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Abstract

Expressive zero-shot voice conversion (VC)001
is a critical and challenging task that aims to002
transform the source timbre into an arbitrary003
unseen speaker while preserving the original004
content and expressive qualities. Despite recent005
progress in zero-shot VC, there remains consid-006
erable potential for improvements in speaker007
similarity and speech naturalness. Moreover,008
existing zero-shot VC systems struggle to fully009
reproduce paralinguistic information in highly010
expressive speech, such as breathing, crying,011
and emotional nuances, limiting their practical012
applicability. To address these issues, we pro-013
pose Takin-VC, a novel expressive zero-shot014
VC framework via adaptive hybrid content en-015
coding and memory-augmented context-aware016
timbre modeling. Specifically, we introduce017
an innovative hybrid content encoder that in-018
corporates an adaptive fusion module, capable019
of effectively integrating quantized features of020
the pre-trained WavLM and HybridFormer in021
an implicit manner, so as to extract precise lin-022
guistic features while enriching paralinguistic023
elements. For timbre modeling, we propose ad-024
vanced memory-augmented and context-aware025
modules to generate high-quality target timbre026
features and fused representations that seam-027
lessly align source content with target timbre.028
To enhance real-time performance, we advo-029
cate a conditional flow matching model to re-030
construct the Mel-spectrogram of the source031
speech. Experimental results show that our032
Takin-VC consistently surpasses state-of-the-033
art VC systems, achieving notable improve-034
ments in terms of speech naturalness, speech035
expressiveness, and speaker similarity, while036
offering enhanced inference speed.037

1 Introduction038

Zero-shot voice conversion (VC) aims to modify039

the timbre of a source speech to match that of a040

previously unseen speaker, while maintaining the041

original phonetic content, has found broad applica-042

tions in various practical domains (Gan et al., 2022; 043

Tomashenko et al., 2022; Liu et al., 2021). 044

The advancement of deep learning techniques 045

has significantly propelled the development of zero- 046

shot VC, with numerous methods (Li et al., 2023; 047

Hussain et al., 2023; Choi et al., 2023; Anastas- 048

siou et al., 2024; Luo and Dixon, 2024) exhibiting 049

impressive results in converting natural and real- 050

istic speech. The key idea behind is factorizing 051

speech into distinct elements, such as content and 052

timbre elements, and leveraging the source speech 053

content alongside the target timbre to synthesize 054

the desired output. In this paradigm, the quality of 055

content and timbre features, as well as the quality 056

of their disentanglement, critically influences per- 057

formance. Consequently, various studies have fo- 058

cused on developing advanced modules (Wu et al., 059

2020; Wu and Lee, 2020; Tang et al., 2022; Wang 060

et al., 2021; Yang et al., 2022a; Huang et al., 2023) 061

and information disentanglement approaches (Zhao 062

et al., 2022; Tang et al., 2022; Dang et al., 2022; 063

Yao et al., 2024c) to enhance zero-shot VC. How- 064

ever, achieving high-quality decoupling of utter- 065

ances into distinct components remains challeng- 066

ing (Pan et al., 2023, 2024a,c; Yao et al., 2024a), 067

with existing systems still exhibiting subpar per- 068

formance for unseen speakers. Two main issues 069

are prevalent. First, current methods cannot fully 070

mitigate the impact of source timbre during source 071

content extraction, a problem referred to as "timbre 072

leakage". Second, these approaches often use pre- 073

trained speaker-verification (SV) models to capture 074

target timbre features as globally time-invariant 075

representations. Nonetheless, such SV embeddings 076

cannot ensure robust timbre modeling and vary 077

with linguistic content (Jiang et al., 2024; Pan et al., 078

2024d) which may diminish their effectiveness. 079

Recently, the progressions in large-scale speech 080

language models (Wang et al., 2023b; Borsos et al., 081

2023) have tried to tackle this issue by leverag- 082

ing robust in-context learning capabilities for con- 083
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verting target speech from concise utterances as084

prompts. Nevertheless, these methods suffer from085

stability issues and error accumulation due to their086

auto-regressive nature, which can gradually de-087

grade conversion quality. Moreover, current state-088

of-the-art (SOTA) zero-shot VC systems still strug-089

gle to simultaneously transfer the paralinguistic090

characteristics in highly expressive speech, such as091

crying, breathing, and emotional nuances, thus lim-092

iting their effectiveness and practical applicability.093

In this paper, we propose Takin-VC, a novel094

expressive zero-shot VC framework that deliv-095

ers advanced modeling of content, timbre, and096

speech quality in a zero-shot fashion. To be spe-097

cific, we introduce an adaptive fusion-based hy-098

brid content encoder that seamlessly combines the099

strengths of phonetic posterior-grams (PPGs) and100

self-supervised learning (SSL)-based representa-101

tions derived from pre-trained HybridFormer (Yang102

et al., 2023b) and WavLM (Chen et al., 2022). This103

integration enables the precise extraction of linguis-104

tic content while simultaneously enriching paralin-105

guistic elements. For timbre modeling, we first106

advocate a memory-augmented module capable of107

generating high-quality conditional target timbre108

inputs for our conditional flow matching (CFM)109

model. To further enhance speaker similarity, a110

context-aware timbre modeling module based on111

an efficient cross-attention (CA) mechanism is pre-112

sented. This module effectively aligns and fuse the113

extracted source content and target timbre features,114

rather than solely using the source linguistic con-115

tent as the conditional input for CFM. Conditioned116

on these features, the predicted outputs of the CFM117

model are ultimately fed into a pre-trained vocoder118

(Lee et al., 2022) to synthesize the target speech.119

Experiments conducted on both large-scale 500k-120

hour multilingual (Mandarin and English) and121

small-scale LibriTTS (Zen et al., 2019) datasets122

demonstrate that Takin-VC consistently outper-123

forms several SOTA zero-shot VC methods in124

speech naturalness, expressiveness, speaker similar-125

ity, and real-time performance. Notably, Takin-VC126

achieves significant improvements in both subjec-127

tive and objective metrics compared to all baseline128

systems, further validating its effectiveness and ro-129

bustness. For more detailed speech samples, please130

visit our demo page 1. In summary, the primary131

contributions of this work are as follows:132

1https://anonymous.4open.science/w/
takin-vc-0CD8/

• We present Takin-VC, a novel expressive zero- 133

shot VC framework. To the best of our knowl- 134

edge, this is the first approach capable of si- 135

multaneously transforming the source timbre 136

to arbitrary unseen speakers while effectively 137

maintaining the paralinguistic characteristics 138

of highly expressive speech. 139

• We introduce an adaptive hybrid content en- 140

coder that employs an adaptive feature fu- 141

sion module to implicitly integrate PPGs and 142

quantized SSL features in a learnable manner, 143

thereby capturing precise linguistic elements 144

with enriched paralinguistic characteristics. 145

• We propose memory-augmented and content- 146

aware modules to enhance timbre modeling. 147

The former aims to extract high-quality target 148

timbre conditions, while the latter focuses on 149

generating fused features that align and lever- 150

age target timbre embeddings with source con- 151

tent for the conditional flow matching model. 152

2 Background 153

2.1 Zero-shot Voice Conversion 154

Recent progressions in deep learning techniques, 155

such as SSL-based speech models (Hsu et al., 2021; 156

Chen et al., 2022; Baevski et al., 2020) and dif- 157

fusion models (Ho et al., 2020; Lu et al., 2022), 158

have greatly advance zero-shot VC. SEF-VC (Li 159

et al., 2024) utilizes a CA mechanism to extract 160

timbre features and reconstruct waveforms from 161

HuBERT (Hsu et al., 2021) tokens, while (Choi 162

et al., 2023) proposes a diffusion-based hierarchi- 163

cal VC method using XLS-R (Babu et al., 2021) 164

for content extraction and dual diffusion models for 165

generating pitch and Mel-spectrograms. Despite 166

these innovations, SSL-based zero-shot VC meth- 167

ods (Dang et al., 2022; Hussain et al., 2023; Li et al., 168

2023) are likely to encounter the timbre leakage 169

challenge, as SSL features do not explicitly disen- 170

tangle timbre features. Likewise, diffusion-based 171

approaches (Popov et al., 2021; Choi et al., 2024) 172

suffer from suboptimal real-time performance. An- 173

other emerging paradigm (Zhang et al., 2023; Wang 174

et al., 2023b; Baade et al., 2024) involves decou- 175

pling speech into semantic and acoustic tokens us- 176

ing neural codecs (Défossez et al., 2022; Yang et al., 177

2023a; Pan et al., 2024b) and SSL-based models, 178

subsequently using language models to generate 179

converted speech. While these approaches mark 180

impressive results, current SOTA VC methods still 181
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have considerable room for improvement in achiev-182

ing better speaker similarity and naturalness. Be-183

sides, they continue to face difficulties in faithfully184

and simultaneously reproducing the paralinguistic185

characteristics of highly expressive speech.186

2.2 Flow Matching-based Generative Models187

Flow matching-based generative models (Lipman188

et al., 2022; Tong et al., 2023c,a) have recently189

emerged as a powerful solution for generative tasks.190

By estimating vector fields to approximate the191

transport path from noise to the target distribu-192

tion, these models employ neural ordinary differ-193

ential equations (ODEs) to learn optimal transport194

trajectories. Compared to diffusion-based meth-195

ods (Bartosh et al., 2023; Zhou et al., 2023), flow196

matching offers improved training stability and197

real-time performance by enabling direct noise-198

to-sample mapping while significantly reducing199

sampling steps. In the speech processing do-200

main, flow matching-based systems are emerging201

as a promising paradigm. SpeechFlow (Liu et al.,202

2023) uses a pre-trained flow matching model with203

masked conditions on large-scale untranscribed204

speech data, facilitating speech enhancement and205

separation tasks. P-Flow (Kim et al., 2024) adopts206

speech prompts for speaker adaptation, integrating207

a speech-prompted text encoder and a flow match-208

ing decoder to enable high-quality and real-time209

speech synthesis. Despite these advancements, the210

application of flow matching in zero-shot VC re-211

mains nascent, underscoring the need for devel-212

oping a stable and efficient flow matching-based213

zero-shot VC framework.214

3 TakinVC215

3.1 Overivew216

As shown in Fig. 1, our Takin-VC system pri-217

marily comprises three key components: an adap-218

tive hybrid content encoder, a memory-augmented219

context-aware timbre modeling approach, and a220

conditional flow matching-based decoder.221

In detail, the objective of the adaptive hybrid222

content encoder is to precisely capture linguis-223

tic characteristics enriched with paralinguistic el-224

ements, denoted as Xscont . To achieve this, an225

adaptive feature fusion module on top of the hy-226

brid content encoder is presented to effectively227

leverage the complementary strengths of PPG and228

quantized SSL representations in a learnable fash-229

ion. Regarding timbre modeling, we first pro-230

pose a memory-augmented module that incorpo- 231

rates a stack of convolution, activation, and self- 232

attention layers to extract high-quality target tim- 233

bre conditions Xttcond
for the CFM model. To 234

further improve timbre modeling capabilities, a 235

cross-attention-based context-aware module is pre- 236

sented to generate fused representations Xsctt
that 237

effectively integrate Xscont with target timbre. Fi- 238

nally, to enable stable training and accelerate the 239

reference speed, we design a CFM model that con- 240

sists of multiple UNet (Ronneberger et al., 2015) 241

blocks to reconstruct the source Mel-spectrograms 242

conditioned on Xsctt and Xttcond
, followed by a 243

pretrained Bigvgan vocoder to synthesize the de- 244

sired target speech. 245

3.2 Adaptive Hybrid Content Encoder 246

Current mainstream zero-shot VC systems typi- 247

cally use pretrained automatic speech recognition 248

(ASR) (Gulati et al., 2020; Yang et al., 2022b; 249

Kim et al., 2022) or SSL-based speech models to 250

capture linguistic content from the original wave- 251

form. However, they both have inherent limitations: 252

ASR-derived PPGs lack sufficient paralinguistic 253

elements, whereas SSL-based models do not ex- 254

plicitly disentangle timbre information. To address 255

these flaws, we propose an adaptive fusion-based 256

hybrid content encoder within the Takin-VC frame- 257

work, integrating the merits of both approaches. 258

Formally, given an input source speech X , our 259

adaptive hybrid content encoder separately encodes 260

its corresponding PPG and SSL features, denoted 261

as Xp and Xs, using pre-trained HybridFormer and 262

WavLM, respectively. To alleviate potential tim- 263

bre leakage, a residual vector quantization (RVQ) 264

based quantizer of EnCodec (Défossez et al., 2022) 265

is applied to discretize Xs, resulting in X̃s. Addi- 266

tionally, we introduce a gradient-driven adaptive 267

feature fusion module to further reduce timbre leak- 268

age and effectively integrate the complementary 269

benefits of PPG and SSL features. Unlike con- 270

ventional element-wise addition for feature fusion, 271

the proposed strategy first processes the quantized 272

WavLM features through a multi-layer projection 273

module comprising a one-dimensional convolu- 274

tional (Conv1d) layer followed by a LeakyReLU 275

activation function, with the negative slope empir- 276

ically set to 0.2. Temporal interpolation is then 277

applied to ensure dimensional alignment with the 278

PPG features, and the resulting WavLM representa- 279

tions are employed as coefficients for element-wise 280
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Figure 1: The overall framework of Takin-VC.

multiplication with the PPGs:281

Xscont = LeakyReLU(Conv1d(X̃s)) ·Xp (1)282

where Conv1d denotes the 1D convolutional layer.283

By this means, as gradients propagate back to For-284

mula 1 during training, the limited representation285

of paralinguistic nuances within the PPG features286

results in larger gradient magnitudes for these ele-287

ments. Since the PPGs are fixed before training, the288

gradients primarily affect the adaptive fusion mod-289

ule associated with the quantized WavLM features.290

As a consequence, this gradient-driven adjustment291

dynamically optimizes the weights of the quantized292

WavLM features in an implicit way, thereby ampli-293

fying the representation of paralinguistic elements294

in the combined feature space, improving overall295

content modeling capabilities, and significantly re-296

ducing the risk of voiceprint leakage.297

3.3 Enhanced Timbre Modeling298

3.3.1 Memory-augmented Timbre Modeling299

Figure 2: Schematic of the memory-augmented module.

To capture high-quality target timbre conditions for 300

the CFM model, we propose an efficient memory- 301

augmented module that adaptively integrates the 302

shuffled Mel-spectrogram and VP features of the 303

reference speech, as outlined in Fig. 2. 304

Detailed, we extract the Mel-spectrograms from 305

randomly segmented reference waveforms originat- 306

ing from the same speaker as the source speech. 307

The individual frames of these Mel-spectrograms 308

are then shuffled to preserve essential timbre char- 309

acteristics while minimizing the influence of the 310

source speech content. Subsequently, a lightweight 311

pre-trained SV model2 is utilized to extract timbre 312

embeddings from the reference speech. These em- 313

beddings are then concatenated with the shuffled 314

Mel-spectrograms, resulting in the target timbre 315

representations, referred to as Xttimb
. To refine 316

these concatenated features, our proposed memory- 317

augmented module that begins by employing a 318

Conv1d layer to project the captured features and 319

then incorporates four SA blocks, each comprising 320

a group normalization layer, multi-head SA mech- 321

anism, a Conv1d layer, and a shortcut connection 322

operation. The resulting features are then subjected 323

to a temporal averaging operation, followed by the 324

application of a FiLM layer (Perez et al., 2018) to 325

perform affine feature-wise transformation, produc- 326

ing the conditional target timbre inputs Xttcond
. 327

3.3.2 Context-aware Timbre Modeling 328

Speaker timbre features have long been viewed as 329

global and time-invariant representations (Lin et al., 330

2021; Li et al., 2024; Pan et al., 2024d). However, 331

recent studies (Jiang et al., 2024) have revealed a 332

2https://modelscope.cn/models/iic/speech_
campplus_sv_zh_en_16k-common_advanced
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close interdependence between timbre modeling333

and content information. Hence, drawing inspira-334

tion from this insight, we propose an innovative335

context-aware timbre modeling approach based on336

advanced cross-attention mechanism.337

Figure 3: Schematic of the context-aware module.
As illustrated in Fig. 3, the CA-based module338

is designed to generate semantically aligned tim-339

bre features that harmonize the source linguistic340

content with the target timbre. Concretely, the CA-341

based module consists of a series of linear pro-342

jection layers, multi-head cross-attention layers,343

layer normalization, and position feed-forward net-344

work (FFN), which can effectively facilitate the in-345

tegration of Xscont and Xttimb
. The source content346

Xscont is used as the query, while the target timbre347

Xttimb
serves as both the key and value. Finally, the348

extracted features Xsctt are interpolated to ensure349

dimensional compatibility with the ground truth,350

i.e., the source Mel-spectrogram, facilitating the351

subsequent training of the CFM model.352

3.4 Conditional Flow Matching Model353

In Takin-VC, to facilitate more efficient training354

and faster inference, we use a CFM model with355

optimal-transport (OT-CFM) to approximate the356

distribution of source Mel-spectrograms and gen-357

erate predicted outputs conditioned on Xsctt and358

Xttcond
, all in a simulation-free manner.359

Assume that the standard distribution and the360

target distribution are denoted as p0(x) and p1(x),361

respectively. The OT flow ϕ : [0, 1] × Rd → Rd362

establishes the mapping between two density func-363

tions through the use of an ordinary differential364

equation (ODE):365

d

dt
ϕt(x) = vt(ϕt(x), t)

ϕ0(x)∼p0(x)=N (x; 0, I), ϕ1(x)∼p1(x)

(2)366

where vt is a learnable time-dependent vector 367

field, and t ∈ [0, 1]. Since multiple flows can gen- 368

erate this probability path, making it challenging 369

to determine the optimal marginal flow, we adopt a 370

simplified formulation, as proposed in (Tong et al., 371

2023b): 372

ϕOT
t,z (x) = µt(z) + σt(z)x

σt = 1−(1−σmin)t, µt = tz
(3) 373

where z represents the random variable, σmin 374

is a hyper-parameter set to 0.0001. Therefore, the 375

training objective of the proposed CFM model can 376

be formulated as: 377

Lcfm=Et,p(x0),q(x1)·
∥(x1−(1−σ)x0)− vt(ϕ

OT
t,x1

(x0)|θ,h)∥2

(4)
378

where θ represents the parameters of the flow 379

matching model, and h denotes the conditional 380

set comprising Xttcond
and Xsctt . 381

3.5 Training Objective 382

The training objective of the proposed Takin-VC 383

is composed of two components, i.e., the RVQ 384

commitment loss Lvq of the VQ module and Lcfm. 385

Ltotal = Lcfm + λLvq

Lvq(Xs, X̃s) =

N∑
i=1

∥∥∥Xsi − X̂si

∥∥∥2
2

(5) 386

Here, λ is a hyper-parameter that controls the 387

weight of Lvq, and N represents the number of 388

RVQ-based quantizers. In our implementation, λ 389

is empirically set to 0.01, N is set to 1, and the 390

codebook size of the RVQ-based quantizer is em- 391

pirically determined to be 8200. 392

4 Experimental Setup 393

4.1 Baseline System 394

We conduct a comparative experiment of the per- 395

formance in zero-shot voice conversion between 396

our proposed Takin-VC approach and baseline sys- 397

tems, encompassing the following system: 1) Dif- 398

fVC (Popov et al., 2021): A zero-shot VC system 399

based on diffusion probabilistic modeling, which 400

employs an averaged mel spectrogram aligned 401

with phoneme to disentangle linguistic content 402

and timbre information; 2) NS2VC3: A modified 403

3https://github.com/adelacvg/NS2VC
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voice conversion edition of NaturalSpeech2 (Shen404

et al., 2023), which employ both diffusion and405

codec model to achieve zero-shot VC; 3) VALLE-406

VC (Wang et al., 2023a): We replace the original407

phoneme input with the semantic token extracted408

from the supervised model to make VALLE convert409

the timbre of source speech to the target speaker;410

4) SEFVC (Li et al., 2024): A speaker embedding411

free voice conversion model, which is designed412

to learn and incorporate speaker timbre from ref-413

erence speech. 5) StableVC (Yao et al., 2024b):414

A style controllable zero-shot voice conversion415

system, which employs dual adaptive gate atten-416

tion to capture timbre and style information. 6)417

SeedVC (Liu, 2024): A zero-shot voice conversion418

system with an external timbre shifter and diffusion419

transformer.420

4.2 Evaluation Metrics421

Both subjective and objective metrics are employed422

to evaluate the performance of our Takin-VC and423

baseline systems. For subjective metrics, we em-424

ploy naturalness mean opinion score (NMOS) to425

evaluate the naturalness of the generated samples426

and similarity mean opinion scores (SMOS) to eval-427

uate the speaker similarity. We invite 20 profes-428

sional participants to listen to the generated sam-429

ples and provide their subjective perception scores430

on a 5-point scale: ’5’ for excellent, ’4’ for good,431

’3’ for fair, ’2’ for poor, and ’1’ for bad. For objec-432

tive metrics, we employ word error rate (WER),433

UTMOS, and speaker embedding cosine similarity434

(SECS) to evaluate the intelligibility, quality, and435

speaker similarity. Specifically: 1) We use a pre-436

trained CTC-based ASR model4 to transcribe the437

generated speech and compare with ground-truth438

transcription; 2) We use a MOS prediction sys-439

tem that ranked first in the VoiceMOS Challenge440

20225 to estimate the speech quality of the gen-441

erated samples; 3) We use the WavLM-TDCNN442

SV model6 to measure speaker similarity between443

generated speech and target speech. Furthermore,444

we introduce real-time factor (RTF) to evaluate the445

efficiency of Takin-VC.446

4https://huggingface.co/facebook/
hubert-large-ls960-ft

5https://github.com/tarepan/SpeechMOS
6https://github.com/microsoft/UniSpeech/tree/

main/downstreams/speaker_verification

4.3 Dataset 447

4.3.1 Small Scale Dataset 448

We employ the LibriTTS dataset to train our system 449

and baseline systems, which contain 585 hours of 450

recordings from 2,456 English speakers. We follow 451

the official data split, using all training datasets for 452

model training and "dev-clean" for model selec- 453

tion. The "test-clean" dataset is used to construct 454

the evaluation set. All samples are processed at a 455

16kHz sampling rate. 456

4.3.2 Large Scale Dataset 457

To train a robust Takin VC model, we collected a 458

dataset of approximately 500k hours. During the 459

data collection process, we used an internally con- 460

structed data pipeline specifically designed for au- 461

dio large model tasks. This pipeline includes signal- 462

to-noise ratio (SNR) filtering, audio spectrum fil- 463

tering (filtering out 24k audio with insufficient 464

high-frequency information and pseudo 24k audio), 465

VAD (Voice Activity Detection), LiD+ASR (Lan- 466

guage Identification + Automatic Speech Recogni- 467

tion), speaker separation and identification, punc- 468

tuation prediction, and background noise filtering. 469

Regarding the test set, to validate the effective- 470

ness of the Takin-VC model, we collected speech 471

data from the internet that includes 100 non-preset 472

speakers for evaluation. These speakers represent a 473

variety of attributes such as gender, age, language, 474

and emotion to ensure a comprehensive evaluation 475

of the model’s performance. 476

4.4 Model Configuration 477

For the content encoder part, in the first stage, 478

we used the 12-layer HybridFormer-base model 479

trained on a large dataset of 500K hours. For the 480

WavLM part, we used the output features of the 6th 481

layer. In the VQ part, we adopted a single-layer 482

8200 codebook with a hidden dimension of 1024, 483

trained for 1 million steps on 100K hours of data. 484

The fusion layer, as described in Sec. 3.2, is a sim- 485

ple module with several convolutional layers, an 486

activation layer, and weighted summation. The De- 487

coder adopts the same structure and configuration 488

as HiFi-codec (Yang et al., 2023a). 489

In the part of timbre modeling and flow match- 490

ing model, both the context-aware and memory- 491

augmented modules use a transformer block with 492

8 heads, 6 layers, and a hidden size of 1024, with 493

only the form of attention being different. The main 494

structure of CFM uses a design of 10-layer U-net 495
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Table 1: Comparison results of subjective and objective metrics between Takin-VC and the baseline systems in
zero-shot voice conversion. Subjective metrics are computed with 95% confidence intervals and “GT" refers to
ground truth samples.

NMOS (↑) SMOS (↑) WER (↓) UTMOS (↑) SECS (↑) RTF (↓)
GT 4.17±0.04 - 2.04 4.21 -
DiffVC 3.75±0.05 3.66±0.07 3.08 3.68 0.61 0.294
NS2VC 3.65±0.07 3.51±0.06 2.94 3.64 0.53 0.347
VALLE-VC 3.80±0.06 3.79±0.04 2.77 3.72 0.65 3.678
SEFVC 3.68±0.05 3.76±0.06 3.75 3.51 0.63 0.187
StableVC 3.83±0.04 3.88±0.06 2.77 3.92 0.66 0.267
SeedVC 3.87±0.05 3.74±0.06 2.51 3.81 0.68 0.341
Takin-VC 3.98±0.04 4.11±0.05 2.35 4.08 0.71 0.154

plus 3 layers of ResNet block (He et al., 2016), with496

a hidden size of 1280. A Memory Fusion Block497

is inserted into the 10-layer U-net to enhance the498

speaker similarity of the generated audio.499

For the small-data experiments, we use four500

A800 GPUs, whereas the large-data experiments501

are conducted on eight A800 servers. The batch502

size on each GPU is set to 16 with the AdamW503

optimizer using 1e-4 as the learning rate. In the504

inference section, experiments typically took 5 to505

20 steps, with the final table uniformly adopting the506

results of 10 steps. The Classifier-Free Guidance507

(CFG) coefficient ranged from 0.1 to 1.0, with 0.7508

used in the table. The specific experimental results509

will be detailed later.510

5 Experimental Results511

5.1 Experiments on small dataset512

We first evaluate the performance of our proposed513

Takin-VC using subjective metrics. These metrics514

capture human perception of the enhanced speech’s515

naturalness, intelligibility, and speaker similarity.516

As shown in Table 1, we can find that 1) our pro-517

posed system achieves the highest NMOS of 3.98,518

which is significantly higher than baseline systems;519

2) the speaker similarity of our proposed system520

also outperforms all baseline systems. These re-521

sults demonstrate that Takin-VC can achieve supe-522

rior performance than the baseline system in the523

perceived aspect.524

Furthermore, we evaluate the performance using525

objective metrics. The WER of our proposed sys-526

tem is 2.35, only slightly higher than the ground527

truth samples, indicating that the samples generated528

by Takin-VC exhibit better intelligibility. More-529

over, Takin-VC achieves a UTMOS of 4.08 and530

an SECS of 0.71, demonstrating superior quality531

and similarity performance. Overall, the objective532

results of our proposed Takin-VC outperform all 533

baseline systems and further corroborate the sub- 534

jective findings. For inference efficiency, Takin-VC 535

achieves the lowest RTF over all baseline systems, 536

demonstrates superior real-time performance. 537

5.2 Experiments on large dataset 538

We employ the large scale dataset to train our pro- 539

posed Takin-VC and investigate the performance 540

in different conversion scenarios across different 541

gender. As shown in Table 2, we divide the exper- 542

iments into four groups: female to female (F2F), 543

female to male (F2M), male to male (M2M), and 544

male to female (M2F) to investigate performance 545

differences. The results show that all metrics out- 546

perform Takin-VC trained on a smaller dataset, 547

demonstrating that our proposed approach scales 548

effectively. Additionally, the conversion results for 549

same-gender conversions are slightly better than 550

cross-gender conversions in both SMOS and SECS, 551

while other metrics remain similar across all four 552

group settings. 553

Figure 4: The t-SNE result of speaker similarity between
ground truth samples and converted speech.

To further investigate the speaker similarity per- 554

formance of our Takin-VC, we use the t-SNE 555

method (Van der Maaten and Hinton, 2008) to vi- 556

sualize the speaker embeddings of 13 speakers, 557

comparing the ground truth samples with the con- 558
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Table 2: Detailed results of Takin-VC on different conversion scenarios. “F” and “M” represent the female and
male, respectively.

NMOS (↑) SMOS (↑) WER (↓) UTMOS (↑) SECS (↑)
GT 4.21±0.05 - 2.11 4.18 -
F2F 4.16±0.04 4.18±0.03 2.11 4.11 0.74
F2M 4.14±0.05 4.09±0.05 2.24 4.13 0.71
M2M 4.12±0.04 4.11±0.04 2.20 4.20 0.73
M2F 4.13±0.05 4.04±0.06 2.31 4.09 0.70

verted samples generated by Takin-VC. As shown559

in Figure 4, the embeddings of real and converted560

speech from the same speaker are closely clustered.561

This demonstrates that the speech generated by562

Takin-VC closely matches real human speech in563

both quality and speaker similarity.564

Table 3: The ablation results for linguistic content ex-
traction modules. “w/o ppg” and “w/o SSL” represent
removing the HybridFormer or WavLM branch in our
proposed hybrid content encoder, respectively.

NMOS SMOS WER UTMOS SECS

Takin-VC 3.98±0.04 4.11±0.05 2.35 4.08 0.71
w/o ppg 3.74±0.04 3.07±0.04 2.79 3.91 0.45
w/o SSL 3.63±0.04 3.81±0.04 2.64 3.84 0.67

5.3 Ablation Study565

We conduct two ablation experiments to evaluate566

the effectiveness of each proposed component in567

linguistic content extraction and timbre modeling.568

As shown in Table 3, SMOS results are signifi-569

cantly degraded, suggesting that only using the570

SSL model to extract linguistic content will re-571

sult in timbre leakage. When we remove the SSL572

model in the hybrid content encoder and only use573

HybridFormer to extract linguistic content, we can574

find that NMOS and WER results degrade. This575

suggests that the conventional ASR encoder is less576

capable of disentangling linguistic content from the577

necessary paralinguistic information, underscoring578

the importance and effectiveness of our hybrid en-579

coder in extracting linguistic content.580

Additionally, we conduct an ablation study for581

timbre-related modules, results are shown in Ta-582

ble 4. We find significant degradation across all583

metrics when removing context-aware timbre mod-584

eling. It suggests that the system can not capture585

timbre information as well without the module,586

resulting in poor generation results. We observe587

a notable decline in speaker similarity when the588

voice print is removed from the attention module.589

We believe the voice print introduces a stronger590

timbre bias, which helps the attention module fo-591

cus on capturing timbre information. Furthermore, 592

when we remove the memory-augmented timbre 593

modeling module, SMOS and SECS scores show 594

significant degradation compared to the original 595

Takin-VC, demonstrating the critical role of the 596

memory module in improving timbre modeling. 597

These ablation results demonstrate the effective- 598

ness of each component proposed in our Takin-VC. 599

Table 4: The ablation results for timbre-related mod-
ules. “w/o con” represents removing content-aware
timbre modeling and only employing voice print to ex-
tract timbre information. “w/o vp” represents removing
the voice print, and “w/o mem” means removing the
memory-augmented timbre modeling module.

NMOS SMOS WER UTMOS SECS
Takin-VC 3.98±0.04 4.11±0.05 2.35 4.08 0.71

w/o con 3.77±0.04 3.61±0.04 3.01 3.85 0.58
w/o vp 3.94±0.05 3.89±0.04 2.51 3.98 0.61
w/o mem 3.92±0.04 3.75±0.05 2.44 4.01 0.52

6 Conclusion 600

In this study, we introduce Takin-VC, an effective 601

framework for expressive zero-shot VC. Leverag- 602

ing an adaptive fusion-based hybrid content en- 603

coder, Takin-VC integrates the complementary 604

strengths of PPGs and quantized WavLM features 605

in a learnable manner, thereby enhancing the natu- 606

ralness and expressiveness of the converted speech. 607

To improve speaker similarity, we propose an ad- 608

vanced memory-augmented module capable of ex- 609

tracting fine-grained conditional target timbre fea- 610

tures. Additionally, we design a context-aware 611

timbre modeling module to capture fused represen- 612

tations that effectively align and exploit the source 613

content with target timbre elements. To enable sta- 614

ble training and fast inference, a conditional flow- 615

matching model is presented reconstruct the Mel- 616

spectrogram of the source speech. Experimental 617

results demonstrate that Takin-VC outperforms all 618

baseline systems regarding naturalness, expressive- 619

ness, speaker similarity, and real-time performance. 620

Ablation studies further validate the effectiveness 621

of each proposed component in our framework. 622
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Limitations623

This work primarily focuses on expressive zero-624

shot capabilities for speech generation, while zero-625

shot capabilities for speech editing remain limited626

and are a subject for future exploration. Addition-627

ally, while high-quality zero-shot VC has great po-628

tential, it can also lead to negative social impacts,629

such as voice impersonation of public figures and630

non-consenting individuals. We highlight this as a631

potential misuse of the technology to raise aware-632

ness of its ethical implications.633
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