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Abstract

Vision-Language Models (VLMs) have made significant progress in multimodal
tasks. However, their performance often deteriorates in long-context scenarios,
particularly long videos. While Rotary Position Embedding (RoPE) has been
widely adopted for length generalization in Large Language Models (LLMs),
extending vanilla RoPE to capture the intricate spatial-temporal dependencies
in videos remains an unsolved challenge. Existing methods typically allocate
different frequencies within RoPE to encode 3D positional information. However,
these allocation strategies mainly rely on heuristics, lacking in-depth theoretical
analysis. In this paper, we first study how different allocation strategies impact the
long-context capabilities of VLMs. Our analysis reveals that current multimodal
RoPE:s fail to reliably capture semantic similarities over extended contexts. To
address this issue, we propose HoPE, a Hybrid of Position Embedding designed
to improve the long-context capabilities of VLMs. HoPE introduces a hybrid
frequency allocation strategy for reliable semantic modeling over arbitrarily long
contexts, and a dynamic temporal scaling mechanism to facilitate robust learning
and flexible inference across diverse context lengths. Extensive experiments across
four video benchmarks on long video understanding and retrieval tasks demonstrate
that HoPE consistently outperforms existing methods, confirming its effectiveness.
Our code is available at https://github.com/hrlics/HoPE.

1 Introduction

Vision-Language Models (VLMs) [1-5] have achieved remarkable success in multimodal tasks,
including visual question answering [6—9], image captioning [10, 11], cross-modal retrieval [12, 13],
and more [14—-16]. However, VLMs suffer from significant performance degradation in long-context
scenarios, particularly long videos [17-20]. In such settings, VLMs even struggle with simple tasks
like object counting and temporal localization [21, 22], revealing a critical limitation in their ability to
model extended spatial-temporal dependencies. This limitation substantially hinders their real-world
deployment, where input length often exceeds the context window they have been pretrained on.

Rotary Position Embedding (RoPE) [23] has been widely adopted for length generalization in text-
based LLMs [24-26]. Specifically, RoPE incorporates positional information by partitioning the
query and key vectors into 2-dimensional pairs and rotating each pair at a unique frequency that
decreases as the dimensional index increases. Despite its advantages, directly applying 1D RoPE
fails to capture the intricate spatial-temporal dependencies in videos. Several methods have been
proposed to extend 1D RoPE for multimodal inputs [2, 27, 28]. Among these, the most common
approach is to allocate different frequencies to encode different positional components, as shown
in the upper plots of Figure 1. For example, M-RoPE [2] allocates the highest frequencies for
temporal modeling (), and the remaining low frequencies for spatial modeling (z, y). In contrast,
VideoRoPE [28] proposes to allocate the lowest frequencies for temporal dimensions (¢), and further
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Figure 1: Comparison of our HoPE and existing methods. Upper plots illustrate the frequency
allocation strategies in different RoPE variants. Here, frequency decreases along the diagonal. (d)
HoPE sets the lowest frequencies to zero for reliable long-range semantic modeling. Lower plots
demonstrate different temporal scaling mechanisms. (d) HoPE proposes dynamic and bidirectional
scaling to learn temporal dynamics at multiple scales, facilitating robustness to various video speeds.

applies a fixed scaling factor to scale the temporal indices of visual tokens, as shown in the lower
plots of Figure 1. Despite their improved performance, two significant challenges remain unsolved.
Firstly, current methods mainly rely on heuristics rather than theoretical analysis to determine the
frequency allocation strategy. Second, applying a fixed and unidirectional scaling factor for all videos
is suboptimal in real-world scenarios, where videos proceed at different speeds and demonstrate
significant variance in information densities.

To address these challenges, we begin with an in-depth theoretical analysis in Section 3, outlining the
ideal properties that a multimodal RoPE should possess. Our analysis reveals that: (1) the flattening
operation in vanilla RoPE inherently violates spatial-temporal locality prior, which is crucial in video
modeling; (2) despite diverse frequency allocation strategies, existing multimodal RoPE variants fail
to reliably capture semantic similarities over extended contexts; (3) temporal scaling of visual tokens
should include both compression and expansion to accommodate varying video speeds in real-world
scenarios. Guided by these insights, we propose HoPE, a Hybrid of Position Embedding designed to
improve the long-context capabilities of VLMs. As shown in Figure 1, HoPE first introduces a hybrid
frequency allocation strategy to facilitate long-range semantic modeling. In this strategy, higher
frequencies, which are more sensitive to positional differences and better at capturing local features,
are allocated to spatial components (z, ) in an interleaved manner. Meanwhile, the lower frequencies
are directly set to zero and allocated to temporal component (¢) to enable reliable semantic modeling.
Moreover, HoPE develops a dynamic temporal scaling mechanism for lengthy visual tokens. This
mechanism not only enhances VLMs’ robustness to various video speeds, which are common in
real-world scenarios, but also offers flexible scaling during inference across diverse context lengths.

‘We summarize our contributions as follows:

* To our best knowledge, we provide the first theoretical analysis of how different frequency allocation
strategies in multimodal RoPEs impact the long-context capabilities of VLMs, offering insights for
the design and analysis of future multimodal RoPEs.

* Guided by our analysis, we propose HoPE, which consists of a hybrid frequency allocation
strategy for reliable semantic modeling in long-context scenarios, and a dynamic temporal scaling
mechanism for robust and flexible temporal comprehension.

* Extensive experiments on four video benchmarks demonstrate that HoPE consistently outperforms
existing RoPE variants, achieving improvements of 22.23% and 8.35% on long video retrieval and
long video understanding tasks, confirming its effectiveness.



2 Preliminaries

Rotary Position Embedding (RoPE). Current Transformer-based LLMs rely on Positional En-
codings (PEs) to incorporate sequential information into the attention mechanism. Among various
PEs, Rotary Position Embedding (RoPE) [23] has emerged as a dominant approach for long-context
modeling in text-based LLMs [24-26]. The key to RoPE’s success lies in its ability to encode relative
position information through an absolute positional encoding approach, ensuring both effectiveness
and efficiency. Consider query and key vectors with d dimensions (where d is an even number),

ROPE partitions the dimensions into d/2 pairs, e.g., q,, = | S?); qSP; co q%d/z‘”]. Each pair of
dimensions is assigned a unique rotation angle §; = b=2/4 j ¢ {0,1,...,d/2 — 1}, where b is a

pre-defined frequency base and set to 10, 000 by default [23]. This rotation can be achieved through
a rotation matrix as follows:

) (cosﬁi —sin9i> . (1)

sinf; cosb;
The overall rotation matrix R, is constructed by concatenating each pair’s rotation matrix along
the diagonal to form a block-diagonal matrix, i.e., R,, = diag(r(® +(1) .  p(d/2=1)) ¢ Rdxd,

Therefore, during attention computation, the attention score! A, ,,, between the n-th query q,, and
m-th key k,, is:

where the rotation matrix R,,_,,, can be formulated as:
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It can be observed that through pairwise attention computation, the final rotation matrix naturally
incorporates the relative position information (n — m) between the query-key pair.

No Positional Encoding (NoPE). Despite the popularity of RoPE, several works have pointed
out that the causal attention mechanism in current decoder-only LLMs implicitly learns absolute
positional information [30-32]. This motivates the development of No Positional Encoding (NoPE).
Specifically, the causal attention mask enforces A,, ,,, = 0 for all m > n, ensuring that each token
only attends to itself and previous tokens. Under this constraint, the attention score with NoPE
is a simple dot product between the query vector q,, and the key vector k,,, i.e., Ay, = anTTn,
providing no explicit positional information to Transformers.

3 Analysis

In this section, we conduct a comprehensive theoretical analysis of multimodal RoPE variants, aiming
to answer the following questions: (1) Is vanilla RoPE enough for long-context VLMs? (2) How
do different frequency allocation strategies impact semantic modeling in long-range multimodal
contexts? (3) How should we assign the temporal indices for text and visual tokens?

3.1 Vanilla RoPE Fails in Spatial-Temporal Structure

Several recent VLMs [1, 5, 20, 33-35] still use vanilla RoPE for multimodal inputs. In their approach,
each video frame is first encoded by a vision encoder (e.g., ViT [36]) and then flattened into a
sequence of patch-level tokens. These visual tokens will be treated equally as text tokens for

"Here, we omit the softmax function and 1/+/d scaling in standard Transformer [29] for simplicity.



positional encoding, with each token incorporating only 1D temporal information. We show in
Proposition 3.1 that this approach, while easy to implement, distorts spatial-temporal localities and
fundamentally limits VLMs’ ability to model extended spatial-temporal dependencies.

Proposition 3.1 (1D RoPE violates spatial-temporal locality priors). Given any query q at position
(t,z,y) and a relative distance of 1 in spatial or temporal dimensions, the flattening operation in 1D
RoPE distorts the relative distance with a magnitude dependent on the frame resolution.

We provide the proof in Appendix A.1. This mismatch between positional encoding and the 3D struc-
ture of videos creates distorted attention patterns, making it difficult for models to learn meaningful
spatial-temporal relationships essential for video-related tasks.

Conclusion 1. Directly applying vanilla RoPE to multimodal long-context inputs inherently
fails to capture their complex spatial-temporal dependencies.

3.2 Current Multimodal RoPEs Are Unreliable in Long-Range Semantic Modeling

To capture the spatial-temporal structure of multimodal inputs, a recent VLM, Qwen2-VL [2], has
introduced a Multimodal Rotary Position Embedding (M-RoPE). Concretely, M-RoPE partitions the
128-dimensional rotary embedding into three distinct groups: the first 32 dimensions for temporal
information (t), the subsequent 48 dimensions for horizontal spatial information (z), and the final
48 dimensions for vertical spatial information (y), i.e., Ry, = diag(R;, R, R,). While this
approach realizes a naive extension for RoPE, a fundamental question remains to be answered:

How do different frequency allocation strategies impact the performance of multimodal RoPE?

This question arises from the fact that in RoPE, different dimensions carry unique frequencies
6; = b2/ ¢ {0,1,...,d/2 — 1}), as shown in Equation 3. Therefore, different strategies
exist for frequency allocation in multimodal RoPE. As shown in Figure 1, M-RoPE allocates the
highest frequencies for ¢, intermediate frequencies for x, and the lowest frequencies for y. In
contrast, VideoRoPE [28] proposes to assign the lowest frequencies to temporal modeling (¢) and
high frequencies to spatial dimensions (z,y). Their empirical justification stems from attention
pattern analysis, which reveals that dimensions encoded with the lowest frequencies exhibit a more
pronounced attention sink phenomenon [37], which has proven to be effective in long-context
modeling. However, we argue that using the lowest frequencies for temporal modeling is still
unreliable in capturing semantic similarities in extended multimodal contexts. Specifically, we first
introduce semantic preference, a property where attention mechanisms should prioritize semantically
similar tokens regardless of their relative distance, and formally define this concept in Definition 3.1.

Definition 3.1 (Semantic Preference). For any query vector q and a semantically similar key vector
k’ that can be expressed as k/ = q + § where § is a zero-mean perturbation, the attention score with
ROPE should satisfy:

EqxslaRatazayk’” —aRaazayk'] >0,

where k is the key vector of a semantically unrelated token. This preference should hold regardless
of the relative distance (At, Az, Ay) between the query and key.

Then, we show in Theorem 3.1 that all frequency allocation strategies of current multimodal RoPEs,
including selecting the highest/lowest frequencies for temporal modeling, are unreliable in maintain-
ing the semantic preference property over extended contexts. This limitation arises because, with
sufficiently long contexts, even the lowest frequencies can produce arbitrary rotations, ultimately
undermining semantic preference. We provide the proof in Appendix A.2.

Theorem 3.1. Let X = [x1,x9,...,x1] be an input sequence, and let RoPE use any fixed set of
temporal frequencies (e.g., highest or lowest). Then there exists a critical length L. such that for all
L > L., the semantic preference property (Definition 3.1) is violated.

Conclusion 2. There exist different frequency allocation strategies to extend vanilla RoPE to
multimodal RoPE. However, we prove that none of these strategies can reliably maintain the
semantic preference property over a sufficiently long context.




3.3 How to Assign Positional Index for Multimodal Inputs?

Currently, most VLMs [1-4, 19, 20] adopt the same temporal stride for video frames and text tokens,
as shown in Figure 1. However, this approach overlooks the inherent difference in information
densities between text and visual tokens. To address this issue, VideoRoPE [28] applies a fixed
scaling factor (implemented as 2) to adjust the temporal indices of visual tokens, achieving better
empirical performance. However, this rigid scaling approach lacks the flexibility needed for diverse
real-world videos, which naturally vary in pace and information density. A more ideal approach
would incorporate both temporal compression and expansion capabilities, allowing the model to learn
multi-scale temporal relationships, thereby enabling more robust temporal modeling.

Conclusion 3. Temporal index scaling of visual tokens is crucial for balancing multimodal
information, yet current methods lack flexibility and bidirectionality.

4 HoPE: Hybrid of Position Embedding for Long Context VLLMs

To address the above challenges, we propose HoPE, a Hybrid of Position Embedding designed to
improve the long-context capability of VLMs. As illustrated in Figure 1 and Figure 2, HoPE first
introduces a hybrid frequency allocation (HFA) strategy to better preserve the semantic preference
property (Definition 3.1) in long-context modeling. Under this strategy, spatial information will be
encoded with higher frequencies to capture local semantics, while the lowest frequencies will be
set to zero (as in NoPE [30]) to facilitate long-range semantic modeling. Second, HoPE develops a
dynamic temporal scaling (DTS) mechanism to enhance VLMs’ robustness to various video speeds
and enable flexible inference under diverse context lengths. We will detail these strategies as follows:

4.1 Hybrid Frequency Allocation Strategy

To extend vanilla RoPE to multimodal scenarios, a common approach is to allocate different fre-
quencies to encode different positional components (¢, x,y). For example, M-RoPE [2] assigns the
highest frequencies for temporal modeling and lower frequencies for spatial encoding. In contrast,
VideoRoPE [28] allocates the lowest frequencies for temporal modeling, achieving better empirical
results. However, in Theorem 3.1, we theoretically prove that, despite using lower frequencies being
more ideal for semantic modeling, none of these frequency allocation strategies can maintain the
ideal semantic preference property (Definition 3.1) over extended contexts.

To provide a stronger theoretical guarantee for the semantic preference property, we propose a hybrid
frequency allocation strategy. As shown in Figure 1, we encode spatial information (z,y) with
high frequencies, as high frequencies are more sensitive to positional differences and thereby better
at capturing local semantics [28, 38]. Following existing work [28], z and y are encoded in an
interleaved manner to prevent biased spatial encoding. More importantly, unlike existing methods
[23, 28, 2], we directly set the lowest frequencies to zero (as in NoPE [30]) to provide a stronger
guarantee for the semantic preference property (Definition 3.1), as shown in Figure 2. Specifically,
for d = 128, we interleave = and y positions in the first 96 dimensions of the rotation matrix and set
the frequencies in the remaining 32 dimensions to zero, which corresponds to an identity matrix:

cos g Az — sin g Ax 0 0 0 0 0 0

sin g Az cos pgAz 0 0 ce 0 0 0 0
0 0 cos 01 Ay —sinf1 Ay - - 0 0 0 0
0 0 sin@1 Ay cos@1Ay - - 0 0 0 0

Ravay =diag(] | | S | z |

0 0 0 0 ...cos04Ax — sin Oy Az 0 0
0 0 0 0 ...sinfOyAz cosbysAx 0 0
0 0 0 0 0 0 cos 047 Ay —sin 047 Ay
0 0 0 0 0 0 sin 047 Ay cos 047 Ay

We now provide a theoretical analysis of how this hybrid strategy helps the attention mechanism
to capture long-range semantic similarities. Building on Definition 3.1 and Theorem 3.1, we first
formalize the condition under which semantic preference is preserved in multimodal RoPE.



(a) High frequencies for temporal (b) Low frequencies for temporal (c) Zero frequencies for temporal
modeling in M-RoPE. modeling in VideoRoPE. modeling in HoPE (ours).

Figure 2: Multimodal RoPEs use different frequencies for temporal modeling. M-RoPE uses the
highest frequencies, which are suboptimal for long-context modeling. VideoRoPE utilizes the lowest
frequencies for more stable semantic modeling. Our HoPE, employing zero frequencies for temporal
modeling, establishes the upper bound of semantic modeling capabilities across all strategies.

In particular, Lemma 4.1 establishes a clear theoretical criterion for maintaining semantic preference
with multimodal RoPE. It directly follows from our analysis in Theorem 3.1 and Appendix A.2,
providing the theoretical foundation for our proposed method.

Lemma 4.1 (Necessary Condition for Semantic Preference). For a multimodal RoPE with
rotation matrix Ry , , = diag(Ry, Ry, Ry), the semantic preference property (Definition 3.1)
holds if, for all possible relative distances,

Z 20%cos(At - ;) + Z 20%cos(Ax - ;) + Z 20%cos(Ay - 6;) > 0,
i€iy i€y i€y

where o? is the variance of each component in the query/key vector, iy, i, 1, are dimensions
allocated to t,x,y, and At € {0,1,...,L — 1}, Az € {0,1,...,H}, Ay € {0,1,..., W}

€ J

Based on this Lemma, we now prove how our hybrid frequency allocation strategy provides stronger
guarantees for the semantic preference property over extended contexts. Specifically, HFA set
6; = 0 for all 7 € i;. Hence, the temporal terms in Lemma 4.1 reduce to Zie i 202 .1, noting that
Dici, 207 1> 3. 202 cos(At - 6;) holds for any choice of temporal frequencies 6;. Adding the
identical spatial terms on both sides, we obtain:

Z 20% -1+ Z 20% cos(Ax - 0;) + Z 202 cos(Ay - 6;)

i€iy i€ig i€iy
4
> Z 20% cos(At - 0;) + Z 20% cos(Ax - 0;) + Z 202 cos(Ay - 6;).
i€ = i€iy

This shows that our HFA strategy, by setting the lowest frequencies to zero, dominates any other choice
of temporal frequencies and provides a stronger guarantee for preserving the semantic preference
property under long-context scenarios, as in Theorem 4.1.

Theorem 4.1. For multimodal position embeddings with dimensions allocated across temporal (i),
and spatial components (i, 1,), setting 0; = 0 for all temporal dimensions i € i, maximizes the
semantic preference guarantee in Definition 3.1, compared to any alternative frequency allocation
strategy, particularly under extended context lengths.

Another interesting finding is that, if we set |i;| = d/4, |i,| = |iy| = d/8 and 6; = 0, ¢ € 4, for any
context length ¢ and spatial size x, y, semantic preference property invariably holds, as Lemma 4.1
reduces to E?ﬁo_l 202(2 + cos(Az - 03;) + cos(Ay - 62;11)) > 0. However, the empirical results of
this approach are inferior to our proposed HoPE, probably due to the decreased number of frequencies
for spatial modeling. More discussions are provided in Appendix B.3.



4.2 Dynamic Temporal Scaling Mechanism

Considering the distinct information densities of text and visual tokens, HOPE introduces a dynamic
temporal scaling mechanism that adjusts the temporal strides of visual inputs. Specifically, we first
define a set of scaling factors, e.g., I' = {0.5,0.75,1,1.25,1.5}, which includes both stretching
(y > 1) and compressing (7 < 1) operations. During training, the scaling factor v is randomly
selected from I' and applied to each video. This allows the model to learn temporal relationships at
multiple scales, making it more robust to variations in video speed, which are common in real-world
scenarios. Consider a multimodal input (text, video, text) of length L, L,,, and L., respectively.
The position indices (¢, z;,y) for each token with our dynamic scaling factor ~y are:

4,50, 0<i< Ly
Li+7(l_Lt)7
Li+~y(l—L)+w—-"%,|, Li<I<Li+Ly
tz,y) = \ Le+y(— L) +h— % . 5)
(7_1)L17+ly
(771)[/114’15 9 Lt+Lv§l<Lt+Lu+Le
(v =1Ly +1

Note that for visual tokens (L; <[l < L;+ L), | — L; indicates the distance of the current frame from
the start frame. During inference, scaling factors can be flexibly selected from the set to accommodate
videos of different lengths. It is worth noting that unlike existing methods, which do not consider
temporal scaling for visual tokens [1, 2, 4, 5] or just apply a fixed and unidirectional scaling factor
for both training and testing [28], our methods not only help the model learn temporal relationships
at multiple scales, but also offer flexibility during inference to accommodate various context lengths.

S Experiment

In this section, we evaluate the performance of HoPE on four video benchmarks across long video
understanding and long video retrieval tasks, aiming to validate its effectiveness in multimodal long-
context modeling. Additionally, we conduct ablation studies to investigate the individual contribution
of each strategy to overall performance and the interplay between task type, context length, and
scaling factor selection.

5.1 Experimental Setups

Implementation Details. We utilize Qwen2-1.5B and Qwen2-7B [39] as the backbone models.
By integrating these models with vision encoders from Qwen2-VL-2B/7B-Instruct [2], we obtain
Qwen2-2B/7B-Video, respectively. During training, we adopt a batch size of 128, a learning rate of
le-5(2B)/2e-5(7B) with a cosine scheduler. Following the instruction tuning settings in Qwen2-VL
[2], we set the maximum video frames to 128 and the video sampling rate to 2. The training context
length is set to 8k, with the entire training process taking approximately 304 GPU hours on machines
equipped with H800-80GB GPUs. During evaluation, the minimum tokens per frame are set to 144.

Training Data. We train the models on a subset of LLaVA-Video-178k [40], which consists of 178k
videos ranging from O to 3 minutes and 5M instruction samples, including captions, free-form, and
multiple-choice question answering. Our selected subset includes 30k videos with durations under 2
minutes and 3k videos with durations between 2 and 3 minutes, resulting in roughly 300k pairs.

Baselines. We compare HoPE with the following RoPE variants: 1) vanilla RoPE [23], the standard
approach in long-context LLMs, 2) M-RoPE [2], a famous RoPE extension in Qwen2-VL for
multimodal inputs, 3) VideoRoPE [28], a specialized RoPE variant designed for video-related tasks.

Evaluation Benchmarks. We evaluate HoPE across four video benchmarks for long video under-
standing and long video retrieval tasks. For long video understanding, we utilize LongVideoBench
[41], Video-MME [42], and MLVU [43], covering videos ranging from a few seconds to 2 hours.
For long video retrieval, we employ V-NIAH (Visual Needle-In-A-Haystack) [17]. In this task, a



Table 1: Performance comparison on long video understanding benchmarks. The training context
length of all methods is set to 8k, and we report the performance on 8k, 16k, 32k, and 64k to evaluate
length generalization. The best results are bold, while the second best results are underlined.

\ MLVU \ LongVideoBench \ Video-MME
Method | sk 16k 32k 64k | 8k 6k 32k 64k | 8k 16k 32k 64k

Owen2-2B-Video

Vanilla RoPE | §5.10 55.21 54.36 39.06 | 51.57 50.29 51.00 34.21 | 50.70 5148 51.44 20.31
M-RoPE 5326 53.69 5473 40.63 | 50.81 5226 5130 44.74 | 5144 5122 51.52 2344
VideoRoPE 5475 55.19 5400 42.19 | 52.17 52.02 51.31 36.84 | 50.89 50.52 50.56 15.63
HoPE (Ours) | 54.89 56.36 55.70 45.12 | 52.31 5297 51.66 46.27 | 51.79 51.87 51.69 26.03

QOwen2-7B-Video

VanillaRoPE | 59.75 61.13 61.03 34.38 | 51.17 5031 51.29 3947 | 56.70 57.96 57.99 26.13
M-RoPE 59.70 61.68 6246 46.88 | 52.27 53.29 5349 50.00 | 56.81 57.77 5837 23.43
VideoRoPE 60.40 61.82 62.51 4531 | 52.89 53.13 53.82 4737 | 57.51 59.00 59.13 26.52
HoPE (Ours) | 61.09 6348 63.85 50.01 | 54.11 55.09 5534 51.22 | 57.74 59.33 5944 27.34

"needle" image is randomly inserted into a "haystack" video, and the VLM is required to answer a
question specifically about the embedded "needle" image. Following the protocol in V-NIAH [17],
we utilize a haystack video with 1-hour duration (3,000 frames) and insert the needle image at 20%
depth intervals (e.g., a frame depth of 0% would place the needle image at the very beginning of the
video). For more detailed benchmark descriptions, please refer to Appendix B.1.

5.2 Results on Long Video Understanding

In this section, we provide a comprehensive comparison of HOPE and different RoPE variants in long
video understanding. From Table 1, we observe that: (1) HoPE consistently outperforms all baselines
across nearly all benchmarks, context lengths, and backbone sizes. Specifically, under the 7B model
scale and 32k context lengths, HOPE surpasses vanilla RoPE by 2.82, 4.05, and 1.45 on MLVU,
LongVideoBench, and Video-MME, respectively. This confirms its effectiveness and generalizability
in multimodal long-context modeling. (2) The effectiveness of HoPE scales with backbone size. For
instance, when the size of the backbone LLM increases from 2B to 7B, HoPE’s performance gain on
LongVideoBench (32k) significantly increases from 0.66 to 4.05 compared to vanilla RoPE. Notably,
the performance gap between different methods on the 2B scale is less significant, probably due to
the limited capabilities of the backbone LLM. (3) For context lengths under 64k, performance on
Video-MME drops substantially, while the impact on MLVU and LongVideoBench is less pronounced.
This suggests that extrapolating to extreme context lengths (e.g., up to 8x) remains highly challenging.

5.3 Results on Long Video Retrieval

We evaluate HoPE against other RoPE variants on V-NIAH [17] to demonstrate the superiority of our
method in long video retrieval, where VLMs are required to identify specific frames in a video to
answer the question. Figure 3 demonstrates that multimodal RoPEs significantly outperform vanilla
ROPE, supporting our claim in Proposition 3.1 that the flattening operation in vanilla RoPE hinders
spatial-temporal modeling. Furthermore, HoPE achieves better extrapolation than M-RoPE and
VideoRoPE, confirming its effectiveness in multimodal long-context modeling. Quantitative results
in Table 4 show that HOPE surpasses the best baseline by a significant margin of 22.23%.

5.4 Analysis

In this section, we first conduct ablation studies to analyze the effectiveness of each component in
HoPE. We then present a comprehensive analysis exploring how different factors, including task type,
context length, and the scaling factor of visual tokens, interact and impact model performance.
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Figure 3: Performance comparison on long video retrieval task (V-NIAH). Here, each frame
corresponds to 144 tokens. Cell colors indicate model accuracy (red: low, green: high), and the black
dotted line marks the training context length (8k).

Ablation Studies. We conduct a series of ablation experiments to evaluate the impact of each
component in HoPE and summarize the results in Table 2. According to the results, we observe that :
(1) The 3D structure effectively improves the per-

formance of vanilla RoPE in multimodal contexts, Table 2: Ablation results on Video-MME
supporting our Proposition 3.1. (2) Based on the  from 8k to 64k. Here, HFA: hybrid frequency
3D structure, the hybrid frequency allocation (HFA)  ajiocation, DTS: dynamic temporal scaling.
strategy further enhances long-range semantic mod-
eling, achieving an average improvement of 1.69  \ethod 8k 16k 32k 64k
across all context lengths. (3) The dynamic tem-

poral scaling (DTS) mechanism facilitates VLMs’ ~ Vanilla RoPE 56.70 57.96 57.99 26.13
robustness to varying video speeds in real-world ~+ 3D structure 56.81 57.77 58.37 23.43
+ 3D + HFA 57.66 59.19 59.31 26.98

scenarios, yielding further performance gain. By
combining the above strategies, our HoPE achieves
the best overall performance across different con-
text lengths in multimodal long-context modeling.

+3D + HFA + DTS 57.74 59.33 59.44 27.34

Impact of Test-time Scaling Factor Se-
lection. We conduct further experiments  Taple 3: Ablation studies on test-time scaling factor
to investigate how different scaling factors  gelection. We find that long video understanding gen-
7 in our dynamic temporal scaling mech-  erally benefits from larger scaling factors, while long
anism impact the performance of video- yjdeo retrieval yields better results with smaller ones.

related tasks. We summarize the results
on V-NIAH and LongVideoBench in Ta-

LongVideoBench

. . Scaling Factor ~ V-NIAH
ble 3. Our main .observatl.ons are as fol- 8k 16k 32k 64k
lows: (1) Long vzdeio retrieval generally 0350 a8 429 a6 5265 6089
prefers smaller scaling factors. As shown 075 5436 5497 5472 5263 63.56
in Table 3, when we utilize smaller scaling 1.00 54.11 5448 5497  52.63 62.67
L 1.25 5411 5484 5570 5263 62.67
factors vy during inference, the performance 15 5411 5500 5534 5122 6178

on V-NIAH improves. We attribute this
to the substantial length of 1-hour videos
(3,000 frames), which far exceeds the training length (128 frames). In such cases, smaller scaling
factors indirectly prevent the spatial position indices from becoming excessively large (see Equa-
tion 5), thereby providing a better guarantee for the semantic preference property. Therefore, we set
~v = 0.75 for long video retrieval. (2) Long video understanding generally benefits from larger scaling
factors. In contrast to retrieval, we find that long video understanding is relatively insensitive to the
choice of scaling factor when the input context length is close to the training length. However, as the
input length increases, employing larger scaling factors (v > 1) results in better performance. We
hypothesize that while smaller scaling factors help preserve the semantic preference property, larger



scaling factors are beneficial for maintaining spatial details (also see Equation 5), which are crucial
for complex understanding tasks. This introduces a natural tradeoff between semantic preference and
spatial detail preservation. Compared to long video retrieval (3,000 frames, roughly 432k tokens),
where extended temporal distances can significantly degrade semantic preference, in long video
understanding tasks with context lengths of 16k—32k, the negative impact on semantic preference is
relatively small. At the same time, the positive effect of larger scaling factors on capturing spatial
details outweighs the semantic preference loss, making larger scaling factors overall more effective
for complex video understanding. In our experiments, we set v = 1.5 for long video understanding.

6 Related Work

Position Embedding in LLMs. Rotary Position Embedding (RoPE) [23] has become a common
choice for position embedding in modern LLMs [24-26, 44]. As discussed in Section 2, RoPE
achieves this success through rotating query and key vectors, encoding relative position information
through an absolute positional encoding approach. Despite its success, several works have pointed
out that No Position Embedding (NoPE) still works for decoder-only LLMs, arguing that the causal
attention mechanism implicitly learns absolute position information [30, 31, 38]. These works
even suggest that NoPE outperforms RoPE in out-of-distribution (OOD) scenarios. However, this
observation remains unexplored in multimodal settings, where positional encoding strategies may have
different implications for cross-modal interactions. Based on Lemma 4.1, we find that incorporating
NoPE’s zero frequency strategy indeed improves the length generalization of multimodal RoPE.

Multimodal Position Embedding in VLMs. In VLMs [1-5], images are first processed by vision
encoders and then flattened into 1D tokens. Several early models [1, 4, 5] rely on vanilla RoPE
for positional encoding, which distorts spatial-temporal locality (see Section 3) and limits VLMs’
long-context capability. Recently, Qwen2-VL [2] introduced M-RoPE, which extends 1D RoPE
to multimodal settings by assigning distinct frequency ranges to different positional components.
Specifically, M-RoPE allocates the highest frequencies to the temporal component ¢, while distributing
the lower frequencies sequentially to the spatial components x and y. Conversely, VideoRoPE [28]
allocates the lowest frequencies to ¢ to capture long-range dependencies, achieving stronger length
generalization. However, these allocation strategies mainly rely on heuristics, lacking in-depth
theoretical analysis. In contrast, our work theoretically analyzes how different frequency allocation
strategies impact the performance of multimodal RoPE. By zeroing out low frequencies for temporal
modeling, our proposed HoPE provides the strongest theoretical guarantee for long-range semantic
modeling. HoPE’s strength is further enhanced by its dynamic temporal scaling of visual tokens,
which enables robust temporal learning during training and flexible scaling during inference. By
integrating these advantages, HoPE achieves state-of-the-art performance in long video understanding
and retrieval tasks, making it well-suited for long context VLMs.

7 Conclusion

This paper theoretically analyzes the limitations of current multimodal RoPE variants. Our analysis
reveals that: (1) vanilla RoPE inherently fails in spatial-temporal modeling; (2) keeping all frequencies
in multimodal RoPE is unreliable in capturing long-range semantic similarities; (3) temporal scaling
of lengthy visual tokens should include both compression and expansion to accommodate various
video speeds. Consequently, we introduce HoPE, a hybrid of position embedding designed to enhance
the long-context capabilities of VLMs. HoPE proposes a hybrid frequency allocation strategy to
facilitate long-range semantic modeling, and a dynamic temporal scaling mechanism to enhance
VLMs’ robustness to varying video speeds in real-world scenarios. Experimental results on long
video understanding and long video retrieval tasks demonstrate that HOPE consistently outperforms
existing methods across diverse context lengths and backbone sizes, confirming its effectiveness.

Limitations. While HoPE’s performance gains scale from 2B to 7B backbones, our work does not use
larger models or training data. We observe that the performance of all methods degrades significantly
at 64k, though HoPE remains the most robust. While these resource-constrained evaluations are
essential for uncovering genuine algorithmic benefits of multimodal RoPE, we note that training with
more data, particularly long-context data, could further improve length generalization.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are summarized in Figure 1. Section 3 provides theoretical
analysis and Section 4 offers detailed methodology.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Section 7.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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Justification: We provide the proofs in Appendix A.
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All the theorems, formulas, and proofs in the paper should be numbered and cross-
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All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental setups are provided in Section 5.1.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We use fully public datasets in our experiments and the details are provided in
Section 5.1 and Appendix B.1. Code will be released in camera-ready version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Section 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: In our experiments, the variance between different runs is negligible. Addition-
ally, our training and evaluation pipelines are deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please refer to Section 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work focuses on improving the long-context capabilities of Vision-
Language Models, which uses public datasets and is purely academic. We believe it has no
direct societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not pose safety risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We credited them in appropriate ways and followed their licenses.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not include crowdsourcing experiments and research with
human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

In this section, we provide detailed proofs for the theoretical statements presented in this paper.

A.1 Vanilla RoPE Fails in Spatial-Temporal Structure

Proposition 3.1. Given any query q at position (t,z,y) and a relative distance of 1 in spatial
or temporal dimensions, the flattening operation in 1D RoPE distorts the relative distance with a
magnitude dependent on the frame resolution.

Proof. Consider a video of shape T' x H x W, where each token at position (¢, x, y) is flattened by
flt,x,y) =tHW + W +y.
Now consider two types of local neighbors:

1. Spatial neighbors within the same frame:

Let (¢, 2,y) and (¢, + 1,y) be adjacent in the spatial dimension. Then,
|t x+1y) = ftzy) =[x+ DW +y) — @W +y)| = W. (©6)

Note that a relative distance of 1 in x becomes W after flattening, which grows linearly with the
frame width.

2. Temporal neighbors at the same spatial position: Let (¢, z,y) and (¢ 4+ 1, x, y) be adjacent in
time. Then,

1flt+1,2,y) — f(tx,y)| = |+ 1)HW +aW +y — tHW +aW +y)| = HW.  (7)

For a 1-frame shift in time, the index difference becomes H W, which grows with spatial resolution.

In both cases, spatially or temporally adjacent tokens are mapped to indices with significant differ-
ences. Since vanilla RoPE incorporates positional information based on these 1D index differences,
such flattening leads to distorted spatial-temporal relationships. O

A.2 Semantic Preference Property
We now prove that the frequency allocation strategies in current multimodal RoPEs are unreliable in
capturing semantic similarities over extended contexts, as defined in Definition 3.1.

Definition 3.1. (Semantic Preference). For any query vector q and a semantically similar key vector
k’ that can be expressed as k' = q + & where § is a zero-mean perturbation, the attention score with
ROoPE should satisfy:

Eqxs[aRatazayk’ — aRatazayk] > 0, (8)

where k is the key vector of a semantically unrelated token. This preference should hold regardless
of the relative distance (At, Az, Ay) between query-key pairs.

Firstly, we use Lemma A.1 to show why using lower frequencies for temporal modeling is more
ideal in multimodal RoPE. Intuitively, larger rotation angles (frequencies) are more likely to produce
negative cosine similarity values between semantically related tokens under long-context scenarios.

Lemma A.1. Ler At be drawn uniformly from {0, 1, ..., L — 1}, and define
P.(0) = % |{A : cos(6 At) < 0}].
Then for any L > 1:
1 If0 < 0 < 57—, then P.(0)=0.
2. For0 > 5", P_(0) is non-decreasing in 0.

2(L—-1)’

i =1
3. Jim P(6) = }.
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Proof of Lemma A.1. 1. No negative region for small 0. If 0 < 0 <
At € {0,...,L — 1} we have

ﬁ, then for every

0 < 0At < 0(L-1) < 7/2,
so cos(f At) > 0. Hence P-(6) = 0.

2. Monoton1c1ty once the first zero enters. As soon as 6 > ( 7y the point satisfying 0 At = 7 /2

lies in {0, ..., L — 1}. Each further increase in  extends the interval of length (L — 1), adding
more half-periods of cosine. Each added half-period contains exactly one “negative” region of length
7. Therefore the count |{A : cos(#A) < 0} (and hence P-(6)) can only stay the same or increase,
up to O(1/L) rounding errors on the discrete grid.

3. Limit to one half for large 6. For large 0, the values {6 A} Z;%) become equidistributed mod 27.
Since the negative region { z mod 27 | cosz < 0} has total length 7 over each 27-cycle, one finds
lim P.(0) = — =

1
0— o0 21 2"

O

We can now prove the frequency allocation strategies in current multimodal RoPE cannot reliably
maintain the semantic preference property, i.e., semantically similar tokens should receive higher
attention than semantically unrelated pairs.

Theorem 3.1. Let X = [x1,29,...,21] be an input sequence, and let RoPE use any fixed set of
temporal frequencies (e.g., highest or lowest). Then there exists a critical length L. such that for all
L > L., the semantic preference property (Definition 3.1) is violated.

Proof. We first recall the definition of multimodal RoPE, where the rotation matrix is partitioned to
encode different dimensions:

Rt,z,y = diag(Rtv va Ry)a

where Ry, R;, and R, are rotation matrices applied to temporal, horizontal spatial, and vertical
spatial dimensions, respectively, with each dimension carrying a frequency of §; = b=2/4 ; ¢
{0,...,d/2 — 1}. Note that the (¢, z, y) ordering is purely notational and does not constrain the
actual dimension allocation strategy.

Assume that each component of the query vector q is independently and identically distributed with
mean £ and variance o2. We denote key vector that is semantically similar to q as k' = q + 6, where
d is a zero-mean perturbation. The semantically unrelated key vector k is independently drawn with
the same distribution as q. Let At, Ax, Ay denote relative temporal and spatial distances between
the query and each key. According to Definition 3.1, the semantic preference property requires that:

EqxslaRasazak T — qRAr Az Ak ]
=Eqks[aRat,AzAy(q+ 5" — aRatazayk']
=EqlaRarrz.0y9" ] — EqlaRar Az ayk ']

=Eq[aRatAr00a | — 1*Raracay

= 22 (2 + 0%)cos(At)8; + Z (12 + o?)cos(Ax)d Z 2+ 0?)cos(Ay)di—  (9)
€14 1€y €1y

Z 2% cos(At)0; + Z 2u%cos(Ax)b; + Z 2p2cos(Ay)b;

1€0¢ IS 1€y

= Z 20%cos(At - 0;) + Z 20%cos(Ax - 0;) + Z 20%cos(Ay - 0;) >0
= i€ig i€y

where 4, 1,,%, denote dimensions allocated to encode temporal (¢), horizontal spatial (z), and
vertical spatial (y) information. To satisfy the semantic preference property (Definition 3.1), the
expected attention between a query and its semantically similar key should remain higher than that
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for an unrelated key, regardless of their relative distance. This implies the following condition must
hold universally:

Z 20%cos(At - ;) + Z 20%cos(Ax - ;) + Z 20%cos(Ay - 6;) > 0,
i€y i€i, i€i, (10)
At e {0,1,...,L -1} Az € {0,1,...,H}, Ay € {0,1,..., W}.

Now consider a long-context scenario, where L > H, W, we can now theoretically prove that why
VideoRoPE [28] (using lowest frequencies for t) is better than M-RoPE (using highest frequencies
for ¢) in maintaining semantic preference property in long contexts. Simply, by Lemma A.1, we show
that when the context length L is sufficiently large, the probability that cos(At - 6;) leads to negative
values becomes higher when 6; becomes larger. Therefore, lower frequencies, which rotate less, are
less likely to violate the semantic preference property.

However, despite using the lowest frequencies, VideoRoPE still fails to guarantee that the semantic
preference property holds for all context lengths (Equation 10). Let VideoRoPE allocate only the
smallest frequency to the temporal dimensions, instead of |;| smallest frequencies:

Oin = p2g-1)/d

)
so that in Equation (10) the temporal sum reduces to:
20’2 |Zt‘ COS(At . Hmin).

Here, under the reasonable assumption that semantically related tokens co-occur in nearby spatial
positions across frames, the spatial sums in Equation 10 remains non-negative. Thus we only consider
the temporal sum in Equation 10:

202|it| cos(At - Omin)-
Now pick any context length L so large that there exists
At € {0,1,...,L—1} with Aty € (3, 2F).

Such a At indeed exists as soon as Oy, (L — 1) > 5, 1.e. for any

For that choice of At, we have
cos(At - Omin) < 0,

and hence the left-hand side of Equation (10) becomes
202 |i;| cos(At - Opmin) < 0.

This single counterexample (At, Az, Ay) violates the semantic preference condition, since no
further temporal frequencies are available to “rescue” the sum. Therefore, despite using the lowest
frequencies for temporal modeling, VideoRoPE still fails to guarantee the semantic preference
property. In conclusion, all frequency allocation strategies in current multimodal RoPEs fail to
maintain the semantic preference property in Definition 3.1, completing the proof. O

B Further Experimental Details

In this section, we provide further details of our experiments, including benchmark descriptions,
experimental settings, and further results.

B.1 Detailed Benchmark Description

There is a growing interest in video generation and understanding [45-47, 34, 19], given their broad
applications in content creation and analysis. In this subsection, we provide detailed descriptions
of the video benchmarks we used in the experiments, i.e., LongVideoBench [41], Video-MME [42],
MLVU [43], and V-NIAH [17].
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Needle o o “
Image

Question: Find the frame of a scientist. The scientist is a...
A. Bird B. Elephant C. Panda D. Dog
Please provide your answer by stating the letter followed by the full option.

Answer: C

Figure 4: Illustration of V-NIAH, which consists of a randomly inserted needle image, a haystack
video, and a specific question related to the needle.

* LongVideoBench is a comprehensive benchmark for evaluating Vision-Language Models on
long video understanding tasks. Unlike traditional video benchmarks that focus on short clips
under one minute, this dataset features videos ranging from 8 seconds to 1 hour across diverse
sources, including everyday life, movies, knowledge, and news. The benchmark encompasses
17 fine-grained question categories organized into two levels: perception and relation. In our
experiment, questions that are free from subtitles are retained.

* Video-MME is a full-spectrum evaluation benchmark of Vision-Language Models in video analysis,
spanning 6 primary visual domains with 30 subfields to ensure generalizability. It features temporal
diversity by incorporating both short- (<2 minutes), medium- (4-15 minutes), and long-term videos
(30-60 minutes), ranging from 11 seconds to 1 hour.

* MLVU is a high-quality benchmark designed to evaluate the video understanding capabilities of
Vision-Language Models. The temporal duration of videos within MLV U spans from 3 minutes to
2 hours, covering genres such as movies, life records, and egocentric videos. In our experiment, we
evaluate all methods on the following multiple-choice tasks: Action Count, Action Order, Topic
Reasoning, Ego Reasoning, Needle QA, Plot QA, and Anomaly Recognition.

* V-NIAH is a challenging benchmark designed to evaluate VLMs’ ability to identify specific frames
within long videos. In this task, a "needle" image is inserted into a "haystack" video, and the
VLMs are required to answer specific questions about this "needle" image, as shown in Figure 4.
Following the settings in V-NIAH [17], we utilize a haystack video with 1-hour duration (3,000
frames). The needle image is inserted at 20% depth intervals (e.g., a frame depth of 0% would
place the needle image at the very beginning of the video.)

Table 4: Quantitative performance of different RoPE variants on V-NIAH. Here, we report the average
accuracy across different context lengths and frame depths.

\ Vanilla ROPE  M-RoPE VideoRoPE HoPE (ours)
V-NIAH | 21.00 47.11 52.00 63.56

B.2 Quantitative Results on V-NIAH
Here, we provide the quantitative results of different RoPE variants on long video retrieval task in

Table 4. It can be observed that our HoPE demonstrates a 22.23% improvement compared to the best
baseline, justifying its effectiveness in multimodal long-context modeling.

B.3 Ideal Condition for Semantic Preference
As discussed after Theorem 4.1, the semantic preference property (Definition 3.1) invariably holds for

any context length ¢ and spatial size , y when we set |i;| = d/4, |iz| = |iy| = d/8and 0; = 0,7 € iy,
since Lemma 4.1 reduces to:
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d/8—1

Z 20’2(2 + COS(AJE . 921) + COS(Ay . 0214.1)) > 0.
=0

In our original HOPE implementation, the frequencies allocated to ¢, x, y are 16, 24, 24, respectively,
with the lowest 16 frequencies for ¢ set to zero. For this proposed variant (HoPE-X), we redistribute
these allocations to 32, 16, 16 for ¢, z, y, respectively, while setting the lowest 32 frequencies for
t to zero. To evaluate the comparative effectiveness of these configurations, we conduct further
experiments on LongVideoBench.

Table 5: Performance comparison between HoPE-X and HoPE.

Method ‘ LongVideoBench
| 8k 16k 32k 64k

HoPE-X | 52.68 5273 53.01 46.32
HoPE 54.11 55.09 5534 51.22

Table 5 demonstrates that HoPE consistently outperforms HoPE-X across diverse context lengths.
We deduce that the inferior performance of HoPE-X is due to its decreased dimensions allocated
for spatial modeling. While this configuration helps to maintain the semantic preference property,
it negatively impacts HoPE-X’s ability to model local features. Therefore, it is necessary to keep
adequate dimensions for spatial modeling in multimodal RoPE.
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