2

]
≤ 2L2(1− c)2ρ2η2l

Kσ2
l

N
+ 2

η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

Proof. For the full client participation scheme, we have:
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E
[
∥∆r∥2

]
=

η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k, ζi)

∥∥∥∥∥∥
2

(42)

≤ 2
η2l
N2

E

∥∥∥∥∥∥
∑
i,k

[
∇Fi(w̄

r
i,k, ζi)−∇Fi

(
w̄r

i,k

)]∥∥∥∥∥∥
2

+ 2
η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

≤ 2
η2l
N2

∑
i,k

E
∥∥∇Fi(w̄

r
i,k, ζi)−∇Fi

(
w̄r

i,k

)∥∥2 + 2
η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

(43)

≤ 2L2 η2l
N2

∑
i,k

E
∥∥(w̄r

i,k, ζi)− w̄r
i,k

∥∥2 + 2
η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

(44)

= 2L2(1− c)2ρ2
η2l
N2

∑
i,k

E

∥∥∥∥∥ ∇Fi(w
r
i,k, ζi)

∥∇Fi(wr
i,k, ζi)∥

−
∇Fi(w

r
i,k)

∥∇Fi(wr
i,k)∥

∥∥∥∥∥
2

+ 2
η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

≤ 2L2(1− c)2ρ2η2l
Kσ2

l

N
+ 2

η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2

, (45)

where Eq. (43) is from the Lemma 3, Eq. (44) is from the Assumption 1, and Eq. (45) is from Assumption 3.

Lemma 8. (Descent Lemma). For all r ≤ R − 1 and i ∈ Sr, with the choice of learning rate, the iterates generated by
FedGF in Algorithm 1 satisfy:

E
[
F
(
w̃r+1

)]
≤ F (w̃r) + ∥∇F (w̃r)∥2

(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)
+Φ0

where the global and local learning rate satifies ηgηl ≤ 1
2KL , Φ0 = 2e(1 − c)2K2L2ηlηgT +

32ec2(1 − c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1 − c)2 + KηlηgL
2c2ϵ2 + L3(1 − c)2ρ2η2gη

2
l
Kσ2

l

N , and T =

8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
.

Proof. We firstly propose the proof of full client participation scheme. Due to the smoothness in Assumption 1, F (w̃) =
max∥ϵ∥≤ρ F (w + ϵ), and taking expectation of F

(
w̃r+1

)
over the randomness at communication round r, we have:

E
[
F (wr+1)

]
≤ E

[
F (w̃r+1)

]
≤ F (w̃r) + E

[
⟨∇F (w̃r), w̃r+1 − w̃r⟩

]︸ ︷︷ ︸
A

+L/2E∥w̃r+1 − w̃r∥22︸ ︷︷ ︸
B

(46)

For A, we borrow the approximation in (Qu et al., 2022).

⟨∇F (w̃r), w̃r+1 − w̃r⟩ ≈ ⟨∇F (w̃r), wr+1 − wr⟩ (47)

⟨∇F (w̃r),E
[
wr+1 − wr

]
⟩ = ⟨∇F (w̃r),−ηg

N

N∑
i

K∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
⟩

= ηg⟨∇F (w̃r),− 1

N

N∑
i

K∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇F (w̃r)−Kηl∇F (w̃r)⟩

= ηg ⟨∇F (w̃r),− 1

N

N∑
i

K∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇F (w̃r)⟩︸ ︷︷ ︸

A1

−ηg ⟨∇F (w̃r),Kηl∇F (w̃r)⟩︸ ︷︷ ︸
A2
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For A1, we refer to Lemma 6.

〈
∇F (w̃r),− 1

N

N∑
i

K∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇F (w̃r)

〉
≤
(
ηlK

2
+ 16e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2

+ 2e(1− c)2K2L2ηlT + 32ec2(1− c)2K2L4η3l ρ
2ϵ2 + 4K3L4η3l ρ

2(1− c)2

+KηlL
2c2ρ2ϵ2 − ηl

2KN2
E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

.

For A2,

⟨∇F (w̃r),Kηl∇F (w̃r)⟩ = ηlK∥∇F (w̃r)∥2.

Therefore, A becomes

⟨∇F (w̃r),E
[
wr+1 − wr

]
⟩ ≤ ∥∇F (w̃r)∥2

(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)

− ηgηl
2KN2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

+ 2e(1− c)2K2L2ηlηgT + 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2

+ 4K3L4η3l ηgρ
2(1− c)2 +KηlηgL

2c2ρ2ϵ2.

By refering the approximation in (Qu et al., 2022), B becomes,

∥w̃r+1 − w̃r∥22 ≈ η2g ∥△r∥2

Therefore,

E
[
F (wr+1)

]
≤ E

[
F (w̃r+1)

]
≤ F (w̃r) + E

[
⟨w̃r+1 − w̃r,∇F (w̃r)⟩

]
+ L/2E∥w̃r+1 − w̃r∥22
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≤ F (w̃r) + ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)

− ηgηl
2KN2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

+ 2e(1− c)2K2L2ηlηgT + 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1− c)2

+KηlηgL
2c2ρ2ϵ2 +

Lη2g
2

E ∥△r∥2

≤ F (w̃r) + ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)

− ηgηl
2KN2

E

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

+ 2e(1− c)2K2L2ηlηgT + 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1− c)2

+KηlηgL
2c2ρ2ϵ2 +

Lη2g
2

2L2(1− c)2ρ2η2l
Kσ2

l

N
+ 2

η2l
N2

E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2
 (48)

= F (w̃r) + ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)

+ 2e(1− c)2K2L2ηlηgT + 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1− c)2

+KηlηgL
2c2ρ2ϵ2 + L3(1− c)2ρ2η2gη

2
l

Kσ2
l

N
+ E

∥∥∥∥∥∥
∑
i,k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥∥
2(

Lη2gη
2
l

N2
− ηgηl

2KN2

)

≤ F (w̃r) + ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 16eK3ηgη

3
l L

2(1− c)2
)
+ 2e(1− c)2K2L2ηlηgT

+ 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1− c)2 +KηlηgL
2c2ρ2ϵ2 + L3(1− c)2ρ2η2gη

2
l

Kσ2
l

N
(49)

where Eq. (48) is from Lemma 7, Eq. (49) is from ηgηl ≤ 1
2KL , and T = 8Kη2l

[
L2σ2

l (1− c)2ρ2 +8K2L4η2l ρ
2(1− c)2 +

3σ2
g + 6L2ρ2

]
.

Theorem 1. (A concretet description of the full participating client case of Theorem 1 in the main paper) Let constant
local and global learning rates ηl and ηg be chosen as such that ηgηl ≤ 1

2KL . Under Assumption 1-3 and with full client
participation, and if we choose the learning rates ηl = O( 1√

RKL
), ηg =

√
KN and perturbation amplitude ρ proportional

to the learning rate, i.e., ρ = O( 1√
R
), the average of the norm of the gradient generated by FedGF satisfies:

1

R

R−1∑
r=0

E
[∥∥∇F (wr+1

)∥∥] = O( FL√
RKN

+
(1− c)2

R
σ2
g +

L2(1− c)2

R3/2
√
KN

σ2
l +

L2c2ϵ2

R

)

where F = F (w̃0)− F (w̃∗) and F (w̃∗) = minw̃ F (w̃).

Proof. For full client participation, summing the result of Lemma 8 for r ≤ R− 1 and multiplying both sides by 1
CKηlR

with
(
1
2 − 16eK2η2l L

2(1− c)2
)
> C > 0, we have
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1

R

R−1∑
r=0

E∥∇F (w̃r)∥2 ≤
F (w̃0)− E

[
F (w̃R)

]
CKηgηlR

+Φ

≤ F (w̃0)− F (w̃∗)

CKηgηlR
+Φ

=
F

CKηgηlR
+Φ,

where Φ = 1
CKηgηl

[
2e(1− c)2K2L2ηlηgT +32ec2(1− c)2K2L4η3l ηgρ

2ϵ2+4K3L4η3l ηgρ
2(1− c)2+KηlηgL

2c2ρ2ϵ2+

L3(1− c)2ρ2η2gη
2
l
Kσ2

l

N

]
.

If we choose the learning rates ηl = O( 1√
RKL

), ηg =
√
KN and perturbation amplitude ρ proportional to the learning rate,

i.e., ρ = O( 1√
R
), we have

1

R

R−1∑
r=0

E∥∇F (w̃r)∥2 ≤ F

CKηgηlR
+Φ

=
F

CKηgηlR
+

1

CKηgηl

[
2e(1− c)2K2L2ηlηgT

+ 32ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 4K3L4η3l ηgρ

2(1− c)2 +KηlηgL
2c2ρ2ϵ2 + L3(1− c)2ρ2η2gη

2
l

Kσ2
l

N

]
=

F

CKηgηlR
+

16e(1− c)2K2L2η2l
C

[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]

+
1

CKηgηl

[
32ec2(1− c)2K2L4η3l ηgρ

2ϵ2 + 4K3L4η3l ηgρ
2(1− c)2 +KηlηgL

2c2ρ2ϵ2 + L3(1− c)2ρ2η2gη
2
l

Kσ2
l

N

]
= O

(
FL√
RKN

+
L2(1− c)4σ2

l

R2
+

(1− c)4L2

R3
+

(1− c)2σ2
g

R
+

(1− c)2L2

R2

+
L2(1− c)2c2ϵ2

KR2
+

L2(1− c)2

R2
+

L2c2ϵ2

R
+

L2(1− c)2σ2
l

R
√
RKN

)

Note that the (1−c2)
R σ2

g is caused by the heterogeneity between clients, L2(1−c)4

R3 σ2
l ,

L2(1−c)2

R
√
RKN

σ2
l are due to the pertur-

bation of stochastic gradient and (1−c)4L2

R2 , L2(1−c)2

R2 are due to the local SAM, L2(1−c)2c2ϵ2

KR2 , L2c2ϵ2

R is caused by ap-
proximation of global perturbation, i.e., ϵ := ∥∆r/∥∆r∥ − ∇F (wr)/∥F (wr)∥∥. After omitting the higher order, i.e.,(

L2(1−c)4σ2
l

R2 , (1−c)4L2

R3 , (1−c)2L2

R2 , (1−c)2L2

R2 , L2(1−c)2c2ϵ2

KR2

)
,

1

R

R−1∑
r=0

∥∇F (w̃r)∥2 = O
(

FL√
RKN

+
(1− c)2

R
σ2
g +

L2(1− c)2

R3/2
√
KN

σ2
l +

L2c2ϵ2

R

)
(50)

From the perturbation amplitude ρ = O
(

1√
R

)
, we obtain

∥∇F (w̃r)−∇F (wr)∥2 ≤ L2∥w̃r − wr∥2 ≤ L2ρ2 = O
(
L2

R

)
. (51)

It indicates that the difference ∥∇F (w̃r) − ∇F (wr)∥2 gets smaller as R increases, therefore, the convergence rate of
∥∇F (wr)∥2 is also converge with ∥∇F (w̃r)∥2.
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A.4. Partial Client Participating Convergence

Lemma 9. For the partial client participation scheme, we can bound E ∥∆r∥2 as follows:

E
[
∥∆r∥2

]
≤ 2Kη2l L

2ρ2(1− c)2
σ2
l

S
+ 2

η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

.

Proof. For the partial client participation scheme, we have:

E ∥∆r∥2 =
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k, ζi)

∥∥∥∥∥
2

≤ 2
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

[
∇Fi(w̄

r
i,k, ζi)−∇Fi

(
w̄r

i,k

)]∥∥∥∥∥
2

+ 2
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

(52)

= 2
η2l
S2

∑
i∈Sr

∑
k

E
∥∥∇Fi(w̄

r
i,k, ζi)−∇Fi

(
w̄r

i,k

)∥∥2 + 2
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

(53)

≤ 2
η2l L

2

S2

∑
i∈Sr

∑
k

E
∥∥(w̄r

i,k, ζi)− w̄r
i,k

∥∥2 + 2
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

(54)

= 2
η2l L

2ρ2(1− c)2

S2

∑
i∈Sr

∑
k

E

∥∥∥∥∥ ∇Fi(w
r
i,k, ζi)

∥∇Fi(wr
i,k, ζi)∥

−
∇Fi(w

r
i,k)

∥∇Fi(wr
i,k)∥

∥∥∥∥∥
2

+ 2
η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

≤ 2Kη2l L
2ρ2(1− c)2

σ2
l

S
+ 2

η2l
S2

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

, (55)

where Eq. (52) is from Lemma 2, Eq. (53) is from Lemma 3, Eq. (54) is from Assumption 1 and Eq. (55) is from
Assumption 3.

Lemma 10.

⟨∇F (w̃r),− 1

S

∑
i∈Sr

∑
k

ηl∇Fi(w̄
r
i,k) +Kηl∇f(w̃r)⟩ ≤(

ηlK

2
+ 32e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2 + 4e(1− c)2K2L2ηlT + 64ec2(1− c)2K2L4η3l ϵ

2

+ 8K3L4η3l ρ
2(1− c)2 + 2KηlL

2c2ρ2ϵ2 + 2ηlK(3σ2
g + 6L2ρ2)− ηl

2KS2
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

where T = 8Kη2l
[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
.

Proof.

⟨∇F (w̃r),− 1

S

∑
i∈Sr

∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇f(w̃r)⟩

=
ηlK

2
∥∇F (w̃r)∥2 + ηl

2S2K
E

∥∥∥∥∥∑
i∈Sr

∑
k

[
∇Fi(w̄

r
i,k)−∇F (w̃r)

]∥∥∥∥∥
2

︸ ︷︷ ︸
A

− ηl
2S2K

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

(56)

where Eq. (36) is from ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a − b∥2) with a =
√
ηlK∇F (w̃r) and b =

−
√
ηl

S
√
K

∑
i∈Sr

∑
k

(
∇Fi(w̄

r
i,k)−∇F (w̃r)

)
.
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For A,

E

∥∥∥∥∥∑
i∈Sr

∑
k

[
∇Fi(w̄

r
i,k)−∇F (w̃r)

]∥∥∥∥∥
2

≤ SK
∑
i∈Sr

∑
k

E∥∇Fi(w̄
r
i,k)−∇F (w̃r)∥2

= SK
∑
i∈Sr

∑
k

E∥∇Fi(w̄
r
i,k)−∇Fi(w̃

r) +∇Fi(w̃
r)−∇F (w̃r)∥2

≤ 2SK
∑
i∈Sr

∑
k

E
[
∥∇Fi(w̄

r
i,k)−∇Fi(w̃

r)∥2 + ∥∇Fi(w̃
r)−∇f(w̃r)∥2

]
≤ 2SKL2

∑
i∈Sr

∑
k

E∥w̄r
i,k − w̃r∥2 + 2SK

∑
i∈Sr

∑
k

∥∇Fi(w̃
r)−∇F (w̃r)∥2

≤ 8e(1− c)2K3S2L2T + 64e(1− c)2K4η2l S
2L2∥∇F (w̃r)∥2 + 128ec2(1− c)2S2K3L4η2l ρ

2ϵ2

+ 16K4S2L4η2l ρ
2(1− c)2 + 4K2S2L2c2ρ2ϵ2 + 2SK

∑
i∈Sr

∑
k

∥∇Fi(w̃
r)−∇F (w̃r)∥2 (57)

≤ 8e(1− c)2K3S2L2T + 64e(1− c)2K4η2l S
2L2∥∇F (w̃r)∥2 + 128ec2(1− c)2S2K3L4η2l ρ

2ϵ2

+ 16K4S2L4η2l ρ
2(1− c)2 + 4K2S2L2c2ρ2ϵ2 + 2S2K2(3σ2

g + 6L2ρ2) (58)

where Eq. (57) is from the Eq. (37) in Lemma 6, Eq. (58) is from Lemma 4, T = 8Kη2l E
[
L2σ2

l (1−c)2ρ2+8K2L4η2l ρ
2(1−

c)2 + 3σ2
g + 6L2ρ2

]
.

By substitute Eq. (58) in Eq. (56), it becomes

ηlK

2
∥∇f(w̃r)∥2 + ηl

2S2K
E

∥∥∥∥∥∑
i∈Sr

∑
k

[
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
]∥∥∥∥∥

2

− ηl
2S2K

E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

≤
(
ηlK

2
+ 32e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2 + 4e(1− c)2K2L2ηlT + 64ec2(1− c)2K2L4η3l ρ

2ϵ2

+ 8K3L4η3l ρ
2(1− c)2 + 2KηlL

2c2ρ2ϵ2 + ηlK(3σ2
g + 6L2ρ2)− ηl

2KS2
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

Lemma 11. (Descent Lemma). For all r ≤ R− 1 and i ∈ Sr, with the choice of learning rate, the iterates generated by
FedGF in Algorithm 1 satisfy:

E
[
F
(
w̃r+1

)]
≤ F (w̃r) + ∥∇F (w̃r)∥2

(
−Kηgηl

2
+ 24eK3ηgη

3
l L

2(1− c)2
)
+Φ0

where the global and local learning rate satifies ηgηl ≤ 1
4KL , the expectation is w.r.t. the stochasticity of the algorithm, and

Φ0 = 4e(1−c)2K2L2ηlηgT +64ec2(1−c)2K2L4η3l ηgρ
2ϵ2+8K3L4η3l ηgρ

2(1−c)2+2KηlηgL
2c2ρ2ϵ2+ηlηgK(3σ2

g+

6L2ρ2) + 2Kη2l L
3η2gρ

2(1− c)2
σ2
l

S .

Proof. We propose the proof of a partial client participation scheme. We denote briefly because it has a similar flow with
proof of full participation. Due to the smoothness in Assumption 1, F (w̃) = max∥ϵ∥≤ρ F (w+ ϵ), and taking expectation of
F
(
w̃r+1

)
over the randomness at communication round r, we have:

E
[
F (wr+1)

]
≤ E

[
F (w̃r+1)

]
≤ F (w̃r) + E⟨w̃r+1 − w̃r,∇F (w̃r)⟩︸ ︷︷ ︸

A

+L/2E∥w̃r+1 − w̃r∥22︸ ︷︷ ︸
B

(59)
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For A, from the approximation in (Qu et al., 2022),

⟨∇F (w̃r), w̃r+1 − w̃r⟩ ≈ ⟨∇F (w̃r), wr+1 − wr⟩

⟨∇F (w̃r),E
[
wr+1 − wr

]
⟩ = ηg ⟨∇F (w̃r),− 1

S

∑
i∈Sr

K∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇F (w̃r)⟩︸ ︷︷ ︸

A1

−ηg ⟨∇F (w̃r),Kηl∇F (w̃r)⟩︸ ︷︷ ︸
A2

For A1, we refer the Lemma 10.

⟨∇F (w̃r),− 1

S

∑
i∈Sr

∑
k

ηlE
[
∇Fi(w̄

r
i,k)
]
+Kηl∇F (w̃r)⟩ ≤(

ηlK

2
+ 32e(1− c)2K3η3l L

2

)
∥∇F (w̃r)∥2 + 4e(1− c)2K2L2ηlηgT + 64ec2(1− c)2K2L4η3l ηgρ

2ϵ2

+ 8K3L4η3l ηgρ
2(1− c)2 + 2KηlηgL

2c2ρ2ϵ2 + ηlηgK(3σ2
g + 6L2ρ2)− ηlηg

2KS2
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

For A2,
⟨∇F (w̃r),Kηl∇F (w̃r)⟩ = ηlK∥∇F (w̃r)∥2.

Therefore, A becomes

⟨∇F (w̃r),E
[
wr+1 − wr

]
⟩ ≤(

−ηlηgK
2

+ 32eK3L2η3l ηg(1− c)2
)
∥∇F (w̃r)∥2 + 4e(1− c)2K2L2ηlηgT + 64ec2(1− c)2K2L4η3l ηgρ

2ϵ2

+ 8K3L4η3l ηgρ
2(1− c)2 + 2KηlηgL

2c2ρ2ϵ2 + ηlηgK(3σ2
g + 6L2ρ2)− ηl

2KS2
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

.

B becomes,

L/2E∥w̃r+1 − w̃r∥22 ≈ Lη2gE ∥△r∥2

≤ 2Kη2l L
3η2gρ

2(1− c)2
σ2
l

S
+ 2

Lη2l η
2
g

S2
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi

(
w̄r

i,k

)∥∥∥∥∥
2

(60)

where Eq. (60) is from Lemma 9

Therefore,

E
[
F (wr+1)

]
≤ E

[
F (w̃r+1)

]
≤ F (w̃r) + ⟨∇F (w̃r),E

[
w̃r+1 − w̃r

]
⟩+ L/2E∥w̃r+1 − w̃r∥22

≤ ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 32eK3ηgη

3
l L

2(1− c)2
)
+

(
2
Lη2l η

2
g

S2
− ηgηl

2KS2

)
E

∥∥∥∥∥∑
i∈Sr

∑
k

∇Fi(w̄
r
i,k)

∥∥∥∥∥
2

+ 4e(1− c)2K2L2ηlηgT + 64ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 8K3L4η3l ηgρ

2(1− c)2 + 2KηlηgL
2c2ρ2ϵ2

+ ηlηgK(3σ2
g + 6L2ρ2) + 2Kη2l L

3η2gρ
2(1− c)2

σ2
l

S

≤ ∥∇F (w̃r)∥2
(
−Kηgηl

2
+ 32eK3ηgη

3
l L

2(1− c)2
)

+ 4e(1− c)2K2L2ηlηgT + 64ec2(1− c)2K2L4η3l ηgρ
2ϵ2 + 8K3L4η3l ηgρ

2(1− c)2 + 2KηlηgL
2c2ρ2ϵ2

+ ηlηgK(3σ2
g + 6L2ρ2) + 2Kη2l L

3η2gρ
2(1− c)2

σ2
l

S
(61)
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where Eq. (61) is from ηgηl ≤ 1
4KL , and T = 8Kη2l E

[
L2σ2

l (1− c)2ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]
.

Theorem 1. (A concretet description of the partial participating client case of Theorem 1 in the main paper) Let constant
size of perturbation, local and global learning rates, i.e., ρ, ηl and ηg , be chosen as such that (1− c)ηl ≤ 1

8KL , ηgηl ≤
1

4KL .
Under Assumption 1-3 and with partial client participation, and if we choose the learning rates ηl = 1√

RKL
, ηg =

√
KS

and perturbation amplitude ρ proportional to the learning rate, e.g., ρ = O
(

1√
R

)
, the average of norm of gradient

generated by FedGF satisfies:

1

R

R−1∑
r=0

E
[∥∥∇F (wr+1

)∥∥] = O

(
FL√
RKS

+

(
(1− c2)

R
+ 1

)
σ2
g +

L2(1− c)2

R3/2
√
KS

σ2
l +

L2(c2ϵ2 + 1)

R

)

Proof. For partial client participation, summing the result of Lemma 11 for r ≤ R−1 and multiplying both sides by 1
CKηlR

with
(
1
2 − 32eK2η2l L

2(1− c)2
)
> C > 0 , we have

1

R

R−1∑
r=0

E∥∇F (w̃r)∥2 ≤
F (w̃0)− E

[
F (w̃R)

]
CKηgηlR

+Φ

≤ F (w̃0)− F ∗

CKηgηlR
+Φ,

where Φ = 1
CKηgηl

[
4e(1−c)2K2L2ηlηgT +64ec2(1−c)2K2L4η3l ηgρ

2ϵ2+8K3L4η3l ηgρ
2(1−c)2+2KηlηgL

2c2ρ2ϵ2+

ηlηgK(3σ2
g + 6L2ρ2) + 2Kη2l L

3η2gρ
2(1− c)2

σ2
l

S

]
.

If we choose the learning rates ηl = O
(

1√
RKL

)
, ηg =

√
KS and perturbation amplitude ρ proportional to the learning

rate, e.g., ρ = O
(

1√
R

)
, we have

1

R

R−1∑
r=0

E∥∇F (w̃r)∥2 ≤
F (w̃0)− E

[
F (w̃R)

]
CKηgηlR

+Φ

=
F (w̃0)− E

[
F (w̃R)

]
CKηgηlR

+
4e(1− c)2K2L2ηlηgT

CKηgηl

+
1

CKηgηl

[
64ec2(1− c)2K2L4η3l ηgϵ

2 + 8K3L4η3l ηgρ
2(1− c)2 + 2KηlηgL

2c2ρ2ϵ2

+ ηlηgK(3σ2
g + 6L2ρ2) + 2Kη2l L

3η2gρ
2(1− c)2

σ2
l

S

]
=

F

CKηgηlR
+

4e(1− c)2KL2

C

(
8Kη2l

[
L2σ2

l (1− c)2ρ2 + 8K2(1− c)2L4η2l ρ
2 + 3σ2

g + 6L2ρ2
])

+
1

C

[
64ec2(1− c)2KL4η2l ρ

2ϵ2 + 8K2L4η2l ρ
2(1− c)2 + 2L2c2ρ2ϵ2 + 3σ2

g + 6L2ρ2 + 2ηlηgL
3ρ2(1− c)2

σ2
l

S

]
= O

(
FL√
RKS

+
L2(1− c)4σ2

l

R2
+

L2(1− c)4

R3
+

(1− c)2σ2
g

R
+

(1− c)2L2

R2

+
c2(1− c)2L2ϵ2

KR2
+

L2(1− c)2

R2
+

L2c2ϵ2

R
+ σ2

g +
L2

R
+

L2(1− c)2σ2
l

R3/2
√
KS

)
Note that ( (1−c2)

R + 1)σ2
g are caused by the heterogeneity between clients, L2(1−c)4

R2 σ2
l ,

L2(1−c)2

R3/2
√
KS

σ2
l are due to the per-

turbation of stochastic gradient and L2(1−c)4

R3 , L2(1−c)2

R2 , L2

R are due to the local SAM, c2(1−c)2L2ϵ2

KR2 , L2c2ϵ2

R is caused by
approximation of global perturbation, i.e., ϵ := ∥∆r/∥∆r∥ − ∇F (wr)/∥F (wr)∥∥. After omitting the higher order, i.e.,(

L2(1−c)4σ2
l

R2 , L2(1−c)4

R3 , (1−c)2L2

R2 , c2(1−c)2L2ϵ2

KR2

)
,
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1

R

R−1∑
r=0

E∥∇F (w̃r)∥2 = O

(
FL√
RKS

+

(
(1− c2)

R
+ 1

)
σ2
g +

L2(1− c)2

R3/2
√
KS

σ2
l +

L2(c2ϵ2 + 1)

R

)
(62)

A.5. Proofs of Theorems for Flatness Discrepancy

We here provide the proofs of Theorem 2 and 3.

Theorem 2. ∆F is upper bounded as follows:

∆F ≤ ρσ2
g + Lρ

∑
i∈[N ]

∥w − wi∥ (63)

Proof. ∣∣∣∣∣∣max
∥δ∥≤ρ

F (w + δ)− F (w)−

∑
i∈[N ]

mi

m
max
∥δi∥≤ρ

Fi(wi + δi)− Fi(wi)

∣∣∣∣∣∣
≈

∣∣∣∣∣∣ρ∥∇F (w)∥ − ρ
∑
i∈[N ]

mi

m
∥∇Fi(wi)∥

∣∣∣∣∣∣ (64)

≤ ρ
∑
i∈[N ]

mi

m
∥∇F (w)−∇Fi(wi)∥

= ρ
∑
i∈[N ]

mi

m
∥∇F (w)−∇Fi(w) +∇Fi(w)−∇Fi(wi)∥

≤ ρ
∑
i∈N

mi

m
∥∇F (w)−∇Fi(w)∥+ ∥∇Fi(w)−∇Fi(wi)∥

≤ ρσ2
g + Lρ

∑
i∈[N ]

mi

m
∥w − wi∥ (65)

where Eq. (64) is from first-order approximation, and Eq. (65) is from Assumption (2)

Therefore, as the non-IIDness increases, i.e., σ2
g increases, the upper bound of the sharpness of the global model also

increases.

Theorem 3. For FedGF, if we choose ηl = O( 1√
RKL

) and ρ = O( 1√
R
), ηg =

√
KN , ∆F is then bounded as follows:

∆F ≤ ρσ2
g + Lρ

∑
i∈[N ]

mi

m
∥w − wi∥2 = O

(
σ2
g√
R

+
L(1− c)2σ2

l

R5/2
+

σ2
g

LR3/2
+

Lc2ϵ2

R5/2

)

Proof. First, we derive the upper bound of ∥w − wi∥2

∥w − wi∥2 ≤ ∥w − wi∥22 (66)

≤ Ke(T + 8Kη2l ∥∇F (w̃)∥2 + 16KL2η2l c
2ρ2ϵ2) (67)

If we set ηl = O
(

1√
RKL

)
, ρ = O

(
1√
R

)
used in Theorem 1.
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The first term is

T = 8Kη2l
[
L2σ2

l (1− c2)ρ2 + 8K2L4η2l ρ
2(1− c)2 + 3σ2

g + 6L2ρ2
]

(68)

= O
(

1

RKL2

)
· O
(
L2σ2

l (1− c)2

R
+

(1− c)2L2

R2
+ σ2

g +
L2

R

)
(69)

= O

(
(1− c)2σ2

l

R2K
+

(1− c)2

R3K
+

σ2
g

RKL2
+

1

R2K

)
(70)

Second term,

8Kη2l ∥∇F (w̃r)∥2 (71)

8K · O
(

1

RK2L2

)
· O
(

FL√
RKN

+
(1− c)2

R
σ2
g +

L2(1− c)2

R3/2
√
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σ2
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L2c2ϵ2

R

)
(72)

= O

(
F

LR3/2K3/2
√
N

+
(1− c)2σ2

g

KR2L2
+

(1− c)2σ2
l

R5/2K3/2
√
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+
c2ϵ2

KR2

)
(73)

Eq. (72) is from Theorem 1.
Last term

16KL2η2l c
2ρ2ϵ2 (74)

= O
(
KL2 1

RK2L2
c2

1

R
ϵ2
)

(75)

= O
(

c2ϵ2

KR2

)
(76)

If we summarize and omit higher order of R,

Ke(T + 8Kηl∥∇F (w̃)∥2 + 24KL2ηlc
2ϵ2) (77)

= O
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+
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)
(78)

where Eq. (78) is from the related term with σ2
l , σ

2
g , ϵ. Therefore, by substituting the Eq. (78) in ∆F , we get

∆F ≤ O
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where Eq. (79) is from omitting higher order
(

L(1−c)2

R7/2 , L
R5/2 ,

(1−c)2σ2
g

LR5/2 ,
L(1−c)2σ2

l

R3
√
KN

)
and irrelevant term

(
F

R2
√
KN

)
.
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B. Corrections on Convergence Analysis for Partial Client of FedSAM
FedGF shows a similar convergence behavior as that of FedSAM (Qu et al., 2022). We found that there exists an error in the
proof of convergence for partial client participation of (Qu et al., 2022)

B.1. Full client participation: Lemma B.3 in FedSAM (Qu et al., 2022) and Lemma 6 in our FedGF

⟨∇F (w̃r),− 1

N

N∑
i

K∑
k

ηl∇Fi(w̄
r
i,k) +Kηl∇F (w̃r)⟩ (80)

=
ηlK

2
∥∇F (w̃r)∥2 + ηl

2N2K

∥∥∥∥∥∥
∑
i,k

[
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
]∥∥∥∥∥∥

2

︸ ︷︷ ︸
A

− ηl
2N2K

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

where the equality is from ⟨a, b⟩ = 1
2 (∥a∥

2 + ∥b∥2 − ∥a − b∥2) with a =
√
ηlK∇F (w̃r) and b =

−
√
ηl

N
√
K

∑
i,k

(
∇Fi(w̄

r
i,k)−∇Fi(w̃

r)
)

.

• Blue term, i.e., − 1
N

∑N
i

∑K
k ηl∇Fi(w̄

r
i,k), is the updated gradients from the full clients, N local clients.

• Red term, i.e., ∇F (w̃r),∇Fi(w̃
r), is from the definition of f(w) =

∑N
i

mi

m Fi(w).

B.2. Partial client participation: Lemma 10 in FedGF

In the partial client participation settings, i.e., S < N where S is the number of participating client, Eq. (80) becomes as
follows:

⟨∇F (w̃r),− 1

S

∑
i∈Sr

K∑
k

ηl∇Fi(w̄
r
i,k) +Kηl∇F (w̃r)⟩

=
ηlK

2
∥∇F (w̃r)∥2 + ηl

2S2K

∥∥∥∥∥∑
i∈Sr

K∑
k

[
∇Fi(w̄

r
i,k)−∇F (w̃r)

]∥∥∥∥∥
2

︸ ︷︷ ︸
A

− ηl
2N2K

∥∥∥∥∥∥
∑
i,k

∇Fi(w̄
r
i,k)

∥∥∥∥∥∥
2

• Blue term, i.e., − 1
N

∑N
i

∑K
k ηl∇Fi(w̄

r
i,k), is the updated gradients from the partial clients, S local clients.

• Red term: ∇F (w̃r) must be not represented as ∇Fi(w), because there are more terms of not included terms, i.e.,∑
i/∈Sr

∑K
k Fi(w̃

r). But the proof of (Qu et al., 2022) treats them to be the same. In FedSAM (Qu et al., 2022), the
error is ignored in the convergence of partial client participation, in other words, they use the same result in partial
client participation, which is used for full partial client participation. In FedGF, ours, we deal with the red term in the
convergence of FedGF as follows:
(the detailed proof is in Lemma. 10):∥∥∥∥∥∑

i∈Sr

∑
k

[
∇Fi(w̄

r
i,k)−∇F (w̃r)

]∥∥∥∥∥
2

≤ SK
∑
i∈Sr

∑
k

∥∇Fi(w̄
r
i,k)−∇F (w̃r)∥2

= SK
∑
i∈Sr

∑
k

∥∇Fi(w̄
r
i,k)−∇Fi(w̃

r) +∇Fi(w̃
r)−∇F (w̃r)∥2

≤ 2SK
∑
i∈Sr

∑
k

[
∥∇Fi(w̄

r
i,k)−∇Fi(w̃

r)∥2 + ∥∇Fi(w̃
r)−∇F (w̃r)∥2

]
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Algorithm 1 FedGF
Input: w0,△r = 0, local learning rate ηl, global learning rate ηg , and the number of epochs K
Parameter: TD is threshold for Dr, W is length of the windowing.

1: for r = 0, ..., R− 1 do
2: Sample subset Sr ⊆ [N ] of clients.
3: w̃r = wr + ρ △r

∥△r∥
4: for each client i ∈ Sr in parallel (Local training) do
5: send the wr, w̃r to the active clients
6: wr

i,0 = wr

7: for k = 0, ...,K − 1 do
8: gri,k = ∇Fi(w

r
i,k, ζi,k)

9: w̃r
i,k = wr

i,k + ρ
gr
i,k

∥gr
i,k∥

10: w̃r
i,k,c = w̃rc+ w̃r

i,k(1− c)
11: wr

i,k+1 = wr
i,k − η∇Fi(w̃

r
i,k,c, ζi,k)

12: end for
13: △r

i = wr − wr
i,K

14: send the△r
i to the global server

15: end for
16: △r+1 = 1

|S|
∑

i∈Sr △r
i

17: Dr+1 = 1
|S|
∑

i∈Sr ∥△r
i ∥

18: wr+1 = wr − ηg△r+1 (Aggregation)
19: Ir+1 = I[Dr+1 > TD]
20: c = Avg[Imax(r−W+1,0), ..., Ir+1]
21: end for

C. Details of Experimental Setup
We implemented the models based on the PyTorch framework (Paszke et al., 2019) and ran the experiments with NVIDIA
A5000 and A6000 processors. Specifically, our implementation of the federated learning scenario is based on the public
implementation by (Zeng et al., 2023). Here, we provide the detailed settings of the experimental results in the main paper,
including datasets, the model architecture, pre-processing, and hyperparameters. Also, we provide the pseudocode of FedGF
in Algorithm 1.

C.1. Datasets and Model Arhictectures

Table 6: Datasets and Clients

Dataset Task Total clients Total samples Training samples Test samples
CIFAR-10 Image classification 100 60,000 50,000 10,000

CIFAR-100 Image classification 100 60,000 50,000 10,000

Dataset: We consider two datasets that are widely used in federated learning: CIFAR-10 and CIFAR-100 (Krizhevsky
et al.). To construct the benchmarks for the federated learning setting, we borrowed the federated learning benchmarks
based on CIFAR-10/100 which are proposed by (Hsu et al., 2020). Specifically. each dataset is distributed across 100 clients,
where each one receives 500 images according to the prior distribution of labels sampled from the Dirichlet distribution.
When focusing on the Dirichlet distribution-based method to distribute the data samples, each client’s prior distribution is
selected following a multinomial distribution drawn from a symmetric Dirichlet distribution with parameter α. If α→∞ ,
the distribution of data across clients becomes an IID distribution. Otherwise, it becomes a non-IID distribution when α
decreases, i.e., α→ 0. We test the various cases with α ∈ {0, 0.005, 10} on CIFAR-10 and CIFAR-100. We emphasize that
α = 10 is sufficiently large to represent the IID case. Also, α = 0.005 looks too small, but it is appropriate to provide a
moderate scenario in between the IID and non-IID cases.
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Model architecture: By following the backbone architecture of the most-related work, i.e., FedSAM by (Caldarola et al.,
2022), we utilize a Convolutional Neural Network (CNN) that is similar to LeNet5 (LeCun et al., 1998). Specifically, the
backbone model has two 64-channel convolutional layers with a kernel size of 5×5, each followed by a 2×2 max-pooling
layer, ended by two fully connected layers with 384 and 192 channels and a linear classifier. For a fair comparison, we use
the same backbone architecture for all different types of methods in Table 1 at the main paper. Also, the same architecture is
identically used for the two CIFAR-10/100 benchmarks. Noteworthy, we added ResNet backbone results in Appendix D.6.

Data pre-processing: Every 32 × 32 input image in the datasets is pre-processed through the following standard pipeline:
each training image is randomly cropped, applying padding 4 to show the final size of 32 × 32, randomly horizontally
flipped with probability 0.5, and finally, the pixel values are normalized with the dataset’s mean and standard deviation;
normalization is applied to test images as well.

C.2. Hyperparameters

For each case of algorithm and its evaluation on the benchmarks, we tuned the hyperparameters: µ for FedProx is tuned
among two choices {0.1, 1}, the global learning rate η for SCAFFOLD is selected among {0.1, 0.01}, the momentum
ratio β of FedAvgM is chosen among {0.1, 0.9}. For the parameters ρ, η of FedSAM and FedASAM, we borrow the same
values that were used in the original paper by (Caldarola et al., 2022). For MoFedSAM, we tuned the hyperparameter
β ∈ {0.1, 0.9}, and we also use the same ρ with FedSAM. For FedGAMMA and FedSMOO, we also use the same ρ
with FedSAM. For our FedGF, we tuned the hyperparameter TD, which is the threshold for c value, among the choices:
{0.1, 0.2, 0.3}. For each dataset, we have chosen TD = 0.2 for CIFAR-10 and TD = 0.3 for CIFAR-100, and used the same
values for ρ ∈ {0.02, 0.05, 0.1}, as suggested in (Caldarola et al., 2022). Following the benchmark suggested in (Caldarola
et al., 2022), we set the local learning rate as ηl = 0.01, global learning rate as ηg = 1, weight decay as 0.0004, and batch
size as 64. Finally, the window size W is set among the choices: {10, 30, 50}.

C.3. Pseudocode of FedGF

Algorithm 1 presents the algorithmic pseudocode of the training procedures of FedGF.

D. Additional Experimental Results
Here, we provide the additional experimental results that are dropped due to the limited space of the main paper. It includes
the standard deviations of the main test accuracies, the plots of test accuracies for the IID cases, the loss plots along
perturbations for the CIFAR-10 dataset, the flatness metrics (LPF, eigenvalue of Hessian, Flatness Discrepancy), and the
analysis of c for the CIFAR-10 experiment. Moreover, we evaluate the related algorithms in the CIFAR-100 dataset using a
larger backbone, i.e., the ResNet-18 architecture, to confirm the validity of our algorithm in the larger architecture. We
provide all related results, including test accuracy curves along the rounds, the flatness metrics, and the loss plots along
perturbations. To smooth the convergence behavior, we average the 100 test accuracies of its vicinity every 800 rounds for
CIFAR-10 and every 1000 rounds for CIFAR-100 datasets. We apply the moving average to smooth the behavior of c.

D.1. Standard Deviation of Test Accuracy for Table 1 of the Main Paper

We provide the standard deviation of test accuracies of Table 1 in the main paper. We measure the deviations by using the
last 100 values of test accuracies as shown in Table 7. Most of the algorithms show an increasing trend of deviations as the
number of the participating clients decreases. It confirms that the learning becomes unreliable when the number of active
clients drops. In contrast, as shown in Table 7, our FedGF is shown to be robust to the number of participating clients. Also,
as the non-IIDness becomes severe, i.e., α→ 0, the deviation value has tendency to increase for most of the prior methods.
However, FedGF shows consistently low deviations even with strong non-IIDness, i.e., ±1.35% and ±0.83% for CIFAR-10
and CIFAR-100 cases.

D.2. Convergence Behavior Curves of the IID cases for CIFAR-10 and CIFAR-100

Figure 8 shows the test accuracies curves for the IID cases of CIFAR-10/100 with 5 participating clients per round. When
diving the methods into three groups: i) FedAvgM and FedDyn, ii) FedGF, FedSAM, FedASAM, MoFedSAM, and
FedSMOO, and the remaining group iii) FedAvg and FedProx, the first group shows the fastest convergence than other
algorithms. However, the second group with flat minima searching shows a better final performance. The third group
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Table 7: Standard Deviation of Test accuracy

Task Algorithms

Dirichlet distribution parameter α
Dir.(α = 0) Dir.(α = 0.005) Dir.(α = 10)

The number of participating clients
5 10 20 5 10 20 5 10 20

CIFAR-10

FedAvg 4.17 2.79 1.52 3.37 2.02 1.34 0.25 0.19 0.13
FedAvgM 3.64 2.98 1.6 3.68 2.14 1.02 0.23 0.15 0.12
FedProx 5.5 2.41 1.84 3.19 2 1.42 0.23 0.16 0.12

SCAFFOLD (✗) (✗) (✗) 4.79 3.64 0.56 0.07 0.03 0.03
FedDyn 3.32 1.95 1.69 2.78 1.65 1.11 0.16 0.13 0.12
FedSAM 3.44 2.67 1.42 2.67 1.74 0.77 0.18 0.11 0.08

FedASAM 3.01 2.65 1.36 3.45 1.79 1.06 0.18 0.11 0.11
MoFedSAM 3.15 1.1 0.65 1.88 0.89 0.51 1.21 1.78 1.13
FedGAMMA 0.1 0.09 0.06 0.11 0.09 0.06 0.19 0.17 0.15

FedSMOO 2.86 1.7 0.96 2.85 1.18 0.51 0.14 0.12 0.09
FedGF 1.35 1.55 1.16 1.50 1.29 1.11 0.17 0.12 0.10

CIFAR-100

FedAvg 1.75 1.2 0.77 0.92 0.66 0.37 0.19 0.16 0.14
FedAvgM 1.79 1.19 1.22 1.05 0.52 0.35 0.21 0.17 0.15
FedProx 1.41 1.18 0.93 0.89 0.59 0.4 0.24 0.19 0.19

SCAFFOLD (✗) (✗) (✗) 2.17 (✗) (✗) 0.07 0.07 0.08
FedDyn (✗) (✗) (✗) (✗) (✗) (✗) 0.17 0.21 0.16
FedSAM 1.54 0.86 0.5 1.54 0.73 0.33 0.16 0.12 0.11

FedASAM 1.66 1.04 0.58 1.05 0.49 0.36 0.20 0.18 0.13
MoFedSAM 2.36 2.13 1.59 2 1.3 1.02 0.9 0.76 0.66
FedGAMMA (✗) (✗) (✗) 1.32 0.77 0.44 0.21 0.17 0.16

FedSMOO 1.13 0.7 0.39 1.01 0.46 0.36 0.13 0.12 0.08
FedGF 0.83 0.99 0.63 0.78 0.68 0.88 0.17 0.15 0.11

In the corresponding performance table of the main paper, we have some cases that cannot converge or fail to train (denoted as (✗)).
For these cases, it is not meaningful to measure the standard deviation, so we collectively denote the cases as (✗).
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(b) CIFAR-100 with IID

Figure 8: Convergence behaviors for the IID cases

shows moderate convergence speed but is limited to the degraded final performance. As aforementioned, IID cases do not
show meaningful differences between the FL algorithms. When reminding the results for the non-IID cases, FedGF shows
significantly faster convergence for the non-IID cases which are more important and crucial in the practical FL settings,
where the strong heterogeneity is trivial.
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D.3. Flatness Results for the IID cases for CIFAR-10

0 5 10 15 20 25
Norm of perturbation

0

1

2

3

4
Lo

ss

FedAvg
FedSAM
FedASAM
MoFedSAM
FedSMOO
FedGF

(a) Non-IID (α = 10)

0 5 10 15 20 25
Norm of perturbation

0

1

2

3

4

Lo
ss

FedAvg
FedSAM
FedASAM
MoFedSAM
FedSMOO
FedGF

(b) IID (α = 10)

Figure 9: Loss plots along to perturbation for CIFAR-10

Loss plots along the perturbation for CIFAR-10: In Figure 9, we present the plot of loss values according to the increasing
perturbation radius. It shows the family of sharpness-aware federated learning algorithms is shown to find quite flat minima
in both IID and Non-IID experiments. MoFedSAM and FedSMOO show more flatter in IID case, but FedGF shows lower
loss values within the perturbation range of 0 ∼ 15. It confirms the competitive performance of FedGF in the IID cases.
Also, we highlight that FedGF consistently finds flatter minima even in the non-IID cases as verified in the main paper, but
others suffer from the significant degradation of flatness and accuracies.

Table 8: LPF, σmax, and ∆F results for CIFAR-10

Algorithm Non-IID (α = 0) IID (α = 10)
LPF ↓ λmax ↓ ∆F ↓ LPF ↓ λmax ↓ ∆F ↓

FedAvg 1.03 81.57 0.083 0.33 103.19 0.003
FedSAM 0.79 43.32 0.023 0.34 25.30 0.002

FedASAM 0.72 25.46 0.029 0.34 14.99 0.003
MoFedSAM 0.79 15.11 0.028 0.73 27.28 0.003
FedSMOO 1.05 36.33 0.019 0.37 24.45 0.009

FedGF (ours) 0.68 14.07 0.023 0.30 21.32 0.003
↓ means that a lower value is preferred.

Flatness metrics: Table 8 presents the flatness metrics of the global model for the Non-IID and IID cases of the CIFAR-10
benchmark. In the IID case, there do not exist large differences between algorithms with flat minima searching. In contrast,
the Non-IID results show the huge gap for LPF and λmax between FedGF and other algorithms. Although ∆F of FedGF
shows similar value with other flat minima searching algorithms, considering LPF and loss plot in Fig. 9, FedGF finds flat
minima with lower loss values. It verifies our conjecture, where the flatness of the local model, is not connected to the
flatness of the global model. The behaviors are exactly coincide with the results on CIFAR-100.

D.4. Analysis of c for CIFAR-10

We also present the c values according to communication rounds for CIFAR-10 in Figure 10. It shows an identical trend
to the CIFAR-100 dataset. As α → 0, i.e., for the non-IID case, the c values quickly get close to 1. Moreover, as the
distribution gets close to IID, i.e., α = 10, c stays near 0 during training.
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Figure 10: Behavior of c for CIFAR-10

D.5. Impact of Parameters

Fig. 11 and Fig. 12 shows the impact of parameters, i.e., the size of local perturbation ρ, the size of global perturbation ρg ,
the length of windowing W , and the threshold parameter TD, on the CIFAR-10 and CIFAR-100 cases with α = 0 and 5
active clients. For ρ and ρg, we optimize it in the range of [0.02, 0.5]. As shown in the following table, it has a minimal
impact to test accuracy when it is smaller than 0.1. Therefore, we set the same value for ρ and ρg . For TD, we searched it in
the range of [0.1,1]. It shows stable performance in the range of [0.1, 0.3], which is not much more sensitive. For W , which
is the window of computing c, we found that it has a small impact on accuracy in experiments.
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Figure 11: Impacts of parameters on CIFAR-10 dataset.

0.0 0.2 0.40

20

40

Te
st

 A
cc

ur
ac

y

(a) Local perturbation

0.0 0.2 0.4
 g

0

20

40

Te
st

 A
cc

ur
ac

y

(b) Global perturbation

20 40
W

0

20

40

Te
st

 A
cc

ur
ac

y

(c) Length of windowing

0.5 1.0
TD

0

20

40

Te
st

 A
cc

ur
ac

y

(d) Threshold for Dr

Figure 12: Impacts of parameters on CIFAR-100 dataset.

D.6. Experiments with Larger Network Architecture

We conduct training using a modified ResNet-18 architecture to verify the effectiveness of FedGF for the regime of larger
models. In the experiments, we have omitted Batch Normalization (BN) layers (Ioffe & Szegedy, 2015) because the
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Table 9: Evaluation on a ResNet-18 backbone

Task Algorithms Dir.(α = 0) Dir.(α = 0.005) Dir.(α = 10)
Number of participating clients per each round

5 20 5 20 5 20

CIFAR-100

FedAvg 17.01 (1.62) 35.1(0.7) 34.52 (0.81) 35.24(0.47) 45.25 (0.47) 43.8 (0.2)
FedSAM 16.04 (1.58) 26.21 (0.63) 39.97 (0.79) 42.62(0.29) 57.92 (0.15) 57.75 (0.09)

FedASAM 17.24 (1.66) 34.87 (0.71) 39.09 (0.8) 39.82(0.3) 51.07 (0.14) 50.15 (0.12)
MoFedSAM 27.48 (1.75) 35.42 (2.81) 44.27 (2.79) 21.96(0.97) 48.52 (1.81) 50.14 (1.11)
FedSMOO 22.3 (1.71) 26.08 (0.52) 41.64 (0.95) 44.58(0.27) 57.29 (0.12) 56.94 (0.1)

FedGF (ours) 42.85 (1.25) 48.2 (0.17) 48.69 (0.34) 44.29 (0.18) 57.98 (0.13) 58.16 (0.08)

Numbers shown in the (·) is the standard deviation of the test accuracies.

performance is maximized without the BN layers (we follow the wisdom in (Du et al., 2022)). As done in the main
experiments of the main paper, we consider the CIFAR-100 dataset with heterogeneity α = {0, 0.005, 10}, and the number
of the participating clients ranges between 5 and 20.

Hyperparameters: We follow the same setting of hyperparameters as shown in Appendix C, excepting for the following
setups: For SAM-based algorithms, i.e., FedSAM, FedASAM, MoFedSAM, and FedGF, we use the ρ ∈ {0.02, 0.05, 0.1}.
For FedASAM, we set the hyperparamter η = 0.2. The local learning rate is ηl = 0.01, and the batch size is 64.

D.6.1. TEST ACCURACIES

As shown in Table 9, FedGF shows outstanding performance over the baselines, as similarly observed in the LeNet-based
results. As we expect, the performance gains are remarkable for the non-IID cases. Also, we emphasize that FedGF also
outperforms the baselines for the IID case with considerable gains.

D.6.2. CONVERGENCE BEHAVIOR CURVES OF THE RESNET-18 EXPERIMENTS

Fig. 13b and 13a show the convergence behavior of the FL algorithms for the ResNet-based experiments. For the IID
case, FedGF shows slightly slower behavior, but it reaches the top. For the non-IID case, FedGF shows significantly faster
performance and obtains the top accuracy. The behavior shown in the non-IID case is analogous to our observation for the
LeNet-based experiments in the main paper.

D.6.3. FLATNESS RESULTS OF THE RESNET-18 EXPERIMENTS

Loss plots along the perturbation: Fig. 14a and 14b show the loss plots along the perturbations. For both the IID and
non-IID cases, FedGF shows the flatter minima and the lowest loss values. The results coincide with the results in the main
paper, verifying the effectiveness of FedGF with even larger model architectures.

Flatness metrics: We compute LPF, λmax, and ∆F as done in the main paper. FedGF shows the best LPF values for both
IID and non-IID cases.

Analysis of c: Fig. 15 shows the behavior of c along the rounds for the ResNet-18 experiments. As expected, for the
non-IID case, FedGF gradually pushes c to the larger value as the round goes on. As aforementioned, larger c is preferred
when the heterogeneity gets worse. Interestingly, when the model is sufficiently trained, FedGF is shown to prefer smaller c,
so that it drops to zero at the last moment of the rounds. We conjecture that the result is due to the much larger capacity of
ResNet over LeNet architecture. When sufficient model capacity is given, deep training has more chances to find a much
flatter region, which simultaneously covers the global and local models. For that case, sufficiently flat minima can be found
even when FedGF uses a smaller c value. At the early stage of rounds, FedGF struggles to suppress the heterogeneity by
using a larger c; then it tunes to use smaller c when sufficiently high-performance models are found.

E. Formal Descriptions for Flatness Metrics
In this paper, we have measured the flatness of models by using Low-Pass Filter (LPF)-based flatness metrics suggested
in (Bisla et al., 2022), as a great tool well correlates to the generalization performance of models. We borrow the formal
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Figure 13: Test Accuracy for ResNet-18 Backbone.
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Figure 14: Loss plots along the perturbations for ResNet-18 backbone

(a) CIFAR-100 with Non-IID

Figure 15: Behavior of c of the ResNet-18 backbone for CIFAR-100

definition of LPF metrics as follows. For an intuition, LPF becomes large when the loss varies rapidly.

Definition (from (Bisla et al., 2022)) (LPF) Let K ∼ N (0, σ2I) be a kernel of a Gaussian filter. LPF-based sharpness
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Table 10: LPF, λmax, and ∆F results of the RedsNet-18 backbone for the CIFAR-100 experiments

Algorithm Non-IID (α = 0) IID (α = 10)
LPF ↓ λmax ↓ ∆F ↓ LPF ↓ λmax ↓ ∆F ↓

FedAvg 3.38 95.71 0.039 3.0 30.56 0.001
FedSAM 3.35 44.42 0.028 0.26 7.04 0.001

FedASAM 3.86 113.39 0.032 1.07 5.89 0.001
MoFedSAM 2.69 3.83 0.024 1.35 25.13 0.001
FedSMOO 3.20 29.62 0.026 0.26 5.45 0.004

FedGF (ours) 1.79 18.91 0.027 0.27 7.82 0.001
↓ means that a lower value is preferred.

measure at w∗ is defined as the convolution of loss function F with the Gaussian filter:

LPF(w∗) := (F ⊛K) =

∫
F (w∗ − τ)K(τ)dτ.
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