
On the Empirical Complexity of Reasoning and Planning in LLMs

Anonymous ACL submission

Abstract

Chain-of-thought (CoT), tree-of-thought (ToT),001
and related techniques work surprisingly well002
in practice for some complex reasoning tasks003
with Large Language Models (LLMs), but004
why? This work seeks the underlying rea-005
sons by conducting experimental case studies006
and linking the performance benefits to well-007
established sample and computational complex-008
ity principles in machine learning. We exper-009
imented with 6 reasoning tasks, ranging from010
grade school math, air travel planning, . . . ,011
to Blocksworld. The results suggest that (i)012
both CoT and ToT benefit significantly from013
task decomposition, which breaks a complex014
reasoning task into a sequence of steps with015
low sample and computational complexity and016
explicitly outlines the reasoning structure, and017
(ii) for computationally hard reasoning tasks,018
the more sophisticated tree structure of ToT019
outperforms the linear structure of CoT. These020
findings provide useful guidelines for the use021
of LLM in solving reasoning tasks in practice.022

1 Introduction023

Reasoning and planning tasks are often challenging024

due to their inherently multi-step processes. Com-025

pared with the Direct approach that prompts the026

model to provide immediate answers, large lan-027

guage models (LLMs) showed surprising results028

on reasoning problems when they were asked to029

explain their reasoning step-by-step through a chain-030

of-thought (CoT) (Wei et al., 2022; Kojima et al.,031

2022) before providing their answers. This was032

followed by improvements of the tree-of-thought033

(ToT) (Yao et al., 2023; Xie et al., 2023), combining034

LLMs with a search algorithm to structure reason-035

ing steps into a tree and selecting promising next036

steps by self-evaluation. Other variants include037

CoT with self-consistency (CoT-SC) (Wang et al.,038

2022), which generates multiple CoTs and responds039

with the most common answer.040

2×12

4+8

6-46-4

4+8

Answer:
(6-4)×(4+8)=24

… … …

Tree of Thought

Answer:
(6-4)×(4+8)=24

Chain of ThoughtDirect

Answer:
(6-4)×(4+8)=24

2 12

24

4+4 4+6

4 6 12 4 8 10
6+8 8÷4

4 4 6 8

8 14 2 12 2 10

6 8 8

24

2×12

4 4 6 8

4 6 12

…

……… …

4 4 6 8

LLM

Figure 1: An illustration of LLM reasoning methods on the
Game of 24. Given four poker cards, the player combines the
cards using basic arithmetic operations, (+,−,×,÷), to reach
the target number of 24.

However, evidence shows that the relative perfor- 041

mance of CoT, ToT, and their variants may vary from 042

task to task. For example, CoT and its variants, 043

such as self-consistency (CoT-SC) (Wang et al., 044

2022), have been successful in solving grade school 045

math problems (GSM). Our experiments show that 046

ToT is only marginally better than CoT and even 047

performs worse than CoT-SC on GSM when using 048

the same token budget. However, in the Game of 049

24 shown in Fig 1, where four numbers need to be 050

manipulated with arithmetic operations to obtain 051

the number 24, using CoT to provide a solution 052

with a short reasoning chain fails badly. In addi- 053

tion, CoT-SC did not show significant improvement 054

while using more tokens at inference. In contrast, 055

ToT significantly outperforms CoT and CoT-SC on 056

Game of 24 (Yao et al., 2023). These pieces of 057

evidence raise an important question: what are the 058

underlying factors that affect the effectiveness of 059

different LLM reasoning methods in various tasks? 060

To answer this question, we investigate when 061

and why CoT and ToT are effective in reasoning 062

and planning problems from the viewpoint of sam- 063

ple complexity and computational complexity in 064

machine learning. Sample complexity captures 065

the amount of data needed for learning predictors, 066

which we measure by description length (Shai and 067

Shai, 2014), the number of bits required to describe 068

the learnable part of the predictor. The predictors 069

take an input, e.g., a sequence of words, and produce 070

a prediction, e.g. a label that may be used directly or 071

1

as a component of a larger reasoning process (Wei072

et al., 2022). Predictors with a small description073

length can be shown to require less training data, i.e.074

a small sample complexity (Shai and Shai, 2014),075

to achieve low generalisation error. Computational076

complexity is relevant in two distinct ways in this077

paper: 1) in the amount of computation required078

for learning, e.g. finding the correct parameters in079

the predictor given the training data, and 2) in the080

amount of computation required for reasoning, e.g.081

finding the solution given a problem. Learning may082

become computationally intractable if the values of083

hidden variables are not observed during learning1084

(Aloise et al., 2009; Blum and Rivest, 1988), moti-085

vating us to consider their presence during learning086

of CoT. For problems that are computationally hard087

to solve, e.g. NP-hard problems, it is unlikely that088

a small predictor producing a short CoT solution089

exists in the worst case, which motivates the use of090

more complex structures like search trees.091

We focus on the reasoning and planning prob-092

lems in the context of natural language processing.093

A reasoning problem entails deducing the answer to094

a question from provided evidence and applicable095

reasoning rules. It often requires applying various096

rules multiple times to connect different pieces of097

evidence and draw a conclusion. Planning, a special098

subset of reasoning, requires an action sequence099

to achieve a desired goal state from a current state.100

Planning often requires reasoning over a long time101

horizon, making it computationally harder to solve.102

We empirically study these issues through six103

case studies: grade school mathematics (Cobbe104

et al., 2021), multi-hop question answering105

(Trivedi et al., 2022), a simple dynamic program-106

ming (DP) problem (Dziri et al., 2023), air travel107

planning (Zhao et al., 2023), Game of 24 (Yao et al.,108

2023) and Blocksworld (Valmeekam et al., 2023)2.109

Grade school math, multi-hop question answering110

and DP problems we consider have computationally111

efficient reasoning components. Air travel planning112

has two different efficient solutions that we compare.113

Finally, Game of 24 and Blocksworld appears to be114

computationally difficult.115

We study the problems under different settings,116

including prompting general LLMs, fine-tuning117

with task-specific data, and in-context learning with118

task-specific examples. Our main findings are119

consistent over different settings. These findings120

1Indirectly the values need to be inferred during learning.
2Due to lack of space, we describe the multi-hop question

answering and Blocksworld case studies in Appendix B.

suggest a few guiding principles for using LLM to 121

solve reasoning and planning tasks in practice: 122

• CoT and ToT enhances LLM reasoning when 123

problem decomposition lowers the sample com- 124

plexity. In all six cases, decomposing problems 125

with chain or tree structures reduces sample 126

complexity and improves performance. 127

• Explicitly annotating necessary information im- 128

proves CoT performance. In the DP problem 129

and Blocksworld, explicitly demonstrating rel- 130

evant variables improves learning. For tasks 131

with small search trees like air travel planning, 132

CoT that linearizes the search tree and explicitly 133

describing intermediate computations outper- 134

forms CoT that directly predicts the next action. 135

• Tree structures help when generating short- 136

chain solutions is computationally hard; CoT- 137

SC is effective otherwise. For tasks like Game 138

of 24 and Blocksworld, where short-chain so- 139

lutions are likely computationally hard to find, 140

ToT works better. In tasks like GSM and multi- 141

hop QA with efficient algorithms for finding 142

next steps, CoT-SC performs better. 143

2 Related Work 144

LLMs have shown significant progress in tackling 145

reasoning and planning problems. Initial studies 146

(Wei et al., 2022; Wang et al., 2022; Kojima et al., 147

2022; Chen et al., 2022; Gao et al., 2023) unveiled 148

various prompting techniques that enable LLMs 149

to demonstrate reasoning processes step by step, 150

thereby substantially boosting their reasoning abil- 151

ities. This approach has been swiftly adapted to 152

address everyday planning issues (Huang et al., 153

2022a,b; Ahn et al., 2022; Song et al., 2023; Wang 154

et al., 2023; Singh et al., 2023). Subsequent re- 155

search has integrated LLMs with diverse search 156

algorithms, further enhancing their capability to 157

solve complex reasoning and planning challenges 158

(Zhang et al., 2023; Yao et al., 2023; Zhao et al., 159

2023; Xie et al., 2023; Ding et al., 2023; Feng et al., 160

2023; Hao et al., 2023; Liu et al., 2023). 161

Several works explore why CoT improves perfor- 162

mance. Feng et al. (2024) investigates how CoT 163

enhances model capacity; Prystawski et al. (2024) 164

and Wang et al. (2024) examine the training data 165

distribution that enables CoT to excel; Dziri et al. 166

(2023) discusses CoT’s limitations in compositional 167

reasoning. Our work takes a different approach, we 168

explore principles that guide LLM behavior across 169

various reasoning frameworks, and provide insights 170

into selecting appropriate strategies for different 171

2

tasks. While Zhao et al. (2023) discusses the sam-172

ple complexity of LLM planning, they overlook the173

computational implications.174

3 Analysis of LLM Reasoning Methods175

We aim to analyze LLM reasoning methods from176

the sample and computational complexity perspec-177

tive in machine learning. Our goal is to understand178

the complexity of problems using simple represen-179

tations. However, analyzing LLM learning with180

transformer architecture is challenging, and the181

effects of pre-training, which we do not control,182

are present throughout. Instead, we empirically183

observe whether our analysis reflects the practical184

behaviour of LLMs and whether the insights from185

our analysis are practically useful. Specifically,186

when our analysis suggests that a particular method187

is preferred, we examine whether it is indeed pre-188

ferred empirically.189

3.1 Problem formulation190

The LLM reasoning approach, e.g., CoT and ToT,191

essentially uses a sequential decision approach to192

do the reasoning instead of other approaches, such193

as converting to a Boolean satisfiability problem194

(SAT) and solving it using SAT solvers. Thus, we195

formulate reasoning and planning problems using196

planning terminology. A planning problem can197

be defined using a state space 𝑆, an action space198

𝐴, a transition function 𝑇 , and a goal function 𝐺.199

The state space 𝑆 defines all possible states (e.g.,200

the boolean values of assigned variables for logical201

inference or scalar values of assigned variables for202

math problems). The action space 𝐴 consists of203

possible equations or rules. Each state has appli-204

cable actions that can be executed. The transition205

function 𝑇 (𝑠, 𝑎) specifies a new state 𝑠′ after ap-206

plying action 𝑎 in state 𝑠. The goal function 𝐺207

specifies whether the current state is a goal state.208

The solution to a reasoning or planning problem209

is a sequence of actions in the action space that210

transforms the initial state into a goal state. In a211

CoT, we directly use the LLM as a policy to map212

the current state (as inferred by the LLM from the213

context) to the action, while in a ToT, the LLM214

is used to specify applicable actions in each state215

to construct a search tree. LLM is also used as a216

transition function in both methods.217

3.2 Decomposition and sample complexity218

3.2.1 Description length (DL)219

Description length (DL), the number of bits required220

to describe the learnable part of the predictor, is221

used to analyse the sample complexity in machine 222

learning. It is used in the minimum description 223

length (MDL) principle, also known as Occam’s 224

Razor from the philosophy of science. The MDL 225

principle suggests that a method with a shorter 226

description length requires less training data and 227

is preferred. MDL has been formalized in various 228

ways. One formal statement (from section 7.3 of 229

Shai and Shai (2014)) is provided here: 230

Theorem 3.1 (Occam’s Razor) Let H be a hy- 231

pothesis class and let 𝑑 : H → {0, 1}∗ be a prefix- 232

free description language for H . Then, for ev- 233

ery sample size, 𝑚, every confidence parameter, 234

𝛿 > 0, and every probability distribution, 𝐷, with 235

probability greater than 1 − 𝛿 over the choice 236

of 𝑆 ∼ 𝐷𝑚 we have that, ∀ℎ ∈ H , 𝐿𝐷 (ℎ) ≤ 237

𝐿𝑆 (ℎ) +
√︁
(|ℎ| + ln (2/𝛿))/2𝑚, where 𝐿𝑆 (ℎ) is the 238

empirical loss of ℎ on the 𝑆, 𝐿𝐷 (ℎ) is the expected 239

loss of ℎ, and |ℎ| is the length of 𝑑 (ℎ). 240

According to Theorem 3.1, we can bound the ex- 241

pected loss of a solution ℎ by the description length 242

|ℎ| and the training loss 𝐿𝑆 (ℎ). Thus, when trained 243

by the same amount of data, predictors with smaller 244

DL have lower generalisation errors, indicating a 245

lower sample complexity. 246

3.2.2 DL analysis of LLM reasoning methods 247

For each reasoning method, we can analyze the 248

description length of its policy and transition. 249

Direct Direct answering method does not involve 250

explicit steps of reasoning, all reasoning is per- 251

formed internally in the neural network. This 252

method may have a low sample complexity if the 253

neural network architecture closely aligns with the 254

reasoning algorithm (Xu et al., 2020). Analysing 255

whether the algorithm fits the inductive bias of 256

the network is complex, so we mostly explore a 257

tabular representation for simplicity. In problems 258

with 𝑁 variables, each taking 𝐾 values, direct an- 259

swers require learning a table of size 𝐾𝑁 , which 260

exponentially increases with more variables. 261

CoT With |𝐴| number of possible actions, each 262

depending on 𝑎𝑖 variables, the description length 263

for transition functions of these actions is propor- 264

tional to
∑ |𝐴|
𝑖=1 𝐾

𝑎𝑖 . We also need a policy function 265

predicting action to select based on observations 266

with its description length of 𝐾𝑀 if it depends on 267

𝑀 variables. If the policy depends only on whether 268

the variables have been observed rather than their 269

values, then a binary table of size 2𝑀 is sufficient. 270

CoT-SC runs CoT multiple times and responds 271

with the most common answer – this reduces the 272

3

prediction variance and, consequently, the sample273

complexity at the cost of more computation.274

ToT The complexity of transition functions in ToT is275

analysed similarly to CoT. Another component is the276

self-evaluation module, which evaluates whether277

the current state or selected action is promising to278

reach the final answer. It acts as a search heuristic:279

the highly promising branches will more likely280

be selected for the next search steps. This self-281

evaluation module is essentially a classifier. Similar282

to the policy for next-step prediction, the classifier283

can be described by a table with a size of 𝐾𝑀 if284

it depends on 𝑀 variables to determine the next285

actions. If the policy depends only on whether286

the variables have been observed rather than their287

values, then a binary table of size 2𝑀 is sufficient.288

Our analysis is mostly done assuming a tabular289

representation. This is further complicated by two290

factors: the amount of pre-training of the LLMs,291

which we do not control, and possible failures in292

training, e.g. due to the presence of local minimums.293

Empirical observations in our case studies assess294

whether the transformer architecture used in LLM295

resembles table-filling behaviour for each case or296

successfully learns a better algorithm, taking into297

account the effects of pre-training.298

3.3 Reasoning structure and computational299

complexity300
The computational complexity of solving (versus301

learning) a reasoning or planning problem is a key302

factor in choosing between CoT and ToT. Some303

problems, e.g. NP-complete problems, have short304

solutions that are verifiable in polynomial time,305

but efficient policies to find such solutions are306

unlikely to exist. ToT, with its search algorithm,307

presents a viable approach for such hard problems308

by allowing the use of more computation during the309

search process. However, for simple problems with310

low computational complexity, a complex search311

algorithm may not produce additional improvement.312

4 Case Studies3313

4.1 Grade School Maths314

GSM8K (Cobbe et al., 2021) consists of grade315

school math problems in natural language. LLMs316

solve these problems effectively with CoT (Achiam317

et al., 2023). The dataset is widely used to evaluate318

the reasoning ability of language models. We319

analyze the dataset and find that it is well-suited for320

CoT, as most problems can be solved with a linear-321

3See Appendix A and I for experimental details and com-
plete prompts.

time policy. We also empirically show that CoT is 322

usually sufficient, and ToT offers little improvement. 323

In a subset of 50 randomly selected problems, we 324

found that 49 can be solved with a chain-style 325

algorithm where each step involves selecting an 326

equation with all but one variable known, allowing 327

the remaining variable’s value to be inferred. The 328

remaining problem, solvable with simultaneous 329

equations, is ignored in the rest of the study. 330

4.1.1 Analysis 331

Direct Consider a problem with 𝑁 variables each 332

can take 𝐾 values. A tabular representation re- 333

quires a table of size 𝐾𝑁 and description length 334

of 𝑂 (𝐾𝑁 log𝐾) for each question type, assuming 335

answers also take 𝐾 possible values (thus log𝐾 336

bits to represent). The description length can be 337

large (we manually analyze a subset of GSM8K 338

problems and show statistics in Appendix C.1). 339

CoT In a math word problem, the action can be 340

selecting the next applicable rule, and the transition 341

would be deriving the next value of an intermediate 342

variable based on the rule and the value of the input 343

variables. Assuming 𝐴 different actions whose 344

transition functions require 𝑎𝑖 variables, the total 345

description length of the learnable transitions would 346

be 𝑂 (∑𝐴
𝑖=1 𝐾

𝑎𝑖 log𝐾). This is more manageable 347

than Direct (see Appendix C.1 for details). As for 348

the policy, we can select an equation where the 349

values of all except one variable are known. There 350

exists a linear time forward chaining algorithm 351

to do that (Appendix C.3), which translates to a 352

relatively small policy that needs to be learned. 353

The components of the decomposed problems are 354

relatively simple and suggest that decomposition 355

with CoT may be reasonable for this problem. 356

ToT As discussed in CoT, there is a simple policy 357

for deciding the next equation to solve. If the policy 358

is learned reasonably well by the LLM, a search 359

may give limited improvement. 360

4.1.2 Experiments 361

In-context Learning Our experimental results are 362

shown in Fig. 2a. We see that GPT-3.5 and GPT-4 363

give lower performance than CoT due to the higher 364

sample complexity, which aligns with our analysis. 365

An unanalysed factor is that LLMs still need to 366

learn to extract the equations from the question, 367

learn the world knowledge that is not included in 368

the question, and ground the variables’ values from 369

the previous observations. The LLMs, particularly 370

GPT-4, do remarkably well on GSM8K, indicating 371

that extraction and grounding may not be major 372

4

GPT-3.5 GPT-4
Model

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Direct
CoT
ToT
CoT-SC

(a)

1000 2000 3000 4000 5000 6000 7000
Dataset size

0

10

20

30

40

Ac
cu

ra
cy

 (%
)

Direct
CoT

(b)
Figure 2: (a) Results of GPT-3.5 and GPT-4 on GSM8K Test
set; (b) Fine-tuning results on Llama2-7b

hurdles for LLMs. Some errors are still present and373

are discussed in the Appendix C.4.374

For ToT, we run a beam search ToT, branching375

after each sentence on the choice of the next sen-376

tences suggested by the LLM. We prompt the same377

LLM to self-evaluate the quality of each proposed378

reasoning step. ToT yields similar performance379

to CoT, indicating the policy is reasonably well-380

learned. We also see that using the same token381

budget, CoT-SC performs better than ToT since382

it reduces the variance of the predictions. This383

suggests that when the problem does not inherently384

require search, spending the inference budget on385

CoT-SC may be more beneficial than ToT.386

Fine-tuning The GPT experiments suggest that387

LLMs have difficulties learning to solve GSM-type388

questions directly. To check that, we perform fine-389

tuning experiments using the GSM8K training set390

and compare models fine-tuned with direct answer391

completion and CoT completion.392

We fine-tune with varying sizes of subsets of the393

GSM8K training set and test performance on the394

GSM8K test set. The results are shown in Fig. 2b.395

Note that each CoT example provides substantially396

more information than each Direct example, but CoT397

is substantially better even when Direct is provided398

with 7 times more training examples (Direct at 7k399

vs CoT at 1k). It suggests that the transformer in the400

LLM is behaving more like a tabular predictor and401

cannot learn to decompose the problem internally402

without being trained explicitly to do so.403

4.2 Dynamic Programming404

We study another problem, the Maximum Weighted405

Independent Set problem (MWIS) (Kleinberg and406

Tardos, 2005): Given a sequence of integers, find407

a subsequence with maximum sum such that no408

two elements in the subsequence are adjacent in409

the original sequence. The problem can be solved410

in linear time using dynamic programming (see411

Appendix D.1). MWIS was studied in Dziri et al.412

(2023), showing that LLMs trained on short se-413

quences generalize poorly to longer sequences. In414

this paper, we focus on the amount of annotation pro-415

vided in learning where only the answer is provided416

in Direct, whereas different levels of explicitness 417

in annotation can be provided in CoT. 418

4.2.1 Analysis 419

Direct Consider a sequence with 𝑁 integers; each 420

may take 𝐾 values. A tabular representation would 421

have 𝐾𝑁 entries, where each entry needs 𝑁 bits to 422

indicate the presence of the 𝑁 number in the subse- 423

quence, giving a description length of 𝑂 (𝑁𝐾𝑁). 424

CoT Using concepts in planning, we can see CoT 425

as a combination of selecting which function to 426

calculate next (policy), and derive the intermediate 427

results based on the function and input variables 428

(transition). There are a constant number of unique 429

function that may take up to 3 variables (see Ap- 430

pendix I.2 for examples), so the description length 431

of the transition would be 𝑂 (𝐾3 log𝐾), which rep- 432

resents a mapping from input variables to the output 433

value (log𝐾 bits to represent). To decide which 434

function to apply next, we only need to know what 435

variables have been calculated and what have not, 436

so the policy can be represented by a table of size 437

𝑂 (𝑁). Overall, the description length of CoT would 438

be 𝑂 (𝐾3 log𝐾 + 𝑁), which appears manageable. 439

4.2.2 Experiments 440

In-context Learning In this section, we will com- 441

pare prompting LLMs to answer the MWIS problem 442

directly with prompting them to answer using CoT. 443

We will also study two versions of CoT demonstra- 444

tions and show that a more explicit demonstration 445

can improve performance substantially. 446

Consider the following line from the CoT demon- 447

stration (see I.3 for the entire demonstration): 448

Implicit prompt (from Dziri et al. (2023)): ... Since 449

dp[0] != input[0] + dp[2] (6 != -4 + 5) ... 450

We can make it more explicit as follows: 451

Explicit prompt: ... Since dp[0]=6, input[0]=-4, 452

dp[2]=5, input[0] + dp[2] = 1 != 6 = dp[0] ... 453

Both prompts demonstrate steps to use DP to 454

solve the MWIS problem, but in the Implicit 455

prompt, when autoregressively generating the to- 456

ken "!=", the values of dp[0], input[0], dp[2], and 457

input[0]+dp[2] are not explicitly stated in the im- 458

mediate context and need to be inferred from all 459

previous observations. 460

As shown in Fig. 3, making the demonstrations 461

explicit provides more than 20% improvement com- 462

pared to the implicit demonstrations from Dziri et al. 463

(2023). This is consistent with the learning prob- 464

lem becoming computationally easier if all relevant 465

variables are explicit during learning. The sample 466

complexity may also be smaller, as explicit demon- 467

5

In-Domain Out-of-Domain Total
Problem Size

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

MWIS Accuracy GPT4

In-Domain Out-of-Domain Total
Problem Size

0

10

20

30

40

50

60

70

80

90

100
MWIS Accuracy GPT-3.5

Direct 0s
Direct 3s
Direct 6s
CoT 0s
CoT Implicit 3s
CoT Implicit 6s
CoT Explicit 3s
CoT Explicit 6s

Figure 3: In-context learning results on MWIS. 3-shot prompts
have one example each for sizes 4, 5, and 6, while 6-shot
prompts have two examples each. "In-domain" refers sizes 4,
5, and 6, and "Out-of-Domain" refers to sizes from 6 to 10.

strations decompose the single reasoning steps into468

multiple simpler steps, effectively creating a small469

CoT. In contrast, we can view deciding between470

"!=" and "==" in the implicit demonstration as a471

function of all the previously observed variables.472

The tabular representation of such a function has473

a large description length which suggests that it474

would require a larger sample complexity to learn.475

We observe that prompting LLM to directly give476

an answer performs comparably to the implicit CoT477

method (Fig. 3). This suggests that while we prompt478

the LLM to "directly" give an answer, the underlying479

transformer model is not necessarily learning it by480

populating a table of size 𝐾𝑁 as it is unlikely to481

encounter a very large number of examples of the482

MWIS problem during pre-training. This suggests483

that the transformer used in the LLM may align484

well with the reasoning algorithm used here. We485

explore this further in fine-tuning experiments.486

Fine-tuning We perform fine-tuning experiments487

to study both in- and out-of-domain performance.488

To examine the generalizability of the fine-tuned489

model to OOD examples, we define two types of490

Domain: 1) Problem size: Fine-tune with problems491

of sizes 4, 5, and 6. Test with problems of size492

ranging from 4 to 10. All numbers in the input493

array are uniformly sampled from [−100, 100] 2)494

Number range: Fine-tune and test with problems495

of sizes 4, 5, and 6. For fine-tuning data, num-496

bers in the input array are uniformly sampled from497

[−100, 100], while for OOD test examples, num-498

bers are uniformly sampled from [−1000, 1000].499

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dataset Size

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

In-Domain vs. Out-of-Domain (problem size)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Dataset Size

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0
In-Domain vs. Out-of-Domain (number range)

Direct (ind)
Direct (ood)
CoT Explicit (ind)
CoT Explicit (ood)
CoT Implicit (ind)
CoT Implicit (ood)

Figure 4: Results of fine-tuning Llama2-7B-chat on MWIS.

Results For in-domain test examples, CoT Explicit500

outperforms CoT Implicit and Direct with the same501

number of training examples. Interestingly, with502

more fine-tuning data, Direct can achieve perfor-503

mance similar to CoT Explicit. This contrasts with504

math word problems, where Direct is not compa- 505

rable to CoT even with 10 times more fine-tuning 506

data. Training the transformer to directly approxi- 507

mate a DP algorithm seems easier than to compute 508

the result of a multivariate equation in math word 509

problems. However, it is unclear if this difficulty 510

is due to computational complexity in learning or 511

poor alignment of the transformer with solving the 512

equation; see Appendix E for more discussion. 513

As shown in Dziri et al. (2023), CoT struggles to 514

generalize to reasoning lengths longer than the train- 515

ing data, performing worse than Direct, likely due to 516

LLMs relying on pattern matching rather than com- 517

positional learning (Dziri et al., 2023; Kharitonov 518

and Chaabouni, 2020). However, all methods gen- 519

eralize well to different ranges of numbers, possibly 520

because the solution structure remains the same, 521

making pattern matching less of an issue. 522

4.3 Air Travel Planning 523

Consider the problem of planning an air trip: given 524

the starting city and destination, provide the flight 525

route using direct flights between cities. For exam- 526

ple, What is the flight route from Singapore to New 527

Orleans? A valid answer might be Singapore-San 528

Francisco-Houston-New Orleans. This is a typical 529

graph search problem where nodes are cities and 530

edges are direct flights, and we aim to find a valid 531

path that connects the start and target cities. To 532

solve it, we can either use an LLM to predict the 533

route directly or leverage the LLM’s knowledge 534

of the flight graph for a graph search. Zhao et al. 535

(2023) studied this using prompting. In this paper, 536

we go further and linearize the graph search algo- 537

rithm into a CoT to study fine-tuning and learning 538

of the graph search algorithm. 539

4.3.1 Analysis 540
Assume there are 𝑁 cities. We randomly select two 541

cities as the current and target cities. We repeat the 542

description length analysis in Zhao et al. (2023), 543

then extend it to a linearized ToT. 544

Direct & CoT Generating the path directly is essen- 545

tially the same as CoT, as we generate the cities on 546

the path autoregressively. A concise representation 547

of it is a table, where rows and columns are the 548

current and goal cities, and each entry records the 549

next city to fly to reach the goal. This table has 𝑁2 550

entries, each taking log 𝑁 bits to describe, resulting 551

in a description length of 𝑂 (𝑁2 log 𝑁) bits. 552

ToT In ToT, LLM acts as the graph, i.e., predicts 553

the direct flight from the current city, together with 554

a hand-coded breadth-first search (BFS) algorithm 555

to find the valid route. Assuming that the total num- 556

6

ber of edges grows proportionally to the number of557

cities, describing a sparse graph with 𝑁 nodes takes558

approximately 𝑂 (𝑁 log 𝑁) bits, with log 𝑁 bits to559

describe each city in the adjacency list. The graph560

describes the transition functions; thus, ToT can be561

described using 𝑂 (𝑁 log 𝑁) bits if the other com-562

ponents are hand-coded. We can linearize the BFS563

algorithm into a CoT which is entirely generated by564

the LLM. Other than providing the adjacent cities565

to each city, the components include being main-566

taining a first-in-first-out queue, checking whether567

a city has been visited and recognizing the goal568

city. For a sparse graph as described, the runtime569

of BFS is 𝑂 (𝑁), which translates to the existence570

of relatively small predictors for all the functions.571

4.3.2 Experiments572
Since Direct and CoT are essentially the same, we573

compare CoT with ToT experimentally. For ToT,574

the LLM is used only in the expansion step of BFS,575

when it is queried to generate the neighbour of a576

city. In addition, we linearize the ToT process into577

a CoT by generating all the intermediate steps in578

the BFS computation in ToT-linear.579

We evaluate the settings of travelling between580

large cities (with a population of more than 5 mil-581

lion) and mid-sized cities (with a population be-582

tween 1 million and 5 million). Details of the583

dataset can be found in Appendix F .

0s 3s 8s
num of shots

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Large Cities (GPT-3.5)

ToT
ToT-Linear
CoT
CoT-SC

0s 3s 8s
num of shots

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Mid-sized Cities (GPT-3.5)

ToT
ToT-Linear
CoT
CoT-SC

0s 3s 8s
num of shots

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Large Cities (GPT-4)

ToT
ToT-Linear
CoT
CoT-SC

0s 3s 8s
num of shots

0

25

50

75

100

Su
cc

es
s R

at
e

(%
)

Mid-sized Cities (GPT-4)

ToT
ToT-Linear
CoT
CoT-SC

Figure 5: Results of GPT-3.5 and GPT-4 in air travel planning.584
In-context learning The result for in-context learn-585

ing is shown in Fig. 5. For GPT-3.5, ToT outper-586

forms CoT slightly in large cities and substantially587

in mid-sized cities. This is consistent with the588

analysis where the description length of CoT and589

ToT are 𝑂 (𝑁2 log 𝑁) and 𝑂 (𝑁 log 𝑁) respectively:590

the gap between CoT and ToT would be larger when591

𝑁 is larger. Surprisingly, ToT-linear is comparable592

to ToT, even for zero-shot, where the steps in the593

BFS algorithm are briefly described in the prompt594

without any examples of its execution, indicating595

that there is some pre-training of the BFS algo-596

rithm in GPT-3.5. GPT-4 generally does better than597

GPT-3.5 for ToT and CoT, possibly because it has598

been trained with more data. Interestingly, GPT-4599

does not do so well for ToT-linear, particularly for 600

zero-shot, indicating that its pre-training for the 601

BFS algorithm is possibly poorer than GPT-3.5. 602

0 2000 4000 6000 8000
Num of edges in dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Results - large cities

CoT no FT
ToT no FT
CoT
ToT-linear

0 2000 4000 6000 8000
Num of edges in dataset

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Results - mid-sized cities

Figure 6: Results of fine-tuning Llama2-7b using different
dataset sizes. The CoT no FT and ToT no FT means using the
pre-trained Llama2-7b with CoT and ToT.
Fine-tuning We perform fine-tuning experiments 603

which allows us to better control the amount of 604

training data used in the experiments. The results 605

of our fine-tuning experiments are in Fig. 6. Each 606

ToT-linear example is longer than a CoT example; 607

hence, we plot the results based on the number 608

of edges observed in training. The results are 609

consistent with the complexity analysis, with ToT- 610

linear performing better than CoT. ToT-linear can 611

also be viewed as a CoT where the intermediate 612

computations are explicitly described instead of 613

being left for the LLM to learn implicitly. 614

4.4 Game of 24 615

Many puzzles like Game of 24 are designed to be 616

hard and unlikely to be efficiently solvable (Kendall 617

et al., 2008), although we are not aware of results 618

on the computational complexity of the Game of 619

244. We use the Game of 24 shown in the intro- 620

duction: given four numbers, the player must use 621

basic arithmetic operations (+,−,×,÷) and all four 622

numbers to reach 24. These types of puzzle games 623

are often designed to be hard to solve . 624

The results in Yao et al. (2023), obtained with 625

in-context learning, show that CoT fails while ToT 626

does substantially better. We extend the results by 627

showing that CoT fails in fine-tuning as well, sug- 628

gesting that the failure is likely due to the mismatch 629

between the computational structure of CoT and 630

the problem. We also consider the decomposition 631

of the actions for in-context learning and show that 632

the decomposition of complex actions into a se- 633

quence of simpler actions within a ToT can lead to 634

substantial improvement in performance. 635

4.4.1 Analysis 636

We provide a general form of Game of 24 for 637

analysis. Assume 𝑁 numbers are given, and each 638

4A modified version with 𝑁 rather than four numbers,
arbitrary target number instead of 24, and only addition and
multiplication with zero allowed is the same as subset-sum, an
NP-complete problem. This suggests that similar puzzles are
computationally difficult to solve.

7

number can take 𝐾 different values. The goal is639

to use those numbers with arithmetic operations640

(+,−,×,÷) to reach 𝑇 . For the standard Game of641

24, 𝑁 = 4, 𝑇 = 24.642

Direct Represented as a table, there are 𝐾𝑁 in-643

puts. A solution is an expression consisting of644

the 𝑁 numbers together with 𝑁 − 1 operations and645

corresponding parentheses. Assuming log𝐾 bits646

to represent numbers, this can be represented us-647

ing 𝑂 (𝑁 log𝐾) bits, giving a total table size of648

𝑂 (𝐾𝑁𝑁 log𝐾) bits.649

CoT For CoT, the 𝑁 − 1 operations are produced in650

a step-by-step manner. Each step has 𝑁 (𝑁 − 1)/2651

ways to select two numbers and 6 distinct opera-652

tions (two orderings for − and ÷), giving 3𝑁 (𝑁−1)653

possible actions. The transition of each operation654

can be represented with a table with 𝐾2 entries us-655

ing 𝑂 (𝐾2 log𝐾) bits, although pre-training likely656

has learned these operations for small 𝐾. This657

gives a total description length of 𝑂 (𝑁2𝐾2 log𝐾)658

if each action is learned using its own table. If659

we decompose the selection of two numbers and660

the arithmetic operation into two steps, then the661

total description length is 𝑂 (𝑁2 + 𝐾2 log𝐾), and662

we consider this decomposition in our experiments663

(see Appendix I.5.1 for examples). Like other com-664

putationally difficult problems, there is no simple665

known policy for selecting the next action. A sim-666

ple tabular policy would have 𝑂 (𝐾𝑁) entries, each667

described using 𝑂 (log 𝑁) bits.668

ToT ToT uses the same actions as CoT but does669

not need a policy. Instead, we have a goal recog-670

nizer and an evaluation function that decides which671

nodes to expand. Verifying whether a solution is672

correct can be done in 𝑂 (𝑁) time, hence a goal673

recognizer with a small representation exists. Diffi-674

cult computational problems typically do not have675

a simple evaluation function for intermediate steps;676

a tabular evaluation function would have 𝑂 (𝐾𝑁)677

entries. However, a ToT may use a larger computa-678

tion budget to search a larger part of the search tree679

when the evaluation function is weaker, compared680

to CoT, where the next action is selected with a681

fixed learned policy.682

4.4.2 Experiments683

We perform fine-tuning with 1200 solution trajec-684

tories of Game of 24 to demonstrate the difficulty685

of learning a small chain solution. Both CoT and686

Direct failed in all test cases, indicating that moder-687

ate amounts of data are insufficient for learning in688

these settings. For in-context learning, the success689

rate of the 100 games is reported in Fig. 7.690

GPT-4 GPT-3.5
0

20

40

60

80

100

Su
cc

es
s R

at
e

(%
)

Results - Game of 24
ToT (5s)
ToT-Decomp (5s)
ToT-Decomp (3s)
ToT-Decomp (1s)
CoT (5s)
CoT-SC (5s)
Direct (5s)

TOT-GPT4-5s
TOT-GPT4

Decomp-5s

TOT-GPT3.5-5s

TOT-GPT3.5

Decomp-5s

0

10

20

30

40

50

60

70

Er
ro

r R
at

e
(%

)

Errors - Game of 24

Transition error
Proposal error
Missing action
Answer error

Figure 7: Results of Game of 24. 5s, 3s and 1s means 5, 3,
and 1 examples in the prompt for few-shot in-context learning.

For ToT, we use a beam search with a beam 691

width of 5 and the same action and self-evaluation 692

prompts as Yao et al. (2023). We also constructed 693

a more decomposed version of ToT, ToT-Decomp, 694

where we decompose the action into two steps: 695

the selection of two numbers and the arithmetic 696

operation. Also, ToT-Decomp uses a small CoT 697

that provides the steps for constructing the final 698

equation from the sequence of actions and states 699

in the solution, whereas ToT directly generates the 700

final equation from the action-state sequence. 701

From the results we see that ToT clearly out- 702

performing CoT and Direct. Additionally, ToT- 703

Decomp significangly outperforms ToT, demonstrat- 704

ing the advantages of decomposition even within 705

the components of ToT. Error analysis (Fig. 7) cate- 706

gorizes the errors into four types: 1) transition error 707

– the next state (remaining numbers) is generated 708

incorrectly; 2) proposal error – the LLM does not 709

generate the correct numbers in the action expres- 710

sion; 3) missing actions – there are valid actions but 711

are not proposed by the LLM; and 4) answer error 712

– the search is correct but the final expression is 713

incorrect. ToT-Decomp notably reduces each error 714

type compared to ToT. 715

5 Conclusion 716

This paper provides a detailed empirical study to 717

understand the effectiveness of CoT and ToT reason- 718

ing in planning and reasoning tasks using notions of 719

sample and computational complexity in machine 720

learning. We view CoT and ToT as decomposition 721

methods for the underlying problem and study the 722

complexity of the component predictors in the de- 723

composed problems. Our study finds that when the 724

solution can be decomposed as a chain of reasoning 725

steps where predicting the next step is not difficult, 726

explicitly demonstrating the reasoning chain during 727

learning can be helpful. Leaving out important vari- 728

ables for deciding the next reasoning step instead of 729

making all relevant variables explicit in the demon- 730

strations will make learning more difficult. Finally, 731

when algorithmic analysis indicates that predicting 732

the next reasoning step in a CoT is computationally 733

hard, a ToT structure can be helpful. 734

8

Limitations The suggested methodology from735

this paper is to analyse the chain-of-thought as736

a decomposition of the problem and to analyse737

the complexity of its components. If learning the738

components has low sample complexity and the739

computational complexity of predicting the next740

reasoning step is low, then learning to solve the741

problem using a chain-of-thought would be rea-742

sonable. On the other hand, if the computational743

complexity of predicting the next reasoning step is744

high, it may be reasonable to consider learning the745

components and using a tree-of-thought to solve746

the problem. This oversimplifies various aspects747

of the problem. Even though the components have748

low sample complexity, it may be difficult to learn749

them in practice as the computational complexity of750

learning may be high, although this may be allevi-751

ated by overparameterization of the predictors used752

to learn the components. Another issue is out-of-753

domain generalization. As shown in the MWIS case754

study, generalization in-domain does not mean that755

the method will generalize out-of-domain, which756

may be further exacerbated by overparameteriza-757

tion. Further limitations may apply when doing758

in-context learning where very few examples are759

used. Performance may depend heavily on the pre-760

trained LLM used in this setting. Nonetheless, our761

case studies suggest that the proposed methodology762

may still be useful in the in-context learning setting.763

We would suggest using the guidelines proposed in764

this paper in a similar way that the Occam Razor765

principle in the philosophy of science is used. Oc-766

cam’s Razor suggests that simple explanations for767

a scientific phenomenon be preferred until shown768

otherwise by observations. The suggestions we769

proposed may not work all the time but should770

similarly be preferred until empirical observations771

suggest otherwise.772

Ethics Statement This paper studies reasoning773

and planning in LLMs from a general perspective.774

While we do not focus on ethics issues, reasoning775

and planning techniques can potentially be useful776

in ensuring that AI agents behave ethically through777

the use of appropriate reward or goal functions778

that may possibly be learned from data. They may779

also be used in harmful ways in planning more780

sophisticated attacks against others. Research on781

both the use of reasoning and planning for ensuring782

ethical AI agent behaviour and in mitigating the use783

of reasoning and planning in performing harmful784

attacks should be encouraged.785

References 786

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 787
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo 788
Almeida, Janko Altenschmidt, Sam Altman, Shyamal 789
Anadkat, et al. 2023. Gpt-4 technical report. arXiv 790
preprint arXiv:2303.08774. 791

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen 792
Chebotar, Omar Cortes, Byron David, Chelsea Finn, 793
Keerthana Gopalakrishnan, Karol Hausman, Alex 794
Herzog, et al. 2022. Do as i can, not as i say: Ground- 795
ing language in robotic affordances. arXiv preprint 796
arXiv:2204.01691. 797

Daniel Aloise, Amit Deshpande, Pierre Hansen, and 798
Preyas Popat. 2009. Np-hardness of euclidean sum-of- 799
squares clustering. Machine learning, 75:245–248. 800

Avrim Blum and Ronald Rivest. 1988. Training a 3-node 801
neural network is np-complete. Advances in neural 802
information processing systems, 1. 803

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 804
William W Cohen. 2022. Program of thoughts 805
prompting: Disentangling computation from rea- 806
soning for numerical reasoning tasks. arXiv preprint 807
arXiv:2211.12588. 808

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 809
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 810
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 811
Nakano, et al. 2021. Training verifiers to solve math 812
word problems. arXiv preprint arXiv:2110.14168. 813

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, 814
Minghua Ma, Wei Zhang, Si Qin, Saravan Raj- 815
mohan, Qingwei Lin, and Dongmei Zhang. 2023. 816
Everything of thoughts: Defying the law of pen- 817
rose triangle for thought generation. arXiv preprint 818
arXiv:2311.04254. 819

William F Dowling and Jean H Gallier. 1984. Linear- 820
time algorithms for testing the satisfiability of propo- 821
sitional horn formulae. The Journal of Logic Pro- 822
gramming, 1(3):267–284. 823

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine 824
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra 825
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. 826
2023. Faith and fate: Limits of transformers on 827
compositionality. arXiv preprint arXiv:2305.18654. 828

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, 829
Di He, and Liwei Wang. 2024. Towards revealing the 830
mystery behind chain of thought: a theoretical per- 831
spective. Advances in Neural Information Processing 832
Systems, 36. 833

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, 834
Weinan Zhang, and Jun Wang. 2023. Alphazero-like 835
tree-search can guide large language model decoding 836
and training. arXiv preprint arXiv:2309.17179. 837

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 838
Pengfei Liu, Yiming Yang, Jamie Callan, and Graham 839

9

Neubig. 2023. Pal: Program-aided language models.840
In International Conference on Machine Learning,841
pages 10764–10799. PMLR.842

Naresh Gupta and Dana S Nau. 1992. On the complexity843
of blocks-world planning. Artificial intelligence, 56(2-844
3):223–254.845

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan846
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma, Adithya847
Samavedhi, Qiyue Gao, et al. 2024. Llm reasoners:848
New evaluation, library, and analysis of step-by-step849
reasoning with large language models. arXiv preprint850
arXiv:2404.05221.851

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,852
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.853
Reasoning with language model is planning with854
world model. arXiv preprint arXiv:2305.14992.855

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-856
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu857
Chen. 2021. Lora: Low-rank adaptation of large858
language models. arXiv preprint arXiv:2106.09685.859

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and860
Igor Mordatch. 2022a. Language models as zero-861
shot planners: Extracting actionable knowledge for862
embodied agents. In International Conference on863
Machine Learning, pages 9118–9147. PMLR.864

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky865
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-866
son, Igor Mordatch, Yevgen Chebotar, et al. 2022b.867
Inner monologue: Embodied reasoning through868
planning with language models. arXiv preprint869
arXiv:2207.05608.870

Graham Kendall, Andrew Parkes, and Kristian Spoerer.871
2008. A survey of np-complete puzzles. ICGA872
Journal, 31(1):13–34.873

Eugene Kharitonov and Rahma Chaabouni. 2020. What874
they do when in doubt: a study of inductive biases875
in seq2seq learners. In International Conference on876
Learning Representations.877

Jon Kleinberg and Eva Tardos. 2005. Algorithm Design.878
Addison-Wesley Longman Publishing Co., Inc., USA.879

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,880
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large881
language models are zero-shot reasoners. Advances882
in neural information processing systems, 35:22199–883
22213.884

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,885
Yejin Choi, Hannaneh Hajishirzi, and Asli Celikyil-886
maz. 2023. Making ppo even better: Value-guided887
monte-carlo tree search decoding. arXiv preprint888
arXiv:2309.15028.889

Ben Prystawski, Michael Li, and Noah Goodman. 2024.890
Why think step by step? reasoning emerges from the891
locality of experience. Advances in Neural Informa-892
tion Processing Systems, 36.893

Shalev-Shwartz Shai and Ben-David Shai. 2014. Un- 894
derstanding machine learning: From theory to algo- 895
rithms. Cambridge university press. 896

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit 897
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, 898
Jesse Thomason, and Animesh Garg. 2023. Prog- 899
prompt: Generating situated robot task plans using 900
large language models. In 2023 IEEE International 901
Conference on Robotics and Automation (ICRA), 902
pages 11523–11530. IEEE. 903

Chan Hee Song, Jiaman Wu, Clayton Washington, 904
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023. 905
Llm-planner: Few-shot grounded planning for em- 906
bodied agents with large language models. In Pro- 907
ceedings of the IEEE/CVF International Conference 908
on Computer Vision, pages 2998–3009. 909

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 910
Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 911
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos- 912
ale, et al. 2023. Llama 2: Open foundation and fine- 913
tuned chat models. arXiv preprint arXiv:2307.09288. 914

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, 915
and Ashish Sabharwal. 2022. â™« MuSiQue: Multi- 916
hop questions via single-hop question composition. 917
Transactions of the Association for Computational 918
Linguistics, 10:539–554. 919

Karthik Valmeekam, Matthew Marquez, Sarath Sreed- 920
haran, and Subbarao Kambhampati. 2023. On the 921
planning abilities of large language models-a criti- 922
cal investigation. Advances in Neural Information 923
Processing Systems, 36:75993–76005. 924

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 925
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and 926
Anima Anandkumar. 2023. Voyager: An open-ended 927
embodied agent with large language models. arXiv 928
preprint arXiv:2305.16291. 929

Xinyi Wang, Alfonso Amayuelas, Kexun Zhang, Liang- 930
ming Pan, Wenhu Chen, and William Yang Wang. 931
2024. Understanding the reasoning ability of lan- 932
guage models from the perspective of reasoning paths 933
aggregation. arXiv preprint arXiv:2402.03268. 934

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 935
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 936
Denny Zhou. 2022. Self-consistency improves chain 937
of thought reasoning in language models. arXiv 938
preprint arXiv:2203.11171. 939

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 940
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 941
et al. 2022. Chain-of-thought prompting elicits rea- 942
soning in large language models. Advances in Neural 943
Information Processing Systems, 35:24824–24837. 944

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. 945
Thinking like transformers. In International Con- 946
ference on Machine Learning, pages 11080–11090. 947
PMLR. 948

10

https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475
https://doi.org/10.1162/tacl_a_00475

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao,949
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023.950
Self-evaluation guided beam search for reasoning.951
In Thirty-seventh Conference on Neural Information952
Processing Systems.953

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-954
ichi Kawarabayashi, and Stefanie Jegelka. 2020. What955
can neural networks reason about? In International956
Conference on Learning Representations.957

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,958
Thomas L Griffiths, Yuan Cao, and Karthik959
Narasimhan. 2023. Tree of thoughts: Deliberate960
problem solving with large language models. arXiv961
preprint arXiv:2305.10601.962

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu963
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.964
Planning with large language models for code gener-965
ation. arXiv preprint arXiv:2303.05510.966

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023.967
Large language models as commonsense knowl-968
edge for large-scale task planning. arXiv preprint969
arXiv:2305.14078.970

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,971
Omid Saremi, Joshua M. Susskind, Samy Bengio,972
and Preetum Nakkiran. 2024. Understanding length973
generalization by thinking like transformers. In The974
Twelfth International Conference on Learning Repre-975
sentations.976

11

https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

A Experimental Details977

All prompting experiments are done with gpt-3.5-978

turbo-1106 and gpt-4-1106-preview. All fine-979

tuning experiments are done with Llama2-7B-chat980

(Touvron et al., 2023) with LoRA 𝑟 = 64, 𝛼 =981

16 (Hu et al., 2021) applied to query and value982

matrices, and uses 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1 and gradient983

accumulation steps= 32. MWIS and Game of984

24 are fine-tuned for 5 epochs with a learning985

rate of 3𝑒 − 4. Travel planning is fine-tuned for986

300 gradient optimization steps with a learning987

rate of 3𝑒 − 4. The fine-tuning data is wrapped988

in the template "<s> [INST] {{prompt}} [/INST]989

{{completion}} </s>" and the loss is calculated on990

completion tokens.991

B Additional case studies992

B.1 Multi-hop Question Answering993

We study the MusiQue dataset (Trivedi et al., 2022),994

where the task is to identify the answer given a995

question and a context of up to 20 paragraphs.996

The question may look like "Who did the hitman997

from The Hitman’s Bodyguard play in Star Wars?",998

which can be solved by decomposing the question999

and answering each decomposed question to get1000

the answer.1001

B.1.1 Analysis1002

This question answering task requires both natural1003

language processing and reasoning. We describe1004

the reasoning process as follows: the paragraphs in1005

the context provide a set of relation triplets, and the1006

question can be translated to a logical expression1007

which is a conjunction of some relation triplets,1008

with several unknown entities in it, one of which1009

is the target answer. The reasoning process would1010

require finding the unknown entities in some order1011

and to derive the final answer. The natural language1012

processing part is common to different reasoning1013

methods, while the complexity of reasoning can be1014

different.1015

Direct The set of relation triplets represented1016

by the context can form a knowledge graph, with1017

head and tail entities in the triplets being vertices1018

and relations being edges. Consider a problem1019

where there are 𝑉 vertices and 𝐸 edges in the1020

context knowledge graph and question, each vertex1021

and edge may take 𝐾 different values. To answer1022

the question directly would require memorizing a1023

table of size 𝐾 (𝑉+𝐸) log𝐾 , representing a mapping1024

from possible configurations of the question and1025

graph to an answer. Thus the description length 1026

of learning Direct in a tabular manner would be 1027

𝑂 (𝐾 (𝑉+𝐸) log𝐾). 1028

CoT Similar to the Grade School Maths problem, 1029

the reasoning process in this task can be seen as 1030

a sequence of actions and transitions. The action 1031

here would be to select a triplet in the question with 1032

unknown entities, and the transition is to infer the 1033

unknown entity. The unknown entity can be found 1034

by matching the known entity and relation from 1035

the question triplet to the appropriate triplet in the 1036

context. The same entity can be named differently 1037

in the question and the context triplets. A table 1038

of size 𝐾2 can be learned to specify whether two 1039

entities match. Matching relations is similar. This 1040

suggests that learning the transition is manageable 1041

with reasonable complexity, although extracting 1042

the entity using natural language sentences adds 1043

additional complexity. A policy for this problem 1044

can simply be selecting a triplet in the question that 1045

has two known element and one unknown element. 1046

As in the Grade School Maths problem, this can 1047

be done via forward chaining in time linear in the 1048

size of the knowledge graph. The small policy 1049

representation suggests that learning the policy 1050

would not have high sample complexity. 1051

ToT The description length of the transition func- 1052

tions of ToT is the same as CoT and as in the CoT 1053

case, performance of the transition likely depends 1054

more on the natural language processing compo- 1055

nent. In addition, all single hop questions in the 1056

dataset have one unique answer. Hence, there is 1057

no real need for branching if the transition is well 1058

learned, and search may offer little improvement. 1059

B.1.2 Experiments 1060

We are not able to fit each question which is paired 1061

with 20 paragraphs into the context window of 1062

Llama-2 for fine-tuning. Instead, we perform in- 1063

context learning studies with GPT models. We use 1064

6-shot demonstrations consisting of the question 1065

and answer (which includes the reasoning steps 1066

for CoT) but did not include the contexts of the 1067

6 questions in the demonstrations as the length 1068

would be too long. Results are shown in Figure 8. 1069

The experimental results align with our analysis. 1070

We make the following observations: 1) CoT con- 1071

sistently outperforms Direct but the gap between 1072

them is smaller when using GPT4. One possible 1073

explanation is that, the policy for reasoning, i.e. 1074

selecting the next triplet to infer its unknown entity, 1075

is relatively simple, and the more powerful GPT-4 1076

12

GPT-3.5 GPT-4
Model

35

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Direct
CoT
ToT
CoT-SC

(a)

GPT-3.5 GPT-4
Model

35

40

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

Direct (parsed)
CoT (parsed)
ToT (parsed)
CoT-SC (parsed)

(b)
Figure 8: F1 score of GPT-3.5 and GPT-4 on MusiQue Dev
set. (a) is using natural language context, (b) is using LLM
parsed relation triplets as context.

may have been able to learn this directly during1077

training. Extracting the correct entities from the1078

context becomes a common bottleneck for the two1079

methods. 2) ToT performs similarly to CoT when1080

using GPT-4. This aligns with our analysis that ToT1081

may give little improvement as there is no branch-1082

ing in the reasoning trajectories. Surprisingly, ToT1083

is worse than CoT when using GPT-3.5. When1084

prompted with an incomplete reasoning trajectory1085

(i.e. some sub-questions are answered, some not1086

asked yet), the GPT-3.5 model tends to give a final1087

answer to the original question instead of generating1088

the next sub-question5. 3) CoT-SC is slightly better1089

than ToT. While ToT does not improve over CoT,1090

CoT-SC can still bring some improvement through1091

variance reduction.1092

Comparison with GSM8K From our analysis, we1093

see that math word problem (GSM8K) and multi-1094

hop question answering (MusiQue) have simple1095

policies. However, the in-context learning perfor-1096

mance of GPTs on GSM8K is substantially higher1097

than that of MusiQue. We believe there are two1098

main reasons: 1) Retrieving the appropriate infor-1099

mation from the context to answer a sub-question,1100

i.e. the transition, is hard in MusiQue. After man-1101

ual analysis of 20 failed examples, we found that1102

16 of them are due to retrieval mistake, where the1103

correct sub-question is proposed, i.e. the policy is1104

easy, but the proposed sub-answer is incorrect. To1105

validate this hypothesis, we did an ablation study1106

by replacing every natural language sentence in the1107

context with a relation triplet automatically parsed1108

by GPT-4 with appropriate prompting. We be-1109

lieve this should reduce the difficulty of retrieving1110

information. Using the parsed context improved1111

performance substantially as shown in Figure 8b.1112

5We further explored this issue with the following exper-
iment: instead of generating the response all the way to the
end (standard CoT), stop the generation when a newline is
generated. And then use the original input together with previ-
ous generated text as input to prompt the model again to get
a new line. This is equivalent to the CoT, only that we are
stopping every line. This method for GPT-3.5 has f1 score
41.09 indicating that GPT3.5 is not behaving as expected.

Interestingly, CoT-SC no longer improves on CoT 1113

– the variance in the problem may mostly be com- 1114

ing from the difficulty of retrieval and is probably 1115

substantially reduced in the parsed version. 2) 1116

Understanding the complex natural language ques- 1117

tion in MusiQue is hard. Some of the complex 1118

composed question in the dataset look like "How 1119

were the same people who the Somali Muslim Aju- 1120

ran Empire declared independence from expelled 1121

from the natural boundary between Thailand and 1122

the country where Nam Theun is found?", which 1123

can be hard for the language model to understand. 1124

From our analysis, we see that it is easy to de- 1125

termine which incomplete relation triplet to infer 1126

next, however, understanding the natural language 1127

and translate it into a logical expression which is a 1128

conjunction of relation triplets can be difficult. In 1129

the 20 failed examples we analyzed, 4 of them are 1130

due to wrong decomposition, i.e. the sub-question 1131

proposed is not helpful in answering the composed 1132

question. 1133

ToT is not useful in this dataset likely because the 1134

sub-questions mostly have a single correct answer. 1135

Unlike GSM8K where each equation have only one 1136

correct answer, it is possible for sub-questions to 1137

have multiple acceptable answers that need to be 1138

refined with additional sub-questions. For datasets 1139

where this is common, ToT may be more effective. 1140

And if the knowledge graph representing the con- 1141

text is small, it may also be possible to linearize 1142

the search tree into a CoT of reasonable size, as 1143

demonstrated in the Air Travel Planning case study. 1144

B.2 Blocksworld 1145

Blocksworld is a planning task motivated by robot 1146

manipulation. It has a table with blocks in different 1147

colours. Given a set of preferred constraints for the 1148

configuration of blocks, the agent needs to output 1149

a sequence of actions to rearrange the blocks into 1150

the target state that satisfies those constraints. The 1151

agent can only pick up the block if it has no blocks 1152

on its top and place it in an open space or stack on 1153

a top block. For example, with a starting state of 1154

blocks stacking in a specific order, the goal could 1155

be “the red block is on top of the yellow block, and 1156

the blue block is at the bottom.” The goal provides 1157

constraints of the goal state, and the agent should 1158

find a sequence of pick and place operations on 1159

the blocks to satisfy the constraints. It is a typical 1160

planning problem with constraint satisfaction in a 1161

finite domain, which is NP-complete to find the 1162

shortest plan (Gupta and Nau, 1992). 1163

13

(a)

(b)
Figure 9: We take stacking 5 blocks in 4 stacks (shown in a)
and 3 stacks (shown in b) as examples. (a) shows that stacking
5 blocks in 4 stacks is equivalent to choosing 3 out of 4 margins.
(b) shows that stacking 5 blocks in 3 stacks is equivalent to
choosing 2 out of 4 margins.

In this section, we conduct an empirical study1164

based on Hao et al. (2024) with some new contri-1165

butions: 1) We conduct finetuning experiments to1166

verify the difficulty of learning the shortest plan1167

solution for this problem. 2) We use a more realistic1168

version of ToT where we replace the ground-truth1169

action list in branches and perfect goal recogni-1170

tion in Hao et al. (2024) with possibly unreliable1171

LLM-based action proposal and goal recognition.1172

3) We show that further decomposing the direct1173

action proposal which does not reveal the satisfied1174

pre-conditions into a CoT that reveals the those pre-1175

conditions before proposing the actions improves1176

performance.1177

B.2.1 Analysis1178

We first upper bound the number of states. Assume1179

there are 𝐾 blocks on the table. The blocks can be1180

stacked arbitrarily on the table. Since the state is de-1181

scribed in natural language, there must be a specific1182

order in describing each stack of blocks. Therefore,1183

the stacks of blocks in this state description are1184

permutative. We first count the total number of1185

stacking ways and their permutations, assuming the1186

blocks are all in the same colours, i.e., without con-1187

sidering the order of blocks. For example, 5 blocks1188

can be placed in 4 stacks, where one stack has two1189

blocks while the other stacks have one block. In1190

that case, there will be four stacking cases: (2, 1,1191

1, 1), (1, 2, 1, 1), (1, 1, 2, 1), and (1, 1, 1, 2).1192

This is equivalent to choosing 3 out of 4 margins1193

demonstrated in Figure 9 (a). 5 blocks can also be1194

placed in 3 stacks, a choice of 2 in 4 margins, which1195

is shown in Figure 9 (b). Thus, for 𝐾 blocks, there1196

will be
∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
is the total number of different1197

stacking ways. Now, when the blocks are unique in1198

colours, there will be 𝐾! different ways of arranging1199

the order of the blocks. Thus, the total number of1200

states is 𝐾!
∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
= 𝐾!2𝐾−1, where 𝐾! is 1201

the total number of permutation of all blocks, and 1202∑𝐾−1
𝑘=0

(𝐾−1
𝑘

)
is the total number of different stack- 1203

ing ways. There are four types of actions available: 1204

pick up a block, unstack a block from on top of 1205

another block, put down a block, or stack a block 1206

on top of another block. The goal can be up to 3 1207

pairwise spatial relation constraints. If the state 1208

satisfies the constraints, the task is considered a 1209

success. 1210

Direct Learning to directly predict the sequence of 1211

actions can be represented as a table. The rows and 1212

columns of the table are the starting states and goal 1213

state constraints. Each entry records a sequence of 1214

actions. Assume the maximum number of actions 1215

is proportional to the number of blocks. The total 1216

size of the table is 𝑂 (𝐾!𝐾32𝐾−1 log𝐾) bits. 1217

CoT For CoT, the actions are generated step by step. 1218

In each step, the LLM generates the next action and 1219

predicts the next state, given the action and current 1220

state. The LLM needs to learn the precondition and 1221

effect of each action. The total number of grounded 1222

actions is 2𝐾 + 2𝐾 (𝐾 − 1) = 2𝐾2. Each action 1223

needs to learn its pre-conditions and effects. The 1224

state can be described using 𝑂 (𝐾2) propositions 1225

such as On(A,B) and Clear(A). The pre-condition 1226

is a subset of these propositions that needs to be 1227

true. The effects consist of the add effect, which 1228

is a subset of propositions that will become true 1229

upon the execution of the action, and the delete 1230

effect, which is a subset of propositions that will 1231

become false. Assuming that the subsets in the pre- 1232

condition, add effects and delete effects have size at 1233

most 𝑘 , we need to describe the choice of 𝑘 propo- 1234

sitions from 𝑂 (𝐾2) possible propositions, which 1235

requires 𝑂 (𝑘 log𝐾) bits. With 𝑂 (𝐾2) actions, the 1236

total description length for describing the action 1237

preconditions and effects is 𝑂 (𝑘𝐾2 log𝐾) bits. In 1238

Blocksworld, the value of 𝑘 is a small constant and 1239

the complexity of the transitions seems reasonable. 1240

Given the current state and goal constraints, we 1241

also require a policy to predict the next action. This 1242

can be represented as a look-up table whose rows 1243

and columns are the current state and goal con- 1244

straints, and the entry is the next action. Describing 1245

one action requires 𝑂 (log𝐾) bits. Thus, the total 1246

size of the table is still 𝑂 (𝐾!𝐾22𝐾−1 log𝐾) bits, 1247

suggesting that a policy in tabular form may be 1248

difficult to learn. 1249

ToT Unlike CoT, ToT does not require a policy 1250

for predicting the next correct actions, although 1251

it needs to learn the pre-condition and effects of 1252

14

each action. The LLM needs to behave as a world1253

model that proposes valid actions, predicts the next1254

state, and recognizes the goal. ToT uses the same1255

actions as CoT, and our analysis has reasonable1256

sample complexity. Verifying whether the solution1257

is valid takes 𝑂 (𝐾) time; hence, a small represen-1258

tation of the goal recognizer is possible. Similar1259

to the game of 24, the self-evaluation (heuristic)1260

could be complex, requiring𝑂 (𝐾!𝐾22𝐾−1) entries.1261

However, ToT spends more computational costs to1262

conduct look-ahead searches; hence, we expect that1263

its performance may be better than that of CoT.1264

B.2.2 Experiments1265

We test the performance of Direct, CoT, CoT-SC,1266

and ToT using four-block-stacking tasks. We test the1267

in-context learning (ICL) performance of GPT-3.51268

and GPT-4 and fine-tune the Llama-2-7b (Touvron1269

et al., 2023) using Direct and CoT. We use the1270

same testing dataset as (Hao et al., 2024)6. As1271

for the fine-tuning experiments, we generate 10001272

trajectories for block stacking using the same distri-1273

bution of the testing data. Our in-context learning1274

experiment is adapted from Hao et al. (2024), but1275

we have modified the reasoning methods: 1) The1276

CoT in Hao et al. (2024) is essentially Direct in1277

our definition, while our CoT keeps tracking the1278

state changes in each step. 2) Our ToT modified the1279

RAP method in Hao et al. (2024) to use LLM to1280

propose all the actions in the branches, predict the1281

next state after applying one action, and recognize1282

the goal. In comparison, the RAP only use LLM1283

for next-state prediction and uses the ground truth1284

admissible actions. 3) We provide two versions1285

of ToT: ToT and ToT-Decomp. ToT uses LLM to1286

propose possible actions directly given the current1287

state. ToT-Decomp uses a CoT prompt to propose1288

possible actions. Instead of proposing possible1289

actions directly from the current state, ToT-Decomp1290

first explains the reasons that each proposed ac-1291

tion is admissible (pre-conditions satisfied) before1292

generating the possible action branches. For exam-1293

ple, ToT-Decomp would explain that Holding(x)1294

and Clear(y) are both be true before proposing1295

Stack(x,y) as a possible action. This can also be1296

viewed as making the pre-conditions that are hidden1297

in the direct prompt visible via CoT prompting.1298

The experimental results are reported in the Fig-1299

ure 10. Both the Direct and CoT do not perform1300

well in the fine-tuning experiments. It suggests that1301

learning the short-chain solution for this planning1302

6https://github.com/maitrix-org/llm-reasoners

2 4 6
Num of steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Finetune llama-2-7b
Direct
CoT

2 4 6
Num of steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ICL GPT-3.5

2 4 6
Num of steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

ICL GPT-4

Direct
CoT
CoT-SC-10
CoT-SC-100
ToT
ToT-decomp

Figure 10: Results of the Blocksworld experiments. ICL
stands for in-context learning.

problem is not sample-efficient. This is because 1303

finding the short-chain solution for this problem 1304

is likely computationally hard. It is also reflected 1305

by the description length analysis: Direct and CoT 1306

have similar, very large tabular description lengths, 1307

suggesting that their sample complexities are both 1308

very high. 1309

For the in-context learning (ICL), we also found 1310

that Direct and CoT have very similar performance 1311

in both experiments using GPT-3.5 and GPT-4. 1312

When using CoT-SC with 10 samples and 100 1313

samples, the performance improved a bit in gen- 1314

eral, but not very much. CoT-SC achieves higher 1315

performance than CoT because it spends more on 1316

computation by sampling more reasoning trajec- 1317

tories and performing a majority vote, effectively 1318

decreasing the variance and improving the perfor- 1319

mance. Simple ToT performs even worse than 1320

Direct. This is because the LLM was not able 1321

to learn the pre-conditions directly from the small 1322

number of examples and the invalid actions compro- 1323

mised the entire performance. On the other hand, 1324

using ToT-Decomp achieved the best performance. 1325

This is because using a reasonable decomposition 1326

which makes the hidden pre-conditions of the ac- 1327

tions visible produced actions that are almost all 1328

admissible, enabling the lookahead search of ToT 1329

to be effective. Even though the self-evaluation is 1330

inaccurate, ToT searches larger areas using the more 1331

accurate reward model and transitions, making it 1332

more effective than CoT and its variants. 1333

C GSM8K 1334

C.1 Statistics 1335

In the GSM8K dataset, the variable values (𝐾) are 1336

usually from 1 to 6 digits and the average number 1337

of variables per question (𝑁) is 3.93. The average 1338

number of variables (𝑎𝑖) is 2.19, the average number 1339

of reasoning steps is 3.17, so each step is relatively 1340

simple and the number of steps are also small. We 1341

also find that the number of rules that need to be 1342

learned as world knowledge appears to be relatively 1343

small (see Appendix C.2). Overall, we see that 1344

15

https://github.com/maitrix-org/llm-reasoners

the decomposed components in CoT are relatively1345

simple, and suggest that decomposition with CoT1346

may be reasonable for GSM problems.1347

C.2 Common Rules in GSM8K1348

We analyzed 50 problems from the GSM8K training1349

set and identified a set of rules. The first five1350

are general rules that can be inferred from the1351

questions and are applicable to multiple problems.1352

The last four are question-specific rules, involving1353

commonsense knowledge that are not mentioned in1354

the questions.1355

1. Amount A = Amount B * multiplier1356

2. Amount A = Amount B + difference1357

3. Total = N_unit * Amount per unit1358

4. Total = Sum of components1359

5. Current Amount = Initial Amount - Amount1360

Given + Amount Received1361

6. Question-specific (implicit): One hour = 601362

Minutes1363

7. Question-specific (implicit): one sandwich1364

has two slices of bread1365

8. Question-specific (implicit): face has two eyes1366

9. Question-specific (implicit): 1 quarter = 251367

cent; 1 dime = 10 cent; 1 nickel = 5 cent1368

C.3 An Efficient Algorithm for GSM8K1369

Based on our analysis of the GSM8K problems1370

in 4.1.1, we give a formulation of the GSM8K1371

problems, and show that there exists an algorithm1372

that has runtime linear to the total input length.1373

Problem Formulation1374

Input: A set of 𝑁 variables {𝑉1, ..., 𝑉𝑁 }, where1375

the values of some variables are known (from nat-1376

ural language input), while some are unknown (to1377

be inferred); A set of 𝑀 equations {𝑅1, ..., 𝑅𝑀 },1378

where all equations have exactly one variable on1379

LHS; A target variable 𝑉𝑡 whose value we want to1380

know.1381

Output: The value of 𝑉𝑡 .1382

The solvability of the problem ensures that for1383

all variables, if the value is not given in the natural1384

language question, will appear on the LHS of some1385

equation.1386

An Efficient Algorithm :1387

Inspired by Dowling and Gallier (1984), we 1388

design an algorithm whose runtime is linear to the 1389

size of the problem (total length of all equations). 1390

We maintain a list numvars[𝑀] which stores 1391

the number of unsolved variables on RHS for 1392

each equation; a list lhslist[𝑀] which stores 1393

which variable is on LHS of an equation; a list 1394

equationlist[𝑁] which stores the index of the 1395

equations where the corresponding variable appears 1396

on RHS. We say an equation 𝑅𝑖 is ready to be pro- 1397

cessed if numvars[𝑖] = 0. We maintain a queue 1398

that will contain the equations that are ready to 1399

be processed, and it is initialized to contain the 1400

equations that are ready to process given the known 1401

variables from natural language input. 1402

Then we loop over the queue. Let 1403

equation1 be the current head of the queue 1404

and let nextvar=lhslist[equation1] be the 1405

variable on the LHS of of equation1. Pop 1406

the head of the queue, and iterate over 1407

equationlist[nextvar], for every equation2 1408

in it, reduce numvars[equation2] by 1, and if 1409

numvars[equation2] becomes 0, add equation2 1410

to the queue. 1411

Loop until the queue is empty, we would have 1412

solved the values of all 𝑁 variables. Refer to 1413

Algorithm 1 for a more concise representation of 1414

the algorithm. 1415

Complexity of the Algorithm numvars and 1416

lhslist can be initialized in 𝑂 (𝐿), where 𝐿 is 1417

the total length of all equations. When processing 1418

an equation, the decrement of numvars corresponds 1419

to the "deletion" of occurrences of the variable in 1420

an equation, each variable in the equation is looked 1421

only once, thus processing all equations also runs 1422

in 𝑂 (𝐿). Overall, the runtime of the algorithm is 1423

𝑂 (𝐿), i.e. linear to the total length of the equations. 1424

If we assume each variable appears only once on the 1425

LHS of equations, and each equation has a number 1426

of variables up to a constant 𝐶 (as we have seen 1427

in 4.1.1, this is often true for GSM8K problems), 1428

the runtime of the algorithm would be 𝑂 (𝑁), i.e. 1429

linear to the number of variables in the problem. 1430

C.4 GSM8K Errors 1431

We observe three types of errors from GPT, namely 1432

grounding error, calculation error, and missing rule. 1433

We provide an example for each type. 1434

Listing 1: Grounding Error
Question: 1435
Annie was given a pack of crayons. The pack contained 21 1436
crayons. She already had a box of 36 crayons in her locker. 1437

16

Algorithm 1 Forward Chaining Algorithm for
GSM8K Problems
Require:

𝑁 variables {𝑉1, . . . , 𝑉𝑁 }, with known and
unknown values.
𝑀 equations {𝑅1, . . . , 𝑅𝑀 }, each with one vari-
able on LHS.
Target variable 𝑉𝑡 to find the value of.

Ensure:
Value of 𝑉𝑡 .

1: numvars[1 . . . 𝑀] ← Number of unsolved
variables on RHS of each 𝑅𝑖 .

2: lhslist[1 . . . 𝑀] ←Variable on LHS of each
𝑅𝑖 .

3: equationlist[1 . . . 𝑁] ← Indices of 𝑅𝑖
where 𝑉 𝑗 appears on RHS.

4: Initialize queue readyQueue with indices of
𝑅𝑖 where numvars[𝑖] = 0.

5: while readyQueue is not empty do
6: 𝑖 ← Dequeue from readyQueue.
7: 𝑉 𝑗 ← lhslist[𝑖].
8: for each 𝑘 in equationlist[𝑗] do
9: numvars[𝑘] ← numvars[𝑘] − 1.

10: if numvars[𝑘] = 0 then
11: Enqueue 𝑘 into readyQueue.
12: end if
13: end for
14: end while
15: return Value of 𝑉𝑡 .

Her friend Bobby gave her half the amount she already had in 1438
her locker. She decided to give her sister Mary 1/3 of her 1439
total amount of crayons. How many crayons does she give to 1440
Mary? 1441

1442
GPT-3.5 response: 1443
"Annie originally had 21 crayons in the pack and 36 crayons in 1444
her locker. 1445

So she had a total of 21 + 36 = 57 crayons. 1446
Bobby gave her half the amount she already had, so he gave her 1447
57 / 2 = 28.5 crayons, but since you can’t have half a crayon, 1448
let’s round down to 28. 1449

So she now has 57 + 28 = 85 crayons. 1450
So 1/3 of her total amount of crayons is 85 / 3 = 28.33 1451
crayons, but since you can’t have a fraction of a crayon, let’ 1452
s round down to 28 crayons. 1453
So she gives Mary 28 crayons. 1454
So the answer is 28." 1455

In Listing 1, the problem involves using the rule 1456

"Amount A = Amount B * multiplier", which should 1457

be grounded as "Amount from Bobby = Amount in 1458

Locker * 1/2", not "Amount from Bobby = Amount 1459

Annie have in total * 1/2". 1460

Listing 2: Calculation Error
Question: 1461
To get free delivery, Alice needs to spend a minimum of $35.00 1462
online at her favorite grocery store. In her cart she has 1463

1.5 pounds of chicken at $6.00 per pound, 1 pack of lettuce 1464
for $3.00, cherry tomatoes for $2.50, 4 sweet potatoes at $0 1465
.75 each, 2 heads of broccoli for $2.00 each and a pound of 1466
Brussel sprouts for $2.50. How much more does she need to 1467
spend in order to get free delivery? 1468

1469
GPT-3.5 response: 1470
"Alice’s total so far is: 1471
(1.5 * 6) + 3 + 2.50 + (4 * 0.75) + (2 * 2) + 2.50 1472
= 9 + 3 + 2.50 + 3 + 4 + 2 + 2.50 1473
= 26.00 1474

1475
To get free delivery, she needs to spend at least $35.00. 1476
So she needs to spend 35 - 26 1477
= 9.00 more to get free delivery. 1478

1479
So the answer is 9.00." 1480

In Listing 2, the calculation is wrong. 1481

Listing 3: Missing Rule
Question: 1482
A Ferris wheel can accommodate 70 people in 20 minutes. If 1483
the Ferris wheel is open from 1:00 pm until 7:00 pm, how many 1484
people will get to ride? 1485

1486
GPT-3.5 response: 1487
"The Ferris wheel can accommodate 70 people in 20 minutes. 1488
There are 6 periods of 20 minutes from 1:00 pm to 7:00 pm. 1489
So in total, the Ferris wheel can accommodate 70 * 6 = 420 1490
people. 1491
So 420 people will get to ride the Ferris wheel from 1:00 pm 1492
until 7:00 pm. 1493
So the answer is 420." 1494

In Listing 3, one commonsense knowledge (one 1495

hour has 60 minutes) not mentioned in the question 1496

is not properly used in the solution. 1497

D Dynamic Programming 1498

D.1 Algorithm for MWIS 1499

An algorithm that solves the Maximum Weighted 1500

Independent Set problem and runs in time 𝑂 (𝑁) 1501

where 𝑁 is the number of numbers in the input is 1502

shown in Algorithm 2. 1503

17

Algorithm 2 Dynamic Programming Algorithm for
the Maximum Weighted Independent Set problem
Require: An array 𝑎𝑟𝑟 of integers
Ensure: A sequence of decisions maximizing a

certain criterion based on 𝑎𝑟𝑟
1: 𝑁 ← length of 𝑎𝑟𝑟
2: Initialize 𝑑𝑝 [0 . . . 𝑁 − 1] with zeros
3: 𝑑𝑝 [𝑁 − 1] ← max(𝑎𝑟𝑟 [𝑁 − 1], 0)
4: 𝑑𝑝 [𝑁−2] ← max(𝑎𝑟𝑟 [𝑁−1], 𝑎𝑟𝑟 [𝑁−2], 0)
5: for 𝑖 ← 𝑁 − 3 downto 0 do
6: 𝑑𝑝 [𝑖] ← max(𝑑𝑝 [𝑖 + 1], 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 +

2], 0)
7: end for
8: Initialize 𝑟𝑒𝑠𝑢𝑙𝑡 as an empty list
9: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true

10: for 𝑖 ← 0 to 𝑁 − 3 do
11: if 𝑑𝑝 [𝑖] = 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 + 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
12: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
13: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← false
14: else
15: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
16: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true
17: end if
18: end for
19: if 𝑑𝑝 [𝑁 − 2] = 𝑎𝑟𝑟 [𝑁 − 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
20: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
21: else
22: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
23: end if
24: if 𝑑𝑝 [𝑁 − 1] = 𝑎𝑟𝑟 [𝑁 − 1] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
25: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
26: else
27: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
28: end if
29: return 𝑟𝑒𝑠𝑢𝑙𝑡

E Inductive bias of Transformers 1504

From the math word problem and dynamic pro- 1505

gramming fine-tuning experiments, we see that 1506

for some tasks (maximum weighted independent 1507

set), the transformer can learn to directly answer 1508

the problem efficiently, while for some other tasks 1509

(word problem), the direct answer is hard to learn. 1510

We conduct two more experiments to study what 1511

might affect the performance of learning to direct 1512

answer other than sample complexity: 1) learn the 1513

max function, where the input is a list of integers, 1514

and the expected output is the maximum value 1515

in the input list. This requires only looping over 1516

the sequence once, and storing one intermediate 1517

value; 2) another dynamic programming problem 1518

called rain water7 that requires looping over the 1519

array three times and storing two one-dimensional 1520

arrays for memorization. These two problems are 1521

similar to MWIS as they all require looping over 1522

the input sequence and maintaining some internal 1523

variables during the iteration. We use them to study 1524

whether the difference between learning to directly 1525

answer the word problem and MWIS is related to 1526

the inductive bias of transformers. To eliminate the 1527

confounding part, the difficulty of language in the 1528

word problem, we perform a modified version of the 1529

problem, where we remove all natural language in 1530

the prompt, and use a fixed formula for ground-truth 1531

answer: (𝑣1𝑣2 + 𝑣1𝑣3 + 𝑣1𝑣3/𝑣5 + 𝑣1𝑣2/𝑣4)𝑣7/𝑣6. 1532

The input would look like "1, 6, 4, 3, 2, 14, 8", 1533

and the expected output for this example would be 1534

"8" ((1 · 6 + 1 · 4 + 1 · 4/2 + 1 · 6/3) · 8/14 = 8). 1535

We randomly sample the values of the variables, 1536

ensuring the answer value is integer to construct 1537

the dataset. 1538

Task Accuracy (%)
MWP 58.00
MWIS (𝑛 ∈ [4, 5, 6]) 98.89
MWIS (𝑛 = 200) 0.01
max (𝑛 = 30) 99.50
rain water (𝑛 = 10) 89.00

Table 1: Fine-tuning results of different problems. MWP
stands for the modified word problem where the input
contains only 7 numbers. All tasks are fine-tuned with
10k direct answer examples and evaluated on in-domain
examples.

From the table, we see that MWIS, max, and rain 1539

7https://leetcode.com/problems/trapping-rain-
water/

18

https://leetcode.com/problems/trapping-rain-water/
https://leetcode.com/problems/trapping-rain-water/

water perform significantly better than MWP. This1540

suggests that it might be easy for transformers to1541

learn this loop type of problem when the problem1542

size is small. However, when the problem size1543

of MWIS is large (𝑛 = 200), the model fails to1544

generalize to unseen test examples. This aligns1545

with previous findings (Weiss et al., 2021; Zhou1546

et al., 2024) that suggest that it would consume one1547

transformer layer to approximate one iteration in1548

an algorithm. And with a problem size of 200, it1549

can be hard for transformers to approximate the1550

algorithm in a generalizable way, thus some other1551

patterns in the training set may be exploited, leading1552

to poor generalization.1553

0.3
1

0.9
4

1.5
6

2.1
9

2.8
1

3.4
4

4.0
6

4.6
9

5.3
1

5.9
4

6.5
6

7.1
9

7.8
1

8.4
4

9.0
6

9.6
9
10

.00

Epochs

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Train
Test

Figure 11: Results of fine-tuning word problem.

From Fig. 11 we can see that for the modified1554

word problem, the transformer can fit the training1555

set reasonably well, while the test set performance1556

peaks at 58.0%. This suggests that by learning1557

to answer directly, the transformer is behaving1558

similarly to learning by filling a table, instead of1559

learning the underlying rational function, which1560

supports our description length analysis.1561

F Air travel planning1562

We use the Kaggle World Cities8 database data1563

and sample 212 cities with more than 1 million1564

populations. We sampled 58 large cities and 1541565

mid-sized cities. We use the Virtual Radar Server91566

to get the real-time (Jan 13, 2024) flight data as the1567

ground truth.1568

G Game of 241569

We test the hard games indexed 901-1000 from1570

4nums.com. An output is considered correct if1571

the expression evaluates to 24 and uses all input1572

numbers once.1573

8https://www.kaggle.com/datasets/max-mind/world
-cities-database

9https://github.com/vradarserver/standing-data

H Tables 1574

Method GPT-3.5 GPT-4
Direct 28.51 47.16
CoT 79.53 94.09
ToT 81.88 96.00

Table 2: Figure 2a

Dataset size Direct CoT
1000 18.50 88.00
2000 22.50 88.00
3000 30.50 92.50
4000 35.00 93.50
5000 37.50 95.00
6000 46.50 95.00
7000 46.50 96.00
8000 48.50 96.50
9000 48.50 97.50
10000 58.00 96.50

Table 3: Figure 2b

Method InD OoD Total
Direct 0s 38.67 8.75 21.57
Direct 3s 68.67 35.25 49.57
Direct 6s 57.67 30.25 42.00
CoT 0s 59.33 35.25 45.57
CoT Implicit 3s 67.00 41.50 52.43
CoT Implicit 6s 65.00 36.25 48.57
CoT Explicit 3s 85.67 65.00 73.86
CoT Explicit 6s 86.67 66.50 75.14

Table 4: Figure 3 GPT-4

19

https://www.kaggle.com/datasets/max-mind/world-cities-database
https://www.kaggle.com/datasets/max-mind/world-cities-database
https://github.com/vradarserver/standing-data

Method InD OoD Total
Direct 0s 26.00 13.50 18.86
Direct 3s 32.33 10.50 19.86
Direct 6s 39.33 20.25 28.43
CoT 0s 24.33 8.75 15.43
CoT Implicit 3s 18.00 6.75 11.57
CoT Implicit 6s 20.33 5.00 11.57
CoT Explicit 3s 56.67 16.00 33.43
CoT Explicit 6s 63.33 28.75 43.57

Table 5: Figure 3 GPT-3.5

Method Large cities Mid-sized cities
CoT 0s 70.76 50.00
CoT 3s 73.10 51.64
CoT 8s 72.51 53.27
CoT-SC 0s 72.51 55.47
CoT-SC 3s 74.56 54.13
CoT-SC 8s 75.43 56.85
ToT-linear 0s 75.43 69.67
ToT-linear 3s 81.29 77.05
ToT-linear 8s 78.36 72.95
ToT 0s 78.36 72.13
ToT 3s 80.70 75.41
ToT 8s 81.29 75.41

Table 6: Figure 5 GPT-3.5 (Accuracy, %)

Method Large cities Mid-sized cities
CoT 0s 71.35 64.75
CoT 3s 76.02 68.03
CoT 8s 85.38 70.49
CoT-SC 0s 74.43 66.21
CoT-SC 3s 79.59 69.67
CoT-SC 8s 87.13 71.12
ToT-linear 0s 54.24 47.54
ToT-linear 3s 87.13 69.67
ToT-linear 8s 84.80 68.85
ToT 0s 76.02 70.49
ToT 3s 88.30 78.69
ToT 8s 88.89 79.51

Table 7: Figure 5 GPT-4 (Accuracy, %)

Num of edges Large cities Mid-sized cities
1069 90.64±2.21 80.32±3.21
2138 93.30±2.02 85.87±3.92
4277 97.07±0.94 90.16±1.45
6415 97.90±1.20 93.79±1.13

Table 8: Figure 6 ToT-linear (Accuracy % ± standard
error)

Num of edges Large cities Mid-sized cities
744 65.50±5.22 58.10±4.91
1489 78.94±3.90 68.85±4.56
2979 80.19±4.12 74.59±4.11
4468 81.52±5.23 77.97±5.10
5958 83.04±3.54 81.98±3.41

Table 9: Figure 6 CoT (Accuracy % ± standard error)

Method GPT-4 GPT-3.5
ToT 5s 58 20
ToT-Decomp 5s 86 47
ToT-Decomp 3s 23 20
ToT-Decomp 1s 19 15
CoT 5s 6 2
CoT-SC 5s 11 7
Direct 5s 10 4

Table 10: Figure 7, main results (Accuracy, %).

Method Transition error Proposal error
TOT-GPT4-5s 7.12 2.04
TOT-GPT4-Decomp-5s 2.80 1.44
TOT-GPT3.5-5s 16.62 3.15
TOT-GPT3.5-Decomp-5s 3.06 0.30
Method Missing action Answer error
TOT-GPT4-5s 12.44 10.04
TOT-GPT4-Decomp-5s 6.63 1.56
TOT-GPT3.5-5s 23.63 19.03
TOT-GPT3.5-Decomp-5s 16.60 2.28

Table 11: Figure 7, main results (Error rate, %).

Method GPT-4 GPT-3.5
Direct 62.5 42.14
Direct (parsed) 73.7 53.74
CoT 64.33 52.91
CoT (parsed) 76.89 65.62
CoT-SC 66.73 53.79
CoT-SC (parsed) 75.89 65.67
ToT 65.36 45.68
ToT (parsed) 75.72 49.98

Table 12: Figure 8

Method 2-step 4-step 6-step
Direct 47.6 33.2 28.9
CoT 45.2 34.9 30.1

Table 13: Figure 10a, results of finetuning Llama-2-7b
(Accuracy, %).

20

Method 2-step 4-step 6-step
Direct 42.2 20.2 9.2
CoT 42.7 20.2 8.4
CoT-SC-10 44.7 25.0 11.2
CoT-SC-100 46.7 26.2 11.8
ToT 22.4 13.1 9.8
ToT-Decomp 68.9 38.1 11.8

Table 14: Figure 10b, results of GPT-3.5 for in-context
learning (Accuracy, %).

Method 2-step 4-step 6-step
Direct 53.3 35.7 40.1
CoT 58.9 36.7 42.0
CoT-SC-10 66.7 34.5 44.7
CoT-SC-100 66.2 36.9 45.4
ToT 51.1 26.2 11.7
ToT-Decomp 93.3 72.6 49.3

Table 15: Figure 10c, results of GPT-4 for in-context
learning (Accuracy, %).

I Prompts1575

I.1 GSM8K Prompts1576

Listing 4: GSM8K Direct prompt
direct_8s = """Please answer a math word problem given the1577
following exapmles. Respond only the answer, in the format "1578
The answer is ###."1579
Example:1580
Question: There are 15 trees in the grove. Grove workers will1581
plant trees in the grove today. After they are done, there1582
will be 21 trees. How many trees did the grove workers plant1583
today?1584
The answer is 6.1585

1586
Question: If there are 3 cars in the parking lot and 2 more1587
cars arrive, how many cars are in the parking lot?1588
The answer is 5.1589

1590
Question: Leah had 32 chocolates and her sister had 10 more1591
chocolates than her. If they ate 35, how many pieces do they1592
have left in total?1593
The answer is 39.1594

1595
Question: Jason had 20 lollipops. He gave Denny some lollipops.1596
Now Jason has 12 lollipops. How many lollipops did Jason give1597
to Denny?1598

The answer is 8.1599
1600

Question: Shawn has five toys. For Christmas, he got two toys1601
each from his mom and dad. How many toys does he have now?1602
The answer is 9.1603

1604
Question: There were nine computers in the server room. Five1605
more computers were installed each day, from monday to1606
thursday. How many computers are now in the server room?1607
The answer is 29.1608

1609
Question: Michael had 58 golf balls. On tuesday, he lost 231610
golf balls. On wednesday, he lost 2 more. How many golf balls1611
did he have at the end of wednesday?1612
The answer is 33.1613

1614
Question: Olivia has $23. She bought five bagels for $3 each.1615
How much money does she have left?1616
The answer is 8.1617

1618
Question: {question}1619

The answer is 1620
""" 1621

Listing 5: GSM8K CoT and ToT prompt
cot_8s = """Please answer a math word problem given the 1622
following example. Respond with reasoning steps, and end with 1623
the answer, in the format "So the answer is ###." 1624
Example: 1625
Let’s think step by step. 1626
Question: There are 15 trees in the grove. Grove workers will 1627
plant trees in the grove today. After they are done, there 1628
will be 21 trees. How many trees did the grove workers plant 1629
today? 1630
Solution: There are 15 trees originally. 1631
And there were 21 trees after some more were planted. 1632
So 21 - 15 = 6 trees were planted. 1633
So the answer is 6. 1634

1635
Let’s think step by step. 1636
Question: If there are 3 cars in the parking lot and 2 more 1637
cars arrive, how many cars are in the parking lot? 1638
Solution: There are originally 3 cars. 1639
And 2 more cars arrive. 1640
So there are 3 + 2 = 5 cars now. 1641
So the answer is 5. 1642

1643
Let’s think step by step. 1644
Question: Leah had 32 chocolates and her sister had 10 more 1645
chocolates than her. If they ate 35, how many pieces do they 1646
have left in total? 1647
Solution: Originally, Leah had 32 chocolates. 1648
And her sister had 10 more chocolates than her. 1649
So her sister had 42 chocolates. 1650
So in total they had 32 + 42 = 74 chocolates. 1651
Then they ate 35 chocolates. 1652
Therefore they had 74 - 35 = 39 chocolates left. 1653
So the answer is 39. 1654

1655
Let’s think step by step. 1656
Question: Jason had 20 lollipops. He gave Denny some lollipops. 1657
Now Jason has 12 lollipops. How many lollipops did Jason give 1658
to Denny? 1659

Solution: Jason started with 20 lollipops. 1660
Then he had 12 after giving some to Denny. 1661
So he gave Denny 20 - 12 = 8 lollipops. 1662
So the answer is 8. 1663

1664
Let’s think step by step. 1665
Question: Shawn has five toys. For Christmas, he got two toys 1666
each from his mom and dad. How many toys does he have now? 1667
Solution: Shawn started with 5 toys. 1668
And he got 2 toys each from his mom and dad. 1669
So he got 2 + 2 = 4 toys. 1670
Therefore, he has 5 + 4 = 9 toys now. 1671
So the answer is 9. 1672

1673
Let’s think step by step. 1674
Question: There were nine computers in the server room. Five 1675
more computers were installed each day, from monday to 1676
thursday. How many computers are now in the server room? 1677
Solution: There were originally 9 computers. 1678
And 5 more computers were added from onday to thursday. 1679
There are 4 days between monday and thursday. 1680
So 5 * 4 = 20 computers were added in total. 1681
So there are 9 + 20 = 29 computers now. 1682
So the answer is 29. 1683

1684
Let’s think step by step. 1685
Question: Michael had 58 golf balls. On tuesday, he lost 23 1686
golf balls. On wednesday, he lost 2 more. How many golf balls 1687
did he have at the end of wednesday? 1688
Solution: Michael started with 58 golf balls. 1689
And he lost 23 golf balls on tuesday. 1690
So after losing 23 on tuesday, he had 58 -23 = 35. 1691
And then he lost 2 more golf balls on wednesday. 1692
So after losing 2 more on wednesday, he had 35 - 2 = 33 golf 1693
balls. 1694
So the answer is 33. 1695

1696
Let’s think step by step. 1697
Question: Olivia has $23. She bought five bagels for $3 each. 1698
How much money does she have left? 1699
Solution: Olivia had 23 dollars. 1700
And she bought 5 bagels. 1701
And each bagel costs 3 dollars. 1702

21

So she spent 5 * 3 = 15 dollars.1703
So she has 23 - 15 = 8 dollars left.1704
So the answer is 8.1705

1706
Let’s think step by step.1707
Question: {question}1708
Solution:1709
"""1710

Listing 6: GSM8K ToT self-evaluation prompts
evaluate_prompt = ’’’1711
Q: Julie climbed 15 steps up the giant slide. She climbed down1712
6 steps to talk to her friend, Maria. Then she climbed up 81713

steps to get to the top. How many steps does the slide have?1714
1715

A:1716
Julie climbed 15 steps up.1717
Is the above step of reasoning:1718
(A) Correct1719
(B) Incorrect1720
The above step of reasoning is (A)1721
Then she climbed down 6 steps.1722
Is the above step of reasoning:1723
(A) Correct1724
(B) Incorrect1725
The above step of reasoning is (A)1726
Then she climbed up 8 steps.1727
Is the above step of reasoning:1728
(A) Correct1729
(B) Incorrect1730
The above step of reasoning is (A)1731
So she climbed 15 + 8 = 23 steps.1732
Is the above step of reasoning:1733
(A) Correct1734
(B) Incorrect1735
The above step of reasoning is (B), because she also climbed1736
down 6 steps, so she climbed 23 - 6 = 17 steps.1737

So the slide has 23 steps.1738
Is the above step of reasoning:1739
(A) Correct1740
(B) Incorrect1741
The above step of reasoning is (A), but the value of steps1742
of slides is incorrect.1743
So the answer is 23.1744
Is the above step of reasoning:1745
(A) Correct1746
(B) Incorrect1747
The above step of reasoning is (A), but the value of steps1748
of slides is incorrect.1749

1750
1751
1752
1753
1754

Q: Suzanne read the first 15 pages of her book on Monday. She1755
read 16 more pages than that on Tuesday. Then there were 181756
pages left. How many pages are in Suzanne’s book altogether?1757

1758
A:1759
Suzanne read 15 pages on Monday.1760
Is the above step of reasoning:1761
(A) Correct1762
(B) Incorrect1763
The above step of reasoning is (A)1764
Then she read 16 more pages on Tuesday.1765
Is the above step of reasoning:1766
(A) Correct1767
(B) Incorrect1768
The above step of reasoning is (A)1769
So she read 15 + 16 = 31 pages in total.1770
Is the above step of reasoning:1771
(A) Correct1772
(B) Incorrect1773
The above step of reasoning is (B), because she read 16 more1774
pages than that on Tuesday, so she read 15 + 16 = 31 pages on1775
tuesday. So she read 15 + 31 = 46 pages in total.1776

Then there were 18 pages left.1777
Is the above step of reasoning:1778
(A) Correct1779
(B) Incorrect1780
The above step of reasoning is (A), but the value of total1781
read pages of monday and tuesday is incorrect.1782
So the book had 31 + 18 = 49 pages.1783
Is the above step of reasoning:1784
(A) Correct1785

(B) Incorrect 1786
The above step of reasoning is (A), but the value of total 1787
read pages of monday and tuesday is incorrect. So the book had 1788
46 + 18 = 64 pages. 1789

So the answer is 49. 1790
Is the above step of reasoning: 1791
(A) Correct 1792
(B) Incorrect 1793
The above step of reasoning is (A), but the value of total 1794
read pages of monday and tuesday is incorrect. 1795

1796
1797
1798
1799
1800

Q: Allison brought some CDs online. Each CD cost $7. There was 1801
an additional charge of $4 per order for shipping costs. The 1802

total bill came to $60. How many CDs did Allison buy? 1803
1804

A: 1805
Each CD cost 7 dollars. 1806
Is the above step of reasoning: 1807
(A) Correct 1808
(B) Incorrect 1809
The above step of reasoning is (A) 1810
And there was an additional charge of 4 dollars. 1811
Is the above step of reasoning: 1812
(A) Correct 1813
(B) Incorrect 1814
The above step of reasoning is (A) 1815
So the total cost of each CD is 7 + 4 = 11 dollars. 1816
Is the above step of reasoning: 1817
(A) Correct 1818
(B) Incorrect 1819
The above step of reasoning is (B), because each CD cose 7 1820
dollars. 1821
So 60 / 11 = 5.45. 1822
Is the above step of reasoning: 1823
(A) Correct 1824
(B) Incorrect 1825
The above step of reasoning is (B), because it cost 4 1826
dollars for shipping costs. So the cost of CDs is 60 - 4 = 56 1827
dollars. So Allison bought 56 / 7 = 8 CDs. 1828
So the answer is 5. 1829
Is the above step of reasoning: 1830
(A) Correct 1831
(B) Incorrect 1832
The above step of reasoning is (A), but the value of number 1833
of CDs is incorrect. 1834

1835
1836
1837
1838
1839

Q: Luis and Cameron shared some stickers is the ratio 5:2. 1840
Luis received 15 more stickers than Cameron. How many stickers 1841
were there altogether? 1842

1843
A: 1844
Let’s say there were x stickers. 1845
Is the above step of reasoning: 1846
(A) Correct 1847
(B) Incorrect 1848
The above step of reasoning is (A) 1849
Then Luis got 5x/7 and Cameron got 2x/7. 1850
Is the above step of reasoning: 1851
(A) Correct 1852
(B) Incorrect 1853
The above step of reasoning is (A) 1854
Luis got 15 more than Cameron, so 5x/7 - 2x/7 = 15. 1855
Is the above step of reasoning: 1856
(A) Correct 1857
(B) Incorrect 1858
The above step of reasoning is (A) 1859
So 3x/7 = 15. 1860
Is the above step of reasoning: 1861
(A) Correct 1862
(B) Incorrect 1863
The above step of reasoning is (A) 1864
So x = 105. 1865
Is the above step of reasoning: 1866
(A) Correct 1867
(B) Incorrect 1868
The above step of reasoning is (B), because 3x/7 = 15. So x 1869
= 15 * 7 / 3 = 35. So there were 35 stickers. 1870
So the answer is 105. 1871
Is the above step of reasoning: 1872

22

(A) Correct1873
(B) Incorrect1874
The above step of reasoning is (A), but the value of number1875
of stickers is incorrect.1876

1877
1878
1879
1880
1881

Q: Alexa has 92 cents in her pocket. She wants to buy 31882
pencils at the school supply store. Each pencil costs 8 cents.1883
How much money will Alexa have left?1884

1885
A:1886
Alexa has 92 cents.1887
Is the above step of reasoning:1888
(A) Correct1889
(B) Incorrect1890
The above step of reasoning is (A)1891
And 3 pencils for 8 cents each will be 3 * 8 = 24 cents.1892
Is the above step of reasoning:1893
(A) Correct1894
(B) Incorrect1895
The above step of reasoning is (A)1896
So she has 92 - 24 = 68 cents left.1897
Is the above step of reasoning:1898
(A) Correct1899
(B) Incorrect1900
The above step of reasoning is (A)1901
So the answer is 68.1902
Is the above step of reasoning:1903
(A) Correct1904
(B) Incorrect1905
The above step of reasoning is (A)1906

1907
1908
1909
1910
1911
1912

Q: {input}1913
1914

A: {output}1915
Is the above step of reasoning:1916
(A) Correct1917
(B) Incorrect1918
The above step of reasoning is ’’’1919

I.2 MWIS Prompts1920

Listing 7: Direct prompts
direct_0s = """Given a sequence of integers, find a1921
subsequence with the highest sum, such that no two numbers in1922
the subsequence are adjacent in the original sequence.1923

1924
To indicate the selected numbers, print an array with "1" for1925
chosen numbers and "2" for unchosen ones. For instance, [1, 2,1926
2, 2, 2] implies selecting only the first number. If multiple1927
solutions exist, select the lexicographically smallest.1928

1929
1930

{prompt}1931
"""1932

1933
direct_3s = """Given a sequence of integers, find a1934
subsequence with the highest sum, such that no two numbers in1935
the subsequence are adjacent in the original sequence.1936

1937
To indicate the selected numbers, print an array with "1" for1938
chosen numbers and "2" for unchosen ones. For instance, [1, 2,1939
2, 2, 2] implies selecting only the first number. If multiple1940
solutions exist, select the lexicographically smallest.1941

1942
1943

Let\’s solve input = [1, 1, -5, -1].1944
Answer: [1, 2, 2, 2]1945

1946
1947

Let\’s solve input = [3, 2, 1, -1, 2].1948
Answer: [1, 2, 1, 2, 1]1949

1950
1951

Let\’s solve input = [0, 4, -2, 3, -3, -1].1952
Answer: [2, 1, 2, 1, 2, 2]1953

1954
1955

{prompt} 1956
""" 1957

1958
direct_6s = """Given a sequence of integers, find a 1959
subsequence with the highest sum, such that no two numbers in 1960
the subsequence are adjacent in the original sequence. 1961

1962
To indicate the selected numbers, print an array with "1" for 1963
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1964
2, 2, 2] implies selecting only the first number. If multiple 1965
solutions exist, select the lexicographically smallest. 1966

1967
1968

Let\’s solve input = [1, 1, -5, -1]. 1969
Answer: [1, 2, 2, 2] 1970

1971
1972

Let\’s solve input = [3, 2, 1, -1, 2]. 1973
Answer: [1, 2, 1, 2, 1] 1974

1975
1976

Let\’s solve input = [0, 4, -2, 3, -3, -1]. 1977
Answer: [2, 1, 2, 1, 2, 2] 1978

1979
1980

Let\’s solve input = [-3, -4, 4, -1] 1981
Answer: [2, 2, 1, 2] 1982

1983
1984

Let\’s solve input = [3, 4, -3, -1, -4] 1985
Answer: [2, 1, 2, 2, 2] 1986

1987
1988

Let\’s solve input = [-4, 5, 0, 2, 3, -4] 1989
Answer: [2, 1, 2, 2, 1, 2] 1990

1991
1992

{prompt} 1993
""" 1994

Listing 8: CoT Implicit prompts
cot_implicit_3s = """Given a sequence of integers, find a 1995
subsequence with the highest sum, such that no two numbers in 1996
the subsequence are adjacent in the original sequence. 1997

1998
To indicate the selected numbers, print an array with "1" for 1999
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 2000
2, 2, 2] implies selecting only the first number. If multiple 2001
solutions exist, select the lexicographically smallest. 2002

2003
2004

We will solve any task instance by using dynamic programming. 2005
We define dp[i] as the maximum sum of a subsequence that does 2006
not include adjacent elements, when considering only the 2007
elements of the input from the i-th position onwards. 2008

2009
2010

Let\’s solve input = [1, 1, -5, -1]. 2011
2012

dp[3] = max(input[3], 0) = max(-1, 0) = 0 2013
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 2014
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1 2015
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1 2016

2017
Finally, we reconstruct the lexicographically smallest 2018
subsequence that fulfills the task objective by selecting 2019
numbers as follows. We store the result on a list named " 2020
output". 2021

2022
Let can_use_next_item = True. 2023
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and 2024
can_use_next_item == True, we store output[0] = 1. We update 2025
can_use_next_item = False. 2026
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or 2027
can_use_next_item == False, we store output[1] = 2. We update 2028
can_use_next_item = True. 2029
Since dp[2] != input[2] (0 != -5) or can_use_next_item == 2030
False, we store output[2] = 2. We update can_use_next_item = 2031
True. 2032
Since dp[3] != input[3] (0 != -1) or can_use_next_item == 2033
False, we store output[3] = 2. 2034

2035
Reconstructing all together, output=[1, 2, 2, 2]. 2036

23

2037
2038

Let\’s solve input = [3, 2, 1, -1, 2].2039
2040

dp[4] = max(input[4], 0) = max(2, 0) = 22041
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 22042
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 32043
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 42044
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 62045

2046
Finally, we reconstruct the lexicographically smallest2047
subsequence that fulfills the task objective by selecting2048
numbers as follows. We store the result on a list named "2049
output".2050

2051
Let can_use_next_item = True.2052
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and2053
can_use_next_item == True, we store output[0] = 1. We update2054
can_use_next_item = False.2055
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or2056
can_use_next_item == False, we store output[1] = 2. We update2057
can_use_next_item = True.2058
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and2059
can_use_next_item == True, we store output[2] = 1. We update2060
can_use_next_item = False.2061
Since dp[3] != input[3] (2 != -1) or can_use_next_item ==2062
False, we store output[3] = 2. We update can_use_next_item =2063
True.2064
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True,2065
we store output[4] = 1.2066

2067
Reconstructing all together, output=[1, 2, 1, 2, 1].2068

2069
2070

Let\’s solve input = [0, 4, -2, 3, -3, -1].2071
2072

dp[5] = max(input[5], 0) = max(-1, 0) = 02073
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 02074
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 32075
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =2076
32077
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 72078
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 72079

2080
Finally, we reconstruct the lexicographically smallest2081
subsequence that fulfills the task objective by selecting2082
numbers as follows. We store the result on a list named "2083
output".2084

2085
Let can_use_next_item = True.2086
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or2087
can_use_next_item == False, we store output[0] = 2. We update2088
can_use_next_item = True.2089
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and2090
can_use_next_item == True, we store output[1] = 1. We update2091
can_use_next_item = False.2092
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or2093
can_use_next_item == False, we store output[2] = 2. We update2094
can_use_next_item = True.2095
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and2096
can_use_next_item == True, we store output[3] = 1. We update2097
can_use_next_item = False.2098
Since dp[4] != input[4] (0 != -3) or can_use_next_item ==2099
False, we store output[4] = 2. We update can_use_next_item =2100
True.2101
Since dp[5] != input[5] (0 != -1) or can_use_next_item ==2102
False, we store output[5] = 2.2103

2104
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].2105

2106
2107

{prompt}2108
"""2109

2110
cot_implicit_6s = """Given a sequence of integers, find a2111
subsequence with the highest sum, such that no two numbers in2112
the subsequence are adjacent in the original sequence.2113

2114
To indicate the selected numbers, print an array with "1" for2115
chosen numbers and "2" for unchosen ones. For instance, [1, 2,2116
2, 2, 2] implies selecting only the first number. If multiple2117
solutions exist, select the lexicographically smallest.2118

2119
2120

We will solve any task instance by using dynamic programming.2121
We define dp[i] as the maximum sum of a subsequence that does2122
not include adjacent elements, when considering only the2123

elements of the input from the i-th position onwards. 2124
2125
2126

Let\’s solve input = [1, 1, -5, -1]. 2127
2128

dp[3] = max(input[3], 0) = max(-1, 0) = 0 2129
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 2130
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1 2131
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1 2132

2133
Finally, we reconstruct the lexicographically smallest 2134
subsequence that fulfills the task objective by selecting 2135
numbers as follows. We store the result on a list named " 2136
output". 2137

2138
Let can_use_next_item = True. 2139
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and 2140
can_use_next_item == True, we store output[0] = 1. We update 2141
can_use_next_item = False. 2142
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or 2143
can_use_next_item == False, we store output[1] = 2. We update 2144
can_use_next_item = True. 2145
Since dp[2] != input[2] (0 != -5) or can_use_next_item == 2146
False, we store output[2] = 2. We update can_use_next_item = 2147
True. 2148
Since dp[3] != input[3] (0 != -1) or can_use_next_item == 2149
False, we store output[3] = 2. 2150

2151
Reconstructing all together, output=[1, 2, 2, 2]. 2152

2153
2154

Let\’s solve input = [3, 2, 1, -1, 2]. 2155
2156

dp[4] = max(input[4], 0) = max(2, 0) = 2 2157
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2 2158
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 3 2159
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 4 2160
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 6 2161

2162
Finally, we reconstruct the lexicographically smallest 2163
subsequence that fulfills the task objective by selecting 2164
numbers as follows. We store the result on a list named " 2165
output". 2166

2167
Let can_use_next_item = True. 2168
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and 2169
can_use_next_item == True, we store output[0] = 1. We update 2170
can_use_next_item = False. 2171
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or 2172
can_use_next_item == False, we store output[1] = 2. We update 2173
can_use_next_item = True. 2174
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and 2175
can_use_next_item == True, we store output[2] = 1. We update 2176
can_use_next_item = False. 2177
Since dp[3] != input[3] (2 != -1) or can_use_next_item == 2178
False, we store output[3] = 2. We update can_use_next_item = 2179
True. 2180
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True, 2181
we store output[4] = 1. 2182

2183
Reconstructing all together, output=[1, 2, 1, 2, 1]. 2184

2185
2186

Let\’s solve input = [0, 4, -2, 3, -3, -1]. 2187
2188

dp[5] = max(input[5], 0) = max(-1, 0) = 0 2189
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0 2190
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 3 2191
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) = 2192
3 2193
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 7 2194
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 7 2195

2196
Finally, we reconstruct the lexicographically smallest 2197
subsequence that fulfills the task objective by selecting 2198
numbers as follows. We store the result on a list named " 2199
output". 2200

2201
Let can_use_next_item = True. 2202
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or 2203
can_use_next_item == False, we store output[0] = 2. We update 2204
can_use_next_item = True. 2205
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and 2206
can_use_next_item == True, we store output[1] = 1. We update 2207
can_use_next_item = False. 2208
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or 2209
can_use_next_item == False, we store output[2] = 2. We update 2210

24

can_use_next_item = True.2211
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and2212
can_use_next_item == True, we store output[3] = 1. We update2213
can_use_next_item = False.2214
Since dp[4] != input[4] (0 != -3) or can_use_next_item ==2215
False, we store output[4] = 2. We update can_use_next_item =2216
True.2217
Since dp[5] != input[5] (0 != -1) or can_use_next_item ==2218
False, we store output[5] = 2.2219

2220
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].2221

2222
2223

Let\’s solve input = [-3, -4, 4, -1].2224
2225

dp[3] = max(input[3], 0) = max(-1, 0) = 02226
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 42227
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =2228
42229
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =2230
42231

2232
Finally, we reconstruct the lexicographically smallest2233
subsequence that fulfills the task objective by selecting2234
numbers as follows. We store the result on a list named "2235
output".2236

2237
Let can_use_next_item = True.2238
Since dp[0] != input[0] + dp[2] (4 != -3 + 4) or2239
can_use_next_item == False, we store output[0] = 2. We update2240
can_use_next_item = True.2241
Since dp[1] != input[1] + dp[3] (4 != -4 + 0) or2242
can_use_next_item == False, we store output[1] = 2. We update2243
can_use_next_item = True.2244
Since dp[2] == input[2] (4 == 4) and can_use_next_item == True,2245
we store output[2] = 1. We update can_use_next_item = False.2246

Since dp[3] != input[3] (0 != -1) or can_use_next_item ==2247
False, we store output[3] = 2.2248

2249
Reconstructing all together, output=[2, 2, 1, 2].2250

2251
2252

Let\’s solve input = [3, 4, -3, -1, -4].2253
2254

dp[4] = max(input[4], 0) = max(-4, 0) = 02255
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 02256
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) =2257
02258
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) = 42259
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) = 42260

2261
Finally, we reconstruct the lexicographically smallest2262
subsequence that fulfills the task objective by selecting2263
numbers as follows. We store the result on a list named "2264
output".2265

2266
Let can_use_next_item = True.2267
Since dp[0] != input[0] + dp[2] (4 != 3 + 0) or2268
can_use_next_item == False, we store output[0] = 2. We update2269
can_use_next_item = True.2270
Since dp[1] == input[1] + dp[3] (4 == 4 + 0) and2271
can_use_next_item == True, we store output[1] = 1. We update2272
can_use_next_item = False.2273
Since dp[2] != input[2] + dp[4] (0 != -3 + 0) or2274
can_use_next_item == False, we store output[2] = 2. We update2275
can_use_next_item = True.2276
Since dp[3] != input[3] (0 != -1) or can_use_next_item ==2277
False, we store output[3] = 2. We update can_use_next_item =2278
True.2279
Since dp[4] != input[4] (0 != -4) or can_use_next_item ==2280
False, we store output[4] = 2.2281

2282
Reconstructing all together, output=[2, 1, 2, 2, 2].2283

2284
2285

Let\’s solve input = [-4, 5, 0, 2, 3, -4].2286
2287

dp[5] = max(input[5], 0) = max(-4, 0) = 02288
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 32289
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) = 32290
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) = 32291
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) = 82292
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) =2293
82294

2295
Finally, we reconstruct the lexicographically smallest2296
subsequence that fulfills the task objective by selecting2297

numbers as follows. We store the result on a list named " 2298
output". 2299

2300
Let can_use_next_item = True. 2301
Since dp[0] != input[0] + dp[2] (8 != -4 + 3) or 2302
can_use_next_item == False, we store output[0] = 2. We update 2303
can_use_next_item = True. 2304
Since dp[1] == input[1] + dp[3] (8 == 5 + 3) and 2305
can_use_next_item == True, we store output[1] = 1. We update 2306
can_use_next_item = False. 2307
Since dp[2] != input[2] + dp[4] (3 != 0 + 3) or 2308
can_use_next_item == False, we store output[2] = 2. We update 2309
can_use_next_item = True. 2310
Since dp[3] != input[3] + dp[5] (3 != 2 + 0) or 2311
can_use_next_item == False, we store output[3] = 2. We update 2312
can_use_next_item = True. 2313
Since dp[4] == input[4] (3 == 3) and can_use_next_item == True, 2314
we store output[4] = 1. We update can_use_next_item = False. 2315

Since dp[5] != input[5] (0 != -4) or can_use_next_item == 2316
False, we store output[5] = 2. 2317

2318
Reconstructing all together, output=[2, 1, 2, 2, 1, 2]. 2319

2320
2321

{prompt} 2322
""" 2323

Listing 9: CoT Explicit prompts
cot_explicit_3s = """Given a sequence of integers, find a 2324
subsequence with the highest sum, such that no two numbers in 2325
the subsequence are adjacent in the original sequence. 2326

2327
To indicate the selected numbers, print an array with "1" for 2328
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 2329
2, 2, 2] implies selecting only the first number. If multiple 2330
solutions exist, select the lexicographically smallest. 2331

2332
2333

We will solve any task instance by using dynamic programming. 2334
We define dp[i] as the maximum sum of a subsequence that does 2335
not include adjacent elements, when considering only the 2336
elements of the input from the i-th position onwards. 2337

2338
2339

Let\’s solve input = [1, 1, -5, -1]. 2340
2341

There are 4 numbers in the input sequence, so we will use a 2342
list of size 4 to store the dynamic programming values. We 2343
initialize all values to 0. 2344
dp[3] = max(input[3], 0) = max(-1, 0) = 0 2345
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 2346
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 2347
max(0, 1, 0) = 1 2348
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 2349
max(1, 1, 0) = 1 2350

2351
Finally, we reconstruct the lexicographically smallest 2352
subsequence that fulfills the task objective by selecting 2353
numbers as follows. We store the result on a list named " 2354
output". 2355

2356
Let can_use_next_item = True. 2357
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 1 2358
= dp[0] and can_use_next_item == True, we store output[0] = 1. 2359
We update can_use_next_item = False. 2360

Since can_use_next_item == False, we store output[1] = 2. We 2361
update can_use_next_item = True. 2362
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store 2363
output[2] = 2. We update can_use_next_item = True. 2364
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store 2365
output[3] = 2. 2366

2367
Reconstructing all together, output=[1, 2, 2, 2]. 2368

2369
2370
2371

Let\’s solve input = [3, 2, 1, -1, 2]. 2372
2373

There are 5 numbers in the input sequence, so we will use a 2374
list of size 5 to store the dynamic programming values. We 2375
initialize all values to 0. 2376
dp[4] = max(input[4], 0) = max(2, 0) = 2 2377
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2 2378
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 2379
max(2, 3, 0) = 3 2380

25

dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) =2381
max(3, 4, 0) = 42382
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) =2383
max(4, 6, 0) = 62384

2385
Finally, we reconstruct the lexicographically smallest2386
subsequence that fulfills the task objective by selecting2387
numbers as follows. We store the result on a list named "2388
output".2389

2390
Let can_use_next_item = True.2391
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 62392
= dp[0] and can_use_next_item == True, we store output[0] = 1.2393
We update can_use_next_item = False.2394

Since can_use_next_item == False, we store output[1] = 2. We2395
update can_use_next_item = True.2396
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 32397
= dp[2] and can_use_next_item == True, we store output[2] = 1.2398
We update can_use_next_item = False.2399

Since can_use_next_item == False, we store output[3] = 2. We2400
update can_use_next_item = True.2401
Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and2402
can_use_next_item == True, we store output[4] = 1.2403

2404
Reconstructing all together, output=[1, 2, 1, 2, 1].2405

2406
2407
2408

Let\’s solve input = [0, 4, -2, 3, -3, -1].2409
2410

There are 6 numbers in the input sequence, so we will use a2411
list of size 6 to store the dynamic programming values. We2412
initialize all values to 0.2413
dp[5] = max(input[5], 0) = max(-1, 0) = 02414
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 02415
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) =2416
max(0, 3, 0) = 32417
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =2418
max(3, -2, 0) = 32419
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) =2420
max(3, 7, 0) = 72421
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) =2422
max(7, 3, 0) = 72423

2424
Finally, we reconstruct the lexicographically smallest2425
subsequence that fulfills the task objective by selecting2426
numbers as follows. We store the result on a list named "2427
output".2428

2429
Let can_use_next_item = True.2430
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 72431
= dp[0], we store output[0] = 2. We update can_use_next_item =2432
True.2433

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 72434
= dp[1] and can_use_next_item == True, we store output[1] = 1.2435
We update can_use_next_item = False.2436

Since can_use_next_item == False, we store output[2] = 2. We2437
update can_use_next_item = True.2438
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 32439
= dp[3] and can_use_next_item == True, we store output[3] = 1.2440
We update can_use_next_item = False.2441

Since can_use_next_item == False, we store output[4] = 2. We2442
update can_use_next_item = True.2443
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store2444
output[5] = 2.2445

2446
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].2447

2448
2449

{prompt}2450
"""2451
cot_explicit_6s = """Given a sequence of integers, find a2452
subsequence with the highest sum, such that no two numbers in2453
the subsequence are adjacent in the original sequence.2454

2455
To indicate the selected numbers, print an array with "1" for2456
chosen numbers and "2" for unchosen ones. For instance, [1, 2,2457
2, 2, 2] implies selecting only the first number. If multiple2458
solutions exist, select the lexicographically smallest.2459

2460
2461

We will solve any task instance by using dynamic programming.2462
We define dp[i] as the maximum sum of a subsequence that does2463
not include adjacent elements, when considering only the2464
elements of the input from the i-th position onwards.2465

2466
2467

Let\’s solve input = [1, 1, -5, -1]. 2468
2469

There are 4 numbers in the input sequence, so we will use a 2470
list of size 4 to store the dynamic programming values. We 2471
initialize all values to 0. 2472
dp[3] = max(input[3], 0) = max(-1, 0) = 0 2473
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 2474
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 2475
max(0, 1, 0) = 1 2476
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 2477
max(1, 1, 0) = 1 2478

2479
Finally, we reconstruct the lexicographically smallest 2480
subsequence that fulfills the task objective by selecting 2481
numbers as follows. We store the result on a list named " 2482
output". 2483

2484
Let can_use_next_item = True. 2485
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 1 2486
= dp[0] and can_use_next_item == True, we store output[0] = 1. 2487
We update can_use_next_item = False. 2488

Since can_use_next_item == False, we store output[1] = 2. We 2489
update can_use_next_item = True. 2490
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store 2491
output[2] = 2. We update can_use_next_item = True. 2492
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store 2493
output[3] = 2. 2494

2495
Reconstructing all together, output=[1, 2, 2, 2]. 2496

2497
2498
2499

Let\’s solve input = [3, 2, 1, -1, 2]. 2500
2501

There are 5 numbers in the input sequence, so we will use a 2502
list of size 5 to store the dynamic programming values. We 2503
initialize all values to 0. 2504
dp[4] = max(input[4], 0) = max(2, 0) = 2 2505
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2 2506
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 2507
max(2, 3, 0) = 3 2508
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 2509
max(3, 4, 0) = 4 2510
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 2511
max(4, 6, 0) = 6 2512

2513
Finally, we reconstruct the lexicographically smallest 2514
subsequence that fulfills the task objective by selecting 2515
numbers as follows. We store the result on a list named " 2516
output". 2517

2518
Let can_use_next_item = True. 2519
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 6 2520
= dp[0] and can_use_next_item == True, we store output[0] = 1. 2521
We update can_use_next_item = False. 2522

Since can_use_next_item == False, we store output[1] = 2. We 2523
update can_use_next_item = True. 2524
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 3 2525
= dp[2] and can_use_next_item == True, we store output[2] = 1. 2526
We update can_use_next_item = False. 2527

Since can_use_next_item == False, we store output[3] = 2. We 2528
update can_use_next_item = True. 2529
Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and 2530
can_use_next_item == True, we store output[4] = 1. 2531

2532
Reconstructing all together, output=[1, 2, 1, 2, 1]. 2533

2534
2535
2536

Let\’s solve input = [0, 4, -2, 3, -3, -1]. 2537
2538

There are 6 numbers in the input sequence, so we will use a 2539
list of size 6 to store the dynamic programming values. We 2540
initialize all values to 0. 2541
dp[5] = max(input[5], 0) = max(-1, 0) = 0 2542
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 0 2543
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 2544
max(0, 3, 0) = 3 2545
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) = 2546
max(3, -2, 0) = 3 2547
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 2548
max(3, 7, 0) = 7 2549
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 2550
max(7, 3, 0) = 7 2551

2552
Finally, we reconstruct the lexicographically smallest 2553
subsequence that fulfills the task objective by selecting 2554

26

numbers as follows. We store the result on a list named "2555
output".2556

2557
Let can_use_next_item = True.2558
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 72559
= dp[0], we store output[0] = 2. We update can_use_next_item =2560
True.2561

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 72562
= dp[1] and can_use_next_item == True, we store output[1] = 1.2563
We update can_use_next_item = False.2564

Since can_use_next_item == False, we store output[2] = 2. We2565
update can_use_next_item = True.2566
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 32567
= dp[3] and can_use_next_item == True, we store output[3] = 1.2568
We update can_use_next_item = False.2569

Since can_use_next_item == False, we store output[4] = 2. We2570
update can_use_next_item = True.2571
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store2572
output[5] = 2.2573

2574
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].2575

2576
2577
2578

Let\’s solve input = [-3, -4, 4, -1].2579
2580

There are 4 numbers in the input sequence, so we will use a2581
list of size 4 to store the dynamic programming values. We2582
initialize all values to 0.2583
dp[3] = max(input[3], 0) = max(-1, 0) = 02584
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 42585
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =2586
max(4, -4, 0) = 42587
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =2588
max(4, 1, 0) = 42589

2590
Finally, we reconstruct the lexicographically smallest2591
subsequence that fulfills the task objective by selecting2592
numbers as follows. We store the result on a list named "2593
output".2594

2595
Let can_use_next_item = True.2596
Since dp[0]=4, input[0]=-3, dp[2]=4, input[0] + dp[2] = 1 != 42597
= dp[0], we store output[0] = 2. We update can_use_next_item2598

= True.2599
Since dp[1]=4, input[1]=-4, dp[3]=0, input[1] + dp[3] = -4 !=2600
4 = dp[1], we store output[1] = 2. We update can_use_next_item2601
= True.2602

Since dp[2] = 4, input[2] = 4, dp[2] == input[2] and2603
can_use_next_item == True, we store output[2] = 1. We update2604
can_use_next_item = False.2605
Since can_use_next_item == False, we store output[3] = 2.2606

2607
Reconstructing all together, output=[2, 2, 1, 2].2608

2609
2610
2611

Let\’s solve input = [3, 4, -3, -1, -4].2612
2613

There are 5 numbers in the input sequence, so we will use a2614
list of size 5 to store the dynamic programming values. We2615
initialize all values to 0.2616
dp[4] = max(input[4], 0) = max(-4, 0) = 02617
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 02618
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) =2619
max(0, -3, 0) = 02620
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) =2621
max(0, 4, 0) = 42622
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) =2623
max(4, 3, 0) = 42624

2625
Finally, we reconstruct the lexicographically smallest2626
subsequence that fulfills the task objective by selecting2627
numbers as follows. We store the result on a list named "2628
output".2629

2630
Let can_use_next_item = True.2631
Since dp[0]=4, input[0]=3, dp[2]=0, input[0] + dp[2] = 3 != 42632
= dp[0], we store output[0] = 2. We update can_use_next_item =2633
True.2634

Since dp[1]=4, input[1]=4, dp[3]=0, input[1] + dp[3] = 4 == 42635
= dp[1] and can_use_next_item == True, we store output[1] = 1.2636
We update can_use_next_item = False.2637

Since can_use_next_item == False, we store output[2] = 2. We2638
update can_use_next_item = True.2639
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store2640
output[3] = 2. We update can_use_next_item = True.2641

Since dp[4] = 0, input[4] = -4, dp[4] != input[4], we store 2642
output[4] = 2. 2643

2644
Reconstructing all together, output=[2, 1, 2, 2, 2]. 2645

2646
2647
2648

Let\’s solve input = [-4, 5, 0, 2, 3, -4]. 2649
2650

There are 6 numbers in the input sequence, so we will use a 2651
list of size 6 to store the dynamic programming values. We 2652
initialize all values to 0. 2653
dp[5] = max(input[5], 0) = max(-4, 0) = 0 2654
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 3 2655
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) = 2656
max(3, 2, 0) = 3 2657
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) = 2658
max(3, 3, 0) = 3 2659
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) = 2660
max(3, 8, 0) = 8 2661
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) = 2662
max(8, -1, 0) = 8 2663

2664
Finally, we reconstruct the lexicographically smallest 2665
subsequence that fulfills the task objective by selecting 2666
numbers as follows. We store the result on a list named " 2667
output". 2668

2669
Let can_use_next_item = True. 2670
Since dp[0]=8, input[0]=-4, dp[2]=3, input[0] + dp[2] = -1 != 2671
8 = dp[0], we store output[0] = 2. We update can_use_next_item 2672
= True. 2673

Since dp[1]=8, input[1]=5, dp[3]=3, input[1] + dp[3] = 8 == 8 2674
= dp[1] and can_use_next_item == True, we store output[1] = 1. 2675
We update can_use_next_item = False. 2676

Since can_use_next_item == False, we store output[2] = 2. We 2677
update can_use_next_item = True. 2678
Since dp[3]=3, input[3]=2, dp[5]=0, input[3] + dp[5] = 2 != 3 2679
= dp[3], we store output[3] = 2. We update can_use_next_item = 2680
True. 2681

Since dp[4] = 3, input[4] = 3, dp[4] == input[4] and 2682
can_use_next_item == True, we store output[4] = 1. We update 2683
can_use_next_item = False. 2684
Since can_use_next_item == False, we store output[5] = 2. 2685

2686
Reconstructing all together, output=[2, 1, 2, 2, 1, 2]. 2687

2688
2689

{prompt} 2690
""" 2691

I.3 Comparison between CoT Implicit and 2692

CoT Explicit 2693

Listing 10: Compare CoT Implicit with CoT Explicit
Given a sequence of integers, find a subsequence with the 2694
highest sum, such that no two numbers in the subsequence are 2695
adjacent in the original sequence. 2696

2697
To indicate the selected numbers, print an array with "1" for 2698
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 2699
2, 2, 2] implies selecting only the first number. If multiple 2700
solutions exist, select the lexicographically smallest. 2701

2702
2703

We will solve any task instance by using dynamic programming. 2704
We define dp[i] as the maximum sum of a subsequence that does 2705
not include adjacent elements, when considering only the 2706
elements of the input from the i-th position onwards. 2707

2708
Let’s solve input = [-45, 40, 77, -93, 25, -73]. 2709

2710
2711
Explicit: There are 6 numbers in the input sequence, so we 2712
will use a list of size 6 to store the dynamic programming 2713
values. We initialize all values to 0. 2714
dp[5] = max(input[5], 0) = max(-73, 0) = 0 2715
dp[4] = max(input[4], input[5], 0) = max(25, -73, 0) = 25 2716
Implicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25, 2717
-93 + 0, 0) = 25 2718
Explicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25, 2719
-93 + 0, 0) = max(25, -93, 0) = 25 2720
Implicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 77 2721
+ 25, 0) = 102 2722

27

Explicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 772723
+ 25, 0) = max(25, 102, 0) = 1022724

Implicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,2725
40 + 25, 0) = 1022726
Explicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,2727
40 + 25, 0) = max(102, 65, 0) = 1022728
Implicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,2729
-45 + 102, 0) = 1022730
Explicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,2731
-45 + 102, 0) = max(102, 57, 0) = 1022732

2733
Finally, we reconstruct the lexicographically smallest2734
subsequence that fulfills the task objective by selecting2735
numbers as follows. We store the result on a list named "2736
output".2737

2738
Let can_use_next_item = True.2739
Implicit: Since dp[0] != input[0] + dp[2] (102 != -45 + 102)2740
or can_use_next_item == False, we store output[0] = 2. We2741
update can_use_next_item = True.2742
Explicit: Since dp[0]=102, input[0]=-45, dp[2]=102, input[0] +2743
dp[2] = 57 != 102 = dp[0], we store output[0] = 2. We update2744

can_use_next_item = True.2745
Implicit: Since dp[1] != input[1] + dp[3] (102 != 40 + 25) or2746
can_use_next_item == False, we store output[1] = 2. We update2747
can_use_next_item = True.2748
Explicit: Since dp[1]=102, input[1]=40, dp[3]=25, input[1] +2749
dp[3] = 65 != 102 = dp[1], we store output[1] = 2. We update2750
can_use_next_item = True.2751
Implicit: Since dp[2] == input[2] + dp[4] (102 == 77 + 25) and2752
can_use_next_item == True, we store output[2] = 1. We update2753

can_use_next_item = False.2754
Explicit: Since dp[2]=102, input[2]=77, dp[4]=25, input[2] +2755
dp[4] = 102 == 102 = dp[2] and can_use_next_item == True, we2756
store output[2] = 1. We update can_use_next_item = False.2757
Implicit: Since dp[3] != input[3] + dp[5] (25 != -93 + 0) or2758
can_use_next_item == False, we store output[3] = 2. We update2759
can_use_next_item = True.2760
Explicit: Since can_use_next_item == False, we store output[3]2761
= 2. We update can_use_next_item = True.2762

Implicit: Since dp[4] == input[4] (25 == 25) and2763
can_use_next_item == True, we store output[4] = 1. We update2764
can_use_next_item = False.2765
Explicit: Since dp[4] = 25, input[4] = 25, dp[4] == input[4]2766
and can_use_next_item == True, we store output[4] = 1. We2767
update can_use_next_item = False.2768
Implicit: Since dp[5] != input[5] (0 != -73) or2769
can_use_next_item == False, we store output[5] = 2.2770
Explicit: Since can_use_next_item == False, we store output[5]2771
= 2.2772

2773
Reconstructing all together, output=[2, 2, 1, 2, 1, 2].2774

I.4 Travel planning prompts2775

Listing 11: CoT prompts
prompt_cot_zero_shot = """2776
The user will ask for a flight route between two cities. You2777
need to generate a response with the route. Your response2778
should be in the format "[city 1]-[city 2]-[city 3]-...-[city2779
n]". If there is no solution, reply "Answer: None. "2780
Question: {input}2781
Answer: """2782

2783
prompt_cot_1s = """2784
The user will ask for a flight route between two cities. You2785
need to generate a response with the route. Your response2786
should be in the format "Answer: [city 1]-[city 2]-[city2787
3]-...-[city n]". If there is no solution, reply "Answer: None.2788
"2789

Question: What is the flight route from Dublin to Sydney?2790
Answer: Dublin-London-Sydney.2791
Question: {input}2792
Answer: """2793

2794
prompt_cot_3s = """2795
The user will ask for a flight route between two cities. You2796
need to generate a response with the route. Your response2797
should be in the format "[city 1]-[city 2]-[city 3]-...-[city2798
n]". If there is no solution, reply "Answer: None. "2799
Question: What is the flight route from Dublin to Sydney?2800
Answer: Dublin-London-Sydney.2801
Question: What is the flight route from New York to Amsterdam?2802
Answer: New York-London-Amsterdam.2803

Question: What is the flight route from Toronto to Sydney? 2804
Answer: Toronto-San Francisco-Sydney. 2805
Question: {input} 2806
Answer: """ 2807

2808
prompt_cot_8s = """ 2809
The user will ask for a flight route between two cities. You 2810
need to generate a response with the route. Your response 2811
should be in the format "[city 1]-[city 2]-[city 3]-...-[city 2812
n]". If there is no solution, reply "Answer: None. " 2813
Question: What is the flight route from Dublin to Sydney? 2814
Answer: Dublin-London-Sydney. 2815
Question: What is the flight route from New York to Amsterdam? 2816
Answer: New York-London-Amsterdam. 2817
Question: What is the flight route from Toronto to Sydney? 2818
Answer: Toronto-San Francisco-Sydney. 2819
Question: What is the flight route from Astana to Rome? 2820
Answer: Astana-Moscow-Rome. 2821
Question: What is the flight route from Visakhapatnam to 2822
Odense? 2823
Answer: Visakhapatnam-Hyderabad-Copenhagen-Odense. 2824
Question: What is the flight route from Shanghai to Nanjing? 2825
Answer: Shanghai-Nanjing. 2826
Question: What is the flight route from Singapore to Taipei? 2827
Answer: Singapore-Taipei. 2828
Question: What is the flight route from Sydney to Istanbul? 2829
Answer: Sydney-Singapore-Istanbul. 2830
Question: {input} 2831
Answer: """ 2832

Listing 12: ToT prompts
prompt_tot_propose_zero_shot = ’’’List a few possible cities 2833
to fly to from the current city via one direct flight. If the 2834
goal city can be reached via one direct flight from the 2835
current city, just answer the goal city. Format of your 2836
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2837
]." 2838
Question: {input} 2839
’’’ 2840

2841
prompt_tot_propose_1s = ’’’List the a few possible cities to 2842
fly to from the current city via one direct flight. If the 2843
goal city can be reached via one direct flight from the 2844
current city, just answer the goal city. Format of your 2845
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2846
]." 2847
Question: You want to go to Sydney and you are at Dublin. 2848
Propose a few possible cities with direct flights to go to for 2849
the next step. 2850

Answer: London, Paris, Frankfurt, Amsterdam, Zurich. 2851
Question: {input} 2852
’’’ 2853

2854
prompt_tot_propose_3s = ’’’List the a few possible cities to 2855
fly to from the current city via one direct flight. If the 2856
goal city can be reached via one direct flight from the 2857
current city, just answer the goal city. Format of your 2858
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2859
]." 2860
Question: You want to go to Sydney and you are at Dublin. 2861
Propose a few possible cities with direct flights to go to for 2862
the next step. 2863

Answer: London, Paris, Mombai. 2864
Question: You want to go to Nanjing and you are at Shanghai. 2865
Propose a few possible cities with direct flights to go to for 2866
the next step. 2867

Answer: Nanjing. 2868
Question: You want to go to Amsterdam and you are at New York. 2869
Propose a few possible cities with direct flights to go to 2870

for the next step. 2871
Answer: London, Paris, Frankfurt, Amsterdam. 2872
Question: {input} 2873
’’’ 2874

2875
prompt_tot_propose_8s = ’’’List the a few possible cities to 2876
fly to from the current city via one direct flight. If the 2877
goal city can be reached via one direct flight from the 2878
current city, just answer the goal city. Format of your 2879
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2880
]." 2881
Question: You want to go to Sydney and you are at Dublin. 2882
Propose a few possible cities with direct flights to go to for 2883
the next step. 2884

Answer: London, Paris, Mombai. 2885
Question: You want to go to Amsterdam and you are at New York. 2886

28

Propose a few possible cities with direct flights to go to2887
for the next step.2888
Answer: London, Paris, Frankfurt.2889
Question: You want to go to Sydney and you are at Toronto.2890
Propose a few possible cities with direct flights to go to for2891
the next step.2892

Answer: San Francisco, Los Angeles, Vancouver.2893
Question: You want to go to Nanjing and you are at Shanghai.2894
Propose a few possible cities with direct flights to go to for2895
the next step.2896

Answer: Nanjing.2897
Question: You want to go to Rome and you are at Astana.2898
Propose a few possible cities with direct flights to go to for2899
the next step.2900

Answer: Moscow, Rome, Istanbul.2901
Question: You want to go to Odense and you are at2902
Visakhapatnam. Propose a few possible cities with direct2903
flights to go to for the next step.2904
Answer: Hyderabad, Copenhagen, Odense.2905
Question: You want to go to Taipei and you are at Singapore.2906
Propose a few possible cities with direct flights to go to for2907
the next step.2908

Answer: Taipei.2909
Question: You want to go to Istanbul and you are at Sydney.2910
Propose a few possible cities with direct flights to go to for2911
the next step.2912

Answer: Singapore, Dubai, Abu Dhabi.2913
Question: {input}2914
’’’2915

Listing 13: ToT Linear prompts
prompt_tot_linear_zero_shot = """The user will ask for a2916
flight route between two cities. You need to generate a2917
response with the route.2918
You are simulating bfs process to find the route between two2919
cities. In the beginning, you have a queue [’start city’] and2920
an empty explored list []. You need to proceed with the2921
following steps:2922
1. Take the first city in the queue as the current city. If2923
the city is in the explored list, skip it. Otherwise, put the2924
city into the explored list.2925
2. Propose the possible cities with direct flights to go to2926
for the next step. Do not propose the explored cities and2927
cities in the queue.2928
3. Put the cities into the queue.2929
Repeat steps 1-3 until the goal city is included in the queue.2930
Respond with reasoning steps, and end with the answer, in the2931
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"2932
Question: {input}2933
Let’s think step by step.2934
"""2935

2936
2937

prompt_tot_linear_cot_1s = """The user will ask for a flight2938
route between two cities. You need to generate a response with2939
the route.2940

You are simulating bfs process to find the route between two2941
cities. In the beginning, you have a queue [’start city’], and2942
you need to proceed the following steps:2943

1. Take the first city in the queue as the current city.2944
2. Propose the possible cities with direct flights to go to2945
for the next step. Do not propose the explored cities and2946
cities in the queue.2947
3. Put the cities into the queue.2948
Repeat steps 1-3 until the goal city is included in the queue.2949
Respond with reasoning steps, and end with the answer, in the2950
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"2951
Question: What is the flight route from Guatemala City to2952
Guangzhou?2953
The queue is [Guatemala City]. Take the first path, Guatemala2954
City, from the queue.2955
The current city is Guatemala City, which is not in the2956
explored list. Thus, put the current city into the explored2957
list. The explored list is [Guatemala City]2958
The current city is Guatemala City and the goal is Guangzhou.2959
For the next step, the promising cities to go to are [New York,2960
Los Angeles, Mexico City].2961

Puting those cities into the queue. The queue is [Guatemala2962
City-New York, Guatemala City-Los Angeles, Guatemala City-2963
Mexico City].2964
Take the first path, Guatemala City-New York, from the queue.2965
The current city is New York, which is not in the explored2966
list. Thus, put the current city into the explored list. The2967
explored list is [Guatemala City, New York]2968
The current city is New York and the goal is Guangzhou. For2969

the next step, the promising cities to go to are [Helsinki, 2970
Guangzhou, Lahore]. 2971
The goal city is Guangzhou. Since Guangzhou is in the found, 2972
and the current selected path is Guatemala City-New York, the 2973
route is Guatemala City-New York-Guangzhou. 2974
Answer: Guatemala City-New York-Guangzhou 2975
Question: {input} 2976
Let’s think step by step. 2977
""" 2978

2979
prompt_tot_linear_cot_2s = """The user will ask for a flight 2980
route between two cities. You need to generate a response with 2981
the route. 2982

You are simulating bfs process to find the route between two 2983
cities. In the beginning, you have a queue [’start city’], and 2984
you need to proceed the following steps: 2985

1. Take the first city in the queue as the current city. 2986
2. Propose the possible cities with direct flights to go to 2987
for the next step. Do not propose the explored cities and 2988
cities in the queue. 2989
3. Put the cities into the queue. 2990
Repeat steps 1-3 until the goal city is included in the queue. 2991
Respond with reasoning steps, and end with the answer, in the 2992
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]" 2993
Question: What is the flight route from Guatemala City to 2994
Guangzhou? 2995
The queue is [Guatemala City]. Take the first path, Guatemala 2996
City, from the queue. 2997
The current city is Guatemala City, which is not in the 2998
explored list. Thus, put the current city into the explored 2999
list. The explored list is [Guatemala City] 3000
The current city is Guatemala City and the goal is Guangzhou. 3001
For the next step, the promising cities to go to are [New York, 3002
Los Angeles, Mexico City]. 3003

Puting those cities into the queue. The queue is [Guatemala 3004
City-New York, Guatemala City-Los Angeles, Guatemala City- 3005
Mexico City]. 3006
Take the first path, Guatemala City-New York, from the queue. 3007
The current city is New York, which is not in the explored 3008
list. Thus, put the current city into the explored list. The 3009
explored list is [Guatemala City, New York] 3010
The current city is New York and the goal is Guangzhou. For 3011
the next step, the promising cities to go to are [Helsinki, 3012
Guangzhou, Lahore]. 3013
The goal city is Guangzhou. Since Guangzhou is in the found, 3014
and the current selected path is Guatemala City-New York, the 3015
route is Guatemala City-New York-Guangzhou. 3016
Answer: Guatemala City-New York-Guangzhou 3017
Question: What is the flight route from Tegucigalpa to 3018
Helsinki? 3019
The queue is [Tegucigalpa]. Take the first path, Tegucigalpa, 3020
from the queue. 3021
The current city is Tegucigalpa, which is not in the explored 3022
list. Thus, put the current city into the explored list. The 3023
explored list is [Tegucigalpa] 3024
The current city is Tegucigalpa and the goal is Helsinki. For 3025
the next step, the promising cities to go to are [Guatemala 3026
City, Miami]. 3027
Puting those cities into the queue. The queue is [Tegucigalpa- 3028
Guatemala City, Tegucigalpa-Miami]. 3029
Take the first path, Tegucigalpa-Guatemala City, from the 3030
queue. 3031
The current city is Guatemala City, which is not in the 3032
explored list. Thus, put the current city into the explored 3033
list. The explored list is [Tegucigalpa, Guatemala City] 3034
The current city is Guatemala City and the goal is Helsinki. 3035
For the next step, the promising cities to go to are [New York, 3036
Los Angeles, Mexico City]. 3037

Puting those cities into the queue. The queue is [Tegucigalpa- 3038
Miami, Tegucigalpa-Guatemala City-New York, Tegucigalpa- 3039
Guatemala City-Los Angeles, Tegucigalpa-Guatemala City-Mexico 3040
City]. 3041
Take the first path, Tegucigalpa-Miami, from the queue. 3042
The current city is Miami, which is not in the explored list. 3043
Thus, put the current city into the explored list. The 3044
explored list is [Tegucigalpa, Guatemala City, Miami] 3045
The current city is Miami and the goal is Helsinki. For the 3046
next step, the promising cities to go to are [Sao Paulo, 3047
Buenos Aires, Chicago]. 3048
Puting those cities into the queue. The queue is [Tegucigalpa- 3049
Guatemala City-New York, Tegucigalpa-Guatemala City-Los 3050
Angeles, Tegucigalpa-Guatemala City-Mexico City, Tegucigalpa- 3051
Miami-Sao Paulo, Tegucigalpa-Miami-Buenos Aires, Tegucigalpa- 3052
Miami-Chicago]. 3053
Take the first path, Tegucigalpa-Guatemala City-New York, from 3054
the queue. 3055

The current city is New York, which is not in the explored 3056

29

list. Thus, put the current city into the explored list. The3057
explored list is [Tegucigalpa, Guatemala City, Miami, New York3058
]3059
The current city is New York and the goal is Helsinki. For the3060
next step, the promising cities to go to are [Helsinki,3061

Guangzhou, Lahore].3062
The goal city is Helsinki. Since Helsinki is in the found, and3063
the current selected path is Tegucigalpa-Guatemala City-New3064

York, the route is Tegucigalpa-Guatemala City-New York-3065
Helsinki.3066
Answer: Tegucigalpa-Guatemala City-New York-Helsinki3067
Question: {input}3068
Let’s think step by step.3069
"""3070

I.5 Game of 24 prompts3071

Listing 14: CoT prompts
cot_prompt_1s = ’’’Use numbers and basic arithmetic operations3072
(+ - * /) to obtain 24. Each step, you are only allowed to3073

choose two of the remaining numbers to obtain a new number.3074
Please strictly follow the format of the example. Do not3075
include unnecessary information in your output. Do not include3076
serial numbers that are not in the example.3077

Input: 4 4 6 83078
Steps:3079
4 + 8 = 12 (left: 4 6 12)3080
6 - 4 = 2 (left: 2 12)3081
2 * 12 = 24 (left: 24)3082
Answer: (6 - 4) * (4 + 8) = 243083
Input: {input}3084
’’’3085

3086
cot_prompt_3s = ’’’Use numbers and basic arithmetic operations3087
(+ - * /) to obtain 24. Each step, you are only allowed to3088

choose two of the remaining numbers to obtain a new number.3089
Please strictly follow the format of the example. Do not3090
include unnecessary information in your output. Do not include3091
serial numbers that are not in the example.3092

Input: 4 4 6 83093
Steps:3094
4 + 8 = 12 (left: 4 6 12)3095
6 - 4 = 2 (left: 2 12)3096
2 * 12 = 24 (left: 24)3097
Answer: (6 - 4) * (4 + 8) = 243098
Input: 2 9 10 123099
Steps:3100
12 * 2 = 24 (left: 9 10 24)3101
10 - 9 = 1 (left: 1 24)3102
24 * 1 = 24 (left: 24)3103
Answer: (12 * 2) * (10 - 9) = 243104
Input: 4 9 10 133105
Steps:3106
13 - 10 = 3 (left: 3 4 9)3107
9 - 3 = 6 (left: 4 6)3108
4 * 6 = 24 (left: 24)3109
Answer: 4 * (9 - (13 - 10)) = 243110
Input: {input}3111
’’’3112

3113
cot_prompt_5s = ’’’Use numbers and basic arithmetic operations3114
(+ - * /) to obtain 24. Each step, you are only allowed to3115

choose two of the remaining numbers to obtain a new number.3116
Please strictly follow the format of the example. Do not3117
include unnecessary information in your output. Do not include3118
serial numbers that are not in the example.3119

Input: 4 4 6 83120
Steps:3121
4 + 8 = 12 (left: 4 6 12)3122
6 - 4 = 2 (left: 2 12)3123
2 * 12 = 24 (left: 24)3124
Answer: (6 - 4) * (4 + 8) = 243125
Input: 2 9 10 123126
Steps:3127
12 * 2 = 24 (left: 9 10 24)3128
10 - 9 = 1 (left: 1 24)3129
24 * 1 = 24 (left: 24)3130
Answer: (12 * 2) * (10 - 9) = 243131
Input: 4 9 10 133132
Steps:3133
13 - 10 = 3 (left: 3 4 9)3134
9 - 3 = 6 (left: 4 6)3135
4 * 6 = 24 (left: 24)3136
Answer: 4 * (9 - (13 - 10)) = 243137

Input: 1 4 8 8 3138
Steps: 3139
8 / 4 = 2 (left: 1 2 8) 3140
1 + 2 = 3 (left: 3 8) 3141
3 * 8 = 24 (left: 24) 3142
Answer: (1 + 8 / 4) * 8 = 24 3143
Input: 5 5 5 9 3144
Steps: 3145
5 + 5 = 10 (left: 5 9 10) 3146
10 + 5 = 15 (left: 9 15) 3147
15 + 9 = 24 (left: 24) 3148
Answer: ((5 + 5) + 5) + 9 = 24 3149
Input: {input} 3150
’’’ 3151

Listing 15: ToT prompts
propose_prompt_1s = ’’’Use numbers and basic arithmetic 3152
operations (+ - * /) to propose possible next steps of 3153
operation. Each step, you are only allowed to choose two of 3154
the input numbers to obtain a new number. 3155
Do not include serial numbers that are not in the example. Do 3156
not include unnecessary information in your output. 3157
Input: 2 8 8 14 3158
Possible next steps: 3159
2 + 8 = 10 (left: 8 10 14) 3160
8 / 2 = 4 (left: 4 8 14) 3161
14 + 2 = 16 (left: 8 8 16) 3162
2 * 8 = 16 (left: 8 14 16) 3163
8 - 2 = 6 (left: 6 8 14) 3164
14 - 8 = 6 (left: 2 6 8) 3165
14 / 2 = 7 (left: 7 8 8) 3166
14 - 2 = 12 (left: 8 8 12) 3167
Input: {input} 3168
Possible next steps: 3169
’’’ 3170

3171
propose_prompt_3s = ’’’Use numbers and basic arithmetic 3172
operations (+ - * /) to propose possible next steps of 3173
operation. Each step, you are only allowed to choose two of 3174
the input numbers to obtain a new number. 3175
Do not include serial numbers that are not in the example. Do 3176
not include unnecessary information in your output. 3177
Input: 2 8 8 14 3178
Possible next steps: 3179
2 + 8 = 10 (left: 8 10 14) 3180
8 / 2 = 4 (left: 4 8 14) 3181
14 + 2 = 16 (left: 8 8 16) 3182
2 * 8 = 16 (left: 8 14 16) 3183
8 - 2 = 6 (left: 6 8 14) 3184
14 - 8 = 6 (left: 2 6 8) 3185
14 / 2 = 7 (left: 7 8 8) 3186
14 - 2 = 12 (left: 8 8 12) 3187
Input: 1 2 7 10 3188
Possible next steps: 3189
1 + 2 = 3 (left: 3 7 10) 3190
2 + 7 = 9 (left: 1 9 10) 3191
7 + 10 = 17 (left: 1 2 17) 3192
1 * 2 = 2 (left: 2 7 10) 3193
2 * 7 = 14 (left: 1 14 10) 3194
7 * 10 = 70 (left: 1 2 70) 3195
1 - 2 = -1 (left: -1 7 10) 3196
2 - 7 = -5 (left: 1 -5 10) 3197
7 - 10 = -3 (left: 1 2 -3) 3198
1 / 2 = 0.5 (left: 0.5 7 10) 3199
2 / 7 = 0.29 (left: 1 0.29 10) 3200
7 / 10 = 0.7 (left: 1 2 0.7) 3201
Input: 4 4 6 8 3202
Possible next steps: 3203
4 + 4 = 8 (left: 6 8 8) 3204
4 + 6 = 10 (left: 8 10 8) 3205
6 + 8 = 14 (left: 4 14 8) 3206
4 * 4 = 16 (left: 6 8 16) 3207
4 * 6 = 24 (left: 8 24 8) 3208
6 * 8 = 48 (left: 4 48 8) 3209
4 - 4 = 0 (left: 0 6 8) 3210
4 - 6 = -2 (left: -2 8 8) 3211
6 - 8 = -2 (left: 4 -2 8) 3212
4 / 4 = 1 (left: 1 6 8) 3213
4 / 6 = 0.67 (left: 8 0.67 8) 3214
6 / 8 = 0.75 (left: 4 0.75 8) 3215
Input: {input} 3216
Possible next steps: 3217
’’’ 3218

3219
propose_prompt_5s = ’’’Use numbers and basic arithmetic 3220
operations (+ - * /) to propose possible next steps of 3221

30

operation. Each step, you are only allowed to choose two of3222
the input numbers to obtain a new number.3223
Do not include serial numbers that are not in the example. Do3224
not include unnecessary information in your output.3225
Input: 2 8 8 143226
Possible next steps:3227
2 + 8 = 10 (left: 8 10 14)3228
8 / 2 = 4 (left: 4 8 14)3229
14 + 2 = 16 (left: 8 8 16)3230
2 * 8 = 16 (left: 8 14 16)3231
8 - 2 = 6 (left: 6 8 14)3232
14 - 8 = 6 (left: 2 6 8)3233
14 / 2 = 7 (left: 7 8 8)3234
14 - 2 = 12 (left: 8 8 12)3235
Input: 1 2 7 103236
Possible next steps:3237
1 + 2 = 3 (left: 3 7 10)3238
2 + 7 = 9 (left: 1 9 10)3239
7 + 10 = 17 (left: 1 2 17)3240
1 * 2 = 2 (left: 2 7 10)3241
2 * 7 = 14 (left: 1 14 10)3242
7 * 10 = 70 (left: 1 2 70)3243
1 - 2 = -1 (left: -1 7 10)3244
2 - 7 = -5 (left: 1 -5 10)3245
7 - 10 = -3 (left: 1 2 -3)3246
1 / 2 = 0.5 (left: 0.5 7 10)3247
2 / 7 = 0.29 (left: 1 0.29 10)3248
7 / 10 = 0.7 (left: 1 2 0.7)3249
Input: 4 4 6 83250
Possible next steps:3251
4 + 4 = 8 (left: 6 8 8)3252
4 + 6 = 10 (left: 8 10 8)3253
6 + 8 = 14 (left: 4 14 8)3254
4 * 4 = 16 (left: 6 8 16)3255
4 * 6 = 24 (left: 8 24 8)3256
6 * 8 = 48 (left: 4 48 8)3257
4 - 4 = 0 (left: 0 6 8)3258
4 - 6 = -2 (left: -2 8 8)3259
6 - 8 = -2 (left: 4 -2 8)3260
4 / 4 = 1 (left: 1 6 8)3261
4 / 6 = 0.67 (left: 8 0.67 8)3262
6 / 8 = 0.75 (left: 4 0.75 8)3263
Input: 3 4 5 63264
Possible next steps:3265
3 + 4 = 7 (left: 5 6 7)3266
4 + 5 = 9 (left: 6 9 7)3267
4 + 6 = 10 (left: 5 10 7)3268
5 + 6 = 11 (left: 4 11 7)3269
3 * 4 = 12 (left: 5 6 12)3270
4 * 5 = 20 (left: 6 20 7)3271
4 * 6 = 24 (left: 5 24 7)3272
5 * 6 = 30 (left: 4 30 7)3273
3 - 4 = -1 (left: -1 5 6)3274
4 - 5 = -1 (left: 6 -1 7)3275
4 - 6 = -2 (left: 5 -2 7)3276
5 - 6 = -1 (left: 4 -1 7)3277
3 / 4 = 0.75 (left: 0.75 5 6)3278
4 / 5 = 0.8 (left: 6 0.8 7)3279
4 / 6 = 0.67 (left: 5 0.67 7)3280
5 / 6 = 0.83 (left: 4 0.83 7)3281
Input: 2 4 63282
Possible next steps:3283
2 + 4 = 6 (left: 6 6)3284
4 + 6 = 10 (left: 6 10)3285
2 * 4 = 8 (left: 6 8)3286
4 * 6 = 24 (left: 6 24)3287
2 - 4 = -2 (left: -2 6)3288
4 - 6 = -2 (left: 8 -2)3289
2 / 4 = 0.5 (left: 0.5 6)3290
4 / 6 = 0.67 (left: 8 0.67)3291
Input: {input}3292
Possible next steps:3293
’’’3294

I.5.1 ToT Decomp prompts3295

Listing 16: ToT Decomp prompts
select_prompt_1s = ’’’Select two numbers using the bracket.3296
For example, (2) 8 8 (14) means select 2 and 14. Follow the3297
format of the example.3298
Do not include serial numbers that are not in the example. Do3299
not include unnecessary information in your output.3300
Input: 1 2 7 103301
Select all combinations of two numbers using bracket.3302

Output: 3303
(1) (2) 7 10 3304
1 (2) (7) 10 3305
1 2 (7) (10) 3306
(1) 2 (7) 10 3307
(1) 2 7 (10) 3308
1 (2) 7 (10) 3309
Input: {input} 3310
Select all combinations of two numbers using bracket. 3311
Output: 3312
’’’ 3313

3314
3315

select_prompt_3s = ’’’Select two numbers using the bracket. 3316
For example, (2) 8 8 (14) means select 2 and 14. Follow the 3317
format of the example. 3318
Do not include serial numbers that are not in the example. Do 3319
not include unnecessary information in your output. 3320
Input: 7 8 9 3321
Select all combinations of two numbers using bracket. 3322
Output: 3323
(7) (8) 9 3324
7 (8) (9) 3325
(7) 8 (9) 3326
Input: 2.33 6 3327
Output: 3328
(2.33) (6) 3329
Input: 1 2 7 10 3330
Select all combinations of two numbers using bracket. 3331
Output: 3332
(1) (2) 7 10 3333
1 (2) (7) 10 3334
1 2 (7) (10) 3335
(1) 2 (7) 10 3336
(1) 2 7 (10) 3337
1 (2) 7 (10) 3338
Input: {input} 3339
Select all combinations of two numbers using bracket. 3340
Output: 3341
’’’ 3342

3343
3344

select_prompt_5s = ’’’Select two numbers using the bracket. 3345
For example, (2) 8 8 (14) means select 2 and 14. Follow the 3346
format of the example. 3347
Do not include serial numbers that are not in the example. Do 3348
not include unnecessary information in your output. 3349
Input: 7 8 9 3350
Select all combinations of two numbers using bracket. 3351
Output: 3352
(7) (8) 9 3353
7 (8) (9) 3354
(7) 8 (9) 3355
Input: 2.33 6 3356
Output: 3357
(2.33) (6) 3358
Input: 1 2 7 10 3359
Select all combinations of two numbers using bracket. 3360
Output: 3361
(1) (2) 7 10 3362
1 (2) (7) 10 3363
1 2 (7) (10) 3364
(1) 2 (7) 10 3365
(1) 2 7 (10) 3366
1 (2) 7 (10) 3367
Input: 0.66 8 9 3368
Select all combinations of two numbers using bracket. 3369
Output: 3370
(0.66) (8) 9 3371
0.66 (8) (9) 3372
(0.66) 8 (9) 3373
Input: 2 8 8 14 3374
Select all combinations of two numbers using bracket. 3375
Output: 3376
(2) (8) 8 14 3377
2 (8) (8) 14 3378
2 8 (8) (14) 3379
(2) 8 (8) 14 3380
(2) 8 8 (14) 3381
2 (8) 8 (14) 3382
Input: {input} 3383
Select all combinations of two numbers using bracket. 3384
Output: 3385
’’’ 3386

3387
propose_prompt_1s = ’’’Use the two numbers in the bracket and 3388
basic arithmetic operations to propose possible next steps. 3389

31

Then, remove the selected numbers by the new number. Use the3390
format ’(left: ...)’ to present the remaining numbers.3391
Do not include serial numbers that are not in the example. Do3392
not include unnecessary information in your output.3393
Input: (2) 8 8 (14)3394
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)3395
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)3396
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)3397
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)3398
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)3399
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)3400
Input: {input}3401
’’’3402

3403
propose_prompt_3s = ’’’Use the two numbers in the bracket and3404
basic arithmetic operations to propose possible next steps.3405
Then, remove the selected numbers by the new number. Use the3406
format ’(left: ...)’ to present the remaining numbers.3407
Do not include serial numbers that are not in the example. Do3408
not include unnecessary information in your output.3409
Input: (2) 8 8 (14)3410
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)3411
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)3412
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)3413
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)3414
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)3415
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)3416
Input: 1 (2) 7 (10)3417
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)3418
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)3419
2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10)3420
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10)3421
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10)3422
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10)3423
Input: (7) (8) 93424
7 + 8 = 15, replace 7 8 by 15 (left: 15 9)3425
7 * 8 = 56, replace 7 8 by 56 (left: 56 9)3426
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9)3427
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9)3428
8 - 7 = 1, replace 7 8 by 1 (left: 1 9)3429
7 - 8 = -1, replace 7 8 by -1 (left: -1 9)3430
Input: {input}3431
’’’3432

3433
propose_prompt_5s = ’’’Use the two numbers in the bracket and3434
basic arithmetic operations to propose possible next steps.3435
Then, remove the selected numbers by the new number. Use the3436
format ’(left: ...)’ to present the remaining numbers.3437
Do not include serial numbers that are not in the example. Do3438
not include unnecessary information in your output.3439
Input: (2) 8 8 (14)3440
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)3441
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)3442
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)3443
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)3444
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)3445
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)3446
Input: 1 (2) 7 (10)3447
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)3448
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)3449
2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10)3450
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10)3451
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10)3452
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10)3453
Input: (7) (8) 93454
7 + 8 = 15, replace 7 8 by 15 (left: 15 9)3455
7 * 8 = 56, replace 7 8 by 56 (left: 56 9)3456
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9)3457
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9)3458
8 - 7 = 1, replace 7 8 by 1 (left: 1 9)3459
7 - 8 = -1, replace 7 8 by -1 (left: -1 9)3460
Input: (2.33) (6)3461
2.33 + 6 = 8.33, replace 2.33 6 by 8.33 (left: 8.33)3462
2.33 * 6 = 14, replace 2.33 6 by 14 (left: 14)3463
2.33 / 6 = 0.39, replace 2.33 6 by 0.39 (left: 0.39)3464
6 / 2.33 = 2.57, replace 2.33 6 by 2.57 (left: 2.57)3465
6 - 2.33 = 3.67, replace 2.33 6 by 3.67 (left: 3.67)3466
2.33 - 6 = -3.67, replace 2.33 6 by -3.67 (left: -3.67)3467
Input: 0.66 (8) (9)3468
8 + 9 = 17, replace 8 9 by 17 (left: 0.66 17)3469
8 * 9 = 72, replace 8 9 by 72 (left: 0.66 72)3470
8 / 9 = 0.89, replace 8 9 by 0.89 (left: 0.66 0.89)3471
9 / 8 = 1.12, replace 8 9 by 1.12 (left: 0.66 1.12)3472
9 - 8 = 1, replace 8 9 by 1 (left: 0.66 1)3473
8 - 9 = -1, replace 8 9 by -1 (left: 0.66 -1)3474
Input: {input}3475
’’’3476

3477
assembly_prompt_1s = ’’’Use the previous steps of equations to 3478
form a final equation that obtains 24. Use ’Answer: ’ to 3479

present your final answer. 3480
Input: 4 4 6 8 3481
Steps: 3482
4 + 8 = 12 (left: 4 6 12) 3483
6 - 4 = 2 (left: 2 12) 3484
2 * 12 = 24 (left: 24) 3485
Let’s do it step by step: 3486
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input. 3487
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input. 3488
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from 3489
f1. 3490
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24 3491
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24 3492
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 * 3493
(4 + 8) = 24 3494
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 - 3495
4) * (4 + 8) = 24 3496
Answer: (6 - 4) * (4 + 8) = 24 3497
Input: {input}Let’s do it step by step: 3498
f1 = ’’’ 3499

3500
assembly_prompt_3s = ’’’Use the previous steps of equations to 3501
form a final equation that obtains 24. Use ’Answer: ’ to 3502

present your final answer. 3503
Input: 4 4 6 8 3504
Steps: 3505
4 + 8 = 12 (left: 4 6 12) 3506
6 - 4 = 2 (left: 2 12) 3507
2 * 12 = 24 (left: 24) 3508
Let’s do it step by step: 3509
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input. 3510
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input. 3511
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from 3512
f1. 3513
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24 3514
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24 3515
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 * 3516
(4 + 8) = 24 3517
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 - 3518
4) * (4 + 8) = 24 3519
Answer: (6 - 4) * (4 + 8) = 24 3520
Input: 2 9 10 12 3521
Steps: 3522
12 * 2 = 24 (left: 9 10 24) 3523
10 - 9 = 1 (left: 1 24) 3524
24 * 1 = 24 (left: 24) 3525
Let’s do it step by step: 3526
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input. 3527
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input. 3528
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from 3529
f2. 3530
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 24 3531
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 24 3532
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (12 3533
* 2) * f2 = 24 3534
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (12 3535
* 2) * (10 - 9) = 24 3536
Answer: (12 * 2) * (10 - 9) = 24 3537
Input: 4 9 10 13 3538
Steps: 3539
13 - 10 = 3 (left: 3 4 9) 3540
9 - 3 = 6 (left: 4 6) 3541
4 * 6 = 24 (left: 24) 3542
Let’s do it step by step: 3543
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input. 3544
f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is 3545
from f1. 3546
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 6 3547
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is 3548
from f2. 3549
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 24 3550
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 * 3551
(9 - f1) = 24 3552
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 * 3553
(9 - (13 - 10)) = 24 3554

Answer: 4 * (9 - (13 - 10)) = 24 3555
Input: {input}Let’s do it step by step: 3556
f1 = ’’’ 3557

3558
assembly_prompt_5s = ’’’Use the previous steps of equations to 3559
form a final equation that obtains 24. Use ’Answer: ’ to 3560

present your final answer. 3561
Input: 4 4 6 8 3562
Steps: 3563

32

4 + 8 = 12 (left: 4 6 12)3564
6 - 4 = 2 (left: 2 12)3565
2 * 12 = 24 (left: 24)3566
Let’s do it step by step:3567
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input.3568
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input.3569
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from3570
f1.3571
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 243572
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 243573
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 *3574
(4 + 8) = 243575
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 -3576
4) * (4 + 8) = 243577
Answer: (6 - 4) * (4 + 8) = 243578
Input: 2 9 10 123579
Steps:3580
12 * 2 = 24 (left: 9 10 24)3581
10 - 9 = 1 (left: 1 24)3582
24 * 1 = 24 (left: 24)3583
Let’s do it step by step:3584
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input.3585
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input.3586
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from3587
f2.3588
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 243589
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 243590
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (123591
* 2) * f2 = 243592
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (123593
* 2) * (10 - 9) = 243594
Answer: (12 * 2) * (10 - 9) = 243595
Input: 4 9 10 133596
Steps:3597
13 - 10 = 3 (left: 3 4 9)3598
9 - 3 = 6 (left: 4 6)3599
4 * 6 = 24 (left: 24)3600
Let’s do it step by step:3601
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input.3602
f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is3603
from f1.3604
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 63605
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is3606
from f2.3607
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 243608
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 *3609
(9 - f1) = 243610
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 *3611
(9 - (13 - 10)) = 243612

Answer: 4 * (9 - (13 - 10)) = 243613
Input: 1 4 8 83614
Steps:3615
8 / 4 = 2 (left: 1 2 8)3616
1 + 2 = 3 (left: 3 8)3617
3 * 8 = 24 (left: 24)3618
Let’s do it step by step:3619
f1 = 8 / 4 = 2. In this step, 8 and 4 are from the input.3620
f2 = 1 + 2 = 3. In this step, 2 is from f1, and 1 is from the3621
input.3622
Thus, we replace 2 by f1: f2 = 1 + 2 = 1 + f1 = (1 + (8 / 4))3623
= 33624
f3 = 3 * 8 = 24. In this step, 3 is from f2, and 8 is from the3625
input.3626

Thus, we replace 3 by f2: f3 = 3 * 8 = f2 * 8 = 243627
Since f2 = 1 + f1, we replace f2 by 1 + f1: f3 = 3 * 8 = (1 +3628
f1) * 8 = 243629
Since f1 = 8 / 4, we replace f1 by 8 / 4: (1 + f1) * 8 = (1 +3630
(8 / 4)) * 8 = 243631
Answer: (1 + (8 / 4)) * 8 = 243632
Input: 5 5 5 93633
Steps:3634
5 + 5 = 10 (left: 5 9 10)3635
10 + 5 = 15 (left: 9 15)3636
15 + 9 = 24 (left: 24)3637
Let’s do it step by step:3638
f1 = 5 + 5 = 10. In this step, 5 and 5 are from the input.3639
f2 = 10 + 5 = 15. In this step, 10 is from f1, and 5 is from3640
the input.3641
Thus, we replace 10 by f1: f2 = 10 + 5 = f1 + 5 = 153642
f3 = 15 + 9 = 24. In this step, 15 is from f2, and 9 is from3643
the input.3644
Thus, we replace 15 by f2: f3 = 15 + 9 = f2 + 9 = 243645
Since f2 = f1 + 5, we replace f2 by f1 + 5: f3 = 15 + 9 = (f13646
+ 5) + 9 = 243647
Since f1 = 5 + 5, we replace f1 by 5 + 5: f3 = 15 + 9 = ((5 +3648
5) + 5) + 9 = 243649
Answer: ((5 + 5) + 5) + 9 = 243650

Input: {input}Let’s do it step by step: 3651
f1 = ’’’ 3652

Listing 17: MusiQue prompts
direct = """Please answer a question given some paragraphs as 3653
context. Respond only the answer, in the format "The answer is 3654
###." 3655

3656
Below are some examples (contexts are omitted): 3657

3658
Question: What is the extreme low temperature of the city 3659
where WNJN-FM is located? 3660
The answer is -9 °F. 3661

3662
Question: When did muslim armies invade the country Al-Mahabah 3663
is located and the country Kleicha originates? 3664

The answer is in 634. 3665
3666

Question: When did hurricane Sandy his the city where The 3667
Dealer’s performer was born? 3668
The answer is October 28, 2012. 3669

3670
Question: What is the enrollment of undergraduates at the 3671
university attended by the entrepreneur owning the gold spike 3672
in the location holding PollyGrind Film Festival? 3673
The answer is 7,200. 3674

3675
Question: When did the nation that seized the country where Al- 3676
Berka is located from the empire that declined following the 3677
Crimean War join the Allies in WW2? 3678
The answer is September 1943. 3679

3680
Question: An institution like a German Fachhochschule is known 3681
by what term in Éric Losfeld’s birth country and the country 3682

where painters remained focused on textures and surfaces. 3683
The answer is hogeschool. 3684

3685
Now, answer a question given the following paragraphs as 3686
context: 3687

3688
{ctx} 3689

3690
Question: {question} 3691
The answer is""" 3692

3693
cot = """Please answer a question given some paragraphs as 3694
context. Respond by decomposing the question into subquestions, 3695
and end with the format "The answer is ###." 3696

3697
Below are some examples (contexts are omitted): 3698
Question: What is the extreme low temperature of the city 3699
where WNJN-FM is located? 3700
The question can be decomposed into following subquestions: 3701
What city is WNJN-FM located? Answer: Atlantic City 3702
What is the extreme low temperature of Atlantic City ? Answer: 3703
-9 °F 3704

The answer is -9 °F. 3705
3706

Question: When did muslim armies invade the country Al-Mahabah 3707
is located and the country Kleicha originates? 3708

The question can be decomposed into following subquestions: 3709
Which was the country for Kleicha? Answer: Iraq 3710
Which country is Al-Mahabah in? Answer: Syria 3711
When did muslim armies invade Syria and Iraq? Answer: in 634 3712
The answer is in 634. 3713

3714
Question: When did hurricane Sandy his the city where The 3715
Dealer’s performer was born? 3716
The question can be decomposed into following subquestions: 3717
Who is The Dealers’ performer? Answer: Mal Waldron 3718
Where is Mal Waldron’s place of birth? Answer: New York City 3719
When did hurricane sandy hit New York City? Answer: October 28, 3720
2012 3721

The answer is October 28, 2012. 3722
3723

Question: What is the enrollment of undergraduates at the 3724
university attended by the entrepreneur owning the gold spike 3725
in the location holding PollyGrind Film Festival? 3726
The question can be decomposed into following subquestions: 3727
What is the location of PollyGrind Film Festival? Answer: Las 3728
Vegas 3729
Who owns the gold spike in Las Vegas? Answer: Tony Hsieh 3730
Tony Hsieh is educated at where? Answer: Harvard 3731
What is the enrollment of undergraduates at Harvard ? Answer: 3732
7,200 3733

33

The answer is 7,200.3734
3735

Question: When did the nation that seized the country where Al-3736
Berka is located from the empire that declined following the3737
Crimean War join the Allies in WW2?3738
The question can be decomposed into following subquestions:3739
Which country is Al-Berka in? Answer: Libya3740
What empire declined after the Crimean War? Answer: the3741
Ottoman Empire3742
Which european state seized Libya from the Ottoman Empire in3743
1911? Answer: Italy3744
When did Italy join the allies in ww2? Answer: September 19433745
The answer is September 1943.3746

3747
Question: An institution like a German Fachhochschule is known3748
by what term in Éric Losfeld’s birth country and the country3749

where painters remained focused on textures and surfaces.3750
The question can be decomposed into following subquestions:3751
Where is Éric Losfeld’s place of birth? Answer: Mouscron3752
Arrondissement of Mouscron >> country? Answer: Belgium3753
Where was the focus of paintings on textures and surfaces?3754
Answer: the Netherlands3755
What term is used in Belgium and the the Netherlands to refer3756
to an institution like a German Fachhochschule? Answer:3757
hogeschool3758
The answer is hogeschool.3759

3760
Now, answer a question given the following paragraphs as3761
context:3762

3763
{ctx}3764

3765
Question: {question}3766
The question can be decomposed into following subquestions:"""3767

3768
direct_triplet = """Please answer a question given some3769
relation triplets as context. Respond only the answer, in the3770
format "The answer is ###."3771

3772
Below are some examples:3773

3774
Relation triplets:3775
(WNJN-FM, located in, Atlantic City)3776
(The extreme low temperature of Atlantic City, is, -9 °F)3777
Question: What is the extreme low temperature of the city3778
where WNJN-FM is located?3779
The answer is -9 °F.3780

3781
Relation triplets:3782
(Kleicha, country, Iraq)3783
(Al-Mahabah, country, Syria)3784
(Muslim armies, invade, Syria and Iraq)3785
(Syria and Iraq, invaded in, 634)3786
Question: When did muslim armies invade the country Al-Mahabah3787
is located and the country Kleicha originates?3788

The answer is in 634.3789
3790

Relation triplets:3791
(The Dealers, performer, Mal Waldron)3792
(Mal Waldron, place of birth, New York City)3793
(Hurricane Sandy, hit New York City, October 28, 2012)3794
Question: When did hurricane Sandy his the city where The3795
Dealer’s performer was born?3796
The answer is October 28, 2012.3797

3798
Relation triplets:3799
(PollyGrind Film Festival, location, Las Vegas)3800
(Gold Spike, owned by, Tony Hsieh)3801
(Tony Hsieh, educated at, Harvard)3802
(Harvard, undergraduate enrollment, 7,200)3803
Question: What is the enrollment of undergraduates at the3804
university attended by the entrepreneur owning the gold spike3805
in the location holding PollyGrind Film Festival?3806
The answer is 7,200.3807

3808
Relation triplets:3809
(Al-Berka, country, Libya))3810
(Ottoman Empire, declined after, Crimean War)3811
(The European state, seized Libya from the Ottoman Empire in3812
1911, Italy)3813
(Italy, join the allies in WW2, September 1943)3814
Question: When did the nation that seized the country where Al-3815
Berka is located from the empire that declined following the3816
Crimean War join the Allies in WW2?3817
The answer is September 1943.3818

3819
Relation triplets:3820

(Éric Losfeld, place of birth, Mouscron) 3821
(The Collegian, owned by, Houston Baptist University) 3822
(Houston Baptist University, founded, 1960) 3823
(Hertfordshire, located in, East of England) 3824
(Jan Šindel, birthplace, Hradec Králové) 3825
(Arrondissement of Mouscron, country, Belgium) 3826
(The focus of paintings on textures and surfaces, located in, 3827
the Netherlands) 3828
(Belgium and the Netherlands, refer to, hogeschool) 3829
Question: An institution like a German Fachhochschule is known 3830
by what term in Éric Losfeld’s birth country and the country 3831

where painters remained focused on textures and surfaces. 3832
The answer is hogeschool. 3833

3834
Now, answer a question given the following relation triplets 3835
as context: 3836

3837
{ctx} 3838

3839
Question: {question} 3840
The answer is""" 3841

3842
cot_triplet = """Please answer a question given some relation 3843
triplets as context. Respond by decomposing the question into 3844
subquestions, and end with the format "The answer is ###." 3845

3846
Below are some examples: 3847
Relation treiplets: 3848
(WNJN-FM, located in, Atlantic City) 3849
(The extreme low temperature of Atlantic City, is, -9 °F) 3850
Question: What is the extreme low temperature of the city 3851
where WNJN-FM is located? 3852
The question can be decomposed into following subquestions: 3853
What city is WNJN-FM located? Answer: Atlantic City 3854
What is the extreme low temperature of Atlantic City ? Answer: 3855
-9 °F 3856

The answer is -9 °F. 3857
3858
3859

Relation treiplets: 3860
(Kleicha, country, Iraq) 3861
(Al-Mahabah, country, Syria) 3862
(Muslim armies, invade, Syria and Iraq) 3863
(Syria and Iraq, invaded in, 634) 3864
Question: When did muslim armies invade the country Al-Mahabah 3865
is located and the country Kleicha originates? 3866

The question can be decomposed into following subquestions: 3867
Which was the country for Kleicha? Answer: Iraq 3868
Which country is Al-Mahabah in? Answer: Syria 3869
When did muslim armies invade Syria and Iraq? Answer: in 634 3870
The answer is in 634. 3871

3872
3873

Relation treiplets: 3874
(The Dealers, performer, Mal Waldron) 3875
(Mal Waldron, place of birth, New York City) 3876
(Hurricane Sandy, hit New York City, October 28, 2012) 3877
Question: When did hurricane Sandy his the city where The 3878
Dealer’s performer was born? 3879
The question can be decomposed into following subquestions: 3880
Who is The Dealers’ performer? Answer: Mal Waldron 3881
Where is Mal Waldron’s place of birth? Answer: New York City 3882
When did hurricane sandy hit New York City? Answer: October 28, 3883
2012 3884

The answer is October 28, 2012. 3885
3886
3887

Relation treiplets: 3888
(PollyGrind Film Festival, location, Las Vegas) 3889
(Gold Spike, owned by, Tony Hsieh) 3890
(Tony Hsieh, educated at, Harvard) 3891
(Harvard, undergraduate enrollment, 7,200) 3892
Question: What is the enrollment of undergraduates at the 3893
university attended by the entrepreneur owning the gold spike 3894
in the location holding PollyGrind Film Festival? 3895
The question can be decomposed into following subquestions: 3896
What is the location of PollyGrind Film Festival? Answer: Las 3897
Vegas 3898
Who owns the gold spike in Las Vegas? Answer: Tony Hsieh 3899
Tony Hsieh is educated at where? Answer: Harvard 3900
What is the enrollment of undergraduates at Harvard ? Answer: 3901
7,200 3902
The answer is 7,200. 3903

3904
3905

Relation treiplets: 3906
(Al-Berka, country, Libya)) 3907

34

(Ottoman Empire, declined after, Crimean War)3908
(The European state, seized Libya from the Ottoman Empire in3909
1911, Italy)3910
(Italy, join the allies in WW2, September 1943)3911
Question: When did the nation that seized the country where Al-3912
Berka is located from the empire that declined following the3913
Crimean War join the Allies in WW2?3914
The question can be decomposed into following subquestions:3915
Which country is Al-Berka in? Answer: Libya3916
What empire declined after the Crimean War? Answer: the3917
Ottoman Empire3918
Which european state seized Libya from the Ottoman Empire in3919
1911? Answer: Italy3920
When did Italy join the allies in ww2? Answer: September 19433921
The answer is September 1943.3922

3923
3924

Relation treiplets:3925
(Éric Losfeld, place of birth, Mouscron)3926
(The Collegian, owned by, Houston Baptist University)3927
(Houston Baptist University, founded, 1960)3928
(Hertfordshire, located in, East of England)3929
(Jan Šindel, birthplace, Hradec Králové)3930
(Arrondissement of Mouscron, country, Belgium)3931
(The focus of paintings on textures and surfaces, located in,3932
the Netherlands)3933
(Belgium and the Netherlands, refer to, hogeschool)3934
Question: An institution like a German Fachhochschule is known3935
by what term in Éric Losfeld’s birth country and the country3936

where painters remained focused on textures and surfaces.3937
The question can be decomposed into following subquestions:3938
Where is Éric Losfeld’s place of birth? Answer: Mouscron3939
Arrondissement of Mouscron >> country? Answer: Belgium3940
Where was the focus of paintings on textures and surfaces?3941
Answer: the Netherlands3942
What term is used in Belgium and the the Netherlands to refer3943
to an institution like a German Fachhochschule? Answer:3944
hogeschool3945
The answer is hogeschool.3946

3947
3948

Now, answer a question given the following relation triplets3949
as context:3950

3951
{ctx}3952

3953
Question: {question}3954
The question can be decomposed into following subquestions:"""3955

3956
tot = """Please answer a question given some paragraphs as3957
context. Respond by decomposing the question into subquestions,3958
and end with the format "The answer to the original question3959

is ###." All questions can find their answers in the provided3960
paragraphs.3961

3962
Below are some examples to demonstrate the desired answering3963
format (contexts are omitted for brevity):3964
Question: What is the extreme low temperature of the city3965
where WNJN-FM is located?3966
The question can be decomposed into following subquestions:3967
sub question: What city is WNJN-FM located?3968
sub answer: Atlantic City3969
sub question: What is the extreme low temperature of Atlantic3970
City ?3971
sub answer: -9 °F3972
The answer to the original question is -9 °F.3973

3974
Question: When did muslim armies invade the country Al-Mahabah3975
is located and the country Kleicha originates?3976

The question can be decomposed into following subquestions:3977
sub question: Which was the country for Kleicha?3978
sub answer: Iraq3979
sub question: Which country is Al-Mahabah in?3980
sub answer: Syria3981
sub question: When did muslim armies invade Syria and Iraq?3982
sub answer: in 6343983
The answer to the original question is in 634.3984

3985
Question: When did hurricane Sandy his the city where The3986
Dealer’s performer was born?3987
The question can be decomposed into following subquestions:3988
sub question: Who is The Dealers’ performer?3989
sub answer: Mal Waldron3990
sub question: Where is Mal Waldron’s place of birth?3991
sub answer: New York City3992
sub question: When did hurricane sandy hit New York City?3993
sub answer: October 28, 20123994

The answer to the original question is October 28, 2012. 3995
3996

Question: What is the enrollment of undergraduates at the 3997
university attended by the entrepreneur owning the gold spike 3998
in the location holding PollyGrind Film Festival? 3999
The question can be decomposed into following subquestions: 4000
sub question: What is the location of PollyGrind Film Festival 4001
? 4002
sub answer: Las Vegas 4003
sub question: Who owns the gold spike in Las Vegas? 4004
sub answer: Tony Hsieh 4005
sub question: Tony Hsieh is educated at where? 4006
sub answer: Harvard 4007
sub question: What is the enrollment of undergraduates at 4008
Harvard ? 4009
sub answer: 7,200 4010
The answer to the original question is 7,200. 4011

4012
Question: When did the nation that seized the country where Al- 4013
Berka is located from the empire that declined following the 4014
Crimean War join the Allies in WW2? 4015
The question can be decomposed into following subquestions: 4016
sub question: Which country is Al-Berka in? 4017
sub answer: Libya 4018
sub question: What empire declined after the Crimean War? 4019
sub answer: the Ottoman Empire 4020
sub question: Which european state seized Libya from the 4021
Ottoman Empire in 1911? 4022
sub answer: Italy 4023
sub question: When did Italy join the allies in ww2? 4024
sub answer: September 1943 4025
The answer to the original question is September 1943. 4026

4027
Question: An institution like a German Fachhochschule is known 4028
by what term in Éric Losfeld’s birth country and the country 4029

where painters remained focused on textures and surfaces. 4030
The question can be decomposed into following subquestions: 4031
sub question: Where is Éric Losfeld’s place of birth? 4032
sub answer: Mouscron 4033
sub question: Arrondissement of Mouscron >> country? 4034
sub answer: Belgium 4035
sub question: Where was the focus of paintings on textures and 4036
surfaces? 4037

sub answer: the Netherlands 4038
sub question: What term is used in Belgium and the the 4039
Netherlands to refer to an institution like a German 4040
Fachhochschule? 4041
sub answer: hogeschool 4042
The answer to the original question is hogeschool. 4043

4044
Now, answer a question given the following paragraphs as 4045
context. Remember to decompose the question into subquestions, 4046
and it is guaranteed that the answer can be found in the 4047

provided paragraphs: 4048
4049

{ctx} 4050
4051

Now answer the following question. Remember to decompose the 4052
question into subquestions, and it is guaranteed that the 4053
answer can be found in the provided paragraphs. 4054

4055
Question: {question} 4056
The question can be decomposed into following subquestions:""" 4057

4058
tot_triplet = """Please answer a question given some 4059
paragraphs as context. Respond by decomposing the question 4060
into subquestions, and end with the format "The answer to the 4061
original question is ###." All questions can find their 4062
answers in the provided paragraphs. 4063

4064
Below are some examples to demonstrate the desired answering 4065
format (contexts are omitted for brevity): 4066
Question: What is the extreme low temperature of the city 4067
where WNJN-FM is located? 4068
The question can be decomposed into following subquestions: 4069
sub question: What city is WNJN-FM located? 4070
sub answer: Atlantic City 4071
sub question: What is the extreme low temperature of Atlantic 4072
City ? 4073
sub answer: -9 °F 4074
The answer to the original question is -9 °F. 4075

4076
Question: When did muslim armies invade the country Al-Mahabah 4077
is located and the country Kleicha originates? 4078

The question can be decomposed into following subquestions: 4079
sub question: Which was the country for Kleicha? 4080
sub answer: Iraq 4081

35

sub question: Which country is Al-Mahabah in?4082
sub answer: Syria4083
sub question: When did muslim armies invade Syria and Iraq?4084
sub answer: in 6344085
The answer to the original question is in 634.4086

4087
Question: When did hurricane Sandy his the city where The4088
Dealer’s performer was born?4089
The question can be decomposed into following subquestions:4090
sub question: Who is The Dealers’ performer?4091
sub answer: Mal Waldron4092
sub question: Where is Mal Waldron’s place of birth?4093
sub answer: New York City4094
sub question: When did hurricane sandy hit New York City?4095
sub answer: October 28, 20124096
The answer to the original question is October 28, 2012.4097

4098
Question: What is the enrollment of undergraduates at the4099
university attended by the entrepreneur owning the gold spike4100
in the location holding PollyGrind Film Festival?4101
The question can be decomposed into following subquestions:4102
sub question: What is the location of PollyGrind Film Festival4103
?4104
sub answer: Las Vegas4105
sub question: Who owns the gold spike in Las Vegas?4106
sub answer: Tony Hsieh4107
sub question: Tony Hsieh is educated at where?4108
sub answer: Harvard4109
sub question: What is the enrollment of undergraduates at4110
Harvard ?4111
sub answer: 7,2004112
The answer to the original question is 7,200.4113

4114
Question: When did the nation that seized the country where Al-4115
Berka is located from the empire that declined following the4116
Crimean War join the Allies in WW2?4117
The question can be decomposed into following subquestions:4118
sub question: Which country is Al-Berka in?4119
sub answer: Libya4120
sub question: What empire declined after the Crimean War?4121
sub answer: the Ottoman Empire4122
sub question: Which european state seized Libya from the4123
Ottoman Empire in 1911?4124
sub answer: Italy4125
sub question: When did Italy join the allies in ww2?4126
sub answer: September 19434127
The answer to the original question is September 1943.4128

4129
Question: An institution like a German Fachhochschule is known4130
by what term in Éric Losfeld’s birth country and the country4131

where painters remained focused on textures and surfaces.4132
The question can be decomposed into following subquestions:4133
sub question: Where is Éric Losfeld’s place of birth?4134
sub answer: Mouscron4135
sub question: Arrondissement of Mouscron >> country?4136
sub answer: Belgium4137
sub question: Where was the focus of paintings on textures and4138
surfaces?4139

sub answer: the Netherlands4140
sub question: What term is used in Belgium and the the4141
Netherlands to refer to an institution like a German4142
Fachhochschule?4143
sub answer: hogeschool4144
The answer to the original question is hogeschool.4145

4146
Now, answer a question given the following paragraphs as4147
context. Remember to decompose the question into subquestions,4148
and it is guaranteed that the answer can be found in the4149

provided paragraphs:4150
4151

{triplet_ctx}4152
4153

Now answer the following question. Remember to decompose the4154
question into subquestions, and it is guaranteed that the4155
answer can be found in the provided paragraphs.4156

4157
Question: {question}4158
The question can be decomposed into following subquestions:"""4159

4160
tot_self_eval = """4161
The following are candidates to answer a multi-hop question.4162
Some of them are complete reasoning trajectories while other4163
may be intermediate. Please sort these candidates based on how4164
likely they will lead to a correct solution. You should sort4165

based on the quality, instead of length, i.e. complete4166
reasoning may or may not be correct. You should return a comma4167
separated list, and use #1 to indicate the first candidate,4168

#2 to indicate the second candidate, and so on. Note that the 4169
multi-hop question can be answered by decomposing them into 4170
subquestions and answering them one by one. A good candidate 4171
should be on the right track of decomposing question, and make 4172
no mistakes, and a good final answer should be as concise as 4173

possible. 4174
4175

Below is an example: 4176
4177

Candidate 1: 4178
Question: Where was the film The Beach filmed in the country 4179
where Pao Sarasin was born? 4180
The question can be decomposed into following subquestions: 4181
sub question: Where was Pao Sarasin born? 4182
sub answer: Bangkok, Thailand 4183
sub question: Where was the film The Beach filmed? 4184
sub answer: The film The Beach was filmed on the Thai island 4185
Koh Phi Phi. 4186
The answer to the original question is Thailand. 4187

4188
Candidate 2: 4189
Question: Where was the film The Beach filmed in the country 4190
where Pao Sarasin was born? 4191
The question can be decomposed into following subquestions: 4192
sub question: Where was Pao Sarasin born? 4193
sub answer: Bangkok, Thailand 4194
sub question: Where was the film The Beach filmed? 4195
sub answer: Koh Phi Phi, Thailand 4196
The answer to the original question is Koh Phi Phi, Thailand. 4197

4198
Candidate 3: 4199
Question: Where was the film The Beach filmed in the country 4200
where Pao Sarasin was born? 4201
The question can be decomposed into following subquestions: 4202
sub question: Where was Pao Sarasin born? 4203
sub answer: Bangkok, Thailand 4204
sub question: Where was the film The Beach filmed? 4205
sub answer: The film The Beach was filmed on the Thai island 4206
Koh Phi Phi, in Thailand. 4207
The answer to the original question is The film The Beach was 4208
filmed on the Thai island Koh Phi Phi, in Thailand. 4209

4210
Candidate 4: 4211
Question: Where was the film The Beach filmed in the country 4212
where Pao Sarasin was born? 4213
The question can be decomposed into following subquestions: 4214
sub question: What is the country of birth of Pao Sarasin? 4215
sub answer: Thailand 4216
sub question: Where was the film The Beach filmed? 4217
sub answer: The Thai island Koh Phi Phi 4218
The answer to the original question is The Thai island Koh Phi 4219
Phi. 4220

4221
Candidate 5: 4222
Question: Where was the film The Beach filmed in the country 4223
where Pao Sarasin was born? 4224
The question can be decomposed into following subquestions: 4225
sub question: What is the country of birth of Pao Sarasin? 4226
sub answer: Thailand 4227
sub question: Where was the film The Beach filmed? 4228
sub answer: The film The Beach was filmed on the Thai island 4229
Koh Phi Phi. 4230
The answer to the original question is The film The Beach was 4231
filmed on the Thai island Koh Phi Phi. 4232

4233
Now pick the most likely candidate to answer the original 4234
question. 4235
Answer: #4, #5, #3, #2, #1 4236

4237
Now pick from the following candidates: 4238

4239
{candidates} 4240

4241
Now pick the most likely candidate to answer the original 4242
question. 4243
Answer: 4244
""" 4245

Listing 18: Blocksworld prompts
{ 4246
"example_pool": [4247

{ 4248
"init": "the red block is clear, the orange block 4249

is clear, the hand is empty, the orange block is on top of the 4250
blue block, the red block is on the table and the blue block 4251

is on the table", 4252

36

"goal": "the blue block is on top of the orange4253
block",4254

"plan": "\nunstack the orange block from on top of4255
the blue block\nput down the orange block\npick up the blue4256

block\nstack the blue block on top of the orange block\n[PLAN4257
END]\n",4258

"states": [4259
"the red block is clear, the blue block is4260

clear, the orange block is clear, the hand is empty, the red4261
block is on the table, the blue block is on the table and the4262
orange block is on the table",4263

"the red block is clear, the blue block is4264
clear, the hand is empty, the blue block is on top of the4265
orange block, the red block is on the table and the orange4266
block is on the table"4267

]4268
},4269
{4270

"init": "the blue block is clear, the orange block4271
is clear, the hand is empty, the red block is on top of the4272

yellow block, the orange block is on top of the red block, the4273
blue block is on the table and the yellow block is on the4274

table",4275
"goal": "the blue block is on top of the yellow4276

block and the orange block is on top of the blue block",4277
"plan": "\nunstack the orange block from on top of4278

the red block\nput down the orange block\nunstack the red4279
block from on top of the yellow block\nput down the red block\4280
npick up the blue block\nstack the blue block on top of the4281
yellow block\npick up the orange block\nstack the orange block4282
on top of the blue block\n[PLAN END]\n",4283

"states": [4284
"the red block is clear, the blue block is4285

clear, the orange block is clear, the hand is empty, the red4286
block is on top of the yellow block, the blue block is on the4287
table, the orange block is on the table and the yellow block4288
is on the table",4289

"the red block is clear, the blue block is4290
clear, the orange block is clear, the yellow block is clear,4291
the hand is empty, the red block is on the table, the blue4292
block is on the table, the orange block is on the table and4293
the yellow block is on the table",4294

"the red block is clear, the blue block is4295
clear, the orange block is clear, the hand is empty, the blue4296
block is on top of the yellow block, the red block is on the4297
table, the orange block is on the table and the yellow block4298
is on the table",4299

"the red block is clear, the orange block is4300
clear, the hand is empty, the blue block is on top of the4301
yellow block, the orange block is on top of the blue block,4302
the red block is on the table and the yellow block is on the4303
table"4304

]4305
},4306
{4307

"init": "the red block is clear, the yellow block4308
is clear, the hand is empty, the red block is on top of the4309
blue block, the blue block is on top of the orange block, the4310
orange block is on the table and the yellow block is on the4311
table",4312

"goal": "the blue block is on top of the orange4313
block and the yellow block is on top of the red block",4314

"plan": "\npick up the yellow block\nstack the4315
yellow block on top of the red block\n[PLAN END]\n",4316

"states": [4317
"the yellow block is clear, the hand is empty,4318

the red block is on top of the blue block, the blue block is4319
on top of the orange block, the yellow block is on top of the4320
red block and the orange block is on the table"4321

]4322
},4323
{4324

"init": "the blue block is clear, the yellow block4325
is clear, the hand is empty, the red block is on top of the4326

orange block, the blue block is on top of the red block, the4327
orange block is on the table and the yellow block is on the4328
table",4329

"goal": "the blue block is on top of the red block4330
and the yellow block is on top of the blue block",4331

"plan": "\npick up the yellow block\nstack the4332
yellow block on top of the blue block\n[PLAN END]\n",4333

"states": [4334
"the yellow block is clear, the hand is empty,4335

the red block is on top of the orange block, the blue block4336
is on top of the red block, the yellow block is on top of the4337
blue block and the orange block is on the table"4338

]4339

}, 4340
{ 4341

"init": "the blue block is clear, the orange block 4342
is clear, the hand is empty, the blue block is on top of the 4343

yellow block, the yellow block is on top of the red block, the 4344
red block is on the table and the orange block is on the 4345

table", 4346
"goal": "the blue block is on top of the red block 4347

and the orange block is on top of the yellow block", 4348
"plan": "\nunstack the blue block from on top of 4349

the yellow block\nstack the blue block on top of the orange 4350
block\nunstack the yellow block from on top of the red block\ 4351
nput down the yellow block\nunstack the blue block from on top 4352
of the orange block\nstack the blue block on top of the red 4353

block\npick up the orange block\nstack the orange block on top 4354
of the yellow block\n[PLAN END]\n", 4355

"states": [4356
"the blue block is clear, the yellow block is 4357

clear, the hand is empty, the blue block is on top of the 4358
orange block, the yellow block is on top of the red block, the 4359
red block is on the table and the orange block is on the 4360

table", 4361
"the red block is clear, the blue block is 4362

clear, the yellow block is clear, the hand is empty, the blue 4363
block is on top of the orange block, the red block is on the 4364
table, the orange block is on the table and the yellow block 4365
is on the table", 4366

"the blue block is clear, the orange block is 4367
clear, the yellow block is clear, the hand is empty, the blue 4368
block is on top of the red block, the red block is on the 4369
table, the orange block is on the table and the yellow block 4370
is on the table", 4371

"the blue block is clear, the orange block is 4372
clear, the hand is empty, the blue block is on top of the red 4373
block, the orange block is on top of the yellow block, the red 4374
block is on the table and the yellow block is on the table" 4375

] 4376
}, 4377
{ 4378

"init": "the blue block is clear, the orange block 4379
is clear, the hand is empty, the blue block is on top of the 4380

red block, the red block is on the table and the orange block 4381
is on the table", 4382

"goal": "the red block is on top of the orange 4383
block and the orange block is on top of the blue block", 4384

"plan": "\nunstack the blue block from on top of 4385
the red block\nput down the blue block\npick up the orange 4386
block\nstack the orange block on top of the blue block\npick 4387
up the red block\nstack the red block on top of the orange 4388
block\n[PLAN END]\n", 4389

"states": [4390
"the red block is clear, the blue block is 4391

clear, the orange block is clear, the hand is empty, the red 4392
block is on the table, the blue block is on the table and the 4393
orange block is on the table", 4394

"the red block is clear, the orange block is 4395
clear, the hand is empty, the orange block is on top of the 4396
blue block, the red block is on the table and the blue block 4397
is on the table", 4398

"the red block is clear, the hand is empty, 4399
the red block is on top of the orange block, the orange block 4400
is on top of the blue block and the blue block is on the table 4401
" 4402

] 4403
}, 4404
{ 4405

"init": "the red block is clear, the yellow block 4406
is clear, the hand is empty, the red block is on top of the 4407
orange block, the orange block is on top of the blue block, 4408
the blue block is on the table and the yellow block is on the 4409
table", 4410

"goal": "the red block is on top of the yellow 4411
block, the blue block is on top of the orange block and the 4412
yellow block is on top of the blue block", 4413

"plan": "\nunstack the red block from on top of 4414
the orange block\nput down the red block\nunstack the orange 4415
block from on top of the blue block\nput down the orange block 4416
\npick up the blue block\nstack the blue block on top of the 4417
orange block\npick up the yellow block\nstack the yellow block 4418
on top of the blue block\npick up the red block\nstack the 4419

red block on top of the yellow block\n[PLAN END]\n", 4420
"states": [4421

"the red block is clear, the orange block is 4422
clear, the yellow block is clear, the hand is empty, the 4423
orange block is on top of the blue block, the red block is on 4424
the table, the blue block is on the table and the yellow block 4425
is on the table", 4426

37

"the red block is clear, the blue block is4427
clear, the orange block is clear, the yellow block is clear,4428
the hand is empty, the red block is on the table, the blue4429
block is on the table, the orange block is on the table and4430
the yellow block is on the table",4431

"the red block is clear, the blue block is4432
clear, the yellow block is clear, the hand is empty, the blue4433
block is on top of the orange block, the red block is on the4434
table, the orange block is on the table and the yellow block4435
is on the table",4436

"the red block is clear, the yellow block is4437
clear, the hand is empty, the blue block is on top of the4438
orange block, the yellow block is on top of the blue block,4439
the red block is on the table and the orange block is on the4440
table",4441

"the red block is clear, the hand is empty,4442
the red block is on top of the yellow block, the blue block is4443
on top of the orange block, the yellow block is on top of the4444
blue block and the orange block is on the table"4445

]4446
},4447
{4448

"init": "the red block is clear, the blue block is4449
clear, the hand is empty, the red block is on top of the4450

orange block, the blue block is on the table and the orange4451
block is on the table",4452

"goal": "the red block is on top of the blue block4453
and the blue block is on top of the orange block",4454

"plan": "\nunstack the red block from on top of4455
the orange block\nput down the red block\npick up the blue4456
block\nstack the blue block on top of the orange block\npick4457
up the red block\nstack the red block on top of the blue block4458
\n[PLAN END]\n",4459

"states": [4460
"the red block is clear, the blue block is4461

clear, the orange block is clear, the hand is empty, the red4462
block is on the table, the blue block is on the table and the4463
orange block is on the table",4464

"the red block is clear, the blue block is4465
clear, the hand is empty, the blue block is on top of the4466
orange block, the red block is on the table and the orange4467
block is on the table",4468

"the red block is clear, the hand is empty,4469
the red block is on top of the blue block, the blue block is4470
on top of the orange block and the orange block is on the4471
table"4472

]4473
},4474
{4475

"init": "the blue block is clear, the yellow block4476
is clear, the hand is empty, the blue block is on top of the4477

orange block, the yellow block is on top of the red block, the4478
red block is on the table and the orange block is on the4479

table",4480
"goal": "the blue block is on top of the red block4481

and the yellow block is on top of the orange block",4482
"plan": "\nunstack the blue block from on top of4483

the orange block\nput down the blue block\nunstack the yellow4484
block from on top of the red block\nstack the yellow block on4485
top of the orange block\npick up the blue block\nstack the4486
blue block on top of the red block\n[PLAN END]\n",4487

"states": [4488
"the blue block is clear, the orange block is4489

clear, the yellow block is clear, the hand is empty, the4490
yellow block is on top of the red block, the red block is on4491
the table, the blue block is on the table and the orange block4492
is on the table",4493

"the red block is clear, the blue block is4494
clear, the yellow block is clear, the hand is empty, the4495
yellow block is on top of the orange block, the red block is4496
on the table, the blue block is on the table and the orange4497
block is on the table",4498

"the blue block is clear, the yellow block is4499
clear, the hand is empty, the blue block is on top of the red4500
block, the yellow block is on top of the orange block, the red4501
block is on the table and the orange block is on the table"4502

]4503
},4504
{4505

"init": "the red block is clear, the orange block4506
is clear, the white block is clear, the hand is empty, the4507
blue block is on top of the yellow block, the white block is4508
on top of the blue block, the red block is on the table, the4509
orange block is on the table and the yellow block is on the4510
table",4511

"goal": "the blue block is on top of the yellow4512
block, the orange block is on top of the white block and the4513

white block is on top of the red block", 4514
"plan": "\nunstack the white block from on top of 4515

the blue block\nstack the white block on top of the red block\ 4516
npick up the orange block\nstack the orange block on top of 4517
the white block\n[PLAN END]\n", 4518

"states": [4519
"the blue block is clear, the orange block is 4520

clear, the white block is clear, the hand is empty, the blue 4521
block is on top of the yellow block, the white block is on top 4522
of the red block, the red block is on the table, the orange 4523

block is on the table and the yellow block is on the table", 4524
"the blue block is clear, the orange block is 4525

clear, the hand is empty, the blue block is on top of the 4526
yellow block, the orange block is on top of the white block, 4527
the white block is on top of the red block, the red block is 4528
on the table and the yellow block is on the table" 4529

] 4530
} 4531

], 4532
"intro": "I am playing with a set of blocks where I need 4533

to arrange the blocks into stacks. Here are the actions I can 4534
do\n\nPick up a block\nUnstack a block from on top of another 4535
block\nPut down a block\nStack a block on top of another block 4536
\n\nI have the following restrictions on my actions:\nI can 4537
only pick up or unstack one block at a time.\nI can only pick 4538
up or unstack a block if my hand is empty.\nI can only pick up 4539
a block if the block is on the table and the block is clear. 4540

A block is clear if the block has no other blocks on top of it 4541
and if the block is not picked up.\nI can only unstack a 4542

block from on top of another block if the block I am 4543
unstacking was really on top of the other block.\nI can only 4544
unstack a block from on top of another block if the block I am 4545
unstacking is clear.\nOnce I pick up or unstack a block, I am 4546
holding the block.\nI can only put down a block that I am 4547

holding.\nI can only stack a block on top of another block if 4548
I am holding the block being stacked.\nI can only stack a 4549
block on top of another block if the block onto which I am 4550
stacking the block is clear.\nOnce I put down or stack a block, 4551
my hand becomes empty.\n\n", 4552

"world_update_pickup": "I am playing with a set of blocks 4553
where I need to arrange the blocks into stacks. Here are the 4554
actions I can do \n\nPick up a block \nUnstack a block from on 4555
top of another block \nPut down a block \nStack a block on 4556

top of another block \n\nI have the following restrictions on 4557
my actions:\nI can only pick up or unstack one block at a time. 4558
\nI can only pick up or unstack a block if my hand is empty. 4559

\nI can only pick up a block if the block is on the table and 4560
the block is clear. A block is clear if the block has no other 4561
blocks on top of it and if the block is not picked up. \nI 4562

can only unstack a block from on top of another block if the 4563
block I am unstacking was really on top of the other block. \ 4564
nI can only unstack a block from on top of another block if 4565
the block I am unstacking is clear. Once I pick up or unstack 4566
a block, I am holding the block. \nI can only put down a block 4567
that I am holding. \nI can only stack a block on top of 4568

another block if I am holding the block being stacked. \nI can 4569
only stack a block on top of another block if the block onto 4570

which I am stacking the block is clear. Once I put down or 4571
stack a block, my hand becomes empty.\n\nAfter being given an 4572
initial state and an action, give the new state after 4573
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that, 4574
the white block is clear, the cyan block is clear, the brown 4575

block is clear, the hand is empty, the white block is on top 4576
of the purple block, the purple block is on the table, the 4577
cyan block is on the table and the brown block is on the table 4578
.\n[ACTION] Pick up the brown block.\n[CHANGE] The hand was 4579
empty and is now holding the brown block, the brown block was 4580
on the table and is now in the hand, and the brown block is no 4581
longer clear.\n[STATE 1] I have that, the white block is 4582

clear, the cyan block is clear, the brown block is in the hand, 4583
the hand is holding the brown block, the white block is on 4584

top of the purple block, the purple block is on the table and 4585
the cyan block is on the table.\n\n[SCENARIO 2]\n[STATE 0] I 4586
have that, the purple block is clear, the cyan block is clear, 4587
the white block is clear, the hand is empty, the white block 4588

is on top of the brown block, the purple block is on the table, 4589
the cyan block is on the table and the brown block is on the 4590

table.\n[ACTION] Pick up the cyan block.\n[CHANGE] The hand 4591
was empty and is now holding the cyan block, the cyan block 4592
was on the table and is now in the hand, and the cyan block is 4593
no longer clear.\n[STATE 1] I have that, the cyan block is in 4594
the hand, the white block is clear, the purple block is clear, 4595
the hand is holding the cyan block, the white block is on top 4596
of the brown block, the purple block is on the table and the 4597

brown block is on the table.\n\n[SCENARIO 3]\n[STATE 0] I have 4598
that, {}\n[ACTION] {}\n[CHANGE]", 4599

"world_update_unstack": "I am playing with a set of blocks 4600

38

where I need to arrange the blocks into stacks. Here are the4601
actions I can do \n\nPick up a block \nUnstack a block from on4602
top of another block \nPut down a block \nStack a block on4603

top of another block \n\nI have the following restrictions on4604
my actions:\nI can only pick up or unstack one block at a time.4605
\nI can only pick up or unstack a block if my hand is empty.4606

\nI can only pick up a block if the block is on the table and4607
the block is clear. A block is clear if the block has no other4608
blocks on top of it and if the block is not picked up. \nI4609

can only unstack a block from on top of another block if the4610
block I am unstacking was really on top of the other block. \4611
nI can only unstack a block from on top of another block if4612
the block I am unstacking is clear. Once I pick up or unstack4613
a block, I am holding the block. \nI can only put down a block4614
that I am holding. \nI can only stack a block on top of4615

another block if I am holding the block being stacked. \nI can4616
only stack a block on top of another block if the block onto4617

which I am stacking the block is clear. Once I put down or4618
stack a block, my hand becomes empty.\n\nAfter being given an4619
initial state and an action, give the new state after4620
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,4621
the white block is clear, the cyan block is clear, the brown4622

block is clear, the hand is empty, the white block is on top4623
of the purple block, the purple block is on the table, the4624
cyan block is on the table and the brown block is on the table4625
.\n[ACTION] Unstack the white block from on top of the purple4626
block.\n[CHANGE] The hand was empty and is now holding the4627
white block, the white block was on top of the purple block4628
and is now in the hand, the white block is no longer clear,4629
and the purple block is now clear.\n[STATE 1] I have that, the4630
purple block is clear, the cyan block is clear, the brown4631

block is clear, the hand is holding the white block, the white4632
block is in the hand, the purple block is on the table, the4633

cyan block is on the table and the brown block is on the table4634
.\n\n[SCENARIO 2]\n[STATE 0] I have that, the purple block is4635
clear, the cyan block is clear, the white block is clear, the4636
hand is empty, the cyan block is on top of the brown block,4637
the purple block is on the table, the white block is on the4638
table and the brown block is on the table.\n[ACTION] Unstack4639
the cyan block from on top of the brown block.\n[CHANGE] The4640
hand was empty and is now holding the cyan block, the cyan4641
block was on top of the brown block and is now in the hand,4642
the cyan block is no longer clear, and the brown block is now4643
clear.\n[STATE 1] I have that, the purple block is clear, the4644
brown block is clear, the cyan block is in the hand, the white4645
block is clear, the hand is holding the cyan block, the4646

purple block is on the table, the white block is on the table4647
and the brown block is on the table.\n\n[SCENARIO 3]\n[STATE4648
0] I have that, {}\n[ACTION] {}\n[CHANGE]",4649

"world_update_putdown": "I am playing with a set of blocks4650
where I need to arrange the blocks into stacks. Here are the4651

actions I can do \n\nPick up a block \nUnstack a block from on4652
top of another block \nPut down a block \nStack a block on4653

top of another block \n\nI have the following restrictions on4654
my actions:\nI can only pick up or unstack one block at a time.4655
\nI can only pick up or unstack a block if my hand is empty.4656

\nI can only pick up a block if the block is on the table and4657
the block is clear. A block is clear if the block has no other4658
blocks on top of it and if the block is not picked up. \nI4659

can only unstack a block from on top of another block if the4660
block I am unstacking was really on top of the other block. \4661
nI can only unstack a block from on top of another block if4662
the block I am unstacking is clear. Once I pick up or unstack4663
a block, I am holding the block. \nI can only put down a block4664
that I am holding. \nI can only stack a block on top of4665

another block if I am holding the block being stacked. \nI can4666
only stack a block on top of another block if the block onto4667

which I am stacking the block is clear. Once I put down or4668
stack a block, my hand becomes empty.\n\nAfter being given an4669
initial state and an action, give the new state after4670
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that,4671
the white block is clear, the purple block is clear, the cyan4672
block is in the hand, the brown block is clear, the hand is4673

holding the cyan block, the white block is on the table, the4674
purple block is on the table, and the brown block is on the4675
table.\n[ACTION] Put down the cyan block.\n[CHANGE] The hand4676
was holding the cyan block and is now empty, the cyan block4677
was in the hand and is now on the table, and the cyan block is4678
now clear.\n[STATE 1] I have that, the cyan block is clear,4679

the purple block is clear, the white block is clear, the brown4680
block is clear, the hand is empty, the white block is on the4681

table, the purple block is on the table, the cyan block is on4682
the table, and the brown block is on the table.\n\n[SCENARIO4683
2]\n[STATE 0] I have that, the purple block is clear, the4684
black block is in the hand, the white block is clear, the hand4685
is holding the black block, the white block is on top of the4686

brown block, the purple block is on the table, and the brown4687

block is on the table.\n[ACTION] Put down the black block.\n[4688
CHANGE] The hand was holding the black block and is now empty, 4689
the black block was in the hand and is now on the table, and 4690

the black block is now clear.\n[STATE 1] I have that, the 4691
black block is clear, the purple block is clear, the white 4692
block is clear, the hand is empty, the white block is on top 4693
of the brown block, the purple block is on the table, the 4694
brown block is on the table, and the black block is on the 4695
table.\n\n[SCENARIO 3]\n[STATE 0] I have that, {}\n[ACTION] 4696
{}\n[CHANGE]", 4697

"world_update_stack": "I am playing with a set of blocks 4698
where I need to arrange the blocks into stacks. Here are the 4699
actions I can do \n\nPick up a block \nUnstack a block from on 4700
top of another block \nPut down a block \nStack a block on 4701

top of another block \n\nI have the following restrictions on 4702
my actions:\nI can only pick up or unstack one block at a time. 4703
\nI can only pick up or unstack a block if my hand is empty. 4704

\nI can only pick up a block if the block is on the table and 4705
the block is clear. A block is clear if the block has no other 4706
blocks on top of it and if the block is not picked up. \nI 4707

can only unstack a block from on top of another block if the 4708
block I am unstacking was really on top of the other block. \ 4709
nI can only unstack a block from on top of another block if 4710
the block I am unstacking is clear. Once I pick up or unstack 4711
a block, I am holding the block. \nI can only put down a block 4712
that I am holding. \nI can only stack a block on top of 4713

another block if I am holding the block being stacked. \nI can 4714
only stack a block on top of another block if the block onto 4715

which I am stacking the block is clear. Once I put down or 4716
stack a block, my hand becomes empty.\n\nAfter being given an 4717
initial state and an action, give the new state after 4718
performing the action.\n\n[SCENARIO 1]\n[STATE 0] I have that, 4719
the white block is clear, the purple block is clear, the cyan 4720
block is in the hand, the brown block is clear, the hand is 4721

holding the cyan block, the white block is on the table, the 4722
purple block is on the table, and the brown block is on the 4723
table.\n[ACTION] Stack the cyan block on top of the brown 4724
block.\n[CHANGE] The hand was holding the cyan block and is 4725
now empty, the cyan block was in the hand and is now on top of 4726
the brown block, the brown block is no longer clear, and the 4727

cyan block is now clear.\n[STATE 1] I have that, the cyan 4728
block is clear, the purple block is clear, the white block is 4729
clear, the hand is empty, the cyan block is on top of the 4730
brown block, the brown block is on the table, the purple block 4731
is on the table, and the white block is on the table.\n\n[4732

SCENARIO 2]\n[STATE 0] I have that, the purple block is clear, 4733
the black block is in the hand, the white block is clear, the 4734
hand is holding the black block, the white block is on top of 4735
the brown block, the purple block is on the table, and the 4736

brown block is on the table.\n[ACTION] Stack the black block 4737
on top of the purple block.\n[CHANGE] The hand was holding the 4738
black block and is now empty, the black block was in the hand 4739
and is now on top of the purple block, the purple block is no 4740
longer clear, and the black block is now clear.\n[STATE 1] I 4741

have that, the black block is clear, the white block is clear, 4742
the hand is empty, the black block is on top of the purple 4743

block, the white block is on top of the brown block, the brown 4744
block is on the table, and the purple block is on the table.\ 4745

n\n[SCENARIO 3]\n[STATE 0] I have that, {}\n[ACTION] {}\n[4746
CHANGE]", 4747

"self-eval": "I am playing with a set of blocks where I 4748
need to arrange the blocks into stacks. Here are the actions I 4749
can do\n\nPick up a block\nUnstack a block from on top of 4750

another block\nPut down a block\nStack a block on top of 4751
another block\n\nI have the following restrictions on my 4752
actions:\nI can only pick up or unstack one block at a time.\ 4753
nI can only pick up or unstack a block if my hand is empty.\nI 4754
can only pick up a block if the block is on the table and the 4755
block is clear. A block is clear if the block has no other 4756

blocks on top of it and if the block is not picked up.\nI can 4757
only unstack a block from on top of another block if the block 4758
I am unstacking was really on top of the other block.\nI can 4759

only unstack a block from on top of another block if the block 4760
I am unstacking is clear.\nOnce I pick up or unstack a block, 4761
I am holding the block.\nI can only put down a block that I 4762

am holding.\nI can only stack a block on top of another block 4763
if I am holding the block being stacked.\nI can only stack a 4764
block on top of another block if the block onto which I am 4765
stacking the block is clear.\nOnce I put down or stack a block, 4766
my hand becomes empty.\n\nPlease evaluate whether the given 4767

action is a good one under certain conditions.\n\n[STATEMENT]\ 4768
nAs initial conditions I have that, the red block is clear, 4769
the yellow block is clear, the hand is empty, the red block is 4770
on top of the blue block, the yellow block is on top of the 4771

orange block, the blue block is on the table and the orange 4772
block is on the table.\nMy goal is to have that the orange 4773
block is on top of the red block.\n[ACTION]\nunstack the red 4774

39

block from on top of the blue block\n[EVALUATION]\nbad\n\n[4775
STATEMENT]\nAs initial conditions I have that, the orange4776
block is in the hand, the yellow block is clear, the hand is4777
holding the orange block, the blue block is on top of the red4778
block, the yellow block is on top of the blue block, and the4779
red block is on the table.\nMy goal is to have have that the4780
yellow block is on top of the orange block.\n[ACTION]\nput4781
down the orange block\n[EVALUATION]\ngood\n\n[STATEMENT]\nAs4782
initial conditions I have that, the orange block is clear, the4783
yellow block is clear, the hand is empty, the blue block is4784

on top of the red block, the orange block is on top of the4785
blue block, the red block is on the table and the yellow block4786
is on the table.\nMy goal is to have that the blue block is4787

on top of the red block and the yellow block is on top of the4788
orange block.\n[ACTION]\npick up the yellow block\n[EVALUATION4789
]\ngood\n\n[STATEMENT]\nAs initial conditions I have that, the4790
orange block is clear, the yellow block is clear, the hand is4791
empty, the blue block is on top of the red block, the orange4792

block is on top of the blue block, the red block is on the4793
table and the yellow block is on the table.\nMy goal is to4794
have that the blue block is on top of the red block and the4795
yellow block is on top of the orange block.\n[ACTION]\npick up4796
the yellow block\n[EVALUATION]\ngood\n\n[STATEMENT]\nAs4797

initial conditions I have that, the blue block is clear, the4798
orange block is in the hand, the red block is clear, the hand4799
is holding the orange block, the red block is on top of the4800
yellow block, the blue block is on the table, and the yellow4801
block is on the table.\nMy goal is to have have that the red4802
block is on top of the yellow block and the orange block is on4803
top of the blue block.\n[ACTION]\nstack the orange block on4804

top of the red block\n[EVALUATION]\nbad\n\n[STATEMENT]\nAs4805
initial conditions I have that, <init_state>\nMy goal is to <4806
goals>\n[ACTION]\n<action>\n[EVALUATION]\n",4807

"action_proposals": "I am playing with a set of blocks4808
where I need to arrange the blocks into stacks. Here are the4809
actions I can do \n\nPick up a block \nUnstack a block from on4810
top of another block \nPut down a block \nStack a block on4811

top of another block \n\nI have the following restrictions on4812
my actions:\nI can only pick up or unstack one block at a time.4813
\nI can only pick up or unstack a block if my hand is empty.4814

\nI can only pick up a block if the block is on the table and4815
the block is clear. A block is clear if the block has no other4816
blocks on top of it and if the block is not picked up. \nI4817

can only unstack a block from on top of another block if the4818
block I am unstacking was really on top of the other block. \4819
nI can only unstack a block from on top of another block if4820
the block I am unstacking is clear. Once I pick up or unstack4821
a block, I am holding the block. \nI can only put down a block4822
that I am holding. \nI can only stack a block on top of4823

another block if I am holding the block being stacked. \nI can4824
only stack a block on top of another block if the block onto4825

which I am stacking the block is clear. Once I put down or4826
stack a block, my hand becomes empty.\n\nAfter being given an4827
initial state, propose all possible actions that is valid in4828
the given state.\n\n[SCENARIO 1]\n[STATE] I have that, the4829
white block is clear, the purple block is clear, the cyan4830
block is in the hand, the brown block is clear, the hand is4831
holding the cyan block, the white block is on the table, the4832
purple block is on the table, and the brown block is on the4833
table.\n[ACTION] Stack the cyan block on top of the white4834
block. Stack the cyan block on top of the purple block. Stack4835
the cyan block on top of the brown block. Put down the cyan4836
block\n\n[SCENARIO 2]\n[STATE] I have that, the orange block4837
is clear, the yellow block is clear, the hand is empty, the4838
blue block is on top of the red block, the orange block is on4839
top of the blue block, the red block is on the table and the4840
yellow block is on the table.\n[ACTION] Unstack the orange4841
block from on top of the blue block. Pick up the yellow block.4842
\n\n[SCENARIO 3]\n[STATE] I have that, {}\n[ACTION]",4843

"action_proposals_decomp": "I am playing with a set of4844
blocks where I need to arrange the blocks into stacks. Here4845
are the actions I can do \n\nPick up a block \nUnstack a block4846
from on top of another block \nPut down a block \nStack a4847

block on top of another block \n\nI have the following4848
restrictions on my actions:\nI can only pick up or unstack one4849
block at a time. \nI can only pick up or unstack a block if4850

my hand is empty. \nI can only pick up a block if the block is4851
on the table and the block is clear. A block is clear if the4852

block has no other blocks on top of it and if the block is not4853
picked up. \nI can only unstack a block from on top of4854

another block if the block I am unstacking was really on top4855
of the other block. \nI can only unstack a block from on top4856
of another block if the block I am unstacking is clear. Once I4857
pick up or unstack a block, I am holding the block. \nI can4858

only put down a block that I am holding. \nI can only stack a4859
block on top of another block if I am holding the block being4860
stacked. \nI can only stack a block on top of another block if4861

the block onto which I am stacking the block is clear. Once I 4862
put down or stack a block, my hand becomes empty.\n\nAfter 4863

being given an initial state, proposing all possible actions 4864
that is valid.\n\n[SCENARIO 1]\n[STATE] I have that, the white 4865
block is clear, the purple block is clear, the cyan block is 4866

in the hand, the brown block is clear, the hand is holding the 4867
cyan block, the white block is on the table, the purple block 4868
is on the table, and the brown block is on the table.\n[4869

REASON] Since cyan block is in the hand, I can only stack the 4870
cyan block or put down the cyan block. Since white block is 4871
clear, we can stack cyan block on top of the white block. 4872
Since the purple block is clear, we can stack the cyan block 4873
on top of the purple block. Since the brown block is clear, we 4874
can put the cyan block on top of the brown block. \n[ACTION] 4875

Stack the cyan block on top of the white block. Stack the cyan 4876
block on top of the purple block. Stack the cyan block on top 4877
of the brown block. Put down the cyan block\n\n[SCENARIO 2]\n 4878

[STATE] I have that, the orange block is clear, the yellow 4879
block is clear, the hand is empty, the blue block is on top of 4880
the red block, the orange block is on top of the blue block, 4881

the red block is on the table and the yellow block is on the 4882
table.\n[REASON] Since the hand is empty, I can only unstack a 4883
block or pick up a block. Since only the orange block and 4884

yellow block is clear, I can only pick up or unstack the 4885
yellow block and orange block. Since the yellow block is on 4886
the table, I can pick up the yellow block. Since the orange 4887
block is on top of the blue block, I can unstack the orange 4888
block from on top of the blue block. \n[ACTION] Unstack the 4889
orange block from on top of the blue block. Pick up the yellow 4890
block. \n\n[SCENARIO 3]\n[STATE] I have that, {}\n[REASON]" 4891

} 4892

40

	Introduction
	Related Work
	Analysis of LLM Reasoning Methods
	Problem formulation
	Decomposition and sample complexity
	Description length (DL)
	DL analysis of LLM reasoning methods

	Reasoning structure and computational complexity

	Case StudiesSee Appendix A and I for experimental details and complete prompts.
	Grade School Maths
	Analysis
	Experiments

	Dynamic Programming
	Analysis
	Experiments

	Air Travel Planning
	Analysis
	Experiments

	Game of 24
	Analysis
	Experiments

	Conclusion
	Experimental Details
	Additional case studies
	Multi-hop Question Answering
	Analysis
	Experiments

	Blocksworld
	Analysis
	Experiments

	GSM8K
	Statistics
	Common Rules in GSM8K
	An Efficient Algorithm for GSM8K
	GSM8K Errors

	Dynamic Programming
	Algorithm for MWIS

	Inductive bias of Transformers
	Air travel planning
	Game of 24
	Tables
	Prompts
	GSM8K Prompts
	MWIS Prompts
	Comparison between CoT Implicit and CoT Explicit
	Travel planning prompts
	Game of 24 prompts
	ToT Decomp prompts

