
Published as a conference paper at ICLR 2022

PROGRAMMATIC REINFORCEMENT LEARNING
WITHOUT ORACLES

Wenjie Qiu
Department of Computer Science
Rutgers University
wq37@cs.rutgers.edu

He Zhu
Department of Computer Science
Rutgers University
hz375@cs.rutgers.edu

ABSTRACT

Deep reinforcement learning (RL) has led to encouraging successes in many
challenging control tasks. However, a deep RL model lacks interpretability due
to the difficulty of identifying how the model’s control logic relates to its network
structure. Programmatic policies structured in more interpretable representations
emerge as a promising solution. Yet two shortcomings remain: First, synthesizing
programmatic policies requires optimizing over the discrete and non-differentiable
search space of program architectures. Previous works are suboptimal because they
only enumerate program architectures greedily guided by a pretrained RL oracle.
Second, these works do not exploit compositionality, an important programming
concept, to reuse and compose primitive functions to form a complex function for
new tasks. Our first contribution is a programmatically interpretable RL framework
that conducts program architecture search on top of a continuous relaxation of
the architecture space defined by programming language grammar rules. Our
algorithm allows policy architectures to be learned with policy parameters via
bilevel optimization using efficient policy-gradient methods, and thus does not
require a pretrained oracle. Our second contribution is improving programmatic
policies to support compositionality by integrating primitive functions learned to
grasp task-agnostic skills as a composite program to solve novel RL problems.
Experiment results demonstrate that our algorithm excels in discovering optimal
programmatic policies that are highly interpretable.

1 INTRODUCTION

A growing body of research has explored programs in a domain-specific programming language as a
new RL policy representation that intentionally encourages policy interpretability. Yet, learning a
policy as a high-level program in a structured representation is challenging. This is because algorithms
must jointly identify a reasonable program architecture to allow for sufficient expressiveness while
optimizing the parameters of the program modules in the architecture. For example, depending on
the shape of a maze, walking a robot to different goals on the maze by a program may require various
if-then-else conditions to travel along different paths, the number of which might not be known to
the agent before training. To curb the non-differentiable program architecture search space, existing
programmatic policy learning algorithms either learn from a pretrained program embedding space
that must support smooth interpolation (Trivedi et al., 2021), or must be guided by the supervision
of a pretrained oracle (e.g. a neural network policy trained by RL) via a teacher-student learning
paradigm (Bastani et al., 2018; Silver et al., 2020; Inala et al., 2020; Verma et al., 2018; 2019). The
task of imitating an oracle is significantly simpler than the full RL problem. However, since the
policy space of neural networks and that of programmatic policies are very different, a significant
performance gap exists between an imitating program and its RL oracle (Verma et al., 2018).

The first contribution of our paper is a framework to synthesize interpretable and differentiable
programmatic policies solely from reward signals by policy gradient methods, without needing
any oracles or pretraining. A conceivable way of synthesizing program architectures would be to
enumerate all possible architectures induced by the grammar of a domain-specific policy language,
run standard RL for each to find the optimal values of its unknown parameters, and return the best
program. However, doing so is computationally expensive as each RL trial may explore millions

1

Published as a conference paper at ICLR 2022

of environment steps. Inspired by recent advances in differentiable neural architecture search e.g.
DARTs (Liu et al., 2019b), we relax the discrete program architecture search space to be continuous.
Specifically, we encode program architecture synthesis as learning the probability distribution over
all possible architecture derivations (up to a certain bound on program abstract syntax tree depth)
induced by a policy language grammar. This enables our RL algorithm to jointly optimize program
architectures and the parameters of program modules via policy-gradient methods.

Our second contribution is improving programmatic policies to support compositionality — the
integration of primitive functions trained to grasp basic, task-agnostic skills (e.g. running forward or
jumping) into a new complex function as a composite model to solve novel RL problems (e.g. jumping
over multiple hurdles to reach a target). As opposed to policy ensemble models based on neural
networks (Qureshi et al., 2020), our programmatically composite models interpret how primitive
functions are composed under different environment conditions based on an RL agent’s perceptions,
and naturally generalize to novel scenarios. We further apply programmatic policies to address
challenging hierarchical RL problems. Our solution leverages the specifications of primitive functions
to create an optimal high-level control plan via a satisfiability constraint solver and implements the
high-level plans by learned composition of primitive functions.

Finally, we benchmark our method against the state-of-the-art RL methods. Our results demonstrate
that the programmatic RL framework is able to solve extremely hard RL problems using highly
interpretable policies with improved task performance.

2 PROBLEM MOTIVATION AND FORMULATION

We study how to express RL policies as differentiable programs, which use symbolic language
constructs to compose a set of parameterized primitive modules. To control an agent, a programmatic
policy takes an environment state as input and computes an action as return for the agent to execute.

E ::= C | if B then C else E
B ::= θc + θT · X ≥ 0

Figure 1: A Context-free DSL Grammar
for programmatic policies.

We view a programmatic policy as a pair (E, θ), where
E is a discrete program architecture and θ is a vector of
real-valued parameters of the program. A program archi-
tecture E is structured based on the context-free grammar
(Hopcroft et al., 2007) of a policy DSL. In this paper, we
consider the context-free grammar depicted in the standard
Backus-Naur form (Winskel, 1993) in Fig. 1. A vertical
bar “|” indicates choice. Such a grammar consists of a
set of production rules X ::= σ1 σ2 · · · σj where X is a
nonterminal and σ1, · · · , σj are either terminals or nonter-
minals. For example, we may expand the nonteriminal E1 in a partial program if B1 then C1 else E1

to if B1 then C1 else (if B2 then C2 else E2). The nonterminals E and B stand for program
expressions that evaluate to action values in Rm and Booleans, respectively, where m is the action
dimension size. We represent a state input to a programmatic policy as s = {x1 : ν1, x2 : ν2, . . . , xn}
where n is the state dimension size and νi = s[xi] is the value of xi in s. As usual, the unbounded
variables in X = [x1, x2, . . . , xn] are assumed to be input variables (state variables in our context). A
terminal in this grammar is a symbol that can appear in a program’s code, e.g. the if symbol and xi.

The semantics of a program in E is mostly standard and given by a function JEK(s), defined for each
DSL construct. For example, JxiK(s) = s[xi] reads the value of a variable xi in a state input s. A
policy may use an if-then-else branching construct. To avoid discontinuities for differentiability, we
interpret its semantics in terms of a smooth approximation where σ is the sigmoid function:

Jif B then C else EK(s) = σ(JBK(s)) · JCK(s) + (1− σ(JBK(s))) · JEK(s) (1)

Thus, any policy programmed in this grammar becomes a differentiable program. C is a controller
used by a programmatic policy. During execution, the policy can invoke a set of controllers under
different environment conditions, according to the activation of B conditions in the program. We
consider three DSLs depending on how C is structured for affine, ensemble, and PID policies.

Affine Policies. The DSL for affine policies allows C to be expanded as an affine transformation:

CAffine ::= θc + θ · X | θc

2

Published as a conference paper at ICLR 2022

if θ1c + θT1 · X > 0
then (95% · πUP(s) + 5% · πLEFT(s))←− Branch 1
else if θ2c + θT2 · X > 0

then (95% · πLEFT(s) + 5% · πRIGHT(s))←− Branch 2
else (13% · πDOWN(s) + 87% · πRIGHT(s))←− Branch 3

X = [x, y, Gx, Gy, arctan yx , ‖x, y‖2]
θ1 = [− 2.052, 0.049, 0.440, 0.181, 0.241, 1.443], θ1c = −0.202
θ2 = [1.333, 2.204,−2.2171, 2.132, 1.878, 0.331], θ2c = −0.416

Figure 3: An Ant Cross Maze program Pcross with three branches. A program input X includes
current Ant position x, y along with the target location Gx, Gy (sampled from one of the three
goals in Fig. 2). arctan yx and ‖x, y‖2 are functions of x and y. Each branch composes primitive
functions: πUP, πDOWN, πLEFT, and πRIGHT. Composition weights are shown in percentage.

where θ ∈ Rm·|X |, θc ∈ Rm are policy parameters. Particularly, CAffine can be as simple as some
(learned) constants θc. An example affine policy is given in Appendix K.1.

Ensemble Policies. The most important feature of our programmatic model is compositionality —
composing and reusing task-agnostic primitives in new programs to solve novel problems. The DSL
for ensemble policies includes pre-acquired primitives π1, · · · , πN as callable library functions:

Cπ ::= θ1 · π1(s) + θ2 · π2(s) + · · ·+ θN · πN (s)

Cπ explicitly compose primitive functions (e.g. running forward or jumping) hierarchically into a
complex program (e.g. jumping over multiple hurdles to reach a target) where θ1, · · · , θN ∈ R1

parameterize a primitive combination. The input space of a primitive function can be different from
that of a program (formally defined below). The semantics of Cπ is defined as follows:

JCπK(s) =
N∑
i=0

qi · πi(s) where qi =
exp(θi/T)∑N
j=0 exp(θj/T)

Here the composition weights {qi}Ni=0 for primitive ensemble are computed using gumbel-softmax,
where T is the temperature term (Jang et al., 2017).

PID Policies. Suppose we know a priori that PID control is suitable for stabilising of an RL system.
We can express this knowledge using the DSL for PID functions that allows C to be expanded as
discretized, multivariable PID controllers (Zheng et al., 2002). We leave the details in Appendix K.2.

Figure 2: Ant Cross Maze

Program Interpretability. Our RL algorithm searches over a DSL
to synthesize programmatic policies. Thanks to their structured and
symbolic representation, the algorithm learns highly interpretable
policies. For example, consider an Ant Cross Maze environment
depicted in Fig. 2. The maze contains three possible goal positions
and one would be randomly selected at each time. In this environment,
the task for a quadruped MuJoCo Ant is to reach the selected location
by navigating through the maze staring from an initial position on
the bottom and without collision or crash. We consider the DSL for
this task using ensemble policies Cπ. It includes four basic primitive
functions for moving the Ant up πUP, down πDOWN, left πLEFT, and
right πRIGHT (pretrained as neural network policies using standard RL
algorithms with details left in App. F.2).

Fig. 3 depicts a synthesized program Pcross with three branches for
solving the Ant Cross Maze environment. As specified in Equation 1, our semantics of a branching
construct is approximated by the sigmoid function σ. The value of the predicate in a Boolean condition
determines the activation of the controller guarded by the Boolean condition. At each state, branch
activation determines the strength of each of the controllers in the program. For example, the activation
of branch 1 is σ(θ1c+θT1 ·X), and the activation of branch 2 is (1−σ(θ1c+θT1 ·X)) ·σ(θ2c+θT2 ·X).

3

Published as a conference paper at ICLR 2022

(a) Branch 1 activation,
(Gx, Gy) = (12, 0)

(b) Branch 1 activation,
(Gx, Gy) = (6, -6)

(c) Branch 2 activation,
(Gx, Gy) = (6, -6)

(d) Branch 3 activation,
(Gx, Gy) = (6, -6)

Figure 4: Branch activation as functions of Ant position (x, y) for program Pcross.

Fig. 4a depicts the activation of branch 1 as a function of (x, y) when the goal to reach is sampled at
Gx = 12,Gy = 0. The degree of activation (yellow) is close to 1 on all states under (12, 0) indicating
that the ensemble policy at branch 1 is used to drive the Ant up to the goal. Indeed, according to the
distribution of each primitive function at branch 1, the effect of πUP dominates. Fig. 4b, Fig. 4c, and
Fig. 4d depict the activation of all three branches when the goal is at Gx = 6,Gy = −6. The program
can be interpreted as branch 1 (where πUP dominates) and branch 3 (where πRIGHT dominates) are
activated in the yellow areas of Fig. 4b and Fig. 4d respectively. This allows the Ant to make a curved
up and right move to the goal (branch 2 is not activated during execution for this goal).

Problem Formulation. We frame programmatic RL as a Markov Decision Process (MDP) defined
by a tuple {S,A, T ,R} where S and A represent the environment state space and action space,
T : S × A × S → [0, 1] captures the set of transition probabilities, and R : S × A → R denotes
the reward function. We assume S ⊇ R|X∪V| where X is the set of input variables of a composite
program (defined by a DSL) and V is the set of input variables of primitive functions. For an affine
policy, V = ∅. At time t ≥ 0, an RL agent receives an environment state st ∈ S and performs
an action at ∈ A selected by its policy π(at|st) : S → A. Based on st and at, the agent transits
to receive the next state according to the transition model T (st+1|st, at), and receives the reward
R(st, at). We aim to learn a programmatic policy π in the DSL in Fig. 1 by jointly synthesizing the
program’s architecture E and optimizing the program’s parameters θ to maximize the cumulative
discounted reward Es0,a0,s1···∼π

[∑∞
0 γt ·R(st, at)

]
where γ ∈ (0, 1].

3 ARCHITECTURE SEARCH FOR PROGRAMMATIC POLICIES

Inspired by differentiable neural architecture search e.g. DARTs (Liu et al., 2019b), we relax the
policy architecture search space to be continuous. This amounts to collectively optimizing the
probability distribution of all program architectures in the search space and assigning the the highest
probability to the architecture that maximizes cumulative MDP reward.

Our algorithm is not specific to a DSL. It takes as input any policy DSL with differentiable semantics
and conducts policy architecture search on a program derivation tree of the DSL. Formally, a program
derivation tree is T = {V, E} where a node u ∈ V contains partial architectures with missing
expressions or a complete architecture permissible by the DSL. An edge (u, uE) ∈ E exists if one
can obtain the architectures in uE by expanding a nonterminal E within a partial architecture in u
following some DSL production rules. If more than one rule can be applied to expand the nonterminal
E, uE contains more than one architecture. Take the Pcross program in Fig. 3 as a concrete example:
Fig. 5 depicts a program derivation tree for the DSL in Fig. 1 where a controller C is an ensemble
policy. On the root node 0, we have two choices to expand the initial nonterminal E1 to either an
ensemble policy C1 or a partial architecture if B1 then C2 else E2. Node 1 thus contains two partial
architectures. Formally, we use F(uE) to represent the set of architectures on a node uE .

To expand a nonterminal or a missing expression of a partial program architecture, we relax the
categorical choice of DSL production rules into a softmax over all possible production rules for the
missing expression with trainable weights. For example, on node 1, the choices to expandE1 between
the ensemble policy C1 and the conditional branching expression are weighted by the weight matrix
w1 (obtained after softmax) drawn in Fig. 5. Based on w1, we choose to expand E1 to the conditional
branching expression on node 1. Assume we further expand E2 on node 1 to a conditional branching
expression as well on node 5. Then again we have two choices to expand the nonterminal E3 on
node 5 weighted by w2. This time we choose to expand E3 to an ensemble policy C5. Formally, the

4

Published as a conference paper at ICLR 2022

Figure 5: Ant Cross Maze Program Derivation Tree with program input X . ~π refers to the primitives
of Ant moving up πUP, down πDOWN, left πLEFT and right πRIGHT that take the Ant’s own observations.

weight matrix wuE of the incoming edge to a node uE is of the shape R|F(uE)|, and wuE [E
′] weighs

the likelihood of choosing a particular architecture E′ ∈ F(uE) for expanding E.

A program derivation tree T essentially expresses all possible program derivations up to a certain
bound on the depth of program abstract syntax trees. To train architecture weights, we encode a
program derivation tree itself as a differentiable program πTθ,w that takes a state s as input. Its action
output is weighted by the outputs of all programs included in πTθ,w, where w represents program
architecture weights and θ includes unknown program parameters of all the mixed programs in
the tree. The semantics computation of an expression JEK(s) in a program derivation tree πTθ,w is
delegated to its tree node uE where the nonterminal E is expanded and the categorical choice of
expanding E on uE is relaxed to a softmax over all possible choices:

JEK(s) = JuEK(s) JuEK(s) =
∑

E′∈F(uE)

exp(wuE [E
′])∑

E′′∈F (uE) exp(wuE [E
′′])
· JE′K(s)

Complexity. Assume that the root of T hosts the initial DSL nonterminal ET , d is the depth of T , k
is the number of DSL production rules, and m is the maximum number of nonterminals in the body of
any rules. The semantics of πTθ,w is defined as JπTθ,wK(s) = JET K(s). The number of DSL operations
(e.g. evaluations of ensemble policies and Boolean conditions) invoked by JET K(·) is bounded by
O((km)d). In practice, we optimize the run-time cost of JET K(·) as discussed in Appendix. F.1.

The parameters w and θ of a program derivation tree πTθ,w can be jointly optimized using any policy
gradient methods. To obtain stochastic policy gradients, πTθ,w(·|s) is encoded as a Gaussian policy
where the tree program outputs the action distribution mean. A separate set of parameters specify the
(diagonal) distribution covariance. In this paper, we consider trust region methods e.g. (Schulman
et al., 2015) and aim to maximize the “surrogate” objective function, subject to a constraint on the
size of the policy update by δ, where ρπTθold,wold

is the discounted state visitation frequency of πTθold,wold
,

AπTθold,wold
is an estimator of the advantage function over a finite batch of samples from πTθold,wold

and
θold, wold are policy parameters and architecture weights before the update:

maximizeθ,w Jθold,wold(θ, w) = Es∼ρ
πT
θold,wold

,a∼πTθold,wold

[πTθ,w(s, a)

πTθold,wold
(s, a)

AπTθold,wold
(s, a)

]
subject to Es∼ρ

πT
θold,wold

[
DKL(π

T
θold,wold

(·|s)
∣∣∣∣∣∣ πTθ,w(·|s))] ≤ δ (2)

Policy Parameter Optimization. Our training algorithm is an iterative bilevel optimization proce-
dure. At training iteration k, we perform two steps. At the first step, we optimize the lower-level
program parameters θ with respect to (2), freezing the upper-level architecture weights w:

θk+1 = argmax
θ

Jθk,wk(θ, wk) s.t. Es∼ρ
πT
θk,wk

[
DKL(π

T
θk,wk

(·|s)
∣∣∣∣∣∣ πTθk+1,wk

(·|s))
]
≤ δ (3)

Policy Architecture Optimization. At the second step, we optimize the upper-level architecture
weights w with respect to (2), freezing the lower-level program parameters θ:

wk+1 = argmax
w

Jθk+1,wk(θk+1, w) s.t. Es∼ρ
πT
θk+1,wk

[
DKL(π

T
θk+1,wk

(·|s)
∣∣∣∣∣∣ πTθk+1,wk+1

(·|s))
]
≤ δ

(4)

5

Published as a conference paper at ICLR 2022

(a) Ant ⊃-Maze (b) ⊃-Maze State Abstraction (c) ⊃-Maze High-Level Plan

Figure 6: Model-based high-level planning for Ant ⊃-Maze.

Training steps (3) and (4) are alternated across training iterations until reward convergence. They
can be approximately solved using the efficient conjugate gradient algorithm, after making a linear
approximation to the objective and a quadratic approximation to the constraint (Schulman et al.,
2015). Upon convergence, based on architecture weights, we obtain a discrete program architecture
from πTθ,w replacing each tree node containing multiple architectures with the most likely architecture
in a top-down manner. Finally, we train the parameters in the chosen architecture using RL (Schulman
et al., 2015) until convergence from the parameter values learned by the architecture search process.
The algorithmic pseudocode is depicted in Algorithm 1 in the appendix.

4 PROGRAMMATIC HIGH-LEVEL PLANNING

We further explore learning programmatic policies for high-level planning tasks with long-horizon
and weak reward signals. For example, consider the Ant navigation task in a ⊃-maze from (Nachum
et al., 2018) in Fig. 6a. Due to the complex maze shape, distance-based rewards do not lead to
solving the problem. Hierarchical RL (HRL) is an efficient approach to solve long-horizon high-level
planning. HRL uses a high-level policy to generate a sequence of high-level goals and low-level
policies to generate sequences of actions to achieve each successive goal. Existing HRL methods
are either model-free e.g. (Nachum et al., 2018; 2019) or model-based e.g. (Roderick et al., 2018;
Jothimurugan et al., 2021). In a model-free approach, the learning algorithm in Sec. 3 can be applied
to train HRL policies as programs. In this section, we focus on model-based planning that takes
advantage of the structure in the model of a high-level planning task to improve learning efficiency.

For model-based planning, we abstract over both states and actions to ensure a finite high-level
model. Recall that functions in the DSL of ensemble policies are assumed to be simple, low-level
primitives designed to grasp basic, task-agnostic skills (e.g. Ant moving up and down). We use these
primitives as abstract actions because they abstract low-level agent actions to an abstract space of
skills. Regarding state abstractions, similar to previous works (Abel et al., 2020; Winder et al., 2020;
Jothimurugan et al., 2021), we assume that state abstractions can be effectively provided by domain
experts. For instance, the abstract states of the ⊃-maze are collected on an abstract 2-D gridworld
m ∈ RN×N in Fig. 6b. An abstract grid (x, y) ∈ N ×N subsumes concrete positions with a known
scale where m[x, y] = 1 indicates walls and m[x, y] = 0 indicates navigable spaces. The domain
expert can then specify a pair of abstract initial state ϕInit (yellow) and goal state ϕGoal (green).

ϕInit(x0, y0) ≡ x0 = 3 ∧ y0 = 1 ϕGoal(xk, yk) ≡ xk = 1 ∧ yk = 1

Our design choice of state and action abstraction addresses an important challenge of model-based
HRL — it has to simultaneously perform model-based high-level planning and estimate the state
transition probabilities of the abstract model based on the current high-level policy (Jothimurugan
et al., 2021). In our approach, we decouple this dependency. Since abstract actions as primitive
functions implement simple, task-agnostic skills, it is straightforward to directly specify the state-
transition behavior of the abstract actions ϕAct as opposed to learning it. For example, the Ant
primitives move an Ant by updating its horizontal position xi or vertical position yi one step dxi or
dyi on the abstract model. The Ant can also be moved diagonally via primitive composition:

ϕAct(xi−1, yi−1, xi, yi) ≡ ∃dxi, dyi. xi = xi−1 + dxi ∧ yi = yi−1 + dyi ∧ −1 ≤ dxi, dyi ≤ 1

An abstract action is specified together with a guard ϕGuard that encodes the condition under which
the action can occur. For example, an Ant in ⊃-maze should not walk into walls and the path from an
old position to a new position should not be blocked by walls.

ϕGuard(xi−1, yi−1, xi, yi) ≡ m[xi][yi] 6= 1 ∧
(
m[xi−1][yi] 6= 1 ∨m[xi][yi−1] 6= 1

)
6

Published as a conference paper at ICLR 2022

We further leverage the primitive function specifications to synthesize a high-level control plan on the
abstract model. Suppose for now that we are searching over a high-level plan of a fixed number k of
abstract action steps to reach the goal state ϕGoal from the initial state ϕInit:

ϕInit(x0, y0) ∧
k∧
i=1

(
ϕAct(xi−1, yi−1, xi, yi) ∧ ϕGuard(xi−1, yi−1, xi, yi)

)
∧ ϕGoal(xk, yk) (5)

Constraint (5) can be solved by off-the-shelf constraint solvers e.g. Z3 (de Moura & Bjørner, 2008).
We incrementally search for longer and longer high-level plans, starting from k = 1 and increasing k
until the optimal solution is found. Such a plan is a sequence of sub tasks. For example, the solved
high-level plan for Ant ⊃-Maze navigation is depicted in Fig. 6c. Since a sub task may depend on
multiple primitives e.g. Ant turning around at a corner, we learn a low-level policy for each sub task
as a programmatic ensemble policy composing primitive functions using the technique in Sec. 3
guided by distance-based rewards. This ensures that our HRL policies are interpretable at both high
level and low level. More details including the algorithmic pseudocode are given in Appendix. A.2.

Compared to existing model-based HRL approaches e.g. (Jothimurugan et al., 2021), our algorithm
additionally needs abstract actions to be specified (as ϕAct and ϕGuard) rather than learned. We show
that (1) providing specifications of task-agnostic abstract actions (primitive functions) is trivial even
for complex high-level planning tasks (Appendix G.1); (2) more importantly, these easy-to-annotate
specifications substantially improve the sample efficiency of HRL (Sec. 5).

5 EXPERIMENTS AND EVALUATIONS

We evaluated our approach on two groups of challenging continuous control benchmarks involving
motion control and task planning 1. Group one contains four MuJoCo environments that require
agents to reach or move an object to target locations: (1) Ant Cross Maze: the example depicted in
Fig. 2. (2) Ant Random Goal: The quadruped MuJoCo Ant in Fig. 10a is trained to reach a randomly
sampled goal location within a confined circular region. (3) Pusher: A robotic arm in Fig. 10b is
trained to push a cylinder object to a given target location. (4) HalfCheetah Hurdle: A MuJoCo
halfcheetah in Fig. 10c is required to run and jump over three hurdles to reach a given goal area.
Group two consists of three hierarchical RL benchmarks: (1) Ant ⊃-Maze: the example depicted in
Fig. 6a. (2) Ant Push: This task requires the Ant in Fig. 10d to push away a movable block to reach
the goal region behind it. (3) Ant Fall: The Ant in Fig. 10e is required to push a movable block into
a rift to fill the gap and then walk across it to reach the target on the other side of the rift. Multiple
neural network primitives were trained and included in our ensemble policy DSL e.g. HalfCheetah
πJUMP and πFORWARD, Pusher πPUSH-LEFT and πPUSH-DOWN (with details in Appendix F.2).

Programmatic RL. To the benchmarks from the first group, we apply the RL algorithm in Sec. 3 to
learn a program derivation tree πT -PRL from which we extract programmatic RL policies π-PRL.
The tree depth bound of πT -PRL is set to 6. Our baselines include Composition-SAC (Qureshi et al.,
2020) that learns Bidirectional LSTM-based ensemble policies using the SAC algorithm (Haarnoja
et al., 2018) to combine the task-agnostic primitives for solving the task environments. On-policy
RL algorithms TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017) are the other two
baselines. Fig. 7a depicts the mean learning performance in terms of the agent’s final distance
from targets over 10 random seeds. TRPO and PPO both fail to reach the goals. During policy
architecture search, πT -PRL successfully solves all tasks and outperform or match the performance
of the BiLSTM models of Composition-SAC. The πT -PRL models exhibit less data-efficiency than
the Composition-SAC policies in part due to the use of TRPO for on-policy update that is less
sample-efficient than off-policy SAC (our learning algorithm can also be applied to off-policy RL).

Upon convergence of training a πT -PRL program derivation tree, our algorithm extracts a program
π-PRL from πT -PRL and trains it until convergence. Table 1 presents the mean and standard
deviation of π-PRL’s final distance from given targets. Extracted programs recover the performance
of πT -PRL models and continue to outperform or match the BiLSTM models in Composition-SAC.
Importantly, π-PRL policies are significantly more interpretable than the BiLSTM policies e.g. Fig. 3
and Fig. 4. The high interpretability of π-PRL policies in turn leads to strong generalizability to
novel environments because of the inductive bias implicitly encoded in the policy’s interpretable

1Code is available at https://github.com/RU-Automated-Reasoning-Group/pi-PRL.

7

https://github.com/RU-Automated-Reasoning-Group/pi-PRL

Published as a conference paper at ICLR 2022

(a) Comparison with baselines for group one environments. Results are averaged over 10 random seeds.

(b) Comparison with baselines for group two environments. Results are averaged over 5 random seeds.

Figure 7: Comparison results against baselines. The y-axis records the agent’s distance towards its
goal normalized by the agent initial distance from the goal so values close to 1 or higher show failures.

Environment Performance Convergence Depth
π-PRL Comp-SAC πT -PRL π-PRL Scratch (max 6)

Ant Cross Maze 0.10±0.06 0.11±0.05 5.0 3.0 4.0 4.75
Ant Random Goal 0.14±0.04 0.12±0.02 2.0 1.5 4.0 5.30

HalfCheetah Hurdle 0.03±0.01 0.43±0.22 0.5 0.0 1.0 3.10
Pusher 0.09±0.05 0.16±0.06 0.2 0.1 0.35 3.50

Table 1: Performance and convergence comparison for group one environments averaged over 10
random seeds. The performance section compares the mean normalized final distances to goals of
extracted programs π-PRL with standard deviations; the convergence section compares averaged
numbers of environment steps (in millions) until convergence for policy architecture search πT -PRL,
policy extraction π-PRL, and training a program on the same architecture as π-PRL from scratch.
The depth section shows mean abstract syntax tree depth of extracted π-PRL programs.

representation, e.g. if-then-else conditions used to drive the Ant to different regions on a maze. We
show more examples about the interpretability and generalizability of π-PRL in Appendix I and J.

In Table 1, we also show the number environment steps needed until convergence for policy ar-
chitecture search πT -PRL, extraction π-PRL, and training a programmatic policy using the same
architecture as π-PRL from scratch. Except Ant Cross Maze, the sample efficiency of policy architec-
ture search and extraction combined is better than learning a single program from scratch. Intuitively,
this is because πT -PRL is essentially an over-parameterized model of the optimal policy in the search
space. The better data efficiency of our method compared to enumerating all possible programs to
perform RL for each highlights the merits of jointly optimizing policy architectures and parameters.

Programmatic High-level Planning. To the second group of the benchmarks, we apply the high-
level planning algorithm in Sec. 4 to learn hierarchically programmatic RL policies, denoted as
π-HPRL programs. Our baselines include a model-free Hierarchical RL method HIRO (Nachum
et al., 2018) and a model-based high-level planning method A-AVI (Jothimurugan et al., 2021). All
algorithms run under the same setting to reach a given target, which is fixed for each environment.
Fig. 7b depicts the mean learning performance in terms of the agent’s final distance from targets over
5 random seeds. The π-HPRL programs are more stable, outperform the baselines, and uniquely
solve the Ant Push and Ant Fall environments. We show the success rates of each algorithm in
Appendix G.2. Fig. 7b shows that HIRO gets stuck in local optimums. Unlike π-HPRL, HIRO is
model-free and does not know the structure of the abstract state space, so it is unable to discover
the path from the initial region to the goal region. A-AVI performs worse than π-HPRL because
it does not decouple model-based high-level planning and model construction. π-HPRL is more
sample efficient as it decomposes a task into multiple simpler sub tasks with explicit sub goals to

8

Published as a conference paper at ICLR 2022

Environment π-Affine π5-Ensem π6-Ensem π7-Ensem π-Oracle
Distance Distance d Distance d Distance d Distance

Ant Cross Maze 0.87±0.03 0.10±0.06 4.2 0.10±0.06 4.8 0.07±0.05 5.6 0.33±0.16
Ant Random Goal 0.95±0.06 0.16±0.03 4.4 0.14±0.04 5.3 0.15±0.05 5.2 0.42±0.22

HalfCheetah Hurdle 0.57±0.13 0.03±0.01 3.1 0.03±0.01 3.1 0.04±0.02 2.6 0.67±0.24
Pusher 0.36±0.05 0.08±0.04 3.0 0.09±0.05 3.5 0.10±0.04 4.0 0.26±0.17

Table 2: Ablation study on different configurations of our algorithm. π-Affine denotes a non-
compositional programmatic policy with affine controllers (the depth bound of its program derivation
tree is set to 6). πdepth-Ensem represents a compositional program with primitive ensembles learned
by setting the corresponding program derivation tree depth bound. π-oracle denotes a policy learned
by imitating its oracle (Verma et al., 2018). d shows mean abstract syntax tree depth of learned
policies. The mean normalized final distances to goals are averaged over 10 random seeds.

reach in an optimal high-level plan. First, since the high-level plan is in accordance with the primitive
specifications, a sub goal is easy to achieve by utilizing the corresponding primitives. Second, the
training procedure can be guided by dense distance-based rewards to the sub goal. Therefore, training
for each sub task converges extremely fast well in advance of the expiration of the training budget
allocated to the sub task, causing the ladder-shape convergence curves in Fig. 7b.

Ablation Study. We investigate the impact of compositionality in our algorithm. For the first group
of our benchmarks, we apply our algorithm to synthesize programs in the DSL in Fig. 1 that switch
back and forth between a set of affine controllers under different conditions. Table 2 shows that
these programs perform much worse than the composite programs, which highlights the merits of
composition. We additionally study the effect of the depth bound on a program derivation tree for
policy architecture search. We set the depth bound to 5, 6, 7 respectively. Table 2 shows that the final
performance of the synthesized policies is not sensitive to these settings. Our algorithm converges to
similar architectures as it strives to assign the highest probability to the architecture that maximizes
cumulative RL reward. Convergence curves of all the ablated versions are depicted in Appendix B.

Table 2 also reports the performance comparison between our oracle-free programmatic RL algorithm
with an oracle-guided baseline (Verma et al., 2018). The baseline learns programmatic policies that
imitate the neural Compositional-SAC policies in Table 1. To ensure a fair comparison, we relax the
semantics of these programs to be continuous as well. The results show that the performance of the
distilled programs is worse than that of their oracles and our policies. Since the neural oracles and
programs reside in very different policy architecture spaces, the program that best imitates an oracle
is not necessarily a performant programmatic policy. Comparison results with other oracle-based
programmatic RL baselines can be found in Appendix C.

6 RELATED WORK AND CONCLUSION

Existing programmatic RL methods mostly train a programmatic policy to imitate a pretrained
RL oracle. They synthesize policies by enumerating a set of templates in the form of decision
trees (Bastani et al., 2018; Silver et al., 2020), finite state machines (Inala et al., 2020), or program
sketches (Verma et al., 2018; 2019). However, imitation-based approaches suffer from a nontrivial
distillation gap as the distillation process can yield suboptimal policies. Our approach optimizes
programmatic polices in a continuous relaxation of the non-differentiable architecture space solely
using reward signals by policy-gradient methods. Trivedi et al. (2021) first learns a smooth program
embedding space and then searches over the embedding space to synthesize a program. Our approach
differs as we do not need to prepare a dataset of programs to train the program embedding space, thus
is more suitable when sampling such a dataset is challenging. Yang et al. (2021) uses a MaxSAT solver
to synthesize straight-line programs to guide a policy to reach a goal. Our method is more suitable
when there are multiple goals for which architecture synthesis is necessary to learn conditional
branches to reach different goals. We discuss other related work in broader contexts in Appendix. E.

Conclusion. We present a novel programmatically interpretable and compositional RL framework.
Our method jointly learns policy parameters and policy architectures in a continuous relaxation of
the non-differentiable program architecture space via policy-gradient methods. Our RL framework
leverages compositionality in programming languages to integrate primitive functions into a composite
program to solve novel RL problems. Experiment results demonstrate that it excels in discovering
compositional RL programs with optimal architectures and strong interpretability.

9

Published as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We have included instructions to reproduce our results in the supplementary material. The code
of this work is available at https://github.com/RU-Automated-Reasoning-Group/
pi-PRL.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments and suggestions. This work was supported by
NSF Award #CCF-2124155 and NSF Award #CCF-2007799.

REFERENCES

David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and Michael L.
Littman. Value preserving state-action abstractions. In Silvia Chiappa and Roberto Calandra (eds.),
The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28
August 2020, Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning
Research, pp. 1639–1650. PMLR, 2020. URL http://proceedings.mlr.press/v108/
abel20a.html.

Joshua Achiam. Spinning Up in Deep Reinforcement Learning. 2018.

Karl Johan Åström and Tore Hägglund. Automatic tuning of simple regulators with specifications on
phase and amplitude margins. Autom., 20(5):645–651, 1984. doi: 10.1016/0005-1098(84)90014-1.
URL https://doi.org/10.1016/0005-1098(84)90014-1.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Satinder P. Singh
and Shaul Markovitch (eds.), Proceedings of the Thirty-First AAAI Conference on Artificial Intelli-
gence, February 4-9, 2017, San Francisco, California, USA, pp. 1726–1734. AAAI Press, 2017.
URL http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14858.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow. Deep-
coder: Learning to write programs. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=ByldLrqlx.

Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
e6d8545daa42d5ced125a4bf747b3688-Paper.pdf.

Rudy Bunel, Matthew J. Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=H1Xw62kRZ.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019a.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In 2019 IEEE/CVF International Conference on
Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 1294–
1303. IEEE, 2019b. doi: 10.1109/ICCV.2019.00138. URL https://doi.org/10.1109/
ICCV.2019.00138.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019c. URL https://openreview.net/forum?id=
H1gfOiAqYm.

10

https://github.com/RU-Automated-Reasoning-Group/pi-PRL
https://github.com/RU-Automated-Reasoning-Group/pi-PRL
http://proceedings.mlr.press/v108/abel20a.html
http://proceedings.mlr.press/v108/abel20a.html
https://doi.org/10.1016/0005-1098(84)90014-1
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14858
https://openreview.net/forum?id=ByldLrqlx
https://proceedings.neurips.cc/paper/2018/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/e6d8545daa42d5ced125a4bf747b3688-Paper.pdf
https://openreview.net/forum?id=H1Xw62kRZ
https://openreview.net/forum?id=H1Xw62kRZ
https://doi.org/10.1109/ICCV.2019.00138
https://doi.org/10.1109/ICCV.2019.00138
https://openreview.net/forum?id=H1gfOiAqYm
https://openreview.net/forum?id=H1gfOiAqYm

Published as a conference paper at ICLR 2022

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. In Thirty-Fifth Confer-
ence on Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=ivXd1iOKx9M.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In C. R. Ra-
makrishnan and Jakob Rehof (eds.), Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pp. 337–340.
Springer, 2008. doi: 10.1007/978-3-540-78800-3\ 24. URL https://doi.org/10.1007/
978-3-540-78800-3_24.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pp. 990–998. PMLR, 2017. URL http://proceedings.mlr.press/
v70/devlin17a.html.

Kevin Ellis, Maxwell I. Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a REPL. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
9165–9174, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
50d2d2262762648589b1943078712aa6-Abstract.html.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B.
Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: bootstrapping
inductive program synthesis with wake-sleep library learning. In Stephen N. Freund and Eran Yahav
(eds.), PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 20211, pp. 835–850. ACM, 2021.
doi: 10.1145/3453483.3454080. URL https://doi.org/10.1145/3453483.3454080.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you
need: Learning skills without a reward function. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=SJx63jRqFm.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVI, volume 12361 of Lecture
Notes in Computer Science, pp. 544–560. Springer, 2020. doi: 10.1007/978-3-030-58517-4\ 32.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

Joey Hong, David Dohan, Rishabh Singh, Charles Sutton, and Manzil Zaheer. Latent programmer:
Discrete latent codes for program synthesis. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 4308–4318. PMLR, 2021.
URL http://proceedings.mlr.press/v139/hong21a.html.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, lan-
guages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007. ISBN
978-0-321-47617-3.

Jeevana Priya Inala, Osbert Bastani, Zenna Tavares, and Armando Solar-Lezama. Synthesizing
programmatic policies that inductively generalize. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=S1l8oANFDH.

11

https://openreview.net/forum?id=ivXd1iOKx9M
https://openreview.net/forum?id=ivXd1iOKx9M
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
http://proceedings.mlr.press/v70/devlin17a.html
http://proceedings.mlr.press/v70/devlin17a.html
https://proceedings.neurips.cc/paper/2019/hash/50d2d2262762648589b1943078712aa6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/50d2d2262762648589b1943078712aa6-Abstract.html
https://doi.org/10.1145/3453483.3454080
https://openreview.net/forum?id=SJx63jRqFm
http://proceedings.mlr.press/v139/hong21a.html
https://openreview.net/forum?id=S1l8oANFDH

Published as a conference paper at ICLR 2022

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=rkE3y85ee.

Yufan Jiang, Chi Hu, Tong Xiao, Chunliang Zhang, and Jingbo Zhu. Improved differentiable
architecture search for language modeling and named entity recognition. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3576–3581, 2019.

Kishor Jothimurugan, Osbert Bastani, and Rajeev Alur. Abstract value iteration for hierarchical
reinforcement learning. In International Conference on Artificial Intelligence and Statistics, pp.
1162–1170. PMLR, 2021.

Youngwoon Lee, Shao-Hua Sun, Sriram Somasundaram, Edward S. Hu, and Joseph J. Lim. Compos-
ing complex skills by learning transition policies. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=rygrBhC5tQ.

Youngwoon Lee, Jingyun Yang, and Joseph J. Lim. Learning to coordinate manipulation skills
via skill behavior diversification. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https:
//openreview.net/forum?id=ryxB2lBtvH.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European conference on computer vision (ECCV), pp. 19–34, 2018.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and
Li Fei-Fei. Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2019a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differentiable architecture search. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019b. URL https://openreview.net/forum?id=
S1eYHoC5FX.

Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch learning for
conditional program generation. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL https://openreview.net/forum?id=HkfXMz-Ab.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchi-
cal reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
3307–3317, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
e6384711491713d29bc63fc5eeb5ba4f-Abstract.html.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning for
hierarchical reinforcement learning. In 7th International Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=H1emus0qF7.

Maxwell I. Nye, Luke B. Hewitt, Joshua B. Tenenbaum, and Armando Solar-Lezama. Learning to
infer program sketches. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp. 4861–4870.
PMLR, 2019. URL http://proceedings.mlr.press/v97/nye19a.html.

12

https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rkE3y85ee
https://openreview.net/forum?id=rygrBhC5tQ
https://openreview.net/forum?id=ryxB2lBtvH
https://openreview.net/forum?id=ryxB2lBtvH
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=HkfXMz-Ab
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/e6384711491713d29bc63fc5eeb5ba4f-Abstract.html
https://openreview.net/forum?id=H1emus0qF7
https://openreview.net/forum?id=H1emus0qF7
http://proceedings.mlr.press/v97/nye19a.html

Published as a conference paper at ICLR 2022

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai.
BUSTLE: bottom-up program synthesis through learning-guided exploration. In 9th International
Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net, 2021. URL https://openreview.net/forum?id=yHeg4PbFHh.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net, 2017. URL https://openreview.net/forum?id=rJ0JwFcex.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. MCP: learning
composable hierarchical control with multiplicative compositional policies. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 3681–3692, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/95192c98732387165bf8e396c0f2dad2-Abstract.html.

Ahmed Hussain Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, and
Michael C. Yip. Composing task-agnostic policies with deep reinforcement learning. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
H1ezFREtwH.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for image
classifier architecture search. In The Thirty-Third AAAI Conference on Artificial Intelligence,
AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019, pp. 4780–4789. AAAI Press, 2019. doi:
10.1609/aaai.v33i01.33014780.

Melrose Roderick, Christopher Grimm, and Stefanie Tellex. Deep abstract q-networks. In
Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita Sukthankar (eds.), Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2018, Stockholm, Sweden, July 10-15, 2018, pp. 131–138. International Foundation for Au-
tonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2018. URL http:
//dl.acm.org/citation.cfm?id=3237409.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tom Silver, Kelsey R. Allen, Alex K. Lew, Leslie Pack Kaelbling, and Josh Tenenbaum. Few-
shot bayesian imitation learning with logical program policies. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications
of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pp.
10251–10258. AAAI Press, 2020. URL https://aaai.org/ojs/index.php/AAAI/
article/view/6587.

Shao-Hua Sun, Hyeonwoo Noh, Sriram Somasundaram, and Joseph J. Lim. Neural program synthesis
from diverse demonstration videos. In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 4797–
4806. PMLR, 2018. URL http://proceedings.mlr.press/v80/sun18a.html.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum,
and Jiajun Wu. Learning to infer and execute 3d shape programs. In 7th International Conference
on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019. URL https://openreview.net/forum?id=rylNH20qFQ.

13

https://openreview.net/forum?id=yHeg4PbFHh
https://openreview.net/forum?id=rJ0JwFcex
https://proceedings.neurips.cc/paper/2019/hash/95192c98732387165bf8e396c0f2dad2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/95192c98732387165bf8e396c0f2dad2-Abstract.html
https://openreview.net/forum?id=H1ezFREtwH
https://openreview.net/forum?id=H1ezFREtwH
http://dl.acm.org/citation.cfm?id=3237409
http://dl.acm.org/citation.cfm?id=3237409
https://aaai.org/ojs/index.php/AAAI/article/view/6587
https://aaai.org/ojs/index.php/AAAI/article/view/6587
http://proceedings.mlr.press/v80/sun18a.html
https://openreview.net/forum?id=rylNH20qFQ

Published as a conference paper at ICLR 2022

Dweep Trivedi, Jesse Zhang, Shao-Hua Sun, and Joseph J Lim. Learning to synthesize programs as
interpretable and generalizable policies. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=wP9twkexC3V.

Abhinav Verma, Vijayaraghavan Murali, Rishabh Singh, Pushmeet Kohli, and Swarat Chaudhuri.
Programmatically interpretable reinforcement learning. In Jennifer G. Dy and Andreas Krause
(eds.), Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Ma-
chine Learning Research, pp. 5052–5061. PMLR, 2018. URL http://proceedings.mlr.
press/v80/verma18a.html.

Abhinav Verma, Hoang Minh Le, Yisong Yue, and Swarat Chaudhuri. Imitation-projected pro-
grammatic reinforcement learning. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
15726–15737, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html.

Alexander Vezhnevets, Volodymyr Mnih, Simon Osindero, Alex Graves, Oriol Vinyals, John P.
Agapiou, and Koray Kavukcuoglu. Strategic attentive writer for learning macro-actions. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett (eds.), Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp.
3486–3494, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
c4492cbe90fbdbf88a5aec486aa81ed5-Abstract.html.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethink-
ing architecture selection in differentiable NAS. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

John Winder, Stephanie Milani, Matthew Landen, Erebus Oh, Shane Parr, Shawn Squire, Marie
desJardins, and Cynthia Matuszek. Planning with abstract learned models while learning
transferable subtasks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, New York, NY, USA, February 7-12, 2020, pp. 9992–10000. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/6555.

Glynn Winskel. The formal semantics of programming languages - an introduction. Foundation of
computing series. MIT Press, 1993. ISBN 978-0-262-23169-5.

Yichen Yang, Jeevana Priya Inala, Osbert Bastani, Yewen Pu, Armando Solar-Lezama, and Martin
Rinard. Program synthesis guided reinforcement learning for partially observed environments.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
QwNLVId9Df.

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural
architecture search. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pp. 12707–12718. PMLR, 2021.

Feng Zheng, Qing-Guo Wang, and Tong Heng Lee. On the design of multivariable PID controllers
via LMI approach. Autom., 38(3):517–526, 2002. doi: 10.1016/S0005-1098(01)00237-0. URL
https://doi.org/10.1016/S0005-1098(01)00237-0.

Amit Zohar and Lior Wolf. Automatic program synthesis of long programs with a
learned garbage collector. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neu-
ral Information Processing Systems 31: Annual Conference on Neural Information Pro-
cessing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp.
2098–2107, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
390e982518a50e280d8e2b535462ec1f-Abstract.html.

14

https://openreview.net/forum?id=wP9twkexC3V
https://openreview.net/forum?id=wP9twkexC3V
http://proceedings.mlr.press/v80/verma18a.html
http://proceedings.mlr.press/v80/verma18a.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5a44a53b7d26bb1e54c05222f186dcfb-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c4492cbe90fbdbf88a5aec486aa81ed5-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/c4492cbe90fbdbf88a5aec486aa81ed5-Abstract.html
https://aaai.org/ojs/index.php/AAAI/article/view/6555
https://openreview.net/forum?id=QwNLVId9Df
https://openreview.net/forum?id=QwNLVId9Df
https://doi.org/10.1016/S0005-1098(01)00237-0
https://proceedings.neurips.cc/paper/2018/hash/390e982518a50e280d8e2b535462ec1f-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/390e982518a50e280d8e2b535462ec1f-Abstract.html

Published as a conference paper at ICLR 2022

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

15

Published as a conference paper at ICLR 2022

A TRAINING ALGORITHM PSEUDOCODE

A.1 THE PROGRAMMATIC REINFORCEMENT LEARNING ALGORITHM

We depict the pseudocode of our oracle-free programmatic reinforcement learning algorithm in
Algorithm 1. The algorithm builds a program derivation tree that involves programs whose abstract
syntax tree depth is bounded by a hyperparameter d. We encode a program derivation tree as a
differentiable program πTθ,w with architecture weight w and policy parameters θ. Recall the surrogate
objective definition in Eq. (2):

Jθold,wold(θ, w) = Es∼ρ
πT
θold,wold

,a∼πTθold,wold

[πTθ,w(s, a)

πTθold,wold
(s, a)

AπTθold,wold
(s, a)

]
where AπTθold,wold

is an estimator of the advantage function over a finite batch of samples from πTθold,wold

and θold, wold are policy architecture weights and parameters before policy update.

In the pseudocode, training steps (3) for learning θ and (4) for learning w are alternated across
training iterations until reward convergence. They can be approximately solved using the efficient
conjugate gradient algorithm, after making a linear approximation to the objective and a quadratic
approximation to the constraint (Schulman et al., 2015). Upon convergence, based on architecture
weights, we obtain a discrete program architecture from πTθ,w replacing each tree node containing
multiple architectures with the most likely architecture in a top-down manner. Finally, we train the
parameters in the chosen architecture using RL (Schulman et al., 2015) until convergence from the
parameter values learned by the search process.

Algorithm 1 Programmatic Reinforcement Learning without Oracles

Require: Policy Context-free grammar E, depth bound d, KL-divergence limit δ
Ensure: Synthesized programmatic policy π
T ← get Program Derivation Tree (E, d)

. T expresses all programs whose abstract syntax tree depth is bounded by d
πTθ,w ← encode (T)
. πTθ,w as differentiable program with parameters θ and architecture weights w that encodes T

θ0, w0 ← randomly initialize (θ, w)
for k = 0, 1, 2, . . . ,M do . Policy architecture search

θk+1 = argmaxθ Jθk,wk(θ, wk)

s.t. Es∼ρ
πT
θk,wk

[
DKL(π

T
θk,wk

(·|s)
∣∣∣∣∣∣ πTθk+1,wk

(·|s))
]
≤ δ . Per Eq. (3)

wk+1 = argmaxw Jθk+1,wk(θk+1, w)

s.t. Es∼ρ
πT
θk+1,wk

[
DKL(π

T
θk+1,wk

(·|s)
∣∣∣∣∣∣ πTθk+1,wk+1

(·|s))
]
≤ δ . Per Eq. (4)

end for
πθ ← extract (πTθM ,wM) . Extract a single program based on architecture weights wM

θ0 ← θM . The extracted policy inherits parameters from trained πTθM ,wM
for k = 0, 1, 2, . . . , N do . Train the chosen architecture

θk+1 = argmaxθ Jθk(θ)

s.t. Es∼ρπθk

[
DKL(πθk(·|s)

∣∣∣∣∣∣ πθk+1
(·|s))

]
≤ δ

end for
return πθN

A.2 THE PROGRAMMATIC HIGH-LEVEL PLANNING

The pseudocode of the synthesis algorithm for HRL policies is depicted in Algorithm 2. The goal is
to synthesize a high-level control plan on the abstract model using abstract actions ϕAct as constraints.
An abstract action is specified together with a guard ϕGuard that encodes the condition under which
the action can occur. Suppose for now that we are searching over a high-level plan of a fixed number

16

Published as a conference paper at ICLR 2022

k of abstract action steps to reach the goal state ϕGoal from the initial state ϕInit:

ϕInit(x0, y0) ∧
k∧
i=1

(
ϕAct(xi−1, yi−1, xi, yi,mi−1,mi) ∧ ϕGuard(xi−1, yi−1, xi, yi,mi−1)

)
∧

ϕGoal(xk, yk)

(6)

Constraint (6) can be solved by off-the-shelf constraint satisfiability solvers e.g.
Z3 (de Moura & Bjørner, 2008). We incrementally search for longer and longer
high-level plans, starting from k = 1 and increasing k until the optimal high-
level plan solution is found. A solved high-level plan is a sequence of sub-tasks:(
β(x0, y0), π1, β(x1, y1)

)
,
(
β(x1, y1), π2, β(x2, y2)

)
, . . . ,

(
β(xk−1, yk−1), πk, β(xk, yk)

)
where

we extract the intermediate high-level goals x1, y1, . . . , xk−1, yk−1 from the solution of the
statisfiability solver, and the concretization function β converts abstract states back to concrete goals
on the unabstracted environment for the agent to successively achieve. For example, the solved
high-level plan for Ant ⊃-Maze navigation is depicted in Fig. 6c. For each sub-task i that starts
from a set of initial states β(xi−1, yi−1), we learn a new low-level policy πi that drives the agent
to reach states in β(xi, yi). The states of πi when reaching β(xi, yi) serve as the initial states for
training πi+1. Notice that we do not directly use primitive functions as πi, because oftentimes
low-level policies need to compose primitive functions using different weights under different
environment conditions to achieve a sub-task, e.g. Ant turning around at a corner with different poses
and velocities while contacting walls in the process. We therefore learn each low-level policy πi as a
programmatic ensemble policy composing primitive functions using the technique in Sec. 3 and
distance-based rewards. This ensures that our HRL policies are interpretable at both high level and
low level.

Algorithm 2 Programmatic High-Level Planning

Require: Primitive Specifications ϕAct, abstract Action Guard ϕGuard, abstract initial ϕinit and goal
ϕgoal, time-step limit T for the execution of each low-level policy

Ensure: A high-level plan model, and its low-level policies π0, π1, . . . , πk−1
for k = 1, 2, . . . ,M do . High-level policy planning

φk ← ϕInit(x0, y0) ∧
∧k
i=1

(
ϕAct(xi−1, yi−1, xi, yi) ∧ ϕGuard(xi−1, yi−1, xi, yi)

)
∧ϕGoal(xk, yk) . Per Eq. (5)

model← solve (φk)
if model 6= None then
∀ i. xi, yi = model[xi], model[yi] . A high-level control plan is synthesized
Break

else if k ==M then
Return “Failed”

end if
end for
for i = 0, 1, 2, . . . , k − 1 do . Low-level policy learning

Ri ← λs, a.− dist(s, β
(
xi, yi)

)
. Reward based on distance to sub goal (xi, yi)

πi = argmaxπi Es0∼
(
π0,...,πi−1

)
,
(
a0,s1···

)
∼πi

[∑T
0 γ

t ·Ri(st, at)
]

. Apply Algorithm 1 to learn a low-level programmatic policy πi

. The initial state s0 is sampled as the last state observed by πi−1
end for
return model, (π0, π1, . . . , πk−1)

B MORE ABLATION STUDY RESULTS

Our first ablation study investigates the impact of compositionality on our algorithm. Fig. 8 shows
the ablation study results on comparing different strategies, i.e., learning a programmatic ensemble
policy, learning a programmatic affine policy, and learning a deep neural network policy using TRPO
(Schulman et al., 2015). A programmatic affine policy is a monolithic program in our DSL (Fig. 1)

17

Published as a conference paper at ICLR 2022

Figure 8: Ablation study on the importance of compositionality. Results are averaged over 10 random
seeds. The y-axis records the agent’s distance towards its goal. We normalize the distances to a final
goal by the agent initial distance from the goal so values close to 1 or higher show failures.

Figure 9: Ablation study on the impact of the depth bound of a program derivation tree. Results
are averaged over 10 random seeds. The y-axis records the agent’s distance towards its goal. We
normalize the distances to a final goal by the agent initial distance from the goal so values close to 1
or higher show failures.

that switches back and forth between a set of affine controllers under different environment conditions.
The result shows that our programmatic ensemble policies significantly outperform the other two
representations in all group one environments, which highlights the merits of composition. Notice that
in the HalfCheetah Hurdle and Pusher environments, the programmatic affine policies significantly
outperform the neural network policies.

Our second ablation study investigates the impact of the depth bound of a program derivation tree
on the performance of our algorithm. Fig. 9 shows the ablation study result about using different
depth bounds on program derivation trees and compares the mean normalized final distances to
goals of learned policies with standard deviations (averaged over 10 random seeds). Specifically, we
compare program derivation trees with depths of 5, 6 and 7. The result demonstrates that the training
performance is not sensitive to these depth bounds. The algorithm converges to architectures with
similar performance. Table 2 additionally shows that the structures of the converged architectures are
also similar. This suggests that if the user does not know how complex a programmatic policy should
be a priori, the user can simply set a large tree-depth bound and let the learning algorithm assign the
highest probability to the architecture that leads to a program maximizing cumulative RL reward.

C COMPARISON WITH ORACLE-GUIDED PROGRAMMATIC RL

One of our main contributions is direct programmatic policy search. Existing oracle-guided pro-
grammatic RL algorithms suffer from a nontrivial distillation gap as the distillation process can
yield suboptimal programmatic policies whose reward performance is significantly worse than that
of their oracles. This is because oracles (e.g. neural policies) and programs may reside in very
different policy structure spaces. Due to the structural constraints, the program that best imitates
an oracle is not necessarily a performant programmatic policy, or could even be much worse than
the optimal program in the search space. To address this limitation, we propose programmatic RL
solely based on reward signals without using any oracles. This allows the synthesis algorithm to
search for optimal programs in the programmatic policy space. We compare our programmatic RL
algorithm with oracle-based programmatic RL algorithms that learn policies in the form of programs

18

Published as a conference paper at ICLR 2022

Environment Neural Oracles Oracle-guided Decision Trees Oracle-free
RL Programs RL Programs

Reacher -5.01 -5.79 -4.79 -5.05
Walker2d 4752 3672 1714 5178
Hopper 3634 1646 2995 3535

HalfCheetah 14627 3569 2810 10773
Ant 5786 4875 3504 5680

Swimmer 335 335 334 340
BipedalWalker 287 273 252 274

Pendulum -146 -146 -149 -144

Table 3: Comparison between our programmatic RL algorithm with oracle-based programmatic RL
algorithms that learn policies in the form of programs (using the same DSL as ours) (Verma et al.,
2018) and decision trees (Bastani et al., 2018) on Mujoco/OpenAI environments. Neural oracles and
our programmatic policies were trained using 3 million environment steps and we report the averaged
final reward performance of three repeated experiments.

(using the same DSL as ours) (Verma et al., 2018) and decision trees (Bastani et al., 2018). In Table 3,
we report results on Mujoco/OpenAI environments where programmatic policies invoke a set of
affine controllers under different environmental conditions. To ensure a fair comparison, we relax the
semantics of oracle-guided RL programs to be continuous as well but decision trees remain discrete.
Neural oracles for Walker2d, Hopper, HalfCheetah, and Ant were trained with SAC (Haarnoja et al.,
2018) using 3 million environment steps. Neural oracles for Reacher, Swimmer, BipedalWalker, and
Pendulum were trained with TRPO (Schulman et al., 2015) using 3 million environment steps and
we report the averaged final reward performance of three repeated experiments.

The reward performance of our oracle-free programmatic RL policies is comparable to neural network
policies. Due to the distillation gap, the oracle-guided RL programs learned by the baselines perform
worse than their oracles and our policies. We also tried the imitation-projected programmatic RL
algorithm (Verma et al., 2019) that optimizes a programmatic policy by taking a mirror gradient
descent in a policy space with a mix of neural and programmatic representations, which enables
deep policy gradient approaches on programmatic policies. However, our own implementation of the
algorithm in the mixed policy space does not lead to significant policy improvement compared with
(Verma et al., 2018).

We further compare our algorithm with Verma et al. (2018) on the environments reported in Sec. 5.
According to our results in Fig. 7a, these environments are best solved using policies that invoke a set
of ensemble controllers. We report the mean normalized final distances to goals of learned policies
with standard deviations. The neural oracles were trained by Compositional-SAC (Qureshi et al.,
2020). Table 2 demonstrates that the oracle-guided RL programs (π-Oracle) are again suboptimal
due to the distillation gap. Especially, they do not work well in environments with multiple goals. For
example, we found that although on Ant Cross Maze the neural compositional-SAC policy in general
works well, the success rate of reaching the goal (6, -6) is higher than reaching the other goals. The
bias is amplified in the oracle-guided programmatic RL policy. When the goal is at (12, 0), the agent
sometimes mistakenly goes somewhere near (6, -6).

The above two sets of experiments demonstrate that our oracle-free programmatic RL overcomes the
suboptimality induced by oracle-guided programmatic RL.

D DSLS WITHOUT LOOPS

Our loop-free programmatic policies can already produce repetitive behaviors when necessary. This
is because policies are always executed in a feedback loop with RL environments. At each iteration,
environment states encountered by repetitive behaviors would repeatedly activate or be matched to
the same if-then-else conditions and therefore trigger alike actions. To support this argument, we
evaluated our tool on two environments from Inala et al. (2020): Car and QuadPO. Both environments
need policies that capture repeating behaviors. For Car, the goal is to drive a car out of a parking spot
to an adjacent lane while avoiding collisions. For QuadPO, the goal is to maneuver a 2D quadcopter
through an obstacle course by controlling its vertical acceleration. The training and test distributions
are varied to evaluate whether policies can produce an arbitrary number of repetitions. For example,

19

Published as a conference paper at ICLR 2022

Environments TRPO + NN TRPO + Programmatic Affine Policy
Car 82.6% 100%

QuadPO 69.6% 85.6%

Table 4: Comparison between our programmatic affine policies with neural network policies both
learned based on a TRPO agent (Schulman et al., 2015). The training and test distributions are varied
to evaluate whether policies can produce an arbitrary number of repetitions. We report the results on
test distributions by measuring the fraction of rollouts (out of 500) that safely reach the goal.

on QuadPO, the obstacle course length is doubled during testing. Table 4 summarizes the results on
test distributions by measuring the fraction of rollouts (out of 500) that safely reach the goal.

Our loop-free programmatic policies generalize better than neural policies on the test distributions. We
did not compare our policies with the state-machine policies (Inala et al., 2020) as its implementation
is not available.

Moreover, our tool indeed supports loops in a program that sequentially processes a history of
environment states and actions. For example, our DSL allows a controller C to be expanded as
a discretized, multivariable PID controller in Fig. 1. In Appendix K.2, such a PID controller is
formalized based on the higher-order combinator fold that acts over a fixed-sized window on a
history of observations. We could alternatively add fold(f, h) directly to the DSL to search policies
that combine the results of recursively processing each past observation in a history h to build up a
return action (the body of the combining operation f can also be synthesized).

E ADDITIONAL RELATED WORK

Compositional Reinforcement Learning. To improve RL efficiency, a line of research that trans-
fers past skills into new skills for solving new complex problems has emerged. Lee et al. (2019;
2020) learn high-level polices to select the previously trained primitive policies. The macro-action
models (Vezhnevets et al., 2016) similarly learn a high-level planner to combine actions sequences
from primitives. These methods activate only one policy at each timestep. Other works have explored
simultaneously composing multiple task-agnostic primitive skills by learning to assign weights for
action composition (Peng et al., 2019; Qureshi et al., 2020). Hierarchical reinforcement learning, such
as option-critic (Bacon et al., 2017), is also a promising approach to solve complex tasks. However,
option-critic is prone to inefficient task decomposition. Nachum et al. (2018) address this issue by
automatically decomposing a complex task into subtasks and solving them by optimizing the subtask
objectives. As opposed to these efforts, our method learns high-level and low-level policies that are
both interpretable. Our technique can integrate any primitive skills diverse enough to complete a task
and is orthogonal to automatic skill discovery methods e.g. (Eysenbach et al., 2019).

Differentiable Architecture Search. Neural architecture search has emerged as a promising ap-
proach to automate deep learning applications (Zoph & Le, 2017; Liu et al., 2018; Real et al., 2019).
Particularly, our program architecture synthesis algorithm is inspired by DARTS (Liu et al., 2019b).
This method uses a composition of softmaxes over all possible candidate operations between a fixed
set of neural network nodes to relax the neural architecture search space in a super-network, and uses
approximate gradient descent to iteratively train the weights and parameters of the super-network.
It then selects the optimal architecture based on the weights. Various methods further improve
architecture search efficiency, accuracy and applicability (Chen et al., 2019a; Guo et al., 2020; Zhao
et al., 2021; Wang et al., 2021; Cui & Zhu, 2021; Jiang et al., 2019; Liu et al., 2019a). However, none
of these methods has performed differentiable architecture search in a reinforcement learning context
or considered leveraging symbolic logical abstractions for hierarchical architecture synthesis.

Neural Program Synthesis. Neural program synthesis involves learning neural networks to predict
function distributions to guide a synthesizer e.g. DeepCoder (Balog et al., 2017), or generate a
program autoregressively in an end-to-end fashion e.g. (Sun et al., 2018; Parisotto et al., 2017; Bunel
et al., 2018) and RobustFill (Devlin et al., 2017). BUSTLE (Odena et al., 2021) uses bottom-up
search that allows the model to prioritize and combine small programs that solve different subtasks.
SKETCHADAPT (Nye et al., 2019) first generates a program sketch with holes, and then fills the
holes using a conventional synthesizer. BAYOU (Murali et al., 2018) infers a different form of
program sketches that abstract names and operations by their type. DreamCoder (Ellis et al., 2021)

20

Published as a conference paper at ICLR 2022

Models Ant Cross Maze Ant Random Goal Pusher Cheetah Hurdle
Program derivation tree 0.0023s 0.0023s 0.0014s 0.0014s

Programmatic policy (depth 6) 0.0019s 0.0019s 0.0009s 0.0009s
Bidirectional LSTM 0.0034s 0.0033s 0.0022s 0.0021s

Table 5: The average running time of over 10000 random executions of program derivation trees,
single programmatic policies, and Bidirectional LSTM models (Qureshi et al., 2020).

iteratively builds sketches using progressively more complicated primitives though a wake-sleep
algorithm. Latent Programmer (Hong et al., 2021) considers two-level search for program synthesis,
in which the synthesizer first generates a plan — a sequence of symbols, in other words discrete latent
code from input/output examples by discrete autoencoders, that describes the desired program at a
high level, and then generates the program in the target language. These methods avoid enumerating
every possible program, which is prohibitively expensive for large program spaces.

There is also a line of work that deals with learning to process partial programs in addition to the
specification. In execution-guided program synthesis, the model guides iterative expansions of a
partial program until a matching one is found. Zohar & Wolf (2018) process intermediate values
of a program using a neural network for search direction prioritization for a small, straight-line
DSL. Ellis et al. (2019) allow values of whole and ground programs encountered during bottom-up
search to be used to prioritize the search in an actor-critic framework. Similarly, Chen et al. (2019c)
exploit intermediate values while synthesizing a program via a top-down fashion using a neural
encoder-decoder model. Tian et al. (2019) exploit the differentiability of a rendering process to train
a program generating policy and generalize it beyond the training distribution via gradient-based
fine-tuning.

F IMPLEMENTATION DETAILS

In this section, we present implementation details including the optimization of JEK(·), primitive
policies, symbolic inputs and reward structures of each environment, and hyperparameters of rein-
forcement learning algorithms.

F.1 COMPUTATIONAL COMPLEXITY OF PROGRAM DERIVATION TREE EXECUTION

We compare the computational complexity of JEK(·) (where d = 6) with that of the deepest single
program in JEK(·) and that of the Bidirectional LSTM-based model used by the Compositional SAC
baseline (Qureshi et al., 2020) as follows. We report the average running time of over 10000 random
executions of the three models in Table 5.

In our implementation, the run-time execution of a program derivation tree is optimized as follows.
As depicted in Fig. 5, primitive policies are invoked multiple times by various programs embedded
in a program derivation tree. Since the input to any primitive is always the current environment
state, it suffices to call each primitive just once and use its result anywhere it is invoked in the tree
policy. Table 5 shows that this simple optimization could enable us to run our algorithm as fast as the
Compositional SAC baseline that does not perform any architecture search.

More importantly, we do not need to explicitly enumerate and execute all programs up to some depth
for each state evaluated during an episode. Fig. 5 shows that we allow the exponential number of
programs in a program derivation tree to share computation (similar to weight sharing in DARTS) —
intermediate results computed by a shallower program can be reused by a deeper program.

For more complex DSLs with a large number k of production rules, we could optimize the architecture
search procedure by applying a strategy similar to Progressive DARTS (Chen et al., 2019b). This
strategy gradually increases tree depth d during search while dropping the search directions leading to
lowest-weighted programs at the previous stage from the program derivation tree. Such a progressive
procedure would allow our algorithm to deeply explore the architecture space even when k is large,
which is left for future work.

21

Published as a conference paper at ICLR 2022

F.2 PRIMITIVE POLICIES DETAILS

In all reinforcement learning tasks, we require multiple primitive skills policies to compose higher-
level programs. Since primitive policies are obtained for completing dedicated tasks, e.g., navigating
the ant agent to move up, or pushing down the object in the Pusher environment, it is unnecessary
to include targets information in high-level tasks into their observation space during training. All
primitive skills policies are obtained using SAC algorithm (Haarnoja et al., 2018) implemented in
OpenAI Spinning Up RL framework (Achiam, 2018).

Ant. For standard-torque and low-torque ant, we train two sets of four basic primitive policies, i.e.,
UP, DOWN, LEFT and RIGHT for 1 million steps for each. The reward function to acquire above
four primitives is defined as:

rant = cv · vdirection + ch · I(IsHealthy)− ca · ‖a‖2 − cf · ‖fcontact‖2 (7)

where vdirection is the velocity of given direction, I(IsHealthy) is a Boolean function that determines
the health condition of the agent, action a is a 8-dimension vector, and fcontact is a vector that
encodes the contact force of the agent. In order to train UP and DOWN primitives, vdirection = ±vx
should track velocities on ±x-axis; similarly, to train LEFT and RIGHT policies, we should set
vdirection = ±vy to keep track of velocities along ±y-axis. Coefficients cv, ch, ca and cf are set to
be 1, 1, 0.5, 5× 10−4, respectively.

Pusher. The Pusher environment requires two skills: PUSH-DOWN and PUSH-LEFT used to
manipulate the object to move down and left, and both of them are trained for 0.5 million steps. The
reward function to acquire these two primitives is defined as:

rpusher = cv · vdirection − ca · ‖a‖2 (8)

where vdirection denotes the object’s velocity projected on DOWN (negative y-axis) or LEFT (positive
x-axis), and a is the action. Coefficients cv and ca are set to be 1 and 0.1, respectively.

HalfCheetah. In HalfCheetah Hurdle environment, two simple policies JUMP and FORWARD are
trained for 0.5 million steps, and they are sufficient to compose the program and solve the task. The
reward function can be defined as:

rhc = cvf · vforward + cvj · vjump − ca · ‖a‖2 (9)

where vforward and vjump are velocities projected on forward (x-axis) and jump (y-axis) directions,
and a is the action. In order to train FORWARD policy, coefficients cvf , cvj are set to be 1 and 0; for
policy JUMP, we set coefficients cvf = 0.05 and cvj = 1, respectively. Coefficient ca is the control
cost coefficient which set to be 0.1.

Note that for Ant and HalfCheetah Hurdle environment, primitive policies are trained in a blank
environment without any obstacle so that they can move freely.

F.3 PROGRAM INPUTS

For low-torque ant, we consider its current position x, y, distance from current position to the starting
point ‖x, y‖2, and the angle between current direction to the x-axis arctan yx as symbolic inputs. For
standard-torque ant, besides the above inputs, we also take the goal position Gx,Gy for navigation,
since goals in environments which utilize the standard ant are randomly sampled. In the HalfCheetah
Hurdle environment, the position of the next hurdleHnext and the distance from HalfCheetah’s back
foot to next hurdle |xback −Hnext| are considered. For the simple pusher task, we use distance from
origin to the object ‖xobj , yobj‖2 and to the robotic arm ‖xarm, yarm‖2 as symbolic inputs.

22

Published as a conference paper at ICLR 2022

(a) Ant Random Goal (b) Pusher (c) HalfCheetah Hurdle

(d) Ant Push (e) Ant Fall

Figure 10: Navigation and manip-
ulation benchmarks that require
agents to reach or move the object
to the given targets (represented
by a red circle for pusher and by
green spheres for the rest). Addi-
tionally, Ant Cross Maze and Ant
⊃-Maze are depicted in Fig. 2
and Fig. 6a respectively. In all
ant environments, the definitions
of up, down, left, right, and for-
ward are moving towards posi-
tive/negative x/y axes directions,
respectively.

F.4 ENVIRONMENT DETAILS

F.4.1 ANT ENVIRONMENTS

The standard-torque Ant environments include Ant Cross Maze and Ant Random Goal environ-
ments. In these environments, a MuJoCo quadruped ant with 150 units torque limit is required to start
from origin and reach the random given targets. The radius of the goals are 1 and 0.25, respectively.
Specifically, the goal of Ant Cross Maze is randomly sampled from one of three positions: (6, 6), (12,
0) and (6, -6) at each time; and the goals in Ant Random Goal is a random position within a circle
with radius of 5. In ant environments, the reward function is defined as:

rant rl = cdistance · (cd − ‖pant − pgoal‖2) + ch · I(IsHealthy)
− ca · ‖a‖2 − cf · ‖fcontact‖2

(10)

where pant = (xant, yant) and pgoal = (xgoal, ygoal) are positions of ant and the given targets,
I(IsHealthy) is a Boolean function that determines the health condition of the agent, action a is a
vector, and fcontact is a vector denotes the contact force. Coefficients cdistance, cd, ch, ca and cf are
set to be 1, 5, 0.05, 0.01 and 0.001, respectively.

Additionally, we consider three challenging low-torque MuJoCo Ant environments with weak
distance-based reward signals. Compared to standard-torque, the low-torque ant has the force
range [-30, 30]. Since smaller force is exerted on joints, the ant moves slower and suitable for
intricate HRL tasks. Specifically, we normalize the distances to a fixed final goal by the agent initial
distance from the goal so values close to 1 or higher show failure. Greedily following this kind of
reward signals does not lead to solving the problems as these environments are in complex shapes.

In the Ant ⊃-Maze environment, we place the Ant in a ⊃-shaped maze for a navigation task. The
agent is trained to reach the farthest end of the maze located at (0, 19). In the Ant Push environment,
the moveable block is at (0, 8), and the goal is at (0, 19). In the Ant Fall environment, the movable
block is at (8, 8) at the same elevation as Ant. Their is a rift in the region [-4, 12] × [12, 20]. To
reach the target on the other side of the rift, the Ant must push the block down into the rift, and then
step on it to get to the goal position. For all three environments, the low-torque Ant starts from the
origin, and the radius of goals are set to be 1.

F.4.2 PUSHER ENVIRONMENT

In the Pusher environment, the initial position of the object is randomly sampled from the region
[0.3, 1] × [-1, -0.4]. In order to successfully move the object to the given target centered at (-1, 0)
with radius of 0.17 using the robotic arm, the distance from arm to object, as well as object to goal
should be tracked. The reward function for Pusher environment is defined as:

rpusher2d = −creach · ‖parm − pobj‖2 − cmove · ‖pobj − pgoal‖2 − ca · ‖a‖2 (11)

23

Published as a conference paper at ICLR 2022

where parm = (xarm, yarm), pobj = (xobj , yobj), and pgoal = (xgoal, ygoal) are positions of the
robotic arm, object, and the goal, respectively. Coefficient creach, cmove, ca are set to be 0.5, 1, and
0.1, respectively.

F.4.3 HALFCHEETAH HURDLE ENVIRONMENT

In the HalfCheetah Hurdle environment, a MuJoCo halfcheetah is required to start from origin and
jump over three hurdles to reach the target with radius of 1. The reward function is defined as:

rhurdle =− cdistance · |xgoal − x|+ churdle · count(x)
+ cgoal · I(IsReached) + crun · vx + cjump · vy − ccollision · I(IsCollided)

(12)

where x is cheetah’s current position, xgoal is target location, count(x) function returns the number
of hurdles has been passed, I(IsReached) is a Boolean function that determines if the cheetah reach
the target, vx and vy are the projected velocities on x-axis and y-axis, and I(IsCollided) is a Boolean
function that determines if the cheetah is in collision. Coefficient cdistance, churdle, cgoal, crun,
cjump and ccollision are set to be 0.1, 1, 1000, 1, 0.3 and 2, respectively.

F.5 HYPERPARAMETERS

Following hyperparameters are used to train primitive policies with SAC (Haarnoja et al., 2018)
algorithm.

• Discount factor γ = 0.99.

• SGD optimizer; actor learning rate 0.001; critic learning rate 0.001.

• Mini-batch size n = 100.

• Replay buffer of size 100000.

• Soft update targets τ = 0.005.

• Target update interval and gradient step are set to be 1.

Following hyperparameters are used to train π-PRL programs for solving tasks in group one environ-
ments with TRPO (Schulman et al., 2015) algorithm.

• Discount factor γ = 0.99.

• Number of trajectories per epoch N = 50.

• Maximum search depth of program derivation graph Dg = 6.

• KL-Divergence limit δ = 0.01.

• GAE λ = 0.97.

• Gumbel-Softmax Temperature T = 0.25.

Following hyperparameters are used to train π-HPRL programs for solving tasks in group two
environments with TRPO algorithm.

• Discount factor γ = 0.995.

• Number of trajectories per epoch N = 100.

• KL-Divergence limit δ = 0.01.

• GAE λ = 0.97.

• Gumbel-Softmax Temperature T = 0.25.

Table 6 summarizes the neural network architectures used in reinforcement learning algorithms.

24

Published as a conference paper at ICLR 2022

Method Network Structure Hidden Units

HIRO High-level Policy: Three layer feed forward network
Low-level Policy: Three layer feed forward network

300
300

Composition-SAC
Encoder: Bidirectional RNN with LSTMs

Decoder: Single layer feed forward network
Attention:Wf ,Wb,Wd ∈ Rd×d,W ∈ Rd

128
128
128

TRPO/PPO policy Two layer feed forward network 256
SAC primitive policy Two layer feed forward network 256

Table 6: Network Structures.

G IMPLEMENTATION DETAILS OF PROGRAMMATIC HIGH-LEVEL PLANNING

G.1 SPECIFICATIONS FOR HIGH-LEVEL PLANNING

In our experiment, we have applied programmatic high-level planning in Sec. 4 to 3 challenging
environments, namely Ant ⊃-Maze (Fig. 6a), Ant Push (Fig. 10d), and Ant Fall (Fig. 10e), that are
commonly used to evaluate the effectiveness of hierarchical reinforcement learning. Sec. 4 shows
how to perform high-level planning based on the ensemble policy DSL and uses Ant ⊃-Maze as an
example. In this section, we apply programmatic high-level planning to solve Ant Push and Ant Fall.

Recall that our method builds an abstract high-level model based on state abstractions provided by a
domain expert, similar to previous works (Abel et al., 2020; Winder et al., 2020; Jothimurugan et al.,
2021). For example, consider the Ant navigation task in a ⊃-shaped maze from Nachum et al. (2018)
in Fig. 6a. The abstract states of the task are collected on an abstract 2-D gridworld m ∈ RN×N in
Fig. 6b. An abstract grid (x, y) ∈ N ×N subsumes concrete positions with a known scale where
m[x, y] = 1 indicates walls and m[x, y] = 0 indicates nagivable spaces. The domain expert can
then specify a pair of abstract initial state ϕInit (yellow) and goal state ϕGoal (green). By abstracting
away details of the low-level dynamics such as Ant orientation and velocity, a high-level policy over
abstract states and actions can efficiently plan over much longer time horizons.

For Ant Push and Ant Fall, we reuse the same state abstraction as above. We additionally use
m[x, y] = Move to specify that there is a movable block at (x, y). The Ant needs to push away the
movable block to reach the goal behind it in Ant Push or push it into a rift and then utilize the block
as a bridge to get close to the goal on the other side of the rift.

Other than state abstraction, for model-based planning, we also abstract over actions to ensure a finite
high-level model. We directly use action abstractions as provided primitive functions therein the
ensemble policy DSL because they abstract low-level agent actions to an abstract space of skills. Our
algorithm then leverages abstract action (primitive function) specifications to synthesize a high-level
control plan on the abstract high-level model.

Compared to existing model-based HRL approaches e.g. (Jothimurugan et al., 2021), our algorithm
uses abstract actions as specified rather than learned. In the following, we show that with task-
agnostic abstract actions (primitive functions), providing these specifications is trivial even for
complex high-level planning tasks.

For the Ant Push and Ant Fall environments, the Ant primitives move an Ant up πup, down πdown,
left πleft, and right πright. Therefore, the abstract actions move an Ant horizontally, vertically, or
diagonally (via composition) one step on the abstract model:

ϕAct Ant Push(xi−1, yi−1, xi, yi,mi−1,mi) ≡
∃dxi, dyi. xi = xi−1 + dxi ∧ yi = yi−1 + dyi ∧ −1 ≤ dxi, dyi ≤ 1 ∧

∀p, q. mi[p][q] =

0 mi−1[xi][yi] = Move ∧ p = xi ∧ q = yi
MOVE mi−1[xi][yi] = Move ∧ p = xi + dxi ∧ q = yi + dyi
mi−1[p][q] otherwise

Compared to the ϕAct definition in Sec. 4, we add two new parameters mi−1 and mi to the new
definition above. This is because an agent action may change its environment. Here mi−1 refers to
the old environment before an agent action, and mi refers to the new environment after the agent

25

Published as a conference paper at ICLR 2022

Environment π-HRPL HIRO A-AVI
Ant ⊃-Maze 0.06±0.02 84%±6% 0.27±0.04 82%±4% 0.18±0.02 77%±8%

Ant Push 0.07±0.02 94%±8% 0.19±0.08 46%±8% 0.40±0.08 42%±12%
Ant Fall 0.08±0.04 65%±5% 0.42±0.08 37%±15% 0.31±0.03 52%±5%

Table 7: Performance comparison for group two environments averaged over 5 random seeds. The
mean normalized final distances to goals and success rates with their standard deviations are reported.

action. For example, for Ant Push, if a movable block is pushed by the Ant, the state abstraction
should be updated accordingly reflecting the fact that the space after the movable block in mi−1 holds
the block after the push in the new environment mi.

We require that an abstract action be specified together with a guard ϕGuard that encodes the condition
under which the action can occur. For Ant Push, the Ant should not walk into walls and the path from
an old position to a new position should be available. Importantly, if in the high-level plan the Ant
pushes the movable block, there should exist space behind the block that allows for the push in the
old environment mi−1 before the action. Besides, a movable block can only be moved vertically or
horizontally in the environment.

ϕGuard Ant Push(xi−1, yi−1, xi, yi,mi−1) ≡
mi−1[xi][yi] 6= 1 ∧

(
mi−1[xi−1][yi] = 0 ∨mi−1[xi][yi−1] = 0

)
∧

mi−1[xi][yi] = Move⇒ mi−1[xi + (xi − xi−1)][yi + (yi − yi−1)] = 0

mi−1[xi][yi] = Move⇒ xi = xi−1 ∨ yi = yi−1

The abstract action specification for Ant Fall can be defined similarly as follows:

ϕAct Ant Fall(xi−1, yi−1, xi, yi,mi−1,mi) ≡
xi = xi−1 + dxi ∧ yi = yi−1 + dyi ∧ −1 ≤ dxi, dyi ≤ 1 ∧

∀p, q. mi[p][q] =

0 mi−1[xi][yi] = Move ∧ p = xi ∧ q = yi
0 mi−1[xi][yi] = Move ∧mi−1[p][q] = Rift ∧

p = xi + dxi ∧ q = yi + dyi
Move mi−1[xi][yi] = Move ∧mi−1[p][q] 6= Rift ∧

p = xi + dxi ∧ q = yi + dyi
mi−1[p][q] otherwise

Notice that ϕAct Ant Fall is almost the same as ϕAct Ant Push except that we specify that if the Ant pushes
a movable block into a rift, the rift becomes a bridge for the Ant to bypass.

ϕGuard Ant Fall(xi−1, yi−1, xi, yi,mi−1) ≡
mi−1[xi][yi] 6= 1 ∧

(
mi−1[xi−1][yi] = 0 ∨mi−1[xi][yi−1] = 0

)
∧

mi−1[xi][yi] = Move⇒ mi−1[xi + (xi − xi−1)][yi + (yi − yi−1)] = 0 ∨
mi−1[xi + (xi − xi−1)][yi + (yi − yi−1)] = Rift

mi−1[xi][yi] = Move⇒ xi = xi−1 ∨ yi = yi−1

Similarly, ϕGuard Ant Fall is almost the same as ϕGuard Ant Push except that we additionally specify that
the Ant can push a movable block either if there is an empty space or a rift behind the block in the
old environment before the action.

G.2 DETAILED RESULTS ON HIERARCHICAL RL BENCHMARKS

We show the success rates of applying our learning algorithm (Sec. 4), HIRO (Nachum et al., 2018),
and A-AVI (Jothimurugan et al., 2021) in Table 7.

It can be seen that π-HRPL programs signifiantly outperform both HIRO and A-AVI. For example,
on the challenging Ant Push environment, our π-HRPL policy achieves 94% success rate of goal
reaching far beyond that of HIRO and A-AVI.

26

Published as a conference paper at ICLR 2022

H PROGRAM INTERPRETABILITY: ANT CROSS MAZE

In this section, we take one step ahead and show how an Ant Cross Maze program Pcross can be
interpreted by using both branch activation and also policy strength graphs.

H.1 BRANCH ACTIVATION

In Sec.2, we demonstrate multiple branch activation graphs given different two targets: (6, -6) and
(12, 0), and we analyze how they can be explained. Furthermore, When the goal is set to (6, 6), in
most areas of the maze, branch one of the Pcross is activated (shown in Fig. 11a) and the agent would
majorly follow the instruction provided by the branch one. From Fig.3, we can conclude that the
semantics of this branch is to navigate the agent to go UP, since the parameter associated with UP
primitive policies dominates this branch. Similarly, Fig.11b shows that int most upper-half of the
given area, branch two is activated and it would enforce the agent to go RIGHT.

(a) Branch 1 activation, (Gx, Gy) = (6, -6) (b) Branch 2 activation, (Gx, Gy) = (6, -6)

Figure 11: Branch activation as functions of Ant position (x, y) for program Pcross.

H.2 POLICY STRENGTH

Unlike a branch activation graph which informs us how a branch is activated, a policy strength graph
demonstrates how a specific primitive skill policy is invoked without considering the semantic of any
branch, so it is suitable for final analysis and interpretation.

Fig.12a and 12b demonstrate the UP policy strength of program Pcross given target locations (12, 0)
and (6, -6). Presumably, if the agent start from origin (0, 0) and the target is (12, 0), it should move
straight up and invoke UP policy. From the Fig.12a we know that the behavior of the program is
consistent with our expectation: invoking UP policy throughout its trajectory. Furthermore, if we
change the target position to (6, -6), behavior of how the program invokes UP policy (see Fig.12b)
changes accordingly: the strength of UP policy is at a high level in the beginning of the trajectory,
then decreases rapidly to prepare for a right turn. Therefore, the effect of Pcross shows in Fig.12 can
be summarized as: the strength of UP policy could be adjusted according to different target locations,
yet it stays at a high level at the beginning of the trajectory.

The goals shown in Fig.13a and 13b are symmetric. After reaching the central area of the maze using
UP policy, the program should navigate the ant to make a left or right turn by calling LEFT or RIGHT
primitive policies, respectively. If the goal is located at (6, 6) (see Fig.13a), the LEFT policy strength
is high after the agent reaches the center of the maze, so it can be pushed and move towards left.
When the goal is assigned to (6, -6) on the right side of the maze (see Fig.13b), the RIGHT policy is
invoked at a high level after the ant reach the center of the maze, so that the agent will be pushed
to move right. Therefore, the effect of Pcross shows in Fig.13 can be summarized as: the LEFT or
RIGHT polices strength is at a high level when the ant reaches the center area of maze so it can be
navigated to make a left or right turn to reach the targets.

27

Published as a conference paper at ICLR 2022

(a) UP policy strength, (Gx, Gy) = (12, 0) (b) UP policy strength, (Gx, Gy) = (6, -6)

Figure 12: UP policy strength of a Ant Cross Maze program Pcross

(a) LEFT policy strength, (Gx, Gy) = (6, 6) (b) RIGHT policy strength, (Gx, Gy) = (6, -6)

Figure 13: LEFT and RIGHT policy strength of a Ant Cross Maze program Pcross.

I PROGRAM INTERPRETABILITY: MORE EXAMPLES

In this section, we demonstrate more examples of programs and their branch activation and policy
strength graphs for interpretation.

I.1 ANT RANDOM GOAL PROGRAM

Fig.14 demonstrates the expression of the program Prandom for solving Ant Random Goal environ-
ment. The pre-defined function input X takes symbolic states include current position x, y along with
the randomly sampled target location Gx,Gy. Also, a vector of distribution of weights of primitive
policies can be found on each terminal branch.

Fig.15 shows the branch activation of the first three branches. The figures clearly demonstrate that
when the goal is set to be (Gx, Gy) = (-3, -3), roughly only branch one is activated in the needed
areas, so the behavior of the agent is dominantly determined by the semantic of branch one. Since the
second and fourth values in the policy distribution vector in branch one nearly equally dominate the
branch, the expected behavior of this branch can be summarized as: go RIGHT and go DOWN at the
same time.

Fig.16a and 16b demonstrate the DOWN and RIGHT policy strength of a program Prandom given
origin (0, 0) and target location (-3, -3), respectively. In the figures, the x-axis and y-axis reflect
the current position of the agent. The output of Prandom is a vector that contains strength of each
primitive skill policy and we are interested in the strength DOWN and RIGHT primitive policies in
this case. Presumably, if the goal position is (-3, -3) and the ant starts from (0, 0), the simplest path
for an ant is to move diagonally along with southeast direction, and surely this requires DOWN and
RIGHT primitive policies, and each of them is likely to contribute equally. From Fig.16 we know
that with this program Prandom, when the agent moves southeast, the contribution of DOWN and

28

Published as a conference paper at ICLR 2022

if (θ1c + θT1 · X > 0)
then (0% · πUP(s) + 51% · πDOWN(s) + 0% · πLEFT(s) + 49% · πRIGHT(s))
else if (θ2c + θT2 · X > 0)

then (3% · πUP(s) + 0% · πDOWN(s) + 97% · πLEFT(s) + 0% · πRIGHT(s))
else if (θ3c + θT3 · X > 0)

then (82% · πUP(s) + 15% · πDOWN(s) + 0% · πLEFT(s) + 3% · πRIGHT(s))
else (78% · πUP(s) + 0% · πDOWN(s) + 0% · πLEFT(s) + 22% · πRIGHT(s))

X = [x, y, Gx, Gy, arctan yx , ‖x, y‖2]
θ1 = [0.899, 0.397,−0.893,−0.394,−0.019, 0.080], θ1c = −2.050
θ2 = [0.222,−1.679,−0.117, 1.468,−0.107, 0.297], θ2c = −3.798
θ3 = [− 0.895, 0.196,−1.290, 2.423,−2.667, 2.378], θ3c = −2.226

Figure 14: An Ant Random Goal program Prandom powered by four primitive skill policies:
πUP(s), πDOWN(s), πLEFT(s) and πRIGHT(s). Program input X includes current Ant position
x, y, target goal Gx, Gy , arctan yx , and ‖x, y‖2.

(a) Branch 1 activation (b) Branch 2 activation (c) Branch 3 activation

Figure 15: Branch activation of an Ant Random Goal program Prandom, (Gx, Gy) = (-3, -3).

RIGHT are roughly the same, and this is consistent with our expectation. Therefore, the effect of
this program can be summarized as: if the agent is required to move southeast from (0, 0) to (-3, -3),
assign DOWN and RIGHT equally at roughly 50 percent of strength.

I.2 PUSHER PROGRAM

Fig.17 demonstrates a program Ppusher with three branches for solving Pusher environment.
The program input X takes symbolic states xobj , yobj , xarm, yarm as inputs, then computes
‖xobj , yobj‖2 , ‖xarm, yarm‖2 to decide which branch of weight cell to take.

From Fig.18a we can conclude that, only the first branch is activated in the whole possible situations.
Such activation values for branch 1 demonstrate that the possibility of cutting other branches in the
program without hurting the performance of the graph too much. Also, it suggests that a smaller
value of maximum depth of program derivation graph is sufficient for searching a program to solve
this task. Also, the distribution of primitive policies in this branch shows that: the agent needs more
PUSH-DOWN policy than PUSH-LEFT policy to move the object to the target location.

Furthermore, Fig.18 demonstrates PUSH-DOWN and PUSH-LEFT policy strength of the program
Ppusher. Unlike Ant Cross Maze or Ant Random Goal environment, the goal of pusher environment
is at a fixed location. From Fig.18b we can conclude that: when the object is faraway from the origin,
i.e., close to the goal, PUSH-DOWN policy strength is at a relatively lower level, compared to at a
higher level when the object is far from the goal position. Also, we can summarize the effect of how
the program invoke PUSH-LEFT primitive policy from Fig.18c: when the object is too close to the
origin, the PUSH-LEFT policy strength is at a lower level, and if the object is close to the goal, the
PUSH-LEFT policy strength is at a higher level. In general, the above behavior of PUSH-LEFT can
be explained if we consider velocities in both x and y axes: if we want to acquire a policy which

29

Published as a conference paper at ICLR 2022

(a) DOWN policy strength (b) RIGHT policy strength

Figure 16: DOWN and RIGHT policy strength of program Prandom, (Gx, Gy) = (-3, -3).

if (θ1c + θT1 · X > 0)
then (74% · πPUSH-DOWN(s) + 26% · πPUSH-LEFT(s))
else if (θ2c + θT2 · X > 0)

then (99% · πPUSH-DOWN(s) + 1% · πPUSH-LEFT(s))
else (99% · πPUSH-DOWN(s) + 1% · πPUSH-LEFT(s))

X = [‖xobj , yobj‖2 , ‖xarm, yarm‖2]
θ1 = [− 1.370, 0.621], θ1c = 5.041
θ2 = [− 1.252,−8.101], θ2c = −3.426

Figure 17: A Pusher program Ppusher powered by two primitive skill policies: πPUSH-DOWN(s)
and πPUSH-LEFT(s). Program input X includes norms over xobj , yobj and xarm, yarm.

push the object at a constant tangential velocity all the way to the goal, we may need to adjust the
distribution of PUSH-LEFT and PUSH-DOWN in order to get a reasonable combination of velocity
in both x and y axes.

I.3 HALFCHEETAH HURDLE PROGRAM

According to our experiments when applying π-PRL algorithm to HalfCheetah Hurdle environment,
the program derivation graph is inclined to select a program with few branches. In fact, a simple
HalfCheetah Hurdle program Phc with only one branch (shown in Fig.19) is able to solve the task
with high performance and success rate.

An example of such program can be written as 95% · πFORWARD(s) + 5% · πJUMP(s). In this simple
program, the input X is not even used, this means the agent invokes each primitive policy at a fixed
rate. The success of such a simple combination of two primitive skill policies tells us, if a program is
powered by appropriate low-level primitive policies, we may solve a RL task in a much simpler way.

J POLICY GENERALIZABILITY

In our experience, the high interpretability of learned programmatic policies leads to strong generaliz-
ability of the policies to novel environments.

J.1 ANT NO MAZE

We consider applying the programmatic policy Pcross for Ant Cross Maze to an environment with
randomly sampled target positions far beyond the three possible goals in the original environment.
Our goal is to test if the programmatic policy has learned how to perform goal navigation. Since
a new target position can be quite different than the three goals in Ant Cross Maze, we remove all
the walls from the environment so the Ant can navigate freely. Fig.20a and 20b depicts the UP and

30

Published as a conference paper at ICLR 2022

(a) Branch 1 Activation (b) PUSH-DOWN policy strength (c) PUSH-LEFT policy strength

Figure 18: Branch activation and policy strength graph of a pusher program Ppusher.

95% · πFORWARD(s) + 5% · πJUMP(s)

X = [Hnext, |xback −Hnext|]

Figure 19: A HalfCheetah Hurdle program Phc powered by two primitive skill policies:
πFORWARD(s) and πJUMP(s). Program input X includes the position of the next hurdle Hnext
and the distance from HalfCheetah’s back foot to next hurdle |xback −Hnext|. The program
Phc shown is a special program which does not contain any if -then-else structure, i.e., there
exists a fixed strength of invoking each primitive policy.

RIGHT policy strength if we set the goal to (14, -8), i.e., the upper-right corner. Fig. 20c and 20d
shows the UP and LEFT policy strength if we set the goal to (14, 8), i.e., the upper-left corner. Pcross
can successfully drive the Ant to these positions. From these policy strength figures we can conclude
that Pcross successfully detects the change of goals and weighs UP and associated RIGHT or LEFT
policies in appropriate areas to navigate the ant to reach the goals.

(a) UP policy strength, goal (14, -8) (b) RIGHT policy strength, goal (14, -8)

(c) UP policy strength, goal (14, 8) (d) LEFT policy strength, goal (14, 8)

Figure 20: UP, RIGHT and LEFT policy strength of a transferred program Pcross.

31

Published as a conference paper at ICLR 2022

Goal Radius Pcross Comp-SAC
1.0 0.16±0.04 0.28±0.08
1.5 0.13±0.03 0.26±0.06
2.0 0.10±0.03 0.23±0.05

Table 8: Comparison results of policy generalizability in Ant Reshaped Maze environment (Fig. 21).
We set multiple goal radius 1.0 (the original radius in Ant Cross Maze), 1.5, and 2.0. Normalized
final distances to goals are reported as the average over 50 random executions.

J.2 ANT RESHAPED MAZE

Figure 21: Ant Reshaped Maze

Furthermore, we consider a reshaped cross maze with
three different goals: (8, 8), (14, 0), (8, -8) (represented
by blue spheres in Fig.21). The shapes and positions of
walls have also been changed and adapted to new possible
goals accordingly. This novel environment Ant Reshaped
Maze is similar to Ant Cross Maze environment in many
ways, e.g. they both have three possible goals, their goals
are symmetric, etc.

We directly apply Pcross to Ant Reshaped Maze and com-
pare the generalizability ofPcross with the BiLSTM policy
learned in the Ant Cross Maze environment as well using
Composition-SAC (Qureshi et al., 2020). We compare with Composition-SAC because the two
policies both learn to compose primtivie skills to adapt to new complex behavior. However, Pcross is
more interpretable than a BiLSTM model. Table 8 shows that Pcross successfully realizes the change
of the three goals and drive the Ant in the novel environment with 0.16 normalized distance to the
new goals. In constrast, the Composition-SAC policy does not solve the novel environment well. We
further increase the original radius of goals to 1.5 and 2 in the novel environment, both Pcross and
the Composition-SAC policy get close to goals with Pcross continuing to perform much better.

K AFFINE POLICIES AND PID POLICIES

K.1 AFFINE POLICIES

The DSL for affine policies implements a controller C as affine transformations in Fig. 1:

CAffine ::= θc + θ · X | θc

where θ ∈ Rm·|X |, θc ∈ Rm are control parameters. Particularly, CAffine can be as simple as some
(learned) constants θc.

For example, consider the continuous OpenAI Gym MountainCar environment in Fig. 22a. A car
is on a one-dimensional track, positioned between two “mountains”. The goal is to drive up the
mountain on the right. Because the car’s engine is not strong enough, a policy has to drive the car
back and forth to build up momentum in multiple passes. The reward is greater if the policy spends
less energy to reach the goal.

A learned programmatic policy to control the continuous MountainCar environment is given in Fig. 23.
Fig. 22b depicts the activation of branch 1 in the program as a function of (position, velocity).
The degree of activation (yellow) is close to 1 on almost all states under with speed velocity greater
than 0. The logic of the program is then obvious — when ever the car speed is greater than 0, the
policy accelerates the forth to drive the car forward; when ever the car speed is less than 0, the policy
accelerates the forth to drive the car backward. Indeed, this helps drive the car back and forth to build
up momentum. The policy succeeds reaching the goal and receives cumulative reward greater than
the threshold 90 on all experienced episodes.

32

Published as a conference paper at ICLR 2022

(a) MountainCar Gym Environment (b) MountainCar Branch Activation

Figure 22: Continuous MountainCar Example. In the branch activation graph, a yellow region
indicates the area of states on which the control signal in branch 1 is activated.

if θ1c + θT1 · X > 0
then 0.92←− Branch 1
else − 0.95←− Branch 2

X = [position, velocity]
θ1 = [0.1, 128.1], θ1c = 0.88

Figure 23: A MountainCar program with two branches. Program input X includes current car
position and velocity.

K.2 PID POLICIES

The DSL for PID policies implements a controller C as a discretized, multivariable PID function in
Fig. 1:

CPID ::= PIDθP ,θI ,θD (ε, h, s) | θc
where θP , θI , θD ∈ Rm·n are parameters representing the proportional gain, integral gain, and
derivative gain matrices of PID control. Notice that a PID controller additionally takes a known
constant ε that represents a fixed target for the controller to stabilize the system under control around,
and a histroy h of a sequence of states before the current control step. The semantics of the controller
is as follows:

JPIDθP ,θI ,θDK(ε, h, s) =θP · P + θI · I + θD ·D where
P = (ε− s) I = fold(+, ε− h) D = peek(h,−1)− s (13)

In the semantics definition, P is the proportional term, I is the discrete approximation of the integral
term (calculated via a fold), and D is the finite-difference approximation of the derivative term. In
line with the standard integral error reset strategy (Åström & Hägglund, 1984), the fold function
acts over a fixed-sized window on the history (e.g. the five latest states of the history). peek(h,−1)
returns the most resent state in a history h.

For example, consider the OpenAI Gym Pendulum environment in Fig. 24a. The pendulum swingup
problem is a classic problem in the control literature. The pendulum starts in a random position, and
the goal is to swing it up so it stays upright. The state space include ω that is the angle the pendulum
makes with the vertical and the angular velocity ω̇. However, the observation exposed to a policy for
this task is [cos(ω), sin(ω), ω̇]. Since the goal is to stablise the pendulum upright, the fixed goal ε
for a PID controller for this task is [1, 0, 0] (i.e. [cos(ω) = 1, sin(ω) = 0, ω̇ = 0]).

A learned programmatic policy to control the pendulum environment is given in Fig. 25. Fig. 24b
depicts the activation of branch 1 in the program as a function of (ω, ω̇). The degree of activation
(yellow) is close to 1 on all states where the PID controller in branch 1 would be applied to.
Accordingly, the large constant control signal in branch 2 would be applied states within the blue

33

Published as a conference paper at ICLR 2022

(a) Pendulum Gym Environment (b) Pendulum Branch Activation

Figure 24: Pendulum Example. In the branch activation graph, a yellow region indicates the area of
states on which the control signal in branch 1 is activated.

if θ1c + θT1 · X > 0
then PIDθP ,θI ,θD

([
1, 0, 0

]
, h, s

)
←− Branch 1

else 2.39←− Branch 2

X = [cos(ω), sin(ω), ω̇]
θ1 = [2.57, − 2.18, − 0.71], θ1c = 0.94
θP = [− 9.28, 1.04, 1.71]T θI = [− 0.26, 1.57, 0.14]T θD = [− 4.70, 2.03,−0.48]T

Figure 25: A pendulum program with two branches. In the system, ω is the angle the pendulum
makes with the vertical. Program input X includes cos(ω), sin(ω), ω̇.

region. The logic of the program is then obvious — when ever the pendulum is hanging or downwards
close to +π or −π, the policy applies the large (constant) control action in branch 2 to push the
pendulum to an area in which it is easy for the PID controller in branch 1 to eventually stabilise
the pendulum upright at 0, 2π, or − 2π. The policy succeeds on all experienced episodes. In our
experience, we found that it is impossible to train a single PID controller to solve the task. The
programmatic policy in turn uses a large control action to push the pendulum to where the PID
controller is able to function.

Experiment Results of Learning Affine and PID Policies. We have applied the learning algorithm
in Sec. 3 to the popular benchmark suite MuJoCo. This benchmark suite consists of multiple
locomotion tasks with 2D and 3D agents. Table 9 demonstrates that our results on Humanoid-v3
and LunarLander-v2 are competitive with state-of-the-art RL algorithms (trained using 3 million
environment steps). More results were given in Table 3.

Environment π-RPL SAC PPO
stoc mean stoc mean stoc mean

Humanoid-v3 5207 5737 5488 5521 1340 1912
LunarLander-v2∗ 271 279 279 279 16 102

Table 9: We compare the final episode reward of our programmatic policies π-RPL with that
of SAC (Haarnoja et al., 2018) and PPO (Schulman et al., 2017) agents on Humanoid-v3 and
LunarLander-v2. We report the averaged results of three repeated experiments where “stoc” refers
to a Gaussian policy with actions sampled from it, while “mean” refers to using mean of the policy.
LunarLander(continuous) is controlled by a discretized, multivariable PID program.

34

	Introduction
	Problem Motivation and Formulation
	Architecture Search for Programmatic Policies
	Programmatic High-level Planning
	Experiments and Evaluations
	Related Work and Conclusion
	Training Algorithm Pseudocode
	The Programmatic Reinforcement Learning Algorithm
	The Programmatic High-level Planning

	More Ablation Study Results
	Comparison with Oracle-guided Programmatic RL
	DSLs without Loops
	Additional Related Work
	Implementation Details
	Computational Complexity of Program Derivation Tree Execution
	Primitive Policies Details
	Program Inputs
	Environment Details
	Ant Environments
	Pusher Environment
	HalfCheetah Hurdle Environment

	Hyperparameters

	Implementation Details of Programmatic High-Level Planning
	Specifications for High-Level Planning
	Detailed Results on Hierarchical RL Benchmarks

	Program Interpretability: Ant Cross Maze
	Branch Activation
	Policy Strength

	Program Interpretability: More Examples
	Ant Random Goal Program
	Pusher Program
	HalfCheetah Hurdle Program

	Policy Generalizability
	Ant No Maze
	Ant Reshaped Maze

	Affine Policies and PID Policies
	Affine Policies
	PID Policies

