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Abstract

This work explores multi-modal inference in a high-dimensional simplified model, analytically
quantifying the performance gain of multi-modal inference over that of analyzing modalities
in isolation. We present the Bayes-optimal performance and weak recovery thresholds in a
model where the objective is to recover the latent structures from two noisy data matrices with
correlated spikes. The paper derives the approximate message passing (AMP) algorithm for
this model and characterizes its performance in the high-dimensional limit via the associated
state evolution. The analysis holds for a broad range of priors and noise channels, which can
differ across modalities. The linearization of AMP is compared numerically to the widely
used partial least squares (PLS) and canonical correlation analysis (CCA) methods, which
are both observed to suffer from a sub-optimal recovery threshold.

1 Introduction

Multi-modal, multi-view or multi-omic data analysis and learning represent a frontier of significant complexity
and potential. These approaches are characterized by their integration of diverse data types, each offering a
unique perspective or ’view’ on the latent phenomena under study. This integration poses two fundamental
questions:

• Firstly, how can information from different modalities or views be optimally combined?

• Secondly, how much can be gained by multi-modal learning over analysis of the modalities in isolation?

Multi-modal learning in current ML focuses on learning different complex non-linear models of the modalities
which ideally cross-inform each other (Ngiam et al., 2011; Baltrušaitis et al., 2018; Bayoudh et al., 2022).

In this work, we adopt a reductionist approach and study a simple linear model of multi-modal learning. This
allows us to answer the two questions posed above, at least in the simple setting under consideration. In
particular, our model captures the issues of (i) how much statistical power is gained by combining information
from the modalities, (ii) aligning the correlated latent structures, and (iii) dealing with different priors and
noise models of the modalities.

The data model we study is also underlying methods known under the name projection to latent structures
(PLS) (Wold, 1975; 1983; Wegelin, 2000), originally referred to as partial least squares (PLS) in the literature,
and the more broadly known canonical correlation analysis (CCA) (Hotelling, 1936) subsumed by PLS.
These are linear spectral algorithms widely used in chemometrics (Wold et al., 2001; Mehmood et al., 2012),
econometrics (Hulland, 1999), neuroscience (Krishnan et al., 2011) and other fields to practically solve linear
multi-view inference or prediction tasks in high dimensions.

We provide a typical-case analysis of the Bayes-optimal performance in the high-dimensional limit of the
model, based on approximate message passing (AMP) (Donoho et al., 2009; Zdeborová & Krzakala, 2016)
with its associated low-dimensional state evolution (SE) (Bayati & Montanari, 2011; Zdeborová & Krzakala,
2016), and the associated Bethe free-energy. This analysis results in the weak recovery threshold that appears
as phase transitions in the performance of AMP in the high-dimensional limit. This threshold coincides
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with the weak-recovery threshold in Bayes-optimal performance if the phase transition is continuous and
instead is conjectured to give the optimal performance for polynomial time algorithms in the presence of
a first-order transition (Zdeborová & Krzakala, 2016). In the latter case, the Bayes-optimal threshold is
determined from the Bethe free energy of the model. We also numerically demonstrate the generally good
performance but sub-optimal recovery threshold of PLS even for Gaussian noise channels and priors. For
completeness, we show numerical results also for CCA, which is known to have a number of disadvantages
compared to "mode-A" PLS (Wegelin, 2000), and is also found here to have less favorable performance and
recovery threshold.

1.1 Spiked Multi-modal Model

We consider the following rank-1 model with Gaussian additive noise

Xij = λX√
nX

wX
i vX

j + ξX
ij (1)

Yij = λY√
nY

wY
i vY

j + ξY
ij (2)

where wX ∈ RnX , wY ∈ RnY , vX/Y ∈ Rd, and ξ
X/Y
ij

iid.∼ N (0, σ2
ξX/Y ). We assume that wX

i and wY
i

are independent, while vX
j , vY

j are given by a correlated joint distribution, such that X, Y ∈ RnX/Y ×d

are noisy rank-1 matrices with correlated factors vX/Y . In the following, the view or modality index is
denoted as z ∈ {X, Y } and where needed, the index of the alternate view is denoted as z̄. We consider the
high-dimensional limit limd,nz →∞ with scaling d

nz
= αz ∼ O(1).

The model can be described as a dual-view rank-1 matrix estimation with correlated latent column space,
and it is a rank-1 version of the data model fitted by PLS.

While we will mostly focus on the model as given in Equations (1) and (2), in our derivations we go beyond
the additive Gaussian noise, considering more general iid. noise channels

P z
out(zij |wz

i vz
j ) = egz(zij ,wz

i vz
j ) (3)

(where again z ∈ {X, Y }) and general entry-wise i.i.d. priors on the projection vectors P z
w(wz

i ) with variance
σ2

wz and on the joint latent vectors Pv(vX
j , vY

j ) with cross covariance cv and variances σ2
vX/Y subsumed in the

covariance matrix Σ. The posterior is given by

P ({w, v}|X, Y ) = 1
Z(X, Y )

∏
i

Pv(vX
i , vY

i )
∏

i,{z}

P z
w(wz

i )
∏

i,j,{z}

P z
out(zij |wz

i vz
j ). (4)

We aim to analyze the Bayes-optimal estimation when the priors and noise channels are assumed to match those
of the ground-truth model. Note that the model has a Z2 symmetry, being invariant under {w, v} → {−w,−v}.

Defining Sz
ij = ∂agz(zij , a)|a=0 and Rz

ij = (∂agz(zij , a)|a=0)2 + ∂2
agz(zij , a)|a=0, we assume the channel can

be expanded as

egz(zij ,wz
i vz

j ) = exp
(

gz(zij , 0) + Sz
ij

λz√
nz

wz
i vz

j + 1
2(Rz

ij − (Sz
ij)2)λ2

z

nz
(wz

i vz
j )2 +O(n− 3

2
z )

)
(5)

and we can work with general Sz, Rz. To recover the additive Gaussian noise case, use Sz
ij = σ−2

ξz zij and
Rz

ij = σ−4
ξz z2

ij − σ−2
ξz .

We chose a rank-1 model since we believe it already captures the fundamental phenomenology of the problem.
An extension to finite rank r would, in analogy to single-view matrix factorization (Rangan & Fletcher, 2012;
Lesieur et al., 2017), yield an additional index in the equations while the location of the phase transition for
the strongest signal direction will not change. Qualitatively different behavior could appear in other scaling
limits, e.g. if the signal rank is not finite but proportional to nz and d.
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Note that the signal scales weakly as n
−1/2
z compared to the O(1) noise. This is the right scaling to see

the Baik-BenArous-Péché (BBP) transition of the largest singular values correlated to the rank-1 signals
disappearing in the random bulk spectra of X and Y at (for unit variances) λz = α

− 1
4

z (Benaych-Georges &
Nadakuditi, 2012). We will quantify the improvement that comes from exploiting the correlation between vX

and vY over the BBP thresholds of the two modalities in isolation.

1.2 Related work

A large number of practical methods for linear multi-view data analysis have been proposed which we do
not review in detail. We compare against PLS (Wold, 1975) which exists in several variants (Wegelin, 2000;
Rosipal & Krämer, 2006). Notably CCA is equivalent to "mode-B" PLS, but despite its broad popularity
is well known for severe shortcomings compared to the canonical "mode-A" PLS (Wegelin, 2000) which we
therefore consider instead. These methods are based on the singular value spectrum of the correlation matrix
XY T in the case of PLS ("mode-A") and that of the normalized correlation matrix (XXT )− 1

2 XY T (Y Y T )− 1
2

in the case of CCA.

The canonical PLS algorithm finds rank-k approximations of X and Y by iterating k times the steps: 1)
computing the top pair sX , sY of singular vectors of XY T , 2) estimating v̂z = ZT sz, 3) finding refined
estimates ŵz by regressing Z on v̂z so that ŵz = (v̂T

z v̂z)−1Zv̂z, 4) subtracting the rank-1 approximations
obtained from each data matrix in isolation, Z ← Z − ŵz v̂T

z , 5) repeat from 1). As a simplified variant,
PLS-SVD eschews steps 3) and 4), only computing the singular vectors of XY T as the estimates ŵ′

z = sz

and again v̂′
z = ZT sz. After the first iteration, which is the only one required in our rank-1 setting, the two

variants only differ in that ŵ′
z = sz for PLS-SVD while ŵz = (v̂T

z v̂z)−1ZZT sz for PLS-Canonical. The weak
recovery thresholds of both variants are thus the same since these estimates only have nonzero overlap with
the ground-truth signals wz if the spectrum of XY T has an outlier singular value correlated with the signal.

While the spectrum of XY T has, to our knowledge, not been studied analytically, recent mathematical works
exist for the spectrum and BBP-type transition of the normalized correlation matrix in CCA (Bao et al., 2019;
Yang, 2022; Bykhovskaya & Gorin, 2023). We show in Figure 3 that the threshold and performance of CCA
can be quite far from those of PLS and from the Bayes-optimal values. Empirically, the benefit of shared
dimensionality reduction through PLS or CCA compared to single-view methods was analyzed by Abdelaleem
et al. (2023), although in a different scaling regime with a stronger signal compared to ours. Non-linear and
deep generalizations of CCA have also been developed in the context of self-supervised learning (Balestriero
et al., 2023).

The framework we employ is based on a recently matured literature on the statistical physics of algorithmic
hardness and Bayes optimal inference (Mézard & Montanari, 2009; Zdeborová & Krzakala, 2016), many
aspects of which have now been made rigorous (Bayati & Montanari, 2011; Bolthausen, 2014; Celentano
et al., 2020; Krzakala et al., 2023). In particular, we follow largely the notation of Lesieur et al. (2017), who
analysed in detail and along related lines a single-view version of the model considered here.

While the single-view spiked matrix model has been studied intensely, e.g. (Rangan & Fletcher, 2012; Lesieur
et al., 2017; Montanari & Venkataramanan, 2021), works analysing recovery thresholds for systems that can be
related to multi-view or multi-modal learning have so far mainly focused on regression with side information
and on variants of community detection. First we note that in mixed matrix-tensor models with rank-1 spike
(Sarao Mannelli et al., 2020) the matrix information can be seen as a second view of the rank-1 signal which
aids its detection in the tensor data. Kadmon & Ganguli (2018) have applied the AMP framework to low-rank
tensor decomposition, where the higher-order tensor can be thought of as data matrices from an experiment
with multiple varying conditions forming the additional axes. Compared to our model, this corresponds to
more than two views, the rank-1 signals of which only differ by a scalar factor for each additional axis, and
no difference in priors is allowed. Rigorous results on AMP for linear regression with side information have
been presented by Liu et al. (2019) where the side information is a noisy version of the signal, and by Nandy
& Sen (2023) where the side information is given by correlations of signal entries. Chen et al. (2018; 2022)
analysed a data matching setting where both views have the same number of features and differ only by their
noise realization and a permutation of the feature indices. Deshpande et al. (2018) presented the contextual
stochastic block model. Recently an extension was analyzed by Duranthon & Zdeborová (2023), and we note
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a line of ongoing rigorous work on AMP in multi-view variants of community detection in stochastic block
models (Ma & Nandy, 2023; Yang et al., 2024). In these works one view is always a square matrix given by
the adjacency matrix of a graph. This is in contrast to our model which can be interpreted as observing an
arbitrary number of samples from two views of a correlated latent structure, so that both data matrices are
rectangular with nX/Y features and d samples, which allows us to compare with PLS and CCA.

1.3 Main contributions

• The information-theoretic performance limits for the multi-view inference task (4), obtained from the
state evolution of AMP and the Bethe free-energy.

• A quantification of the signal-to-noise gain from optimally combining two views, given the prior assumption
of a covariance cv between the latent vectors. E.g. for cv = 0.8 and otherwise unit parameters, recovery is
possible from σξz ≈ 1.13, compared to σξz = 1 for the single-view case. We also demonstrate the distance
of the recovery threshold of CCA known from Bykhovskaya & Gorin (2023) to the Bayes-optimal value.

• A spectral method with optimal sensitivity as a linearization of AMP, which combines information from
the individual and correlated view, and its comparison to PLS and CCA that both result in sub-optimal
sensitivity.

2 Approximate message passing and state evolution

2.1 AMP

In this section, we discuss the conceptual steps leading from belief propagation (BP) to the AMP algorithm.
The main technical contributions here are the formulation of a parsimonious multi-view model in Section 1.1
and the treatment of correlated latent variables by two-dimensional marginals in the BP messages. The
remaining derivation of AMP and the state evolution then goes through as a straight-forward generalization
of the calculations for single-view matrix factorization presented by Lesieur et al. (2017), whose notation we
adapt slightly for more consistency with standard symbols in statistical physics. The technical derivation is
given in Appendices A and B.
The factor graph of the model is given in Figure 1, corresponding to the BP equations

mz
i→ij(wz

i ) = P z
w(wz

i )
Zz,m

i→ij

d∏
k ̸=j

m̃z
ik→i(wz

i ) (6)

m̃z
ij→i(wz

i ) =
∫ dvX

j dvY
j

Zz,m
ij→i

nz
j→ij(vX

j , vY
j )P z

out,ij (7)

nz
j→ij(vX

j , vY
j ) =

Pv(vX
j , vY

j )
Zz,n

j→ij

nz∏
k ̸=i

ñz
kj→j(vz

j )×
nz̄∏
k

ñz̄
kj→j(vz̄

j ) (8)

ñz
ij→j(vz

j ) =
∫ dwz

i

Zz,n
ij→j

mz
i→ij(wz

i )P z
out,ij . (9)

Again z̄ refers to the opposite modality compared to z. Note that we treat vX
j , vY

j as a joint variable such
that nz

j→ij(vX
j , vY

j ) is a two-dimensional marginal. As a consequence, the message distribution is additionally
being marginalized over the unused variable in Equation (7), as e.g. P X

out,ij depends only on vX . This leads to
a more parsimonious notation than introducing additional messages with a factor representing the correlation
of both variables, and is nothing else than what is conventionally done with the index dimension of vectors
with iid. priors such as for mz

i→ij(wz
i ). The vector wz can also be seen as a joint variable and the associated

message factorizes with the marginalization over all wz
k ̸=i implicit, due to the iid. prior. In the presence of a

correlated prior the underlying perspective of joint variables becomes relevant since the joint prior appears in
Equation (8); while if Pv(vX

j , vY
j ) would factorize, also the message nz

j→ij(vX
j , vY

j ) would factorize.

In the high-dimensional limit d → ∞, while the messages do not become Gaussian for arbitrary priors,
exploiting the noise channel expansion (5) the BP iteration closes on the means and variances of the messages.
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Figure 1: Factor graph of the model. Note that the index dimension is implicit while the X/Y dimension has
been emphasized because the latent variables vX

j , vY
j have a correlated prior. Yet the principle remains the

same: In a message on an edge {X/Y, ij} all other dimensions are marginalized.

The resulting iteration on means and variances instead of distributions is called relaxed belief propagation
(rBP).

The form of the underlying marginal distributions becomes that of a tilted prior distribution

W(x, K, J) = Px(x) exp(Jx− 1
2xT Kx) (10)

where x ∈ R for mz
i→ij(wz

i ) and x ∈ R2 for nz
j→ij(vX

J , vY
j ). We also define the normalization of this distribution

as Z(K, J) =
∫

dxW(x, K, J), which appears again in the free energy, Appendix D.3. Interpreting J as a
linear source term of the cumulant-generating function logZ(K, J) of x ∼ W(K, J), we can write the mean
and variance as derivatives w.r.t. the source terms. In compliance with standard notation, we introduce the
first derivative (the mean) as the "denoising" function

fx
in(K, J) = ∂

∂J
log
∫

dxW(x, K, J). (11)

In the case of vz the off-diagonal terms of K never appear, thus we simplify the notation to
fvz

in (KX , KY , JX , JY ) where the z index results from taking the derivative by JX or JY , respectively. However,
the term "denoising function" should not obscure the fact that fx

in(K, J) and ∂fx
in

∂J (K, J) are by definition
nothing but the first and second cumulants of the marginal density at the next time step, given by the tilted
prior W(x, K, J).

From rBP (A.14)-(A.17) which is based on the O(d2) messages on the edges of the factor graph, we then obtain
AMP which iterates O(d) node-specific estimates by exploiting that the dependence of the rBP estimates
on the target index is weak and can be discounted for by the Onsager reaction term with appropriately
delayed time index (Bolthausen, 2014). Concerning the update order determining the time indices of the
AMP iteration, while conventionally all messages are passed and updated synchronously for simplicity, there
is a freedom to choose an arbitrary update order. Here we choose to update the messages in two sequential
blocks, first the marginals of vz, then those of wz. This is to avoid limit cycles of length 2 arising from the
Z2 symmetry in the problem if the relative sign of the w and v estimates does not match. For example, for
vanishing noise the otherwise perfect estimate −wz, vz would be updated to wz,−vz and back to −wz, vz,
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Algorithm 1 AMP (v-first)
Input:

data X, Y
parameters αz, λz, σξz , Σv, σwz for z ∈ {X, Y }
Initialize:

σ̂z
w, σ̂z

vz ← σ2
wz , σ2

vz

v̂z ← 0
if "approx. Nishimori" then

ŵz ← wz
p√

nz
with sample wz

p ∼ Pwz

else if "informed" then
ŵz ← wz

0
else if "spectral" then

ŵz ← Poweriter(Γw)
end if
Run:
while not converged do

# update v sector first
Kv

z , Jv
z ← Equations (12) and (13)

v̂z ← fvz

in (Kv
X , Kv

Y , Jv
X , Jv

Y )
σ̂z

v ←
∂fvz

in
∂Jv

z
(Kv

X , Kv
Y , Jv

X , Jv
Y )

# update w sector second
Kw

z , Jw
z ← Equations (14) and (15)

ŵz ← fw
in(Kw

z , Jw
z )

σ̂z
w ←

∂fw
in

∂Jw
z

(Kw
z , Jw

z )
end while
return ŵz, σ̂wz , v̂z, σ̂vz for z ∈ {X, Y }

etc. The source terms determining the AMP iteration are then

Jv,t
z,j = λz√

nz

nz∑
k

Sz
kjŵz,t−1

k − λ2
z

nz
v̂z,t−1

j

nz∑
k

(Sz
kj)2σ̂z,t−1

w,k (12)

Kv,t
z,j = λ2

z

nz

nz∑
k

[
(Sz

kjŵz,t−1
k )2−Rz

kj((ŵz,t−1
k )2+ σ̂z,t−1

w,k )
]

(13)

Jw,t
z,i = λz√

nz

d∑
k

Sz
ikv̂z,t

k −
λ2

z

nz
ŵz,t−1

i

d∑
k

(Sz
ik)2σ̂z,t

v,k (14)

Kw,t
z,i = λ2

z

nz

d∑
k

[
(Sz

ikv̂z,t
k )2 −Rz

ik((v̂z,t
k )2 + σ̂z,t

v,k)
]

(15)

We would like to point out that the time indices t− 1 for both Onsager reaction terms in (14) and (12) are
correct because for the sequential update order, v̂z,t

j is updated based on ŵz,t−1
i while ŵz,t

i is updated based
on v̂z,t

i .

2.2 Linearized AMP

The AMP algorithm assumes knowledge of the parameters of the model and the corresponding priors. While
these can be learned in practice via expectation maximization procedures it is also beneficial to derive spectral
algorithms that require fewer assumptions. A standard way toward these is linearization of AMP around its
trivial fixed point as done e.g. in Krzakala et al. (2013).
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In Appendix C, instead of directly expanding AMP (Algorithm 1) for small mean estimates ŵz, v̂z ≪ 1 which
would give an undesirable non-Markovian dependence on past iterates through the Onsager reaction term, we
expand the rBP equations (A.14)-(A.17) and then, calculating the appropriate Onsager correction, do the
step from linearized rBP to the linearized AMP power-iterations

v̂t = Γv v̂t−1 ŵt = Γwŵt−1 (16)

where the notation without modality index z signifies the stacked vector, v̂t =
(

v̂X,t
1 , ..., v̂X,t

d , v̂Y,t
1 , ..., v̂Y,t

d

)T

∈
R2d and ŵt ∈ RnX +nY . Also we have split the iteration alternating between v and w sectors into two
self-contained iterations with block-structured linear operators

Γv =
(

λ2
X

nX
σ2

vX σ2
wX ST

XSX
λ2

Y

nY
cvσ2

wY ST
Y SY

λ2
X

nX
cvσ2

wX ST
XSX

λ2
Y

nY
σ2

vY σ2
wY ST

Y SY

)
− diag (17)

and

Γw =

 λ2
X

nX
σ2

vX σ2
wX SXST

X
λxλY√
nX nY

cvσ2
wX SXST

Y

λxλY√
nX nY

cvσ2
wY SY ST

X
λ2

Y

nY
σ2

vY σ2
wY SY ST

Y

− diag (18)

where the linear Onsager correction −diag amounts to setting the diagonal to zero. The form is true for
general zero-mean priors and noise channels. For completeness, the pseudo-code for the linearized AMP
iteration is given in Appendix C.

Since ST
z Sz v̂z gives an estimate of the top right singular vector of Sz, SzST

z ŵz that of the top left singular
vector, and ST

z Sz̄ŵz̄ again an estimate of the top left singular vector of Sz if the top right singular vectors of
SX and SY are correlated, we see that running the power-iterations Equations (17) and (18) amounts to
estimating the top pair of singular vectors of the Fisher score matrices SX , SY , which are proportional to the
data matrices X, Y in the Gaussian noise case.

How can we relate this linearized AMP algorithm to canonical spectral methods such as PLS? PLS works on
the correlation matrix XY T while linearized AMP combines an estimate from the modality itself with an
estimate from the other modality. As a consequence, it is clear that PLS will have a sub-optimal recovery
threshold for low correlations, since it sees the modalities only through the correlation matrix. Linearized
AMP, on the other hand, combines individual and shared information, however it does so optimally for weak
recovery while the performance of estimating vz

0 in the presence of small noise will be sub-optimal, because
as seen from (17) the very accurate estimate of vz

0 based on the individual modality will be corrupted by a
correlated but different estimate of vz̄

0 based on the other modality.

The nonlinear AMP iteration solves this dilemma by reweighting the blocks in the linearization Γv(v̂X , v̂Y )
as the norm of the estimates grows, yielding both optimal sensitivity and performance. As a consequence,
even for very small noise, AMP will never converge in a single step, but require at least two steps due to the
switch from weak recovery to precise estimation of the latent signal directions.

2.3 Limit of perfect correlation, cv → 1

If the latent vectors are perfectly correlated, vX
j = vY

j , the structure of the model simplifies, since the rank-1
matrices can be stacked along the feature dimension to a single rank-1 matrix. At the example of additive
noise, with w = (wT

X , wT
Y )T ∈ RnX +nY and ξ = (ξT

X , ξT
Y )T ∈ R(nX +nY )×d one obtains a single data matrix

Z = wvT + ξ. It then follows that, while the priors and noise channels can differ across entries, the problem
has been reduced to the single-view case with the two measurements of each sample stacked into one vector.
In terms of the factor graph, Figure 1, the right and left branches can be folded on top of each other in the
index dimension, removing the X/Y dimension.

2.4 State evolution

By introducing a set of order parameters we now derive the low-dimensional effective dynamics of rBP in
the high-dimensional limit, known as state evolution (SE). Since for d→∞ AMP tracks the dynamics of
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rBP, the SE is an effective dynamics of AMP as well. Here we sketch the conceptual steps, commenting on a
subtlety in applying the Nishimori identity, and give the simplified form arising for Bayes-optimal priors and
Gaussian noise channel. The full derivation is detailed in Appendix D.

The starting point are the rBP equations, since in contrast to AMP, the messages of rBP are still independent.
Denoting the ground-truth vectors as w0

z , v0
z and introducing the order parameters

Mz,t
w = 1

nz

nz∑
i ̸=j

ŵz,t
i→ijw0

z,i Mz,t
v = 1

d

d∑
j ̸=i

v̂z,t
j→ijv0

z,j (19)

Qz,t
w = 1

nz

nz∑
i ̸=j

ŵz,t
i→ijŵz,t

i→ij Qz,t
v = 1

d

d∑
j ̸=i

v̂z,t
j→ij v̂z,t

i→ij , (20)

conventionally referred to as overlaps (or magnetizations) and self-overlaps we can use that due to independence
of the messages, node-averaged quantities concentrate to their mean, which is also the mean over the noise
disorder. For such self-averaging quantities one can therefore replace the node average by a disorder average.
Note that in (19)-(20) we already dropped the target index of the order parameters for this reason. In this
way one finds that the quadratic source terms K concentrate to their mean, while the linear source terms J
become Gaussian variables. Finally, Bayes-optimality of the priors enables the use of the Nishimori identities
(Nishimori, 2001), which yield the simplification Qz

w/v = |Mz
w/v|.

Here we wish to make a technical comment why the absolute value appears as a consequence of the Z2
symmetry being spontaneously broken by the random initialization. We believe this clarifies how to deal with
this symmetry with respect to the existing literature on state evolution for similar systems, e.g. (Lesieur
et al., 2017; Kadmon & Ganguli, 2018). For the Nishimori conditions to hold at all times, initialization of
the mean estimators ŵz, v̂z must be at zero, consistent with the mean of the prior distribution. Yet zero is
a fixed point of the iteration due to symmetry. In practice, AMP is thus initialized with a small random
direction, randomly breaking the symmetry and choosing the global signs between ŵz and v̂z. Now, in words,
the Nishimori identity (Nishimori, 1980; 2001) states that in a quantity averaged both over the posterior
distribution, e.g. P (w|X), and the disorder distribution, we can replace one of any iid. sampled variables
from the posterior by a variable sampled from the prior distribution, that is

Ew0Ew1,w2∼P (w|Xw0 ) [f(w1, w2, ...)]
=Ew0Ew1,w2∼P (w|Xw0 )

[
f(w0, w2, ...)

]
. (21)

However, depending on which direction the Z2 symmetry is broken, ŵz and v̂z are in fact estimators of ±wz

and ±vz. Therefore we need to replace the variable from the posterior, e.g. ŵX , by ±wX depending on
the sign of the overlap MX

w . This results in the relation Qz
w/v = |Mz

w/v|, restores the symmetry of the SE
equations with respect to the sign of the overlaps, see Figure S1, and avoids the obviously erroneous situation
of negative Qz

w/v that can arise otherwise.

With Qz
w/v = |Mz

w/v|, the Bayes-optimal state evolution for Gaussian noise channel then amounts to

Mz,t
v = Ev0

X,Y
,Jv,t

X,Y

[
fvz

in
(
|M̃X,t−1

w |, |M̃Y,t−1
w |, Jv,t

X , Jv,t
Y

)
v0

z

]
(22)

Mz,t
w = Ew0

z,Jw,t
z

[
fw

in
(
αz|M̃z,t

v |, Jw,t
z

)
w0

z

]
(23)

with M̃z,t
w/v = λ2

z

σ2
ξz

Mz,t
w/v and

Jv,t
z ∼ N

(
M̃z,t−1

w v0
z , |M̃z,t−1

w |
)

. (24)
Jw,t

z ∼ N
(
αzM̃z,t

v w0
z , αz|M̃z,t

v |
)

(25)

Refer to (D.24)-(D.33) for the form of the SE equations without Bayes-optimal priors and for general noise
channels. Depending on the prior, all or part of the expectations in Equations (22) and (23) can be computed
analytically, see Appendix D.2 for Gaussian and Rademacher-Bernoulli priors.
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2.5 Algorithmic and information-theoretic weak recovery thresholds

Linearizing the SE, by plugging (22) into (23) then expanding for Mz
w = ϵz ≪ 1, we can assess the stability

of the uninformative state at zero overlaps by computing the maximum eigenvalue η+ of the resulting 2× 2
matrix. For zero-mean priors, where consequently the prior overlaps are zero, the algorithmic weak recovery
threshold θalg is defined as the smallest signal-to-noise ratio (snr) above which AMP recovers the latent
variables better than drawing from the prior. This threshold takes place when η+ = 1. Defining the normalized
correlation coefficient ĉv = cv

σvX σvY
and the effective snr

λ̃z = αzλ4
z

σ4
vz σ4

wz

∆̂2
z

, (26)

where ∆̂z as defined in (D.11) reduces to ∆̂z = σ2
ξz for the Gaussian channel. The form of (26) arises

intuitively when noting that rescaling the model (1,2) by setting the variances σvz , σwz , σξz → 1 corresponds
to rescaling λz → λz

σvz σwz

σξz
, and that λz ∼ α

− 1
4

z is the scaling of the BBP transition for each single-view
matrix (Benaych-Georges & Nadakuditi, 2012). We find that with zero-mean priors the algorithmic weak
recovery threshold θalg is given by the condition

1 != 1
2

(
λ̃X + λ̃Y +

√
λ̃2

X − 2(1− 2ĉ4
v)λ̃X λ̃Y + λ̃2

Y

)
(27)

for general priors and noise channels, assuming they are Bayes-optimal. We use the != notation to signify an
equality condition which must be verified, here at the threshold. For symmetric λ̃X = λ̃Y = λ̃ (27) reduces to

λ̃
!= 1

1 + ĉ2
v

. (28)

In the case of perfect correlation ĉ2
v = 1, the simplification is

1 != λ̃X + λ̃Y (29)

and for vanishing correlation ĉv = 0 we recover the threshold condition of the single-view model, 1 != λ̃z.

It is generally conjectured that no polynomial time algorithm can perform better than the θalg of AMP, see
Zdeborová & Krzakala (2016). For some ranges of parameters the so-called first-order phase transitions
may appear in the problem as shown in Figure 2 for sparse prior on wz. In those cases, the algorithmic
threshold for weak recovery may not coincide with the information-theoretic threshold for weak recovery
θIT. We define θIT as: the smallest snr at which the overlap of the posterior maximum departs from the
overlap achieved by the prior. This can be assessed by the Bethe free energy associated to the state evolution
given in Equation (D.49). Being the negative log of the posterior, the free energy has two minima inside the
spinodal regime of a first-order transition. If the lower-overlap branch is uninformative with zero overlaps,
θIT is given by the smallest snr where the minimum of the upper-branch becomes deeper than that of the
uninformative branch.

3 Numerical results and phase diagram

We numerically investigate two setups with Gaussian noise channel, corresponding to Equations (1) and (2).
One with both Gaussian priors on wz

i ∼ N (0, σ2
wz ) and (vX

j , vY
j ) ∼ N (0, Σv) with variances Σv,zz = σ2

vz and
covariance Σv,zz̄ = cv, and in the second with the same joint Gaussian prior on the latent vectors vz but a
sparse Rademacher-Bernoulli prior on wz

P RB
wz (wz) = ρwz

2 [δ(wz− 1) + δ(wz + 1)] + (1− ρwz )δ(wz). (30)

The corresponding denoising functions are given in Appendices B.1 and B.2.

9



Under review as submission to TMLR

0 1θIT 1.5
σξ

0

1

M
2 w

σ
2 w
Q
w

a

SE

AMP

linAMP

PLS

0 θalg 1

σξ

0

1

M
2

Q
Q

0

θIT

b

w SE

v SE

v AMP

v AMP informed

v linAMP

v PLS

Figure 2: Phase transition of Bayes-optimal recovery (state evolution, blue lines) as a function of the noise
strength, compared to AMP, PLS, linearized AMP and informed AMP. Performance is measured as the
squared cosine similarity between estimated and ground-truth vectors, e.g. CS2

w = M2
w

QwQw0
, where the square

removes the arbitrary sign of the overlap arising from the Z2 symmetry. a Continuous transition for Gaussian
priors on wz and vz. Since the two are very close, results are shown here for wz, and those for vz in Figure S3.
The weak recovery threshold is θIT = θalg ≈ 1.07. b First-order transition for Rademacher-Bernoulli (sparse)
prior on wz with sparsity ρz = 0.02 and Gaussian prior on vz. Lighter colors refer to vz and darker colors
to wz. The vertical lines are the algorithmic weak recovery threshold θalg ≈ 0.61 (green dashed), the
information-theoretic threshold θIT ≈ 0.71 (black dashed) where the upper branch starts dominating the
posterior based on the free energy (D.51) , and the spinodal point θsp ≈ 0.72 (orange dotted). Parameters
are for both z ∈ {X, Y }: αz = 1, σvz = 1,

√
cv = 0.75, then for panel a λz = 1, σwz = 1, and for panel b

λz = 4, ρwz = 0.02. Each algorithm performance marker is based on one run at size d = 15000.
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Figure 3: Phase transition and comparison of CCA (green ’λ’) to PLS (gray ’x’) and the Bayes-optimal
performance limit for cv = 0.75. Here the product of cosine similarities of the wz and vz estimates is shown
for visual convenience, and the standard deviations across 10 realizations. The threshold of CCA is known
analytically from theorem 2.5 of Bykhovskaya & Gorin (2023), and shown here as θCCA (green dashed), using
the map of notation αX → τK , αY → τM and c2

v

(1+σ2
ξX

/λ2
X

)(1+σ2
ξY

/λ2
Y

) → r2. a Plot as in Figure 2a but with
αz = 4 (other parameters λz = σz

w = σz
v = 1 and d = 5000), since CCA requires α > 1 so that the covariance

matrices XXT and Y Y T are invertible. The threshold of CCA (θCCA ≈ 0.55) is considerably lower than that
of PLS. b Varying αz instead of σz

ξ , here for λz = 2 while σz
ξ = σz

w = σz
v = 1 and dnz = 50002. The threshold

of CCA is θCCA ≈ 3.78 compared to θIT ≈ 0.04.
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Figure 4: Phase transition and comparison to sub-optimal threshold of PLS (gray ’x’) for the Gaussian prior
model with smaller correlation of the latent vectors,

√
cv = 0.2. Other model parameters as in Fig.2. Again

results for vz are shown in Figure S4. Mean and standard deviation across 20 realizations with d = 5000 are
shown. The threshold of PLS is estimated at θPLS ≈ 0.74± 0.03 while θalg = θIT ≈ 1.01.

In Figure 2 we compare the Bayes-optimal performance in the high-dimensional limit obtained from state
evolution to the empirical performances of AMP (Algorithm 1), linearized AMP (17,18) and PLSCanonical
from the scikit-learn library.

Note that there exist a number of variations of PLS, see Wegelin (2000) for a basic overview. Here we choose
to compare against PLSCanonical because it treats X and Y symmetrically, and has higher performance
than PLS-SVD as it includes the regression step from the score estimates v̂z onto X, Y to yield ŵz as the
loadings. PLS-SVD directly uses the singular vectors of XY T as estimates of ŵz, which performs slightly
worse, see Figure 4.

For the model with all Gaussian priors, Figure 2a, we find a continuous phase transition between a tractable
(easy) regime and an impossible regime. This qualitative phenomenology is the same as in the single-view case
(Rangan & Fletcher, 2012; Lesieur et al., 2017). Here the algorithmic threshold obtained from Equation (27)
coincides with the Bayes-optimal or information theoretic threshold, θIT = θalg ≈ 1.07, for √cv = 0.75 and
otherwise unit parameters. The weak recovery threshold of the rank-1 spike in each of the views X, Y in
isolation (cv = 0) would be θsingle

IT = 1. Therefore, a Bayes-optimal combination of information from the two
modalities yields an improvement of the threshold from σξ = 1 to σξ ≈ 1.07. This improvement grows with
the correlation up to θIT ≈ 1.19 at cv = 1.

There are three observations about the linear methods, as expected from the discussion in Section 2.2
and Section 1.2. Firstly, linearized AMP shares the Bayes-optimal recovery threshold of AMP, but shows
sub-optimal performance in estimating vz when the signal is strong (small σξ), shown in Figures S3 and S4.
Secondly, Figure 3 shows that the performance of CCA is considerably worse than that of PLS even in
the presence of large correlation, and away from the regime αz < 1 where the inverse correlation matrices
in (XXT )−1XY T (Y Y T )−1 as used by CCA are ill-defined without regularization. Varying the number
of samples per feature dimension, αz in Figure 3b, CCA has highly sub-optimal sample efficiency with
θCCA ≈ 3.78 compared to θIT ≈ 0.04. Thirdly, PLS gives close to optimal performance in Figure 2 and
Figure 3, only its recovery threshold is slightly lower. This difference exacerbates when the correlation
between the latent structures decreases, as demonstrated in Figure 4 for √cv = 0.2. As a consequence, while
PLS is a practically useful method to extract only the correlated structure of two data views or to predict
Y from X in situations with small noise and strongly correlated signals, it is not well-suited for situations
with low signal-to-noise ratio: In these cases, even just recovering the low-rank structures using PCA on the
individual modalities first and then performing an analysis of the correlation would yield better performance.
Of course, the best performance is obtained by combining information of both modalities based on prior
information to exploit latent correlations, as done by AMP.
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|ĉv|

0.0

0.5

1.0

λ̃

a

0.0 0.5 1.0 1.5

λ̃X

0.0

0.5

1.0

1.5

λ̃
Y

b

Figure 5: Phase diagram of the algorithmic weak recovery threshold based on (27) and (28). a Varying the
correlation coefficient for symmetric snr’s λ̃X = λ̃Y = λ̃. b The λ̃X , λ̃Y plane for ĉ4

v = 1/2. Dashed black
lines show the thresholds of the modalities in isolation. The dotted line in a and b indicates the intersection
of both planes.

For the sparse model with Rademacher-Bernoulli prior on wz with sparsity ρz = 0.02 in Figure 2b, a first-order
phase transition is observed instead. Again this qualitative phenomenology matches that of the single-view
case (Lesieur et al., 2017), where also a technical discussion of a small regime where the lower branch acquires
non-zero overlap is given. Here the algorithmic weak recovery threshold θalg ≈ 0.61 does not coincide with
the IT threshold θIT ≈ 0.71, instead there is an algorithmically hard phase (Zdeborová & Krzakala, 2016)
for θalg < σξ < θIT preceding the impossible regime σξ > θIT. Again some advantage over the single-view
threshold θsingle

alg ≈ 0.57 is obtained. Note that for tracing the upper branch of the phase diagram with
informed AMP, we initialize the iteration at the ground-truth signal.

Finally, in Figure 5 we plot phase diagrams illustrating the algorithmic weak recovery threshold θalg in the
reduced three dimensional parameter space of effective snr’s λ̃X , λ̃Y and correlation coefficient ĉv. Note
that θIT may vary depending on the prior and is not shown, while θalg is given by (27) for any zero-mean
prior. Figure 5a shows for λ̃X = λ̃Y the interpolation between zero correlation, equivalent to two single-view
models, and perfect correlation, equivalent to the stackable model in Section 2.3. Figure 5b illustrates the
improvement of the multi-modal threshold over the thresholds of the two isolated single-view models (dashed
black lines). Due to the definition of the snr (26), this plot can for example be interpreted as independently
varying the aspect ratios αz. Apart from the gain in the lower left sector where no recovery is possible in
any isolated model, note that also in the lower-right and upper-left sectors some degree of recovery is always
possible in both modalities when the correlation is nonzero, see also Figure S2.

4 Conclusions

In order to study the basic properties of multi-modal or multi-view learning, we analysed the Bayes-optimal
performance of a correlated matrix factorization problem. Inferring the rank-1 spikes of the matrices
corresponds to unsupervised learning of the latent variables underlying the data structure. Allowing for
differences in the prior and noise channels across the two modalities or views is shown to alter the combination
strategy of the AMP iteration by changing the denoising functions (11) and the Sz, Rz score matrices of
the data. Given the combined data, the phenomenology we have observed for the Bayes-optimal learning is
qualitatively the same as that of single-view learning, i.e. we have not found additional phase transitions
beyond those in the single-view case.

The comparison of the Bayes-optimal weak recovery threshold and those obtained by canonical spectral
methods such as PLS and CCA reveals that the canonical methods are suboptimal. This is different from the
single-view case, where the optimal algorithmic weak recovery threshold agrees with the threshold present for
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the canonical spectral method based on principal component analysis. This difference was not anticipated by
the authors nor, to our knowledge, noted in the previous literature, and it is thus worth further investigation.

In future work, it would be interesting to consider a larger number of modalities with a graph of latent
relations, as in the original work of Wold (1983) and in structural equation models (Bollen, 1989). Furthermore,
natural directions to explore are a supervised version of the task and how neural network-based techniques
of multi-modal learning (Baltrušaitis et al., 2018) combine information from the modalities compared to
the Bayes-optimal method. Both can readily be approached by considering linear or deep linear methods.
An enticing question is how to share information across modalities in an approximately optimal fashion in
hierarchical, non-linear models. Clues to this may well be yielded by the ongoing study of multi-sensory
integration (Stein et al., 2020) in neuroscience.
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A Relaxed belief propagation

We start from the factor graph Figure 1 and the BP equations (6)-(9). Note the ordering of indices, here we
use index j for latent variables and i for wz variables. The decision to treat the latent variables as one joint
variable for the BP messages makes it possible to take into account an arbitrary joint distribution, without
splitting vX , vY into shared and independent components - which would yield a rank-2 model with additional
messages to keep track of.

First we check that the peculiarity of the double product and joint prior in (8) does not cause additional
correlations between the messages ñX

kj→j(vj) and ñY
kj→j(vj) to verify that BP is applicable to this graph. This is

not the case because wX
i and wY

i are independent, so conditioned on (vX
j , vY

j ), the factors P X
out(Xij |wX

i vX
j ) and

P Y
out(Yij |wY

i vY
j ) in (9) are not correlated; the only dependence could be inherited from m̃X

ij→i(wX
i ), m̃Y

ij→i(wY
i )

which appear in mz
i→ij(wz

i ) both depending on vz
j ; however for these the structure of the factor graph is the

standard dense type as, e.g. in Lesieur et al. (2017), and the dependence is sufficiently weak given a 1√
n

scaling of the interactions. Thus (8) does not lead to additional correlations between messages that would
compromise the accuracy of the BP iteration.

For convenience we re-state here the channel expansion (5) together with an expansion outside the exponential
which will also be used throughout the derivation. Recalling the definitions Sz

ij = ∂agz(zij , a)|a=0 and
Rz

ij = (∂agz(zij , a)|a=0)2 + ∂2
agz(zij , a)|a=0, the channels can be expanded either inside or outside the

exponent as

egz(zij ,wz
i vz

j ) = e
gz(zij ,0)+Sz

ijλz

wz
i

vz
j√

nz
+ 1

2 (Rz
ij−(Sz

ij)2)λ2
z

(wz
i

vz
j

)2

nz
+O
(

n
− 3

2
z

)
, (A.1)

= egz(zij ,0)

[
1 + Sz

ijλz

wz
i vz

j√
nz

+ 1
2Rz

ijλ2
z

(wz
i vz

j )2

nz
+O

(
n

− 3
2

z

)]
. (A.2)

In the Gaussian noise case, Sz
ij = zij

σ2
ξz

and Rz
ij = z2

ij

σ4
ξz
− 1

σ2
ξz

.

Now to obtain rBP we use that the BP equations close on the Gaussian statistics of the messages, leading to
an iteration on the means and variances of the beliefs. Plugging (A.2) into (7) (and analogously (9)) we get
at the example of m̃X

ij→i

m̃X
ij→i(wi) = eg(Xij ,0)

ZX,m
ij→i

∫
dvX

j dvY
j nX

j→ij(vX
j , vY

j )
[

1 + SX
ij λX

wX
i vX

j√
nX

+ 1
2RX

ij λ2
X

(wX
i vX

j )2

nX
+O

(
n

− 3
2

X

)]
,

(A.3)

which is clearly a function of the mean and variance (the covariance Cov[vX
j vY

j ] does not appear, since in
m̃z

ij→i only the marginalized
∫

dvz
j nz

j→ij(vX
j , vY

j ) are present)

v̂X
j→ij =

∫
dvX

j dvY
j nX

j→ij(vX
j , vY

j )vj (A.4)

σ̂X
v,j→ij =

∫
dvX

j dvY
j nX

j→ij(vX
j , vY

j )v2
j − (v̂X

j→ij)2, (A.5)

so that

m̃X
ij→i(wX

i ) = 1
ZX,m

ij→i

exp
[

g(Xij , 0) + SX
ij λX

wX
i v̂X

j→ij√
nX

− 1
2(SX

ij )2λ2
X

(wX
i )2(v̂X

j→ij)2

nX
(A.6)

+1
2RX

ij λ2
X

(wX
i )2((v̂X

j→ij)2 + σ̂X
v,j→ij)

nX
+O

(
n

− 3
2

X

)]
, (A.7)
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where we exploited the exponential form of the expansion, (5). Plugging this into (6) , and doing the analogous
steps for (8), we find

mz
i→ij(wz

i ) = Pwz (wz
i )

Zz,m
i→ij

exp
(

Jw
z,i→ijwz

i −
1
2Kw

z,i→ij(wz
i )2
)

(A.8)

nz
j→ij(vX

j , vY
j ) =

Pv(vX
j , vY

j )
Zz,n

j→ij

exp
(

Jv
z,j→ijvz

j + Jv
z̄,jvz̄

j −
1
2Kv

z,j→ij(vz
j )2 − 1

2Kv
z̄,j)(vz̄

j )2
)

(A.9)

where the factors egz(zij ,0) have been absorbed in the normalization, we see that the form of the message
distribution is of the tilted prior type W(x, K, J) = Px(x) exp(Jx − 1

2 xT Kx) (10), with the source terms
Jw

z,i→ij , Kw
z,i→ij and Jv

z,j→ij , Kv
z,j→ij given by

Jv,t
z,j→ij = λz√

nz

nz∑
k ̸=i

Sz
kjŵz,t−1

k→kj (A.10)

Kv,t
z,j→ij = λ2

z

nz

nz∑
k ̸=i

[
(Sz

kjŵz,t−1
k→kj)2 −Rz

kj((ŵz,t−1
k→kj)2 + σ̂z,t−1

w,k→kj)
]

, (A.11)

Jw,t
z,i→ij = λz√

nz

d∑
k ̸=j

Sz
ikv̂z,t

k→ik (A.12)

Kw,t
z,i→ij = λ2

z

nz

d∑
k ̸=j

[
(Sz

ikv̂z,t
k→ik)2 −Rz

ik((v̂z,t
k→ik)2 + σ̂z,t

v,k→ik)
]

(A.13)

where we added also explicit time indices for updating first nz
v→ij(vz

j ) then mz
i→ij(wz

i ), and the notation
Jv

z̄,j , Kv
z̄,j in Equation (A.9) signifies that the term k = i is not excluded from the summation, which

eliminates the dependence on the target node i. Lastly, ŵz,t
k→kj and σ̂z,t

w,k→kj are defined as mean and variance
analogous to (A.4,A.5), but of the messages mz

i→ij(wz
i ). With the above source terms and the definition of

the denoising function (11) as the first derivative of the cumulant generating function, the rBP equations
with sequential update order (first v, then w) are thus

v̂z,t
j→ij = fvz

in (Kv,t
X,j→ij , Kv,t

Y,j→ij , Jv,t
X,j→ij , Jv,t

Y,j→ij) (A.14)

σ̂z,t
v,j→ij = ∂fvz

in
∂Jz

(Kv,t
X,j→ij , Kv,t

Y,j→ij , Jv,t
X,j→ij , Jv,t

Y,j→ij). (A.15)

ŵz,t
i→ij = fw

in(Kw,t
z,i→ij , Jw,t

z,i→ij) (A.16)

σ̂z,t
w,i→ij = ∂fw

in
∂Jz

(Kw,t
z,i→ij , Jw,t

z,i→ij) (A.17)

While taking it into account in the following derivations, for ease of notation we have omitted in Equa-
tions (A.14) and (A.15) above the fact that, as explicit in Equation (A.9), for v̂z,t+1

j→ij the respective z̄ source
terms do not exclude the index i in the sum, Kv,t

z̄,j→ij → Kv,t
z̄,j and Jv,t

z̄,j→ij → Jv,t
z̄,j .

B AMP: closing on the marginals

The rBP iteration works with O(d2) truncated marginals on the edges of the factor graph, but can be
approximated by an AMP iteration operating on the d + nX + nY full marginals of the nodes. This is possible
since Jw,t

z,i→ij , Kw,t
z,i→ij and Jv,t

z,j→ij , Kv,t
z,j→ij depend only weakly on the target factor node. However one can

not naively neglect the dependence of v̂z,t
j→ij and ŵz,t

i→ij on the target node, since a consistent expansion in
O(n− 1

2
z ) results in the O(1) Onsager reaction terms which need to be taken into account in the estimators of

the marginals’ means.
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First, consider Jw,t
z,i , Kw,t

z,i and Jv,t
z,j , Kv,t

z,j which we get by not excluding the k = j term (or k = i respectively)
from the summation in (A.12-A.11). For example,

Jw,t
z,i = λz√

nz

d∑
k

Sz
ikv̂z,t

k→ik. (B.1)

Due to the prefactor, by adding one term to the sum we make the errors

Jw,t
z,i→ij − Jw,t

z,i = − λz√
nz

Sz
ij v̂z,t

j→ij = O(n− 1
2

z ) (B.2)

Jv,t
z,j→ij − Jv,t

z,j = − λz√
nz

Sz
ijŵz,t−1

i→ij = O(n− 1
2

z ) (B.3)

and O(n−1
z ) in the cases of Kw,t

z,i , Kv,t
z,j , all negligible at nz ≫ 1. Note that here we also assumed that at each

time-step, the v̂t are updated first based on ŵt−1, and then the ŵt based on v̂t, as discussed in Section 2.1.
Next we want to replace also the means by target-independent versions v̂z,t

j and ŵz,t
i and so the variances by

σ̂z,t
v,j and σ̂z,t

w,j . The errors we make with this replacement,

ŵz,t
i→ij − ŵz,t

i = fw
in(Kw,t

z,i→ij , Jw,t
z,i→ij)− fw

in(Kw,t
z,i , Jw,t

z,i ) (B.4)

= − λz√
nz

Sz
ij σ̂z,t

w,i→ij v̂z,t
j→ij +O( 1

nz
) (B.5)

v̂z,t
j→ij − v̂z,t

j = − λz√
nz

Sz
ij σ̂z,t

v,j→ijŵz,t−1
i→ij +O( 1

nz
), (B.6)

are relevant since plugging into (B.1) we get errors ∼ 1
nz

(Sz
ik)2 which have non-vanishing mean of O( 1

nz
);

thus replacing each of the d terms of the sum in Jw,t
z,i , and nz terms of the sum in Jv,t

z,j , results in a compound
error of O( d

nz
) and O(1) respectively. Therefore, the Onsager correction terms (B.5) and (B.6) need to be

added to the linear source terms Jw,t
z,i and Jv,t

z,j of the AMP iteration, yielding Equations (12) to (15) in the
main text.

B.1 Denoising functions for Gaussian priors

For multivariate Gaussian prior Px ∼ N (0, Σ), completing the square in the resulting product of Gaussians
in (10) (with diagonal quadratic source terms, so K is a vector),

W(x, K, J) = 1
2π
√

det Σ
exp

(
−1

2xT Σ−1x + JT x− 1
2xT diag(K)x

)
(B.7)

= 1
2π
√

det Σ
exp

(
−1

2
(
x− Σ̃KJ

)T Σ̃−1
K

(
x− Σ̃KJ

)
+ 1

2JT Σ̃KJ

)
(B.8)

where Σ̃K = (Σ−1 + diag(K))−1 . To obtain fvz

in (K, J) = ∂J1/2 log
∫

dxWv(x, K, J) in the two-dimensional
case, we use that the mean of a distribution is equal to the mean of its marginals, such that

fvz

in (K1, K2, J1, J2) = (Σ̃KJ)z = Σ̃zz(K)Jz + Σ̃zz̄(K)Jz̄. (B.9)

Twice applying 2× 2 matrix inversion, the components of Σ̃K are given by(
Σ̃XX(K) Σ̃XY (K)
Σ̃Y X(K) Σ̃Y Y (K)

)
= det Σ

(σ2
vX + K2 det Σ)(σ2

vY + K1 det Σ)− c2
v

(
σ2

vX + K2 det Σ cv

cv σ2
vY + K1 det Σ

)
,

(B.10)

with det Σ = σ2
vX σ2

vY − c2
v.

For the scalar Gaussian prior P z
w ∼ N (0, σ2

wz ), the result is simply

fwz

in (K, J) = J

K + σ−2
wz

. (B.11)
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B.2 Denoising function for Rademacher-Bernoulli prior

We consider wz sparse with Rademacher-Bernoulli prior P RB
wz (wz

i ) ρz

2 [δ(wz
i − 1) + δ(wz

i + 1)] + (1− ρz)δ(wz
i ).

For small ρz a hard phase due to a first-order transition is expected, while for ρz → 1 the upper branch
deforms until a continuous transition is recovered.
Now for P RB the cumulant generating function of the tilted prior distribution (10) becomes

logZwz (K, J) = log
∫

dwz P RB
wz (wz) exp

(
Jwz − 1

2K(wz)2
)

= log
[
ρz cosh(J)e− 1

2 K + (1− ρz)
]

(B.12)

so that the mean or the denoising function is

fwz

in (K, J) = ∂

∂J
logZwz (K, J)

= ρz sinh(J)e− 1
2 K

ρz cosh(J)e− 1
2 K + (1− ρz)

. (B.13)

= ρz tanh(J)
ρz + 2(1−ρz)

exp(J− 1
2 K)+exp(−J− 1

2 K)

(B.14)

where the last version (B.14) is stable against floating point overflows in numpy, that is it avoids any np.nan
by avoiding 0*np.inf or 0/0 or np.inf/np.inf to occur, and used in the numerical implementations. For
the derivative, a numerically benign version is

∂fwz

in
∂J

(K, J) = ρ2
z

((1− ρz)e 1
2 K + ρz cosh(J))2

+ ρz(1− ρz)
(1− ρz + ρzr(K, J))2

ρz(
1−ρz

r(K,J) + 2ρz(1− ρz) + ρ2
zr(K, J)

) − ρz

1− ρz + ρzr(K, J) (B.15)

with r(K, J) = 1
2 eJ− 1

2 K + 1
2 e−J− 1

2 K .

B.3 Initialization of AMP

For sparse priors, AMP is known to have convergence problems for small noise at finite size, and when the
trajectory leaves the proximity of the Nishimori line. Drift away from the Nishimori line arises in particular
due to finite size noise close to the first-order transition. While also caused by additional factors such as
nonzero mean of the data (Caltagirone et al., 2014) and there exist principled (Vila et al., 2015; Rangan
et al., 2019) and non-principled (Sterk et al., 2023) mitigation techniques, these issues are importantly caused
and partly avoidable by the initialization method.

Note that the initialization requires not only to choose the mean estimators ŵz,t0 , but also the variance
estimators σ̂z,t0

w/v and the value v̂z,t0 from the past time step for the Onsager correction terms. We choose the
variances as those of the prior and the past time step value v̂z,t0 as zero in both versions below.

For small noise at finite size, that is σ2
ξ

√
n ∼ O(1), the expansion in n−1/2 made in the derivation of rBP

and AMP looses its accuracy. Here the well known spectral initialization is beneficial. It leaves the Nishimori
line, but results in reliable convergence if the signal is strong (Celentano et al., 2023).

For moderate or larger noise, the average distance of the initialization from the Nishimori line can be
minimized by rescaling a random sample from the prior such that the relation Qz

w/v = |Mz
w/v| holds on

expectation for the given finite system size. This yields σ2
init = σ2

prior
n for a vector in Rn. Note that the

distribution of the random overlap is still centered on zero, so this initialization can only minimize the average
distance from the Nishimori line, not eliminate it, therefore we refer to it as "approximate Nishimori". To
enforce the condition on the level of the single realization would require information about the ground-truth
direction to enter the algorithm.
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C Linearized AMP: optimal spectral algorithm for weak recovery

Algorithm 2 linearized AMP
Input:

data X, Y
parameters λz, σξz , Σv, σwz for z ∈ {X, Y }
Initialize:

# random guess from prior (iid. normal also works)
sample ŵz ∼ Pwz and v̂z ∼ Pvz

ŵ ←
(
ŵX , ŵY

)T

v̂ ←
(
v̂X , v̂Y

)T

Γv, Γw ← Equations (17) and (18)
Run: # Power iteration
while not converged do

ŵ ← Γwŵ
v̂ ← Γv v̂
v̂ ← v̂

||v̂||
ŵ ← ŵ

||ŵ||
end while
# (optionally scale norms to expected norm of the prior)
return ŵz, v̂z for z ∈ {X, Y }

For priors of mean zero, we expand the rBP equations (A.14)-(A.17) around ŵz
i→ij , v̂z

j→ij = 0 to obtain a
linearized rBP iteration, which is nothing but a power iteration of a linear operator. Again the the dimension
of the operator can be reduced to 2d × (nx + ny) by the analogous steps as in Appendix B to obtain a
power-iteration on the node level.
First, we use that the ∂vz and ∂wz derivatives of both σ̂z

v,j→ij and σ̂z
w,j→ij with respect to both ŵz

i→ij and
v̂z

j→ij are zero at the origin; this follows from the Z2 symmetry of choosing the sign of the estimated vectors
(only the relative sign between v̂X

j→ij and v̂Y
j→ij matters). Consistently with this argument, seeing that ŵz

i→ij

and v̂z
j→ij appear squared in Kw,t

z,i→ij and Kv,t
z,j→ij , their derivatives at the origin are vanishing as well. We

are then left with computing

∂v̂z,t
j→ij

∂ŵz,t−1
k→kj

∣∣∣∣∣
w=0

= ∂fvz

in
∂Jz

∣∣∣∣
w=0

∂Jv,t−1
z,j→ij

∂ŵz,t−1
k→kj

∣∣∣∣∣
w=0

= σ2
vz

λz√
nz

Sz
kj ∀k ̸= i (C.1)

∂v̂z,t
j→ij

∂ŵz̄,t−1
k→kj

∣∣∣∣∣
w=0

= ∂fvz

in
∂J z̄

∣∣∣∣
w=0

∂Jv,t−1
z̄,j→ij

∂ŵz̄,t−1
k→kj

∣∣∣∣∣
w=0

= cv
λz̄√
nz̄

S z̄
kj ∀k (C.2)

∂ŵz,t
i→ij

∂v̂z,t
k→ik

∣∣∣∣∣
v=0

= ∂fwz

in
∂Jz

∣∣∣∣
v=0

∂Jw,t
z,i→ij

∂v̂z,t
k→ik

∣∣∣∣∣
v=0

= σ2
wz

λz√
nz

Sz
ik ∀k ̸= j (C.3)

where we have used that fin is defined as a derivative of the cumulant generating function of W, so the
derivatives evaluated at zero give the prior (co)variances. Note the flip of z → z̄ between the first and the
second line.
In the first and the second line we had to exclude the k = i and k = j index, respectively, where the derivative
would be zero. Apart from this, the derivatives are completely independent of the target node of the messages.
In analogy to the derivation of AMP, the error made by adding these two terms in order to get an iteration

20



Under review as submission to TMLR

on the node level is

ŵz,t
i − ŵz,t

i→ij = λ2
z

nz
σ2

vz σ2
wz

∑
k ̸=j

Sz
ikSz

ikŵz,t−1
i→ij + Sz

ij

∑
k

Sz
kjŵz,t−1

k→kj

 (C.4)

= λ2
z

nz
σ2

vz σ2
wz

(
ŵz,t−1

i→ij

∑
k

(Sz
ik)2 +O( 1

√
nz

)
)

(C.5)

v̂z,t
j − v̂z,t

j→ij = λ2
z

nz
σ2

vz σ2
wz

(
v̂z,t−1

j→ij

∑
k

(Sz
kj)2 +O( 1

√
nz

)
)

(C.6)

(C.7)

where we are directly considering the products of the operators updating v̂z and ŵz, to get two iterations
running only on the v̂z and ŵz vectors, respectively. The Onsager reactions

∑
k(Sz

ik)2 ∼ O(1) and
∑

k(Sz
kj)2 ∼

O(1) can not be neglected (we add the k = j and k = i terms here since they are sub-leading). Therefore going
from linearized rBP to linearized AMP, we find that the Onsager correction is exactly to subtract the terms
on the diagonal of the matrix, giving the block structured matrices Γv and Γw in Equations (17) and (18).
Note that directly linearizing the AMP equations would make it necessary to show that the dependence of
the linear v̂z iteration on the Onsager reaction of the intermediate ŵz update step is vanishing, and vice
versa for the linear ŵz iteration. A simple way to see this is by starting from linearizing rBP.

D State evolution

By introducing a set of O(1) order parameters we now find low-dimensional effective equations which describe
the rBP dynamics in the thermodynamic limit. Note that one would like to get the dynamics of the overlaps
between the full marginal estimates (the messages where the target index in the sum is not excluded) and the
signal. While the rBP iteration runs on the truncated marginals with excluded target index, the difference in
the thermodynamic limit is vanishing, ⟨ŵiw

0
i ⟩ − ⟨ŵi→ijw0

i ⟩ ∼ O( 1√
n

) , and we can replace the overlaps of the
full marginals by those of the truncated marginals. So we introduce the order parameters

Mz,t
w = 1

nz − 1

nz∑
i ̸=j

ŵz,t
i→ijw0

z,i Mz,t
v = 1

d− 1

d∑
j ̸=i

v̂z,t
i→ijv0

z,j (D.1)

Qz,t
w = 1

nz − 1

nz∑
i ̸=j

ŵz,t
i→ijŵz,t

i→ij Qz,t
v = 1

d− 1

d∑
j ̸=i

v̂z,t
i→ij v̂z,t

i→ij (D.2)

Σz,t
w = 1

nz − 1

nz∑
i ̸=j

σ̂z,t
w,i→ij Σz,t

v = 1
d− 1

d∑
j ̸=i

σ̂z,t
v,i→ij (D.3)

where w0
z , v0

z are the ground-truth factors. Notice that we drop the j index for the order parameters, because
in the thermodynamic limit they all concentrate and become independent of j.
In the following, we exploit self-averaging in several places; any node-averaged quantity concentrates to its
mean over noise disorder, which also allows us to drop indices for iid. quantities. Given a quantity fkl ∼ iid.
(or with weak enough correlations) and with Var(fkl) = σ2

f ∼ O(1) and E(fkl) = f ∼ O(1) we have

1
d

d∑
k

fkl = f +O
(

1√
d

)
= E(fkl) +O

(
1√
d

)
. (D.4)

Note that we need to be careful with applying this in case of vanishing mean f = 0, since then the leading
order term ∼ O((d)− 1

2 ) may or may not be negligible, depending on the context.
Since the order parameters are self-averaging we replace the sum over node indices by an average over the
disorder, and write their update equations by plugging in the rBP equations (A.14-A.17). At the example of
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Mw,

Mz,t
w = Ew0

z,Kw,t
z,i→ij

,Jw,t
z,i→ij

[fw
in(Kw,t

z,i→ij , Jw,t
z,i→ij)w0

z ]. (D.5)

Therefore we need to find the mean and variance of the source terms (14)-(13) which become Gaussian for
d→∞, across noise realizations of the observations z.
While not requiring Bayes-optimality, so that the priors and noise channels of ground-truth and algorithm
can differ, e.g. P 0

out(zij |wi, vj) = eg0
z(zij ,wz

i vz
j ) ̸= egz(zij ,wz

i vz
j ), we do assume the following property holds

∀wi, vj

∫
dzij P 0

out(zij |wz
i , vz

j )
∂gz(zij |wz

i , vz
j )

∂wz
i /vz

j

= 0, (D.6)

which in the Bayes-optimal case P 0
out(zij |wz

i , vz
j ) = egz(zij |wz

i ,vz
j ) follows directly from normalization. For

a discussion of when this is satisfied, refer to Lesieur et al. (2017), p.34. We do the mean and variance
calculation first at the example of Jw,t

z,i→ij . The mean is

E(Jw,t
z,i→ij) = λz√

nz

d∑
k ̸=i

∫
dzik P 0

out(zik|w0
z,i v0

z,k)Sz
ikv̂z,t

k→ik (D.7)

= λz√
nz

d∑
k ̸=i

∫
dzik P 0

out(zik|0)
[

1 + λ0
z

w0
z,i v0

z,k√
nz

S0,z
ik +O( 1

nz
)
]

Sz
ikv̂z,t

k→ik (D.8)

= λzλ0
z

∆̂z
w0

z,i EP 0
out(z|0)

 1
nz

d∑
k ̸=i

v̂z,t
k→ikv0

z,k

+O( 1
√

nz
) (D.9)

= αzλzλ0
z

∆̂z
Mz,t

v w0
z,i +O( 1

√
nz

). (D.10)

where in the second to third line, using that S0,z
ik Sz

ik and v̂z,t
k→ikv0

z,k are approximately independent both w.r.t.
indices and noise realization (note that the integration is over P 0

out(zik|0)), we defined

1
∆̂z

= EP 0
out(z|0)

[
S0,z

ik Sz
ik

]
(D.11)

and in the last line could get rid of the expectation over the channel noise by plugging in the self-averaging
order parameter. Next, the variance of Jw,t

z,i→ij gives

Var(Jw,t
z,i→ij) = λ2

z

nz

d∑
k,l ̸=i

EP 0
out(zik|w0

z,i
v0

z,k
)EP 0

out(zil|w0
z,i

v0
z,l

)
[
Sz

ikSz
ilv̂

z,t
k→ikv̂z,t

l→il

]
− E(Jw,t

z,i→ij)2 (D.12)

= λ2
z

nz

d∑
k ̸=i

EP 0
out(z|0)

[(
Sz

ikv̂z,t
k→ik

)2 +O( 1
√

nz
)
]

+O(1
d

) (D.13)

= λ2
z

∆̃z
EP 0

out(z|0)

 1
nz

d∑
k ̸=i

v̂z,t
k→ikv̂z,t

k→ik

+O( 1
√

nz
) (D.14)

= αzλ2
z

∆̃z
Qt

v +O( 1
√

nz
) (D.15)

where in the first line the mean subtraction cancels with the k ̸= l terms up to the one term which gives
the O( 1

d ) in the second line, and then we use that, for the remaining diagonal terms the zeroth order in
the expansion of P 0

out(zik|w0
z,i/u0

i v0
z,k) is already non-vanishing. Then, along the line of the arguments for

E(Jw,t
z,i→ij), we defined

1
∆̃z

= EP 0
out(z|0) [Sz

ikSz
ik] . (D.16)
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For Kw,t
z,i→ij , each term in (15) is self-averaging, so the variance is sub-leading:

E(Kw,t
z,i→ij) = αzλ2

z

∆̃z
Qz,t

v − αzλ2
zR̄z(Qz,t

v + Σz,t
v ) +O( 1

√
nz

) (D.17)

Var(Kw,t
z,i→ij) = O( 1

√
nz

), (D.18)

where we used approximate independence of Rz
ik and ((v̂z,t

k→ik)2 + σ̂z,t
v,k→ik) as before for Sz

ij and defined using
self-averaging (D.4)

R̄z = EP 0
out(zik)(Rz

ik) = 1
d

d∑
k ̸=i

Rz
ik +O( 1√

d
). (D.19)

Analogously,

E(Jv,t
z,j→ij) = λzλ0

z

∆̂z
Mz,t−1

w v0
z,j +O( 1

√
nz

) (D.20)

Var(Jv,t
z,j→ij) = λ2

z

∆̃z
Qz,t−1

w +O( 1
√

nz
) (D.21)

E(Kv,t
z,j→ij) = λ2

z

∆̃z
Qz,t−1

w − λ2
zR̄z(Qz,t−1

w + Σz,t−1
w ) +O( 1

√
nz

) (D.22)

Var(Kv,t
z,j→ij) = O( 1

√
nz

). (D.23)

Due to the exchange of node and disorder averages the means and variances are independent of the i, j indices,
so that we drop them. Also it does not make a difference with the truncation at O( 1√

n
) whether the i = j

term is included in the marginal or not. Equipped with the statistics of the source terms, plugging the rBP
equations (A.14)-(A.17) into the order parameter definitions (D.1)-(D.3) and using self-averaging as in the
example (D.5), we obtain the state evolution equations:

Mz,t
w = Ew0

z,Jw,t
z

[
fw

in(Kw,t
z , Jw,t

z ) w0
z

]
(D.24)

Mz,t
v = E(v0

X
,v0

Y
),Jv,t

X
,Jv,t

Y

[
fvz

in (Kv,t
X , Kv,t

Y , Jv,t
X , Jv,t

Y ) v0
z

]
(D.25)

Qz,t
w = Ew0

z,Jw,t
z

[
fw

in(Kw,t
z , Jw,t

z )2] (D.26)

Qz,t
v = E(v0

X
,v0

Y
),Jv,t

X
,Jv,t

Y

[
fvz

in (Kv,t
X , Kv,t

Y , Jv,t
X , Jv,t

Y )2
]

(D.27)

Σz,t
w = Ew0

z,Jw,t
z

[
∂fw

in
∂J

(Kw,t
z , Jw,t

z )
]

(D.28)

Σz,t
v = E(v0

X
,v0

Y
),Jv,t

X
,Jv,t

Y

[
∂fvz

in
∂J1/2

(Kv,t
X , Kv,t

Y , Jv,t
X , Jv,t

Y )2
]

(D.29)

with scalars w0
z ∼ Pw0

z
and (v0

X , v0
Y ) ∼ Pv and the source terms

Jw,t
z ∼ N

(
αzλzλ0

z

∆̂z
Mz,t

v w0
z ,

αzλ2
z

∆̃z
Qz,t

v

)
(D.30)

Jv,t
z ∼ N

(
λzλ0

z

∆̂z
Mz,t−1

w v0
z ,

λ2
z

∆̃z
Qz,t−1

w

)
(D.31)

Kw,t
z = αz

λ2
z

∆̃z
Qz,t

v − αzλ2
zR̄z(Qz,t

v + Σz,t
v ) (D.32)

Kv,t
z = λ2

z

∆̃z
Qz,t−1

w − λ2
zR̄z(Qz,t−1

w + Σz,t−1
w ). (D.33)

Note that the distributions of Jw,t
z , Jv,t

z still depend on w0
z , v0

z , therefore the average is performed also over
the priors in (D.26) - (D.29). In these 12 equations, all variables are scalars, giving the low-dimensional
effective description of the relaxed BP as well as the AMP dynamics.
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D.1 Bayes-optimal priors and Gaussian noise channels

The general state evolution depends on the noise channels through ∆̂z, ∆̃z, and R̄z. Using that for the
Gaussian channel Pout(zij , wz

i , vz
j ) = N (λz

wz
i vz

j√
nz

, σ2
ξz ) we have Sz

ij = zij

σ2
ξz

and Rz
ij = z2

ij

σ4
ξz
− 1

σ2
ξz

, we find by
plugging into (D.11), (D.16) and (D.19) that

∆̂z = ∆̃z = σ2
ξz (D.34)

R̄z = 0. (D.35)

Furthermore, for Bayes-optimal priors we can use the Nishimori identity (21) if the state evolution follows the
Nishimori line (Nishimori, 2001). Due to the symmetry spontaneously broken at initialization, as discussed in
Section 2.4, fx

in(Ki, Ji) is the mean of the local posterior distribution W(x, Ki, Ji) with broken symmetry
estimating ±x0

i , depending on the sign of the node average Ei[x0
i fx

in(Ki, Ji). Conditioned on the ± direction
of broken symmetry, fx

in(K, J |±) has nonzero mean so that self-averaging (D.4) applies and node and disorder
average can be exchanged. Then we have the not obvious application

Ex0 [(fx
in(K, J |±))2] = Ex0 [EWK,J,±(x)EWK,J,±(x)] (D.36)

= Ex0 [Ex1,x2∼WK,J,±(x1x2)] (D.37)
= Ex0 [Ex2∼WK,J,±(±x0x2)] (D.38)
= ±Ex0 [x0 fx

in(K, J |±)] (D.39)
=
∣∣Ex0 [x0 fx

in(K, J)]
∣∣ , (D.40)

where K, J of course depend on x0 and in the last step we could exchange the ± condition for the absolute
value. Thus (D.26) and (D.27) yield

Qz,t
w = |Mz,t

w | (D.41)
Qz,t

v = |Mz,t
v |. (D.42)

The Nishimori identity can also be applied to Qz,t
w/v + Σz,t

w/v, since

Ex0 [(fx
in(K, J))2 + ∂Jfx

in(K, J)] = Ex0 [EWK,J
(xx)] = Ex0 [x0x0], (D.43)

so for priors without mean

Qz,t
w/v + Σz,t

w/v = σ2
wz/vz (D.44)

The last relation is not needed for the Gaussian channel case, as the terms involving Σz,t
w/v vanish anyways

due to R̄z = 0, (D.35). In total, using (D.34),(D.35),D.41, the state evolution simplifies to the form given in
Equations (22) and (23).

D.2 Fully Gaussian, and Rademacher-Bernoulli models

With Bayes-optimal, Gaussian priors and Gaussian noise channels, the expectations over both the prior and
the source term give a simple closed form. We use the short hands M̃z,t

w/v = λ2
z

σ2
ξz

Mz,t
w/v as introduced also

below (22). The denoising function (B.11) being a linear function in J , the average over Jw,t
z in (23) is given

by the respective mean EJw,t
z

[Jw,t
z ], leading to

EJw,t
z

[
fw

in
(
αz|M̃z,t

v |, Jw,t
z

)]
= αzM̃z,t

v w0
z

αz|M̃z,t
v |+ σ−2

wz

(D.45)

and fvz

in is again linear in JX , JY , so the average over Jv,t
z yields

EJv,t
X

,Jv,t
Y

[
fvz

in
(
|M̃X,t−1

w |, |M̃Y,t−1
w |, Jv,t

X , Jv,t
Y

) ]
= v0

zM̃z,t−1
w Σ̃zz

(
|M̃X,t−1

w |, |M̃Y,t−1
w |

)
+ v0

z̄M̃ z̄,t−1
w Σ̃zz̄

(
|M̃X,t−1

w |, |M̃Y,t−1
w |

)
. (D.46)
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Then also the averages over the prior distributions in (23),(22) simplify to Ew0
z
[(w0

z)2], Ev0
z
[(v0

z)2] and Ev0
z
[v0

zv0
z̄ ],

so the SE equations are

Mz,t
v = σ2

vz M̃z,t−1
w Σ̃zz

(
|M̃X,t−1

w |, |M̃Y,t−1
w |

)
+ cvM̃ z̄,t−1

w Σ̃zz̄

(
|M̃X,t−1

w |, |M̃Y,t−1
w |

)
. (D.47)

Mz,t
w = αzM̃z,t

v σ2
wz

αz|M̃z,t
v |+ σ−2

wz

(D.48)

When changing to a Rademacher-Bernoulli (sparse) prior on wz while vX , vY remains jointly Gaussian,
Equation (D.47) remains the same. The expectation over the sparse prior in the Mz,t

w update (23) simply
gives a sum of three terms which is omitted here for brevity. Then only the Gaussian integral over the source
term Jw,t

z must be computed numerically.

D.3 Bethe free energy in general case

Based on the form of the SE equations in Appendix D and in analogy to the replica calculation of Lesieur
et al. (2017) in their Appendix C, we read off the Bethe free energy, which corresponds to the free energy
obtained by a replica-symmetric Ansatz, and which we state here without lengthy derivation

ΦRS({M, Q, Σ}) =
∑
{z}

(
λzλ0

z

∆̂z
Mwz Mvz − λ2

z

2∆̃z
Qwz Qvz

)
+
∑
{z}

(
λ2

zR̄z(Qz
w + Σz

w)(Qz
v + Σz

v)
)

−
∑
{z}

1
αz

Ewz,Jw
z

[logZw(Kw
z , Jw

z )] (D.49)

− E(v0
X

,v0
Y

),Jv
X

,Jv
Y

[logZv(Kv
X , Kv

Y , Jv
X , Jv

Y )] .

Here Z(K, J) are the normalizations of the tilted priors W(K, J) defined in (10). We can interpret the last
two lines of (D.49) as the energetic terms and the first two lines as the additional entropic contributions
arising from the introduction of the order parameters after integrating out the Fourier variables. The relation
to state evolution is that the stationarity condition

∇⃗{M,Q,Σ}ΦRS != 0 (D.50)

gives back exactly the SE equations (D.24)-(D.33).

D.4 Bethe free energy for Rademacher-Bernoulli prior and Gaussian channels

The Bethe free energy (D.49) simplifies to

ΦRS({M}) =
∑
{z}

1
2Mwz M̃vz −

∑
{z}

1
αz

logZwz − logZv (D.51)

where the free energy of the Gaussian part can be computed analytically, with Kz = |M̃wz | as well as
Jz ∼ N

(
M̃wz vz

0 , |M̃wz |
)
, and therefore

logZv = E(vX
0 ,vY

0 ),JX ,JY

[
1
2 log det Σ̃K + 1

2JT Σ̃KJ

]
(D.52)

= 1
2 log det Σ̃K + 1

2
∑
{z}

(M̃2
wz σ2

vz + |M̃wz |)Σ̃zz
K + 1

2M̃wX M̃wY cv(Σ̃XY
K + Σ̃Y X

K ). (D.53)
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The free energy of the Rademacher-Bernoulli part yields in turn with Kz = αz|M̃vz | as well as Jz ∼
N
(
αzM̃vz wz

0 , αz|M̃vz |
)
, the expression

logZwz = Ewz,Jz

[
log(ρz cosh(Jz)e− 1

2 Kz + 1− ρz)
]

, (D.54)

where the sum over the three states of the Rademacher-Bernoulli prior can be written out straightforwardly,
which we omit here for brevity.

E Supplementary figures
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Figure S1: Introducing Q = |M | fixes asymmetry of state evolution. a The fully symmetric branches of the
phase transition for the Gaussian model without squaring the cosine similarities. Here Qz = |Mz| according
to Equations (22) and (23), and parameters as in Figure 2. At θalg the uninformative fixed point looses
stability (orange dotted) and two stable informative branches exist, representing the Z2 symmetry. b Time
resolved trajectory of the cosine similarities SC,wX and SC,vX , starting from a random vector with negative
overlaps. The trajectory of AMP (orange ’+’) is consistent with the prediction of symmetric SE (blue lines),
while the prediction of asymmetric SE based on Qz = Mz (grey lines) is not physical. Parameters as in a
with σξz = 0.8, and the AMP trajectory is one run at d = 10000. c The branches of SE if Qz = Mz. The
branch of fixed points with negative overlaps does not exist, only the branch with positive overlaps is stable.
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Figure S2: Phase diagram of weak recovery threshold as in Figure 5, but also showing Bayes-optimal
performance specific to the model with Gaussian priors and Gaussian noise channel. The product of cosine
similarities, CSwz CSvz = Mwz Mvz

σwz σvz

√
Qwz Qvz x

as obtained from SE (23,22) is shown. a Both modalities are
symmetric, CSwz CSvz is indicated by the green color scale. b The performance achievable in the two
modalities differs. CSwX CSvX is shown in blue and CSwY CSvY in yellow, mixing to the green color scale
on the diagonal which corresponds to the color bar given in panel a. Again the dotted lines indicate the
intersection of the two planes.
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Figure S3: As Figure 2a, but showing the performance of estimating vz from the same simulations. The vz

estimate of linearized AMP in the regime of small noise is not perfect since the operator performs a weighted
average of the vX and vY estimates, as discussed at the end of Section 2.2.
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Figure S4: As Figure 4, but showing the performance of estimating vz from the same simulations. Notably,
for vz there is no difference between PLS-Canonical and PLS-SVD, since the additional regression step
distinguishing the two is to estimate wz. The vz estimate of linearized AMP in the regime of small noise is
again not optimal and shows a larger variance than the estimate of wz in Figure 4.

28


	Introduction
	Spiked Multi-modal Model
	Related work
	Main contributions

	Approximate message passing and state evolution
	AMP
	Linearized AMP
	Limit of perfect correlation, cv1
	State evolution
	Algorithmic and information-theoretic weak recovery thresholds

	Numerical results and phase diagram
	Conclusions
	Relaxed belief propagation
	AMP: closing on the marginals
	Denoising functions for Gaussian priors
	Denoising function for Rademacher-Bernoulli prior
	Initialization of AMP

	Linearized AMP: optimal spectral algorithm for weak recovery
	State evolution
	Bayes-optimal priors and Gaussian noise channels
	Fully Gaussian, and Rademacher-Bernoulli models
	Bethe free energy in general case
	Bethe free energy for Rademacher-Bernoulli prior and Gaussian channels

	Supplementary figures

